
HAL Id: hal-02267646
https://hal.science/hal-02267646v1

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic scheduling reconciles cache with
preemption for WCET estimation

M Destelle, J.-L Dufour

To cite this version:
M Destelle, J.-L Dufour. Deterministic scheduling reconciles cache with preemption for WCET es-
timation. ERTS2 2010, Embedded Real Time Software & Systems, May 2010, Toulouse, France.
�hal-02267646�

https://hal.science/hal-02267646v1
https://hal.archives-ouvertes.fr

 Page 1/7

Deterministic scheduling reconciles cache with preemption for
WCET estimation

M. Destelle1, J.-L. Dufour1

1: Sagem, Avionics Division - Avenue du gros chêne, 95610 Eragny, France

Abstract: Inertial Reference Systems are highly
critical in the avionics context. As a result, their
software components are submitted to a rigorous
demonstration of the Worst-Case Execution Time
(“WCET”), together with a demonstration of “robust”
partitioning. With a processor using cache memory,
if task scheduling is preemptive, these
demonstrations become a real challenge. The
difficulty comes in adequately bounding the cache
refill cost due to context switches. This paper
presents the solution we have adopted on our new
generation of Inertial Reference Systems: it consists
in a particular scheduling policy, which allows in turn
a particular cache management policy. This cache
policy is a key point for performance, because
modern processors rely radically on cache to
achieve the promised MIPS: the result is – to our
knowledge – an unrivalled use of cache on a DAL A
system. Lastly, the new scheduling policy puts the
final touch to our lock-free inter-task communication
protocol.

Keywords: preemptive scheduling, WCET, cache
memory, robust partitioning, lock-free
communication.

1. Introduction

Inertial Reference Systems are highly critical
avionics systems, because – among other things –
they deliver pitch and roll angles directly involved in
the stability of the aircraft. When the DO-178B/ED-
12B recommendation is applicable, the majority of
the software is “level A” : this implies a rigorous
demonstration of the impossibility of a CPU-time
overload. Moreover, “robust” partitioning may be
requested between pure inertial computations,
barometric computations and hybrid inertial/GPS
computations: this implies that “A software partition
should be allowed to consume shared processor
resources only during its period of execution” ([DO-
248B/ED-94B] §4.14.5), and of course CPU time can
be considered as one of the shared processor
resources. In the context of a real project
certification, we decided to not open Pandora’s box
and to strictly follow this recommendation, but in the
conclusion we will take the liberty to technically
challenge it.

To deal with these issues, we use traditionally on our
Inertial Navigation Systems a very simple multi-

tasking architecture: a purely periodic preemptive
scheduling (no aperiodic task: asynchronous events
are polled, with hardware time-tagging of events
when needed), with a fixed-priority rate-monotonic
policy (no priority inversion) and harmonic periods
(see the annex). With this architecture, the CPU-time
overload issue breaks down immediately into task
level issues: each task must have a WCET less than
its allocated “deadline” (defined here as a limit
duration, in contrast to a limit date). To enforce these
deadlines, at each task launch the scheduler arms a
watchdog with the corresponding duration, and if the
watchdog goes off, the faulty task is no more
scheduled.

On the simple processors we used until now
(pipelined, but without cache), context switches had
mainly a deterministic cost (the saving and
restoration of the registers), because the disruptions
of the pipeline had a “random” but negligible cost.
So, on a given application with an average of let’s
say 3 task switches every ms, with 30µs per switch,
the CPU-load of the scheduler was valued at
3*30/1000 = 9%, and the application had to fulfill:
 ∑i Di/Ti < 91% [1]
(Di is the deadline and Ti the period of the task
number i)
and of course WCETi < Di with moreover a security
margin.
To summarize, the cost of preemptions was not
taken into account in the application tasks, but via an
extra “scheduler task”.

On our new generation, this architecture has been
confirmed, but a “new mature” processor has been
introduced: a PowerPC 8270 (Freescale), containing
a 500MHz “G2” core, fed by a 100MHz external
memory. This frequency gap is not (on average) a
problem, because the G2 core contains two 16Kb
caches: one for instructions, and one for datas. They
allow (with the help of the pipeline) one instruction
fetch and data access per cycle, to be compared to
the 15 cycles (30ns) needed by an instruction or
data external read: the global performance ratio can
reach 30. The next section details the subtle
problems the cache can create when it is associated
with a preemptive scheduler.

