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Abstract: This paper presents the current status of 
the Gene-Auto1 automatic code generator, an open 
source tool for safety critical embedded systems and 
thus to be qualified according to the DO178/ED-12 
avionic software certification standard. Gene-Auto 
transforms Simulink, Stateflow and Scicos models to 
MISRA C and Ada SPARK code. The paper focuses 
on the second version of Gene-Auto and the 
changes since the first version presented at 
ERTS’08 [1], [2]. We will also summarise the 
development process, where a classical approach 
has been mixed with formal specification, 
development and verification of some of the toolset 
components using proof-assistants. This develop-
ment process has led to preliminary positive 
feedback from the avionic certification authorities. 
The toolset has also been evaluated in a number of 
industrial test cases from the avionic, automotive 
and aerospace domains, proving that it is a mature 
prototype, which can be considered for industrial 
projects in near future. We present recent additions 
to the toolset, like generating Ada SPARK source 
code, adding an EMF based interface, improve-
ments in the block sequencer algorithm developed 
with a proof-assistant and some details on the 
qualification aspect of the toolset. We also mention 
some industrial feedback on Gene-Auto. 

Keywords: Automatic Code Generation (ACG), Certified 
systems, DO-178, ED-12, Formal verification, Proof 
assistant, Coq, Open-source, Simulink/Stateflow, Scicos, 
Ada SPARK, MDE, EMF.  

1. Introduction 

Domain specific languages and visual modelling 
formalisms have largely replaced natural language 
specifications and chalk drawings in the systems 
engineering domain. Software tools are used to 
create, analyse, verify and transform formal and 
semi-formal specifications until they can be executed 
on high-performance specific hardware. Open 
formats and open tools are expected to bring long-

                                                      
This work was partly funded by national authorities through the 
ITEA project Gene-Auto and the ITEA2 project OPEES 

1 www.geneauto.org 

term stability and flexibility to the maze of languages 
and software needed to manage the transformation 
of a high level functional specification to optimised 
machine code. The Gene-Auto project was set up to 
answer the needs of ever-increasing complexity, 
code size, safety and long-term maintainability 
requirements and develop an open source code 
generator from the widely used Simulink/Stateflow2 
modelling languages and their open source 
counterpart Scicos3 to a general purpose 
programming language like C, as an open tool with 
open architecture and intermediate languages, but 
also fully adaptable and qualifiable according to the 
needs of the safety critical transportation domains 
(regulated by e.g. DO178/ED-12 in the avionics). 

Previously [1] we have presented the Gene-Auto 
architecture, its input formalisms, intermediate 
languages and role in the overall embedded systems 
software development process. In [2] we gave an 
overview of the early experiments with formal 
methods on parts of Gene-Auto together with a 
comparison of the suitability of different formal 
methods for certifying an ACG (Automatic Code 
Generator). In Chapter 2 of this paper we give a 
short overview of the Gene-Auto toolset. Chapter 3 
explains the scope of Gene-Auto in the embedded 
systems’ design process. Chapter 4 describes an 
EMF based interface added recently to Gene-Auto to 
facilitate interoperation with other tools. In Chapter 5 
we describe the addition of the Ada SPARK 
language output to the Gene-Auto toolset. Chapter 6 
gives the main improvements in the formal methods 
based development of a part of the Gene-Auto 
toolset. In Chapter 7 we discuss some aspects 
related to the qualification of such a tool. In Chapter 
8 we mention some user feedback and Chapters 9 
and 10 outline some future and related works 
respectively. 

2. The Gene-Auto toolset 

In this chapter we give a brief overview of the Gene-
                                                      
2 Part of the Matlab toolset from The MathWorks Inc. 
www.mathworks.com 
3 Part of the SciLab toolset developed at INRIA and managed by 
the SciLab Consortium. www.scilab.org 
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Auto toolset to facilitate the understanding of the 
topics addressed in the subsequent chapters. The 
Gene-Auto toolset takes as input models in various 
modelling formalisms: Simulink block diagram, 
Scicos block diagram, Stateflow chart, Stateflow 
graphical function and Stateflow truthtables. The first 
two formalisms are somewhat similar to the classical 
dataflow models that contain nodes doing 
computations and data flowing between the nodes. 
However, in the case of Simulink the formalism 
contains also a special “function-call” triggering 
mechanism that adds imperative scheduling to the 
data-flow model and thus creates a unique complex 
formalism allowing to express system engineering 
aspects that are sometimes hard to express in pure 
dataflow formalisms. A Stateflow chart is similar to 
the classical StateCharts formalism, but again, it 
adds several unique constructs that make it on one 
hand a very powerful language, on the other hand 
also more complex and potentially more error-prone. 
Graphical functions and truthtables are imperative 
sublanguages of the Stateflow language that are 
internally implemented as imperative flowcharts. 

