
HAL Id: hal-02267640
https://hal.science/hal-02267640v1

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Reliable Code Generation with an Open Tool:
Evolutions of the Gene-Auto toolset

Andres Toom, Nassima Izerrouken, Tonu Naks, Marc Pantel, Olivier Ssi Yan
Kai

To cite this version:
Andres Toom, Nassima Izerrouken, Tonu Naks, Marc Pantel, Olivier Ssi Yan Kai. Towards Reliable
Code Generation with an Open Tool: Evolutions of the Gene-Auto toolset. ERTS2 2010, Embedded
Real Time Software & Systems, May 2010, Toulouse, France. �hal-02267640�

https://hal.science/hal-02267640v1
https://hal.archives-ouvertes.fr

 Page 1/10

Towards Reliable Code Generation with an Open Tool:
Evolutions of the Gene-Auto toolset

A. Toom1,2, N. Izerrouken2, 3, T. Naks4,5, M. Pantel2, O. Ssi Yan Kai3
1: Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, EE-12618 Tallinn, Estonia
2: IRIT-ENSEEIHT, Université de Toulouse, 2, rue Charles Camichel, 31071 Toulouse Cedex, France
3: Continental Automotive France SAS, 1, avenue Paul Ourliac, 31036 Toulouse Cedex, France
4: IB Krates OÜ, Mäealuse 4, 12618 Tallinn, Estonia
5: Department of Computer Control of Tallinn University of Technology, Ehitajate tee 5, EE-19086 Tallinn, Estonia

Abstract: This paper presents the current status of
the Gene-Auto1 automatic code generator, an open
source tool for safety critical embedded systems and
thus to be qualified according to the DO178/ED-12
avionic software certification standard. Gene-Auto
transforms Simulink, Stateflow and Scicos models to
MISRA C and Ada SPARK code. The paper focuses
on the second version of Gene-Auto and the
changes since the first version presented at
ERTS’08 [1], [2]. We will also summarise the
development process, where a classical approach
has been mixed with formal specification,
development and verification of some of the toolset
components using proof-assistants. This develop-
ment process has led to preliminary positive
feedback from the avionic certification authorities.
The toolset has also been evaluated in a number of
industrial test cases from the avionic, automotive
and aerospace domains, proving that it is a mature
prototype, which can be considered for industrial
projects in near future. We present recent additions
to the toolset, like generating Ada SPARK source
code, adding an EMF based interface, improve-
ments in the block sequencer algorithm developed
with a proof-assistant and some details on the
qualification aspect of the toolset. We also mention
some industrial feedback on Gene-Auto.

Keywords: Automatic Code Generation (ACG), Certified
systems, DO-178, ED-12, Formal verification, Proof
assistant, Coq, Open-source, Simulink/Stateflow, Scicos,
Ada SPARK, MDE, EMF.

1. Introduction

Domain specific languages and visual modelling
formalisms have largely replaced natural language
specifications and chalk drawings in the systems
engineering domain. Software tools are used to
create, analyse, verify and transform formal and
semi-formal specifications until they can be executed
on high-performance specific hardware. Open
formats and open tools are expected to bring long-

This work was partly funded by national authorities through the
ITEA project Gene-Auto and the ITEA2 project OPEES

1 www.geneauto.org

term stability and flexibility to the maze of languages
and software needed to manage the transformation
of a high level functional specification to optimised
machine code. The Gene-Auto project was set up to
answer the needs of ever-increasing complexity,
code size, safety and long-term maintainability
requirements and develop an open source code
generator from the widely used Simulink/Stateflow2
modelling languages and their open source
counterpart Scicos3 to a general purpose
programming language like C, as an open tool with
open architecture and intermediate languages, but
also fully adaptable and qualifiable according to the
needs of the safety critical transportation domains
(regulated by e.g. DO178/ED-12 in the avionics).

Previously [1] we have presented the Gene-Auto
architecture, its input formalisms, intermediate
languages and role in the overall embedded systems
software development process. In [2] we gave an
overview of the early experiments with formal
methods on parts of Gene-Auto together with a
comparison of the suitability of different formal
methods for certifying an ACG (Automatic Code
Generator). In Chapter 2 of this paper we give a
short overview of the Gene-Auto toolset. Chapter 3
explains the scope of Gene-Auto in the embedded
systems’ design process. Chapter 4 describes an
EMF based interface added recently to Gene-Auto to
facilitate interoperation with other tools. In Chapter 5
we describe the addition of the Ada SPARK
language output to the Gene-Auto toolset. Chapter 6
gives the main improvements in the formal methods
based development of a part of the Gene-Auto
toolset. In Chapter 7 we discuss some aspects
related to the qualification of such a tool. In Chapter
8 we mention some user feedback and Chapters 9
and 10 outline some future and related works
respectively.