2. The subtle interaction cache / preemption

 Page 2/7

The impact of caches on performance is well known
[Agarwal89][Mogul91], but not so well dealt with by
tools [Wilhelm07]:

- For a single non-interrupted task, the
average execution time can be significantly
shorter (see the former ratio), but the
variation can be significantly larger (the data
cache can even increase the WCET; for the
instruction cache, this is reserved to
pathological programs [Sebek02]). This
variation is inherent in the memory
accesses: a cache hit takes one cycle, a
cache miss takes 60 cycles (120ns) if the
cache line to be replaced needs to be written
back before it can be filled (a read or write
burst takes 60ns). This variability is not a
difficult issue, in particular it must not be
confused with “non-determinism” (the G2
behavior is deterministic): it just puts a
greater emphasis on the exhaustive
determination of the WCET path(s) and on
the security margins applied on the
measurements.

- For an interrupted task, the problem is
different, and we can really speak of “non-
determinism”, because the preemption
points are really “non-deterministic”:

o When a task is interrupted, the
proportion of “dirty” (defined in
section 4.1) cache lines is random,
so the next task – even if it starts
from the beginning and makes
always the same accesses - will
have to evict a random number of
cache lines: the standard solution in
real-time systems is to ensure a
“clean” cache at each context
switch.

o When a task is restarted, the miss
ratio will be increased (compared to
the same execution of the task, but
non-interrupted) in a hard-to-predict
way: we have a cold-start in the
middle of the execution, because
useful lines have been lost due to
the former preempting tasks
(Linux/Windows case) or due to the
scheduler (real-time case). The key
notion of “useful cache block” has
been defined hardly 15 years ago
[Lee96], and since it is still an active
research area, not yet operational in
the commercial WCET tools (to our
knowledge).

This cache refill cost after a preemption is both hard-
to-predict and not-easily-diminished:

- Software-based cache partitioning
[Mueller95] is very restrictive for the

compilation chain and very memory-
inefficient with our constraints of spatial
partitioning.

- Hardware-based cache partitioning
[Liedtke97] is not easy in the G2 core,
because the 4 cache ways are not
individually lockable, and a locked way
doesn’t survive to an invalidation.

- The explicit choice of preemption points
[Simonson95] is not compatible with the
constant evolution of the software (the sub-
tasks limits move at each new version).

With the performance ratio of 30 in mind, even if it is
sometimes still practiced [Rodríguez03], the
approach of disabling the caches to ensure an easy
WCET estimation is completely unrealistic in our
context. So we will have to assume that at each
preemption, we have to refill completely the cache.
This cost has to be multiplied by the maximum
number of preemptions: this number is also a current
research topic [Burguière09], but for this, we can do
a simple thing: make the scheduling deterministic, in
such a way to make the number of preemptions
constant and statically computable. This is the topic
of the next paragraph.

3. Deterministic scheduling

3.1 Foreword: What is a “periodic task” ?

Before describing the new deterministic scheduling,
we will shortly describe a key point of our scheduling
policies, to make easier the understanding of the
next sections.

Generally (and fortunately), real-time schedulers
don’t change the design patterns used in non-real-
time computing, they just adapt them. This is
typically true for communication (semaphores, …),
this is also true for the very basic notion of “periodic
task”. For example with an [ARINC-653] scheduler, a
periodic task looks like:

entry: while(1) {
 applicative_state_update();
 PERIODIC_WAIT();

}

where the last call is a system call meaning
“suspend me until the next period”. The scheduler
calls the entry point only once in the very first period,
and then its an endless repetition of suspend/resume
at the level of the system call. In particular it means
that at this place the context is saved and then
restored, at each period.

Our notion of “periodic task” follows another pattern:

 Page 3/7

entry: applicative_state_update()

and the repetition (the former while loop) is done by
the scheduler, which calls the entry point at each
period. We say that the task is “started” at each
period, or that each period contains a “run” of the
task. In particular no context is saved nor restored
between successive runs. On a high frequency task
(1ms period), the CPU saving reaches 2%.

3.2 Principle

[ARINC-653] has been the initial source of
inspiration: it can be summarized as the avionics
“multi-user time-sharing system”, where “user”
means “equipment supplier”. Each supplier has a
statically specified periodic set of time-slots (a time-
slot is a time interval defined by its offset from the
start of the period and its duration) called a partition,
and an ARINC-653 scheduler is able to ensure
robust partitioning between the partitions. Inside a
partition, multi-tasking is performed with a priority-
based preemptive scheduler. Inter-partition
communication must use messages (addressed to
partition: a specific task cannot be referred to). Intra-
partition (task to task) can also use classical shared
areas with mutual exclusion dynamically guaranteed
by semaphores, together with task priority changes
to avoid task interlocks.