The whole transformation chain from the input 
models to imperative target code is split into several 
elementary tools performing one or several related 
model transformations to isolate functionally 
independent parts of the toolset from each-other and 
facilitate the writing of detailed specifications for 
each model transformation, as well as testing and 
validating them. This approach gives both, the 
flexibility to add/replace functional modules and a 
fine grain view over the toolset to write detailed 
module level requirements and perform module level 
validation needed for qualifying the tool. There are 
two intermediate languages in Gene-Auto. First, all 
input models are converted to the GASystemModel 
language, which is semantically close to the input 
formalisms, but is independent from the concrete 
representation of the input models. This model is 
step-wise refined and finally converted to the 
GACodeModel language. A model in the 
GACodeModel language is further refined and then 
converted to specific target code (C or Ada, 
currently). 

In total there are 12 elementary tools implementing 9 
major transformation steps from the source model to 
target code. The sequence of transformations begins 
with an initial importing step depending on the input 
language syntax and ends with a printing step 
specific to the particular target language. For the first 
step there exists a separate importer tool for each 
supported input language (currently, Simulink, 
Stateflow and Scicos). Likewise, each target 
language has its own printer component taking care 
of adapting the generated code model to the 
specifics of this language and finally printing out the 
target code. 

Gene-Auto supports a subset of the discrete part of 
Simulink/Stateflow and Scicos. Its standard library 
supports currently around 40 Simulink native blocks, 
20 custom blocks and 40 Scicos blocks. Both single 
and multirate models are supported, as well as 
explicitly triggered dataflow models (“function-call” 
triggered models in Simulink). All main Stateflow 
constructs are supported, except for the local event 
broadcast. The semantics of the local event 
broadcast that has a run-to-completion semantics in 
Stateflow and UML is undesirable in critical 
embedded systems. Instead, Gene-Auto supports a 
more synchronous style of modelling of statecharts. 
External broadcasts made to the outside of the 
statechart have an important role in the scheduling 
of the combined Simulink/Stateflow models and are 
supported. 

3. Scope of Gene-Auto in the system 
development process 

Figure 1 presents a typical V-cycle of system 
engineering used in the process of developing most 
of the complex systems with high requirements. 
Including safety critical and high integrity systems. 
The left branch captures system definition in a 
sequence of successive refinement steps. For each 
project definition step there is a corresponding 
verification or validation step on the right side. Also, 
each subsequent refinement step verifies some 
aspects of the previous one. Design of complex 
systems involving software usually begins with one 
or many stages defining first the user requirements 
for the end-system in different level of detail, then 
the software specification and implementation and 
finally ends with acceptance testing of the entire 
system performed by the end-user or client. 

 

Figure 1 The common V-cycle of the system design 
process. 

The main intended scope of Gene-Auto is in the 
lower part of the V capturing the design loop that 
involves the software system requirements 
specification, module design, implementation and 
the integration testing of modules. Defining the 
target system as a model containing all necessary 
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implementation details gives a possibility to replace 
the manual coding step with code generation. The 
code generation is performed by Gene-Auto. 
Provided that the code generator tool is reliable 
enough for the particular purpose (e.g. in the avionic 
industry it meets the DO-178/ED12 requirements for 
a development tool of the relevant criticality level) 
the module testing can be omitted. This is based on 
the assumption that such modules have been 
already verified in the previous design step either by 
simulation, testing or formal verification. If the source 
model contains several logical or physical modules 
and captures their interaction, then the functional 
testing of these modules’ integration can also be 
reduced or even eliminated. It must be noted, 
however, that while the DO-178B(C)/ED12-B(C) 
qualification has been a crucial initial goal for the 
Gene-Auto toolset and its development follows the 
guidelines of these standards, it is not qualified yet 
and a lot of the qualification activity is still to be 
done. 