2. The Gene-Auto toolset

In this chapter we give a brief overview of the Gene-

2 Part of the Matlab toolset from The MathWorks Inc.
www.mathworks.com
3 Part of the SciLab toolset developed at INRIA and managed by
the SciLab Consortium. www.scilab.org

 Page 2/10

Auto toolset to facilitate the understanding of the
topics addressed in the subsequent chapters. The
Gene-Auto toolset takes as input models in various
modelling formalisms: Simulink block diagram,
Scicos block diagram, Stateflow chart, Stateflow
graphical function and Stateflow truthtables. The first
two formalisms are somewhat similar to the classical
dataflow models that contain nodes doing
computations and data flowing between the nodes.
However, in the case of Simulink the formalism
contains also a special “function-call” triggering
mechanism that adds imperative scheduling to the
data-flow model and thus creates a unique complex
formalism allowing to express system engineering
aspects that are sometimes hard to express in pure
dataflow formalisms. A Stateflow chart is similar to
the classical StateCharts formalism, but again, it
adds several unique constructs that make it on one
hand a very powerful language, on the other hand
also more complex and potentially more error-prone.
Graphical functions and truthtables are imperative
sublanguages of the Stateflow language that are
internally implemented as imperative flowcharts.

The whole transformation chain from the input
models to imperative target code is split into several
elementary tools performing one or several related
model transformations to isolate functionally
independent parts of the toolset from each-other and
facilitate the writing of detailed specifications for
each model transformation, as well as testing and
validating them. This approach gives both, the
flexibility to add/replace functional modules and a
fine grain view over the toolset to write detailed
module level requirements and perform module level
validation needed for qualifying the tool. There are
two intermediate languages in Gene-Auto. First, all
input models are converted to the GASystemModel
language, which is semantically close to the input
formalisms, but is independent from the concrete
representation of the input models. This model is
step-wise refined and finally converted to the
GACodeModel language. A model in the
GACodeModel language is further refined and then
converted to specific target code (C or Ada,
currently).

In total there are 12 elementary tools implementing 9
major transformation steps from the source model to
target code. The sequence of transformations begins
with an initial importing step depending on the input
language syntax and ends with a printing step
specific to the particular target language. For the first
step there exists a separate importer tool for each
supported input language (currently, Simulink,
Stateflow and Scicos). Likewise, each target
language has its own printer component taking care
of adapting the generated code model to the
specifics of this language and finally printing out the
target code.

Gene-Auto supports a subset of the discrete part of
Simulink/Stateflow and Scicos. Its standard library
supports currently around 40 Simulink native blocks,
20 custom blocks and 40 Scicos blocks. Both single
and multirate models are supported, as well as
explicitly triggered dataflow models (“function-call”
triggered models in Simulink). All main Stateflow
constructs are supported, except for the local event
broadcast. The semantics of the local event
broadcast that has a run-to-completion semantics in
Stateflow and UML is undesirable in critical
embedded systems. Instead, Gene-Auto supports a
more synchronous style of modelling of statecharts.
External broadcasts made to the outside of the
statechart have an important role in the scheduling
of the combined Simulink/Stateflow models and are
supported.

3. Scope of Gene-Auto in the system
development process

Figure 1 presents a typical V-cycle of system
engineering used in the process of developing most
of the complex systems with high requirements.
Including safety critical and high integrity systems.
The left branch captures system definition in a
sequence of successive refinement steps. For each
project definition step there is a corresponding
verification or validation step on the right side. Also,
each subsequent refinement step verifies some
aspects of the previous one. Design of complex
systems involving software usually begins with one
or many stages defining first the user requirements
for the end-system in different level of detail, then
the software specification and implementation and
finally ends with acceptance testing of the entire
system performed by the end-user or client.

Figure 1 The common V-cycle of the system design
process.