We don’t have the multi-supplier constraint, so to
avoid a needless complexity (coexistence of partition
scheduling and task scheduling, priority inversion)
and to maintain the efficiency of our classic
scheduling (task-level communication between
partitions, based on shared areas statically protected
[section 5]), we had the idea to keep only the static
philosophy of the partitions and to apply it to the
tasks: the only difference between our classic rate-
monotonic scheduler and the new one is that tasks
execute now in a constant time, and formally, like
ARINC-653 partitions, tasks are now static periodic
sets of time-slots. More precisely, a task of period T
can be defined as follows in any interval [nT,
(n+1)T[:

- A non-interrupted task is a single time-slot,
- A task which is pre-empted k times is a

sequence of (k+1) time-slots.
The notion of partition still exist: it is reduced to a set
of tasks such that, as soon as one of them fails, the
other ones must also be declared faulty.

The implementation is quite simple : instead of giving
back the control to the scheduler at the end of the
applicative computations of a task, tasks always
terminate in an empty endless loop, the “IDLE” loop,
and it is the watchdog timer programmed with the
deadline of the task which transfers the control to the
scheduler. This way, tasks have a constant duration,

equal to their deadline. In other words, the deadline
watchdog is promoted from a safety status to a
scheduling status. The negative aspect is the lost
time in the IDLE loop, but first it can be used for
“background” jobs like memory BIST, and second in
a DAL A certification context we considered it was a
very “attractive lost”.

This new scheduler is named “DMS” for
Deterministic Monotonic Scheduler. A good
summary of its specificity is:
“At any time, we know who is running”.
Together with the cache policy (next section), it is
the key property for obtaining:
- a constant number of preemptions for tasks,

which permits a safe but fine task-WCET
estimation,

- a compositional estimation of the global CPU-
load, because the task-WCETs can be estimated
independently.

It is the result of:
- our strict rate-monotonic scheduling policy

(no aperiodic task, no priority change),
- tasks of constant duration,
- scheduler system calls of “nearly constant”

duration (next subsections).

3.3 Implementation

Like all preemptive schedulers in the real-time
domain, our standard scheduler is based on the
concept of “tick scheduling”: preemptions are
initiated by a periodic InTerrupt (“IT”), triggered by a
Real-Time Clock (“RTC”, “HTR” in French), with a
fixed period typically equal to 1ms or 2ms on our
systems.

The new scheduler is based on an additional IT, the
Deadline IT (previously the “watchdog” used to
enforce deadlines). We call it also the DECrementer
(“DEC”) IT, because it is trigged by an internal G2
timer called the “decrementer”, programmed by the
scheduler at each task switch.

The job of the RTC IT is to “preempt and schedule”,
i.e.:

- a) save the context (registers, among them
the decrementer) of the pre-empted task,

- b) declare “eligible” (i.e. ready to be
scheduled) the tasks for which the current
time is a multiple of their period (2ms tasks
are re-elected every 2ms, …),

- c) choose the next task to (re-)start: it is the
eligible task which has highest priority,

- d) configure the MMU for this task,
- e) launch the task; it be either an initial

launch, and in this case no context
restoration has to be done, or a re-launch if

 Page 4/7

the task was interrupted (pre-empted), and
in this case the context has to be restored.

The job of the DEC IT is to “terminate and schedule”,
i.e.:

- a) declare the finished task as “no more
eligible”, and if applicative computations
were not terminated, declare a fault at the
task and partition level,

- b) perform the c/d/e actions of the RTC IT.

A task of period T is in one of the following states:

STATE NAME STATE DEFINITION

INIT Initial state before real-time
ELIGIBLE at the beginning of a new

period T
RUNNING when the task is running on

CPU board. At any time,
only one task is in
EXECUTE state

INTERRUPTED when the task is pre-
empted by the RTC IT

WAITING when the task is terminated
by the DEC IT, and its

application has finished in
time

FAILED when the task is terminated
by the DEC IT, and its

application has not finished
(CPU overhead error)

Table 1 : task states

The state transitions are as follows:

RUNNING

INIT

ELIGIBLE

INTERRUPTED

End of Idle loop

Elected
Elected

End of
running

FAILED
Real-time

error

INTERRUPTED

Elected

DEC IT

HTR IT DEC IT

HTR IT

WAITING FOR
NEW PERIOD

CYCLE
New period cycle

 for execution

HTR IT

Appli

Idle

Figure 1 : task state automaton

We illustrate the scheduling with the following
configuration:

- the RTC has a 1ms period,

- task 1 has a 1ms period and 480us
deadline,

- task 2 has a 10ms period and 750us
deadline.