Secondly, Gene-Auto was conceived as an open 
tool, whose platform can be used for various design 
and verification/validation steps in the MDE process. 
The code generation architecture of Gene-Auto 
consists in a sequence of model transformations in 
itself. The individual model transformations can be 
freely combined, interleaved with other tools etc. The 
models can be exported to external tools and 
reimported at any chosen stage. Thus, it is possible 
to complement the code generation steps with e.g. 
custom optimisation, automatic or semi-automatic 
verification etc. Alternatively, it is possible to inspect 
and/or modify the intermediate models with external 
model editors, simulate, verify and refine them and 
finally use Gene-Auto as a code generation 
backend. Chapter 4 describes one way to 
implements such tool interaction using the EMF 
(Eclipse Modeling Framework) and gives some 
examples.  

The value and scope of automatic code generation 
can be further increased, if the functional application 
model is complemented with the non-functional 
target platform constraints. One approach combining 
domain specific architectural and functional 
modelling is being developed within the SPaCIFY 
project4. Chapter 4 describes briefly the linkage 
between Gene-Auto and SPaCIFY models.  

Models like those supported by Gene-Auto occur 
also at higher levels of the V-cycle than the systems’ 
software development. For instance, statemachines 
and flowcharts can be used to specify high-level 
functional requirements of the systems’ behaviour in 
a more formal way.  The final application needn’t be 
directly derived from these models. Instead, they can 
be later used as a reference for validating the 

                                                      
4 http://spacify.gforge.enseeiht.fr/index.php 

implemented software or complete system. A 
language specifically designed for this kind of 
behavioural modelling and analysis for critical 
embedded systems is TOPCASED-SAM (Structured 
Analysis Model)5. Gene-Auto support of the 
TOPCASED-SAM language is going to be 
implemented using the approach described in 
Chapter 4. 

Finally, Gene-Auto can be used as an alternative 
code generator, an oracle, to test the output of other 
code generators or manual coding of higher level 
requirements expressed as models. Such an 
approach has been followed in the EDONA project6. 
Within this project the Agatha tool has been used to 
analyse the C code generated by Gene-Auto and 
generate test cases based on it. The EDONA 
platform has been described in more detail in [3] and 
[4]. Besides this pure integration of tools, coope-
ration with EDONA has motivated also addition of 
new features to Gene-Auto, like support of 
parameterised subsystems and likewise also 
influenced the set of modelling guidelines used 
within the EDONA projects (e.g. requiring more 
precise type specifications).  

4. EMF-based metamodel and interfacing with 
external tools 

There exist many powerful frameworks dedicated to 
metamodelling, domain specific language (DSL) 
design, transformation specification, validation, etc. 
Several of them are directly inspired from the Object 
Management Group’s (OMG) Meta-Object Facility 
(MOF) standard, for example, the Eclipse Modeling 
Framework (EMF)7 and Kermeta8. The EMF 
provides facilities for modelling and code generation 
for building tools and other applications based on a 
structured data model. It is used to implement 
several important components of the open source 
Eclipse platform itself as well as commercial 
applications. The Eclipse platform provides also 
powerful components for graphical modelling, data 
handling, general tool design, etc. Hence, also 
several projects related to model based design for 
embedded applications, like TOPCASED, SPaCIFY 
and PolyChrony SME have been implemented on 
the Eclipse platform. 

However, powerful generic frameworks meant for a 
large user-base like EMF provide a challenge for 
developing qualified applications with very high 
qualification requirements on the software. Typically, 
such frameworks are quite complex and introduce to 
the application code dependencies on parts of the 
framework code. To satisfy the DO-178B/ED12B 

                                                      
5 http://www.topcased.org 
6 http://www.edona.fr 
7 http://www.eclipse.org/modeling/emf 
8 http://www.kermeta.org 
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requirements, such code has to meet the same strict 
verification and quality requirements, as the main 
application code. Isolating and verifying separately 
the needed functionality of the framework code from 
the unneeded one can be a considerable task. It can 
be less costly to implement the specific required 
functionality from scratch or with more lightweight 
methods and to qualify only that. The latter approach 
has been taken for developing the core of Gene-
Auto. On the other hand, to be able to simply 
interface and interact with the many EMF based 
modelling, simulation, verification and other appli-
cations from relevant domains an alternative 
approach has been designed and is described below. 