The main intended scope of Gene-Auto is in the
lower part of the V capturing the design loop that
involves the software system requirements
specification, module design, implementation and
the integration testing of modules. Defining the
target system as a model containing all necessary

 Page 3/10

implementation details gives a possibility to replace
the manual coding step with code generation. The
code generation is performed by Gene-Auto.
Provided that the code generator tool is reliable
enough for the particular purpose (e.g. in the avionic
industry it meets the DO-178/ED12 requirements for
a development tool of the relevant criticality level)
the module testing can be omitted. This is based on
the assumption that such modules have been
already verified in the previous design step either by
simulation, testing or formal verification. If the source
model contains several logical or physical modules
and captures their interaction, then the functional
testing of these modules’ integration can also be
reduced or even eliminated. It must be noted,
however, that while the DO-178B(C)/ED12-B(C)
qualification has been a crucial initial goal for the
Gene-Auto toolset and its development follows the
guidelines of these standards, it is not qualified yet
and a lot of the qualification activity is still to be
done.

Secondly, Gene-Auto was conceived as an open
tool, whose platform can be used for various design
and verification/validation steps in the MDE process.
The code generation architecture of Gene-Auto
consists in a sequence of model transformations in
itself. The individual model transformations can be
freely combined, interleaved with other tools etc. The
models can be exported to external tools and
reimported at any chosen stage. Thus, it is possible
to complement the code generation steps with e.g.
custom optimisation, automatic or semi-automatic
verification etc. Alternatively, it is possible to inspect
and/or modify the intermediate models with external
model editors, simulate, verify and refine them and
finally use Gene-Auto as a code generation
backend. Chapter 4 describes one way to
implements such tool interaction using the EMF
(Eclipse Modeling Framework) and gives some
examples.

The value and scope of automatic code generation
can be further increased, if the functional application
model is complemented with the non-functional
target platform constraints. One approach combining
domain specific architectural and functional
modelling is being developed within the SPaCIFY
project4. Chapter 4 describes briefly the linkage
between Gene-Auto and SPaCIFY models.

Models like those supported by Gene-Auto occur
also at higher levels of the V-cycle than the systems’
software development. For instance, statemachines
and flowcharts can be used to specify high-level
functional requirements of the systems’ behaviour in
a more formal way. The final application needn’t be
directly derived from these models. Instead, they can
be later used as a reference for validating the

4 http://spacify.gforge.enseeiht.fr/index.php

implemented software or complete system. A
language specifically designed for this kind of
behavioural modelling and analysis for critical
embedded systems is TOPCASED-SAM (Structured
Analysis Model)5. Gene-Auto support of the
TOPCASED-SAM language is going to be
implemented using the approach described in
Chapter 4.

Finally, Gene-Auto can be used as an alternative
code generator, an oracle, to test the output of other
code generators or manual coding of higher level
requirements expressed as models. Such an
approach has been followed in the EDONA project6.
Within this project the Agatha tool has been used to
analyse the C code generated by Gene-Auto and
generate test cases based on it. The EDONA
platform has been described in more detail in [3] and
[4]. Besides this pure integration of tools, coope-
ration with EDONA has motivated also addition of
new features to Gene-Auto, like support of
parameterised subsystems and likewise also
influenced the set of modelling guidelines used
within the EDONA projects (e.g. requiring more
precise type specifications).

4. EMF-based metamodel and interfacing with
external tools

There exist many powerful frameworks dedicated to
metamodelling, domain specific language (DSL)
design, transformation specification, validation, etc.
Several of them are directly inspired from the Object
Management Group’s (OMG) Meta-Object Facility
(MOF) standard, for example, the Eclipse Modeling
Framework (EMF)7 and Kermeta8. The EMF
provides facilities for modelling and code generation
for building tools and other applications based on a
structured data model. It is used to implement
several important components of the open source
Eclipse platform itself as well as commercial
applications. The Eclipse platform provides also
powerful components for graphical modelling, data
handling, general tool design, etc. Hence, also
several projects related to model based design for
embedded applications, like TOPCASED, SPaCIFY
and PolyChrony SME have been implemented on
the Eclipse platform.

However, powerful generic frameworks meant for a
large user-base like EMF provide a challenge for
developing qualified applications with very high
qualification requirements on the software. Typically,
such frameworks are quite complex and introduce to
the application code dependencies on parts of the
framework code. To satisfy the DO-178B/ED12B

5 http://www.topcased.org
6 http://www.edona.fr
7 http://www.eclipse.org/modeling/emf
8 http://www.kermeta.org

 Page 4/10

requirements, such code has to meet the same strict
verification and quality requirements, as the main
application code. Isolating and verifying separately
the needed functionality of the framework code from
the unneeded one can be a considerable task. It can
be less costly to implement the specific required
functionality from scratch or with more lightweight
methods and to qualify only that. The latter approach
has been taken for developing the core of Gene-
Auto. On the other hand, to be able to simply
interface and interact with the many EMF based
modelling, simulation, verification and other appli-
cations from relevant domains an alternative
approach has been designed and is described below.