The DMS “phantom task” is the background task that
is launched when no more applicative task is eligible.

DMS

Task T1

Task T2
Running

DEC IT
HTR_period HTR_period HTR_period

DMS

Task T1

DEC IT: Decrementer
Interruption
(Deadline)HTR IT

Running
I
dl
e

DEC ITHTR IT

Running

DEC ITHTR IT

Running

DEC ITHTR IT

Running

DMS phantom process

I
D
L
E

I
D
L
E

I
D
L
E

I
D
L
E

interrupted

interrupted interrupted

Figure 2 : scheduling example

It is visible in the previous figure that the two DMS
handler have a non-negligible duration (a few tens
µs), which must be taken into account to determine
correctly the time-slots, and in particular the number
of preemptions.

3.4 What means “deterministic” ?

This section clarifies the claim “at any time, we know
who is running”, explaining that, strictly speaking, it
is false, but also how it can be made practically all
the time true, and in any case sufficiently true to be
able to demonstrate a constant number of
preemptions.

The first problem comes from the non-interruptibility
of the two IT handlers: if the RTC IT occurs while the
DEC handler is running, the RTC handler has to wait
the end of the DEC handler. We say that the RTC
handler has been “pushed”.
In fact it is not a real problem, because we know
when Deadlines occur, so we can schedule in such a
way to avoid this case.

The second problem comes from the variability of
the duration of the two IT handlers. This variability
does not come from their design, because we have
followed “WCET-oriented” principles first advocated

 Page 5/7

in [Puschner02]. It comes from the architecture of
our PowerPC: the internal bus is not exclusively hold
by the G2 core, but is shared with a communication
core. With a high-speed network like AFDX, it can
steal a few percents of the internal bus bandwidth
available for the G2 core, in a completely
asynchronous way. A solution could have been to
terminate the handlers with a timer-polling loop to
enforce a constant duration, but it has not been
necessary: variations are small enough to be
manageable.
This handler variability generates a variability on the
Deadline instants (not on the task durations), and
this variability increases with the length of the task
(more precisely, with the number of preemptions)
and inversely with the priority of the task (a task is
launched after the tasks with higher priority).

In fact, a quick analysis shows that the property
“constant number of preemptions” is implied by “no
RTC handler pushed”. So, to ensure a “deterministic”
scheduling, a sufficient criterion is to determine the
time intervals where the Deadline handler may be
running, and to check that they don’t contain any
RTC IT.

4. Cache management policy

4.1 Foreword: Cache configuration w.r.t. certification

Each writable data area declared to the MMU must
be configured in one of the two following modes:

- “write-through”, means that every write is
“simultaneously” done in cache and in
memory,

- “copy-back”, means that writes are done
only in the cache, and memory updating is
performed later (possibly while the execution
of another task). A data in cache but not yet
in memory is said “dirty”, and a cache
containing at least one such data is said
“dirty”.

The action of updating memory with all the dirty data
is called a “flush” of the cache. It takes a non
negligible time essentially proportional to the amount
of dirty data (between 1 and 32µs on our hardware
configuration). It must not be confused with an
“invalidation”, which is an instantaneous reset of the
cache: any dirty data is lost.

The delayed memory update in copy-back mode is a
violation of time partitioning (not of spatial
partitioning, as is sometimes found). That’s why a
clean cache is recommended at each scheduling.
Moreover, if some data or code have survived
between two successive invocations of a task, the
second invocation may be quicker, and this can lead
to optimistic measurements. This is also a violation
of time partitioning, so it is recommended on a task

launch that the cache doesn’t contain any task data
or code. When a cache satisfies this last property
and is clean, we will say that it is “neutral”.

4.2 Copy-back at the end of the tasks

The standard and easy way to ensure a neutral
cache is to invalidate it, which implies that the cache
must already be “clean” at the schedule point. So:

- if the task is not interrupted, the application
can work on copy-back areas, provided that
it explicitly flushes the cache at the end;

- if the task is pre-empted, the application
must run in write-through mode only: the
impact on CPU time can be significant.