The main part of the Gene-Auto toolset is 
implemented in Java. At its core are the 
GASystemModel and GACodeModel language 
implementations. The structure of these languages 
is modelled in an UML CASE tool (Enterprise 
Architect). From these UML models Java classes are 
generated. All the functionality that is required to 
manipulate models conforming to these languages is 
implemented manually. A separate ModelFactory 
component is implemented to serialise the models 
from memory to a simple XML based file format and 
vice versa. The core toolset uses mostly only basic 
Java, a rather limited subset of an XML library 
(Xerces) and a parser generator library (AntLR). 

Parallelly to the Gene-Auto main branch there is an 
Ecore (the EMF metamodel of metamodels) version 
of the GASystemModel and GACodeModel 
language metamodels generated from the UML 
models. This Ecore metamodel is central to any 
other activity involving the EMF. Among other things 
it can be used to generate a Java implementation of 
the metamodels/languages. This implementation is 
intrinsically relying on and capable of taking 
advantage of the EMF’s built-in functionalities for 
model manipulation, serialisation, etc. It is also 
possible to generate a simple tree-view editor of the 
language from the metamodels with no extra work. A 
screenshot of the generated tree-view editor is 
displayed on Figure 3. 

Thus there exists a special purpose compact 
language implementation that is used in the main 
branch of the toolset and a separate structurally 
equivalent EMF based language implementation. 
Conversion between these two language 
implementations is done via specialised Model-
Factory components. These components convert the 
model instances from one format to another. In 
practice, these components are bundled into two 
elementary tools: gaxml2ecore and ecore2gaxml 
converting XML files from the Gene-Auto native 
format to the EMF based format and vice versa. 
Combining these tools and external EMF based 
applications with the main Gene-Auto model 
transformation and code generation steps it is 

possible to derive many different toolchains with 
quite different functionality and/or implementation. 
Such toolchains can be used in the many 
applications that have weaker requirements than the 
DO-178/ED-12 qualified development tools. In case 
the external tools only perform complementary 
verification tasks and do not change the output code, 
they could also be qualified as verification tools in 
the DO-178/ED-12 sense, for which the qualification 
requirements are significantly less strict. 

The EMF based interface of Gene-Auto is already 
being used within other projects. Two of them are 
SPaCIFY and Polychrony/SME. The SPaCIFY 
project is combining the architectural and functional 
aspects of embedded systems modelling. At its heart 
is the Synoptic language [5]. Linking Gene-Auto and 
SPaCIFY amounts to defining a mapping between 
the functional part of the Synoptic language and the 
GASystemModel languages. Technically, the model 
transformation is implemented using the ATL 
language9. Within the Espresso team a translation is 
developed between the Signal synchronous 
language based modelling environment 
Polychrony/SME10 and Gene-Auto. Besides the 
model editing and simulation capabilities the 
Polychrony/SME suite also offers powerful means for 
model analysis and verification. Such analysis could, 
in principle, be used as an intermediate step in 
Gene-Auto to perform stronger dataflow optimi-
sations. 

Last, but not least, the EMF based language 
metamodel can be directly used for specifying the 
functional requirements of the Gene-Auto code 
generator itself. First, the EMF contains a validation 
framework that can be used to check conformance 
of model instances vs. the metamodel and additional 
formal constraints expressed e.g. in the standard 
Object Constraint Language (OCL). Secondly, model 
transformation steps can specified in a model 
transformation language like ATL and the 
transformation instances can be automatically 
verified with Eclipse based tooling. Such approach 
has been already partly investigated and is going to 
be developed further. 

                                                      
9 http://www.eclipse.org/m2m/atl/ 
10 http://www.irisa.fr/espresso/Polychrony/ 
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class gadatatypes

TBoolean

TArray

# baseType:  TPrimitive
# dimensions:  List<Expression>

TCustom

# typeReference:  CustomType

TString

TPointer

# baseType:  GADataType

TVoidTNumeric

TPrimitive

GAModelElement

GADataType

TRealNumeric

TRealInteger

# nBits:  int
# signed:  boolean

TRealFixedPoint

# gain:  int
# nBits:  int
# offset:  int

TRealFloatingPoint

#baseType

#baseType

 
a 

 
b 

Figure 2 Fragment of the Gene-Auto UML metamodel (a) and the corresponding fragment from the Ecore 
metamodel (b)