The main part of the Gene-Auto toolset is
implemented in Java. At its core are the
GASystemModel and GACodeModel language
implementations. The structure of these languages
is modelled in an UML CASE tool (Enterprise
Architect). From these UML models Java classes are
generated. All the functionality that is required to
manipulate models conforming to these languages is
implemented manually. A separate ModelFactory
component is implemented to serialise the models
from memory to a simple XML based file format and
vice versa. The core toolset uses mostly only basic
Java, a rather limited subset of an XML library
(Xerces) and a parser generator library (AntLR).

Parallelly to the Gene-Auto main branch there is an
Ecore (the EMF metamodel of metamodels) version
of the GASystemModel and GACodeModel
language metamodels generated from the UML
models. This Ecore metamodel is central to any
other activity involving the EMF. Among other things
it can be used to generate a Java implementation of
the metamodels/languages. This implementation is
intrinsically relying on and capable of taking
advantage of the EMF’s built-in functionalities for
model manipulation, serialisation, etc. It is also
possible to generate a simple tree-view editor of the
language from the metamodels with no extra work. A
screenshot of the generated tree-view editor is
displayed on Figure 3.

Thus there exists a special purpose compact
language implementation that is used in the main
branch of the toolset and a separate structurally
equivalent EMF based language implementation.
Conversion between these two language
implementations is done via specialised Model-
Factory components. These components convert the
model instances from one format to another. In
practice, these components are bundled into two
elementary tools: gaxml2ecore and ecore2gaxml
converting XML files from the Gene-Auto native
format to the EMF based format and vice versa.
Combining these tools and external EMF based
applications with the main Gene-Auto model
transformation and code generation steps it is

possible to derive many different toolchains with
quite different functionality and/or implementation.
Such toolchains can be used in the many
applications that have weaker requirements than the
DO-178/ED-12 qualified development tools. In case
the external tools only perform complementary
verification tasks and do not change the output code,
they could also be qualified as verification tools in
the DO-178/ED-12 sense, for which the qualification
requirements are significantly less strict.

The EMF based interface of Gene-Auto is already
being used within other projects. Two of them are
SPaCIFY and Polychrony/SME. The SPaCIFY
project is combining the architectural and functional
aspects of embedded systems modelling. At its heart
is the Synoptic language [5]. Linking Gene-Auto and
SPaCIFY amounts to defining a mapping between
the functional part of the Synoptic language and the
GASystemModel languages. Technically, the model
transformation is implemented using the ATL
language9. Within the Espresso team a translation is
developed between the Signal synchronous
language based modelling environment
Polychrony/SME10 and Gene-Auto. Besides the
model editing and simulation capabilities the
Polychrony/SME suite also offers powerful means for
model analysis and verification. Such analysis could,
in principle, be used as an intermediate step in
Gene-Auto to perform stronger dataflow optimi-
sations.

Last, but not least, the EMF based language
metamodel can be directly used for specifying the
functional requirements of the Gene-Auto code
generator itself. First, the EMF contains a validation
framework that can be used to check conformance
of model instances vs. the metamodel and additional
formal constraints expressed e.g. in the standard
Object Constraint Language (OCL). Secondly, model
transformation steps can specified in a model
transformation language like ATL and the
transformation instances can be automatically
verified with Eclipse based tooling. Such approach
has been already partly investigated and is going to
be developed further.