But with a deterministic scheduling, the scheduler
knows if the task it currently launches will be pre-
empted or will terminate before the next RTC IT.
With this information, we can launch tasks either in
write-through mode (on an intermediate time-slot) or
in copy-back mode (on the final time-slot), and in this
last case an explicit flush of the cache is performed
at the end of the task (the flush time is counted in the
execution time of the task).
It is a generalization of the fact that non-interrupted
tasks can easily run in copy-back mode (with an
explicit flush at the end).

4.3 Copy-back unlimited

The remaining problem is to ensure a clean cache
before the invalidation in the RTC handler. The
obvious solution is to ask the RTC handler to flush
the cache. But a cache flush takes a very variable
time, and this will destroy the deterministic aspect of
the scheduling.

The solution is to perform the flush in a constant
time: like tasks, it is followed by an idle loop, not
infinite but waiting for a defined duration (32µs).

On a 1ms RTC period, it represents 3% of CPU-
time: much less than the potential gain of the copy-
back mode.

5. Lock-free communication

5.1 Synchronous communication

The constraint of purely periodic tasks simplifies
drastically the mutual exclusion problem. Schedulers
permitting aperiodic tasks (like ARINC-653) are
forced to dynamically protect the shared memory
accesses (more generally the critical sections),
typically with semaphores. This dynamic aspect
makes task interlocks unpredictable, which makes
necessary priority inversion mechanisms.
With periodic tasks (harmonic periods and rate-
monotonic scheduling help also), potentially critical

 Page 6/7

sections become predictable. Moreover, our systems
use the simplifying paradigm “one writer / many
readers”.

When a writer is writing into shared memory, it must
not be preempted by its readers because they could
obtain a mix of old and new values. Symmetrically,
when a reader is reading into shared memory, it
must not be preempted by its writer because the
reader could again obtain a mix of old and new
values. With fixed priority rate-monotonic scheduling,
we don’t know exactly when all preemptions occur,
but we know when they don’t occur: a task can never
be preempted by lower-priority tasks, so it can never
be preempted by slower tasks. The consequence is
that the following protocol is safe:

Between a fast task T1 and a slow task T2,

- T2 can always communicate (read and write
their shared variables) without taking any
precaution,

- T1 communicates only in its First run in a T2
period, and T1 knows that it is in such a
particular run by evaluating the system
predicate “First(T2)”.

The following figure illustrates this with a fast task
running a the RTC period and a slow task running 3
times slower. Vertical arrows indicate reads and
writes to a shared memory.

t

T2

T1
First(T2) True False True False

 Figure 3 : the “First” predicate

This is very similar to the way data-flows on different
clocks communicate in synchronous languages like
LUSTRE (see the operators “when” and “current”,
[Caspi87]).

5.2 The « Last » primitive becomes static

To minimize latencies, it is sometimes useful to a
fast task T1 to be able to communicate with a slow
task T2 not in its first run, but in its last run in a T2
period. To know that it is in this run, T1 can evaluate
the “Last(T2)” system predicate. Of course, the

underlying assumption is that T2 will have finished
its execution when the Last run of T1 begins. This is
a fundamental difference with First, where the
absence of preemption was ensured by the very
principle of rate-monotonicity. This assumption had
to be demonstrated with timing measurements.

t

T2

T1
Last(T2) False False False True

 Figure 4 : the “Last” predicate

Deterministic scheduling changes that: we know
when preemptions occur, so we are able to statically
check that T2 will not be preempted by the last run of
T1.

6. Conclusion

The static determination of the number of
preemptions allows to secure the WCET estimations
(obtained by test or static analysis) with a justified
margin.
Nevertheless, the cost of a complete cache refill is
very expensive and clearly over-estimates the real
cache-related preemption cost: even with an exact
determination of the number of preemptions, the
price to pay is very high, and confirms the urgent
need of having a good estimation of the preemption
costs in WCET tools.

This analysis has brought us to wonder about the
validity of the partitioning recommendation, more
precisely: what are exactly the feared events it must
block ? Our impression is that it must address events
with unpredictable effect (like a CPU overload of a
task), and that the expulsion of dirty lines of a cache
could be considered out of the scope, because the
impact is well-known: maximum 32µs. So, to ensure
safety without any cache invalidation or flush is
possible: we simply have to add the good margins
on the WCET estimations. This is a good subject for
the current decade.

7. Acknowledgements

The authors acknowledge Frédéric Titeux for
technical discussions around the fact that a strict
“determinism” is not the only answer to the DO178B

 Page 7/7

(but of course the authors think that it is the best),
and François de Virel for having patented with
lightning speed, allowing us to have a substantial
paper.