 

a 

 
b 

 
c 

Figure 3 A Simulink model (a), similar Scicos model (b) and a corresponding Gene-Auto model in the EMF based 
GASystemModel tree-view editor (b)
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5. Adding Ada SPARK output to Gene-Auto 

One of the aims of defining a modular open 
architecture was to facilitate adding additional input 
and output languages to the toolset. Ada is a 
programming language that is specifically designed 
to suit the needs of critical embedded and real-time 
systems. It features strong static typing, static and 
run-time checking of many kinds of errors, a 
package system, object oriented programming, 
exception handling, parallel tasks, etc. SPARK [6] is 
a language based on a restricted subset of the Ada 
language coupled with an annotation language 
allowing the programmer to specify formal 
requirements about the behaviour of the program. 
There exist also tools for static verification around 
SPARK11 that allow to check the absence of general 
run-time errors like numerical overflow or division by 
zero and that the user specified properties hold. The 
proofs will either be generated automatically or 
developed with the programmer’s assistance for the 
more complex cases. Thus the Ada SPARK 
language is often used in the development of very 
high criticality systems. 

In the first phase it was decided to add SPARK 
compatible Ada language output to the Gene-Auto 
code generator. Generating SPARK formal 
annotations about the properties of the model/code 
was postponed to a future extension. As the 
GACodeModel language is an abstract imperative 
language with common constructs found in most 
programming languages it was not a very big 
conceptual step to add the SPARK language output 
to the existing C language output. However, as Ada, 
and especially SPARK, are more precise and 
restrictive than Simulink and C, additional work had 
to be done to make the Gene-Auto type system and 
the generated code compatible with SPARK. For 
instance, in Simulink and C it is legal to assign 
integers to floating point data and even floating point 
data to integers, while in Ada and SPARK it is not. 
Moreover, an integer value from a larger range type 
can be assigned to a variable with a smaller range 
type in both Simulink and C. Again, in Ada and 
SPARK it is not possible. In order not to enforce the 
user to make all the type conversions explicit in the 
input model, such automatic type conversions were 
added to the Gene-Auto Ada backend. This is, of 
course, a somewhat debatable point: there are 
those, who want the code generator to support as 
much as possible from the features of the input 
language and those, who say that the input model 
should be a precise software model with explicit type 
information etc. Here, a pragmatic decision was 
taken to support more input models and add the 
casts required for Ada SPARK automatically. Note, 

                                                      
11 http://www.adacore.com/home/products/sparkpro/ 

however, that the aspect of arithmetic overflow is 
ignored, justified by the fact that the absence of 
overflow can be checked either with Simulink 
verification tools on the input model or with other 
tools directly on the generated code (e.g. SPARK 
tools for Ada12, Frama-C13 for C) and the code 
generator tool should not be complicated with 
verification unrelated to code generation. 

6. Usage of formal methods 

6.1  Specification and implementation of selected 
model transformations with Coq 

We presented in [2] a first block sequencer for 
Gene-Auto developed using the Coq proof assistant. 
The first developed solution produced partial 
execution schedule for each block in the model 
based on the data-flow causality (see Figure 4). This 
partial ordering was refined using user provided 
block priorities and the block graphical position as 
done in Simulink. But, it reduced the potential 
concurrency expressed in the model. For instance, 
let us consider the blocks with identical execution 
order such as CompareToZero and Abs illustrated in 
the figures (a) and figure (b), the block Abs cannot 
be evaluated before the block CompareToZero, if 
the later has higher priority because its initial 
execution order is lower. Let us note that this 
algorithm also did not handle the “function-call” kind 
of control-flows. This initial work required a 
significant adaptation in order to allow all concurrent 
executions and to handle “function-calls”, which are 
widely used in Simulink by industrial end-users to 
manage side-effects (environment input/output and 
memory management). 

 
a. Partial preorder 

                                                      
12 As the expression on the right side of the assignment is 
being explicitly cast to a suitable type, then overflow isn’t 
normally checked for the whole assignment, but it is still 
checked for the subexpressions of the right side. 
13 http://frama-c.cea.fr/ 
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b. Total preorder 

Figure 4 Simulink data-flow model with a conflicting 
execution order. 