9 http://www.eclipse.org/m2m/atl/
10 http://www.irisa.fr/espresso/Polychrony/

 Page 5/10

class gadatatypes

TBoolean

TArray

baseType: TPrimitive
dimensions: List<Expression>

TCustom

typeReference: CustomType

TString

TPointer

baseType: GADataType

TVoidTNumeric

TPrimitive

GAModelElement

GADataType

TRealNumeric

TRealInteger

nBits: int
signed: boolean

TRealFixedPoint

gain: int
nBits: int
offset: int

TRealFloatingPoint

#baseType

#baseType

a

b

Figure 2 Fragment of the Gene-Auto UML metamodel (a) and the corresponding fragment from the Ecore
metamodel (b)

a

b

c

Figure 3 A Simulink model (a), similar Scicos model (b) and a corresponding Gene-Auto model in the EMF based
GASystemModel tree-view editor (b)

 Page 6/10

5. Adding Ada SPARK output to Gene-Auto

One of the aims of defining a modular open
architecture was to facilitate adding additional input
and output languages to the toolset. Ada is a
programming language that is specifically designed
to suit the needs of critical embedded and real-time
systems. It features strong static typing, static and
run-time checking of many kinds of errors, a
package system, object oriented programming,
exception handling, parallel tasks, etc. SPARK [6] is
a language based on a restricted subset of the Ada
language coupled with an annotation language
allowing the programmer to specify formal
requirements about the behaviour of the program.
There exist also tools for static verification around
SPARK11 that allow to check the absence of general
run-time errors like numerical overflow or division by
zero and that the user specified properties hold. The
proofs will either be generated automatically or
developed with the programmer’s assistance for the
more complex cases. Thus the Ada SPARK
language is often used in the development of very
high criticality systems.

In the first phase it was decided to add SPARK
compatible Ada language output to the Gene-Auto
code generator. Generating SPARK formal
annotations about the properties of the model/code
was postponed to a future extension. As the
GACodeModel language is an abstract imperative
language with common constructs found in most
programming languages it was not a very big
conceptual step to add the SPARK language output
to the existing C language output. However, as Ada,
and especially SPARK, are more precise and
restrictive than Simulink and C, additional work had
to be done to make the Gene-Auto type system and
the generated code compatible with SPARK. For
instance, in Simulink and C it is legal to assign
integers to floating point data and even floating point
data to integers, while in Ada and SPARK it is not.
Moreover, an integer value from a larger range type
can be assigned to a variable with a smaller range
type in both Simulink and C. Again, in Ada and
SPARK it is not possible. In order not to enforce the
user to make all the type conversions explicit in the
input model, such automatic type conversions were
added to the Gene-Auto Ada backend. This is, of
course, a somewhat debatable point: there are
those, who want the code generator to support as
much as possible from the features of the input
language and those, who say that the input model
should be a precise software model with explicit type
information etc. Here, a pragmatic decision was
taken to support more input models and add the
casts required for Ada SPARK automatically. Note,

11 http://www.adacore.com/home/products/sparkpro/

however, that the aspect of arithmetic overflow is
ignored, justified by the fact that the absence of
overflow can be checked either with Simulink
verification tools on the input model or with other
tools directly on the generated code (e.g. SPARK
tools for Ada12, Frama-C13 for C) and the code
generator tool should not be complicated with
verification unrelated to code generation.

6. Usage of formal methods

6.1 Specification and implementation of selected
model transformations with Coq

We presented in [2] a first block sequencer for
Gene-Auto developed using the Coq proof assistant.
The first developed solution produced partial
execution schedule for each block in the model
based on the data-flow causality (see Figure 4). This
partial ordering was refined using user provided
block priorities and the block graphical position as
done in Simulink. But, it reduced the potential
concurrency expressed in the model. For instance,
let us consider the blocks with identical execution
order such as CompareToZero and Abs illustrated in
the figures (a) and figure (b), the block Abs cannot
be evaluated before the block CompareToZero, if
the later has higher priority because its initial
execution order is lower. Let us note that this
algorithm also did not handle the “function-call” kind
of control-flows. This initial work required a
significant adaptation in order to allow all concurrent
executions and to handle “function-calls”, which are
widely used in Simulink by industrial end-users to
manage side-effects (environment input/output and
memory management).

a. Partial preorder

12 As the expression on the right side of the assignment is
being explicitly cast to a suitable type, then overflow isn’t
normally checked for the whole assignment, but it is still
checked for the subexpressions of the right side.
13 http://frama-c.cea.fr/

 Page 7/10

b. Total preorder

Figure 4 Simulink data-flow model with a conflicting
execution order.

A new version of the algorithm with execution
dependency computation was proposed in [7] to take
into account the mixing of data and control flows, by
identifying all the blocks that need to be computed
before a given block and the ones that must be
executed before the outputs of the block can be
used. This set allows to inherit the execution
priorities along the data and control flows and thus to
produce a correct total sequencing that fits best the
end users’ and semantic constraints. The new Block
Sequencer tool containing this algorithm was
integrated into the toolset and as a result the toolset
was able to handle some real-life industrial test
cases that previously was not possible.