8. Annex: harmonic periods

A set of periods is said “harmonic” when for any
periods T1 and T2, either T1 divides T2 or the
opposite.
This a fundamental property which is often
overlooked, but which permits to check very simply
the schedulability of a task set:
 ∑i Di/Ti < 1 [2]
(Di is the deadline and Ti the period of the task
number i).
This was demonstrated for the first time in
[Lehoczky91] (theorem 3.4), but we can find traces
of this in one of the first papers of the discipline:
[Liu73] (the remark on the “utilization factor” between
theorems 3 and 4).
The demonstration of [Lehoczky91] is complex,
because it starts from a more general case with non-
harmonic periods. The engineer is often surprised by
this complexity, because in the harmonic case, the
expression ∑i Di/Ti is simply the definition of the CPU
load.

Among the practical interests of this constraint, we
can mention the absence of beats: informations
transmitted between tasks of different periods have
always the same freshness.

9. References

[Agarwal89] A. Agarwal, M. Horowitz, J. Hennessy. An
analytical cache model. ACM Trans. On Computer
Systems 7 (2), May 1989.

[ARINC-653] ARINC: “Avionics application software
standard interface”, first ed. Oct. 1996, current ed. March
2006.

[Burguière09] C. Burguière, J. Reineke, S. Altmeyer.
Cache-related preemption delay computation for set-
associative caches – Pitfalls and solutions. WCET’09,
June 2009.

[Caspi87] P. Caspi, D. Pilaud, N. Halbwachs, J.A. Plaice:
“LUSTRE: a declarative language for programming
synchronous systems”, 14th ACM Symposium on
Principles of Programming Languages, 1987.

[DO-248B/ED-94B] RTCA, EUROCAE: “Final report for
clarification of DO-178B/ED-12B”, Oct. 2001.

[Lee96] C. Lee, J. Hahn, Y. Seo, S. L. Min, R. Ha, S.
Hong, C. Y. Park, M. Lee, C. S. Kim. Analysis of cache-
related preemption delay in fixed-priority preemptive
scheduling. 17th RTSS, Dec. 1996.

[Lehoczky91] J.P. Lehoczky, L. Sha, J.K. Strosnider, H.
Tokuda: “Fixed priority scheduling theory for hard real-time
systems”, in “Foundations of real-time computing”, A.M.
van Tilborg, G.M. Koob eds., Kluwer Academic Publishers,
1991.

[Liu73] C.L. Liu, J.W. Layland: “Scheduling algorithms for
multiprogramming in hard realtime environment.“, Journal
of the ACM, 20(1), February 73.

[Liedtke97] J. Liedtke, H. Härtig, M. Hohmuth. OS-
controlled cache predictability for real-time systems. 3rd
RTAS, June 1997.

[Mogul91] J. Mogul, A. Borg. The effect of context
switches on cache performance. 4th Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems, April 1991.

[Mueller95] F. Mueller. Compiler support for software-
based cache partitioning. ACM SIGPLAN workshop on
Languages, Compilers and Tools for Real-Time Systems,
June 1995.

[Puschner02] P. Puschner, A. Burns: “Writing Temporally
Predictable Code“, 7th IEEE Int. workshop on Object-
Oriented Real-Time dependable systems, Jan. 2002.

[Rodríguez03] M. Rodríguez , N. Silva , J. Esteves , L.
Henriques , D. Costa , N. Holsti , K. Hjortnaes.
Challenges in Calculating the WCET of a Complex On-
board Satellite Application. WCET’03, 2003.

[Sebek02] F. Sebek. Instruction cache memory issues in
real-time systems. Licentiate thesis of Mälardalen
University, October 2002.

[Simonson95] J. Simonson, J.H. Patel. Use of preferred
preemption points in cache-based real-time systems.
IPDS'95, 1995.

[Wilhelm07] R. Wilhelm, J. Engblom, A. Ermedahl, N.
Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R.
Heckmann, F. Mueller, I. Puaut, P. Puschner, J.
Staschulat, P. Stenström. The Determination of Worst-
Case Execution Times—Overview of the Methods and
Survey of Tools. ACM Transactions on Embedded
Computing Systems (TECS), 2007

10. Glossary

AFDX: Avionics Full DupleX (“deterministic” and
redundant 100Mbps Ethernet)

BIST: Built-In Self-Test

DAL: Design Assurance Level

DEC: DECrementer

DMS: Deterministic Monotonic Scheduler

HTR: Horloge Temps Réel

IT: InTerrupt

MMU: Memory Management Unit

RTC: Real-Time Clock

WCET: Worst Case Execution Time