A new version of the algorithm with execution 
dependency computation was proposed in [7] to take 
into account the mixing of data and control flows, by 
identifying all the blocks that need to be computed 
before a given block and the ones that must be 
executed before the outputs of the block can be 
used. This set allows to inherit the execution 
priorities along the data and control flows and thus to 
produce a correct total sequencing that fits best the 
end users’ and semantic constraints. The new Block 
Sequencer tool containing this algorithm was 
integrated into the toolset and as a result the toolset 
was able to handle some real-life industrial test 
cases that previously was not possible. 

There is ongoing work on extending the approach 
used in the Block Sequencer to be used in other 
model transformations in Gene-Auto. As an 
example, a similar model traversal can be used while 
inferring the types of untyped ports and signals in 
the model. The work of refining and formalising the 
Gene-Auto type system and typing algorithm is 
currently in progress.  

6.2  Integration of formally developed elementary 
tools into the classical development process 

In order to integrate the parts that were developed 
using the Coq proof assistant into the Gene-Auto 
toolset that is mainly developed in Java a specific 
process was designed. It was mainly constrained by 
the need to assess this process with respect to the 
certification authorities. The different elementary 
tools and the block library of Gene-Auto exchange 
data through XML files and a model reader and 
writer library that will be qualified using classical 
techniques. In order to avoid the development of a 
similar component with a proof assistant, we have 
chosen to develop Java front- and back-ends that 
translate the XML format to a very simple regular 
language for which a very simple converter was 
written and that is verified and will be qualified by 
independent proof-reading and unit testing. Then we 
developed a CaML wrapper that reads this input 
model as a text file and builds the data structures 

used by the CaML code generated by the Coq proof 
assistant. The CaML code is verified by independent 
proof-reading and unit testing with respect to the 
regular language and the Coq specification. This 
was considered a satisfying approach by the 
certification bodies. However, a more satisfying 
approach requires the use of a qualified formally 
verified Coq toolset that is currently partly being 
developed. See e.g. [8], [9] and [10] for some of the 
related works.  

Similarly to the classical development process for 
the Java parts in Gene-Auto, the Coq specification is 
written with respect to the classical natural language 
user and tool specifications and verified by cross- 
reading. The implementation is specified as 
functions in Coq and proven formally correct with 
respect to the translated requirements and the 
functions are translated to CaML. 

7. Qualification concerns 

The final goal of the Gene-Auto development is to 
complete all the work required by the DO-178/ED-12 
avionic software certification standards to qualify the 
toolset as a development tool. Qualification activities 
during the first phase of the project, that was 
completed in the end of 2008, concentrated on the 
planning activities (tool development, verification and 
(pre-)qualification plans), user requirements and 
formal specification and verification experiments. 
These elements were extensively discussed with the 
French CEAT certification authorities for early 
advices. Positive feedback was provided with 
respect to these documents acknowledging a 
sensible and adequate process and a good 
management of the difficulties. Full verification 
activities were then intentionally postponed as well 
as part of the requirements definition and detailed 
design documentation. Similar work is carried out in 
parallel in the ES_PASS ITEA2 project and will be 
continued in the OPEES ITEA2 project with thorough 
experiments around Gene-Auto and Frama-C. 

The Gene-Auto project partners continue working on 
the qualification documentation and on solutions to 
simplify the integration of community developments 
and formal methods based work into a DO-178/ED-
12 regulated development process. Under the 
umbrella of the Open-DO14 framework some initial 
experiments on an open environment for requi-
rement management and toolset testing have been 
taken. The aim is to make requirement management 
process lighter when compared to the current 
document-centric approach and allow seamless 
integration of the verification activities. 

Qualification in the DO-178B context is known to be 
massive work and the whole process is sensitive to 

                                                      
14 http://www.open-do.org 
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changes in the software. A smallest change in the 
developed software or its requirements may trigger 
very large amount of verification activities to be 
repeated, unless one is able to prove the exact limits 
of the impact of the change. The way chosen in 
Gene-Auto is to divide the toolset into smaller 
isolated elementary tools. This way it is easy to 
demonstrate that a change in one transformation 
does not influence the others and the additional 
verification activities need to be done on the 
changed component only. While effective in terms of 
partitioning the development artefacts, this approach 
creates additional complexity with several levels of 
requirements. The toolset operational requirements 
describe the tool’s end-to-end behaviour taking into 
account the relations between the input model and 
generated code. These high-level requirements are 
further split down into elementary tool requirements 
describing the behaviour of each transformation 
step. Based on the latter, the design of each 
elementary tool is derived and the software is 
developed. Traceability must be maintained 
throughout all the levels of specification and each 
level needs to be verified. This extra complexity is 
the price of the flexibility achieved by isolating the 
transformation steps. 