There is ongoing work on extending the approach
used in the Block Sequencer to be used in other
model transformations in Gene-Auto. As an
example, a similar model traversal can be used while
inferring the types of untyped ports and signals in
the model. The work of refining and formalising the
Gene-Auto type system and typing algorithm is
currently in progress.

6.2 Integration of formally developed elementary
tools into the classical development process

In order to integrate the parts that were developed
using the Coq proof assistant into the Gene-Auto
toolset that is mainly developed in Java a specific
process was designed. It was mainly constrained by
the need to assess this process with respect to the
certification authorities. The different elementary
tools and the block library of Gene-Auto exchange
data through XML files and a model reader and
writer library that will be qualified using classical
techniques. In order to avoid the development of a
similar component with a proof assistant, we have
chosen to develop Java front- and back-ends that
translate the XML format to a very simple regular
language for which a very simple converter was
written and that is verified and will be qualified by
independent proof-reading and unit testing. Then we
developed a CaML wrapper that reads this input
model as a text file and builds the data structures

used by the CaML code generated by the Coq proof
assistant. The CaML code is verified by independent
proof-reading and unit testing with respect to the
regular language and the Coq specification. This
was considered a satisfying approach by the
certification bodies. However, a more satisfying
approach requires the use of a qualified formally
verified Coq toolset that is currently partly being
developed. See e.g. [8], [9] and [10] for some of the
related works.

Similarly to the classical development process for
the Java parts in Gene-Auto, the Coq specification is
written with respect to the classical natural language
user and tool specifications and verified by cross-
reading. The implementation is specified as
functions in Coq and proven formally correct with
respect to the translated requirements and the
functions are translated to CaML.

7. Qualification concerns

The final goal of the Gene-Auto development is to
complete all the work required by the DO-178/ED-12
avionic software certification standards to qualify the
toolset as a development tool. Qualification activities
during the first phase of the project, that was
completed in the end of 2008, concentrated on the
planning activities (tool development, verification and
(pre-)qualification plans), user requirements and
formal specification and verification experiments.
These elements were extensively discussed with the
French CEAT certification authorities for early
advices. Positive feedback was provided with
respect to these documents acknowledging a
sensible and adequate process and a good
management of the difficulties. Full verification
activities were then intentionally postponed as well
as part of the requirements definition and detailed
design documentation. Similar work is carried out in
parallel in the ES_PASS ITEA2 project and will be
continued in the OPEES ITEA2 project with thorough
experiments around Gene-Auto and Frama-C.

The Gene-Auto project partners continue working on
the qualification documentation and on solutions to
simplify the integration of community developments
and formal methods based work into a DO-178/ED-
12 regulated development process. Under the
umbrella of the Open-DO14 framework some initial
experiments on an open environment for requi-
rement management and toolset testing have been
taken. The aim is to make requirement management
process lighter when compared to the current
document-centric approach and allow seamless
integration of the verification activities.

Qualification in the DO-178B context is known to be
massive work and the whole process is sensitive to

14 http://www.open-do.org

 Page 8/10

changes in the software. A smallest change in the
developed software or its requirements may trigger
very large amount of verification activities to be
repeated, unless one is able to prove the exact limits
of the impact of the change. The way chosen in
Gene-Auto is to divide the toolset into smaller
isolated elementary tools. This way it is easy to
demonstrate that a change in one transformation
does not influence the others and the additional
verification activities need to be done on the
changed component only. While effective in terms of
partitioning the development artefacts, this approach
creates additional complexity with several levels of
requirements. The toolset operational requirements
describe the tool’s end-to-end behaviour taking into
account the relations between the input model and
generated code. These high-level requirements are
further split down into elementary tool requirements
describing the behaviour of each transformation
step. Based on the latter, the design of each
elementary tool is derived and the software is
developed. Traceability must be maintained
throughout all the levels of specification and each
level needs to be verified. This extra complexity is
the price of the flexibility achieved by isolating the
transformation steps.

From the process viewpoint two approaches are
investigated in parallel to guarantee a sound
transformation from model to code: (a) a formal-
proof based approach described in Chapter 6 and
(b) a classical development process coupled with
test-based verification. The approach based on
formal proofs has shown good results when
developing one of the components. However, there
are some concerns regarding the scalability of the
approach (it takes considerable effort to define
requirements with sufficient formal rigour). Also, the
effort to go through the full approval by the
qualification authorities is estimated to be high, given
that such process has not been used for tool
qualification before. Classical development process
follows the known path in terms of qualification. Here
the bottleneck is the amount of verification activities.