From the process viewpoint two approaches are 
investigated in parallel to guarantee a sound 
transformation from model to code: (a) a formal-
proof based approach described in Chapter 6 and 
(b) a classical development process coupled with 
test-based verification. The approach based on 
formal proofs has shown good results when 
developing one of the components. However, there 
are some concerns regarding the scalability of the 
approach (it takes considerable effort to define 
requirements with sufficient formal rigour). Also, the 
effort to go through the full approval by the 
qualification authorities is estimated to be high, given 
that such process has not been used for tool 
qualification before. Classical development process 
follows the known path in terms of qualification. Here 
the bottleneck is the amount of verification activities. 

Regardless of the development process chosen for 
final qualification of the toolset a major challenge is 
managing consistency of requirements and 
guarantee adequate amount of verification. The path 
investigated currently is to integrate the requirement 
management and verification into one compact 
framework. Keeping the requirements in a system 
where all levels of specifications are interlinked 
allows determining impact of changes very quickly 
and necessary modifications can be done to all 
related artefacts at once. Dynamically interlinking the 
requirements with associated tests allows to 
determine the scope of required verification activities 
and execute large part of them automatically. Two 
specification levels (elementary tool requirements 

and design requirements) for the Ada printer 
component are defined in this fashion. The 
experiments were done with slightly modified 
instance of the FitNesse tool (www.fitnesse.org). The 
results show that using an environment maintaining 
hierarchical structure of requirements improves 
significantly consistency between the different levels. 
However, to scale up for full set of requirements, the 
tool support must be enhanced. Node interlinking 
mechanism of FitNesse is easy to use and intuitive, 
but more complex liking system with additional 
semantical information is required to handle large 
amount of requirements. The project team has also 
developed a testing framework allowing to automate 
the verification activities. This framework is currently 
used as part of the continuous integration environ-
ment and will be integrated with the requirement 
management in the future. 

8. User-side experiments 

During the first phase of Gene-Auto development 
(from 2006 to early 2009) the toolset was evaluated 
on 7 industrial case studies from the automotive and 
aerospace industries. Two academic case studies 
were performed by the Tallinn University of 
Technology demonstrating the usage of toolset in 
development of the navigation system of an 
autonomous vehicle. Additional studies have been 
performed by different parties after that. Results of 
two case studies performed by Astrium Satellites 
and Airbus in the context of the OBSYS project are 
presented in [15]. The overall feedback of these 
experiments is that Gene-Auto is a mature prototype 
that can be used also on real-sized industrial 
projects. The open platform of Gene-Auto has 
proven strong enough for rather complex 
applications and also flexible to allow user specific 
additions and optimisations. In some cases there 
was additional work required to make the existing 
models compatible with the functionality supported 
by Gene-Auto. E.g. Gene-Auto does currently not 
support the Embedded Matlab textual language 
(EML) that can be used to complement the graphical 
blocks of Simulink. In such cases the EML blocks 
had to be converted to black boxes containing C-
code (called S-functions in Simulink) that were 
obtained by using The MathWorks’ Real-Time 
Workshop (RTW) code generator. Adding support for 
the EML in the future was pointed out as a highly 
useful addition. In general, the case studies 
confirmed the functional equivalence of the code 
generated by Gene-Auto with respect to the 
reference code obtained by other established 
industrial tools. 
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9. Future work 

As the user-side experiments show Gene-Auto can 
be used in applications of significant size and 
complexity. However, for a wider usage the 
supported functionality should be extended further, 
especially, the number of library blocks should be 
increased. Given, that the core technology of Gene-
Auto is rather stable, adding more standard blocks to 
the library is a feasible task with little affect on other 
components. In principle, most of the commonly 
used blocks can be constructed by combining other 
smaller and simpler blocks. The size of the 
supported block library is a question of finding a 
good compromise between the development and 
qualification efforts and user-friendliness. A second 
functional addition that would be highly appreciated 
by many modellers is support for a textual action 
language like the Embedded Matlab Language that 
is available in Simulink. This addition, as well as 
extending the block library has been planned in the 
follow-up projects of Gene-Auto. 

A separate path to extend the functionality will be to 
define an UML/SysML and MARTE profile for 
mapping the Gene-Auto semantics. This will allow to 
better integrate Gene-Auto with standard modelling 
tools, to edit and analyse the intermediate models 
and to import/export them from/to standard UML 
models. The work carried out within the SPaCIFY 
project will establish a link between the functional 
modelling that is the main focus of Gene-Auto and 
architectural constraints modelled with AADL. 

There will be also ongoing work on the formal 
specification of the entire model transformation chain 
of Gene-Auto. We have generalised the work 
described in Chapter 6 and developed a generic 
framework to specify also other transformation steps 
like type inference/checking and code generation. 
Additionally, we plan to investigate a different more 
lightweight formal verification approach consisting of 
separately verifying the correctness of code 
generation with respect to its requirements and the 
semantic verification of the requirements.  

An important work in parallel with the maturing and 
extending of the toolset is the refinement of the 
requirements of the core functionality, designing and 
performing tests and preparing the rest of the 
qualification data as described in Chapter 7. 

10. Related work 

Gene-Auto is related to many European and French 
projects around the development of tools for safety 
critical systems. Most importantly TOPCASED, 
SPaCIFY, ES_PASS and OpenEmbedd. Gene-Auto 
is also related to the synchronous language 
community of modelling safety critical embedded 

real-time systems such as the SCADE Suite15 
(based on the Lustre language) and PolyChrony/ 
SME (based on the Signal language). However, the 
difference from these is that Gene-Auto semantics is 
based on the Simulink/Stateflow semantics that 
cannot be fully mapped to the synchronous dataflow 
languages in a simple and traceable manner. 

The MathWorks’ RTW Embedded Coder16 is a C 
code generator belonging to the Matlab/Simulink 
toolsuite that is quite powerful and widely used. 
However, while it allows some user-side customi-
sation it is a closed proprietary tool and not qualified 
in the DO178/ED-12 sense. The open-source 
Scilab/Scicos toolset contains also a C code 
generator. Like RTW it does not generate Ada code 
and unlike the Gene-Auto toolset and RTW it 
generates a function call for each block. This doesn’t 
allow carrying out optimisations during the code 
generation and the code requires potentially more 
stack space at runtime. The code generation 
functionality is also integrated with the rest of the 
toolset’s functionality, making it thus hard to qualify 
or customise.  

On the formal side there are important related works 
that rely on compiler verification and validation [12], 
[13], but the verification is focused on instances of 
compilation. A promising approach consists in the 
formal development of a correct-by-construction 
compiler, e.g. [14]. Our current work is based on this 
later approach. However, there is a significant 
difference with our proposal. In order to avoid 
departing from the usual industrial approach of 
qualification and ease its acceptance by the 
certification authorities, we do not work at the 
semantic level directly. Infact, we developed a two-
step approach: in the first step, we translate the 
natural specification of requirements into a formal 
specification using the Coq proof assistant; then in 
the second step, these requirements are proved 
correct with respect to the semantics of the 
languages. 

11. Conclusions 

We have presented the development of an open 
toolset designed for critical embedded applications. 
The evolution of Gene-Auto is on one hand 
motivated by the benefits of having an open 
customisable architecture to allow first, the generic 
handling of similar modelling formalisms as well as 
target languages, but secondly also different kinds of 
tool interoperation on various system design and 
implementation levels. On the other hand, the 
evolution of Gene-Auto is constrained by having a 
small and robust core that is qualified primarily 
according to the DO-178/ED-12 standards, but also 

                                                      
15 http://www.esterel-technologies.com/products/scade-suite/ 
16 http://www.mathworks.com/products/rtwembedded/ 



 Page 10/10 

other domain specific safety and quality standards 
used in e.g. space and automotive industries. The 
initial user-side experiments have shown the 
usability of Gene-Auto in an industrial environment. 
The growing number and complexity of requirements 
for embedded software, together with the multitude 
of different development and verification tools used 
in the design process only increase the need for 
open and reliable production tools.   
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MDE: Model-Driven Engineering 

ACG: Automatic Code Generator 

MOF: Meta Object Facility 

EMF:  Eclipse Modeling Framework 

OCL:   Object Constraint Language 

ATL:   ATLAS Transformation Language 