Regardless of the development process chosen for
final qualification of the toolset a major challenge is
managing consistency of requirements and
guarantee adequate amount of verification. The path
investigated currently is to integrate the requirement
management and verification into one compact
framework. Keeping the requirements in a system
where all levels of specifications are interlinked
allows determining impact of changes very quickly
and necessary modifications can be done to all
related artefacts at once. Dynamically interlinking the
requirements with associated tests allows to
determine the scope of required verification activities
and execute large part of them automatically. Two
specification levels (elementary tool requirements

and design requirements) for the Ada printer
component are defined in this fashion. The
experiments were done with slightly modified
instance of the FitNesse tool (www.fitnesse.org). The
results show that using an environment maintaining
hierarchical structure of requirements improves
significantly consistency between the different levels.
However, to scale up for full set of requirements, the
tool support must be enhanced. Node interlinking
mechanism of FitNesse is easy to use and intuitive,
but more complex liking system with additional
semantical information is required to handle large
amount of requirements. The project team has also
developed a testing framework allowing to automate
the verification activities. This framework is currently
used as part of the continuous integration environ-
ment and will be integrated with the requirement
management in the future.

8. User-side experiments

During the first phase of Gene-Auto development
(from 2006 to early 2009) the toolset was evaluated
on 7 industrial case studies from the automotive and
aerospace industries. Two academic case studies
were performed by the Tallinn University of
Technology demonstrating the usage of toolset in
development of the navigation system of an
autonomous vehicle. Additional studies have been
performed by different parties after that. Results of
two case studies performed by Astrium Satellites
and Airbus in the context of the OBSYS project are
presented in [15]. The overall feedback of these
experiments is that Gene-Auto is a mature prototype
that can be used also on real-sized industrial
projects. The open platform of Gene-Auto has
proven strong enough for rather complex
applications and also flexible to allow user specific
additions and optimisations. In some cases there
was additional work required to make the existing
models compatible with the functionality supported
by Gene-Auto. E.g. Gene-Auto does currently not
support the Embedded Matlab textual language
(EML) that can be used to complement the graphical
blocks of Simulink. In such cases the EML blocks
had to be converted to black boxes containing C-
code (called S-functions in Simulink) that were
obtained by using The MathWorks’ Real-Time
Workshop (RTW) code generator. Adding support for
the EML in the future was pointed out as a highly
useful addition. In general, the case studies
confirmed the functional equivalence of the code
generated by Gene-Auto with respect to the
reference code obtained by other established
industrial tools.

 Page 9/10

9. Future work

As the user-side experiments show Gene-Auto can
be used in applications of significant size and
complexity. However, for a wider usage the
supported functionality should be extended further,
especially, the number of library blocks should be
increased. Given, that the core technology of Gene-
Auto is rather stable, adding more standard blocks to
the library is a feasible task with little affect on other
components. In principle, most of the commonly
used blocks can be constructed by combining other
smaller and simpler blocks. The size of the
supported block library is a question of finding a
good compromise between the development and
qualification efforts and user-friendliness. A second
functional addition that would be highly appreciated
by many modellers is support for a textual action
language like the Embedded Matlab Language that
is available in Simulink. This addition, as well as
extending the block library has been planned in the
follow-up projects of Gene-Auto.

A separate path to extend the functionality will be to
define an UML/SysML and MARTE profile for
mapping the Gene-Auto semantics. This will allow to
better integrate Gene-Auto with standard modelling
tools, to edit and analyse the intermediate models
and to import/export them from/to standard UML
models. The work carried out within the SPaCIFY
project will establish a link between the functional
modelling that is the main focus of Gene-Auto and
architectural constraints modelled with AADL.

There will be also ongoing work on the formal
specification of the entire model transformation chain
of Gene-Auto. We have generalised the work
described in Chapter 6 and developed a generic
framework to specify also other transformation steps
like type inference/checking and code generation.
Additionally, we plan to investigate a different more
lightweight formal verification approach consisting of
separately verifying the correctness of code
generation with respect to its requirements and the
semantic verification of the requirements.

An important work in parallel with the maturing and
extending of the toolset is the refinement of the
requirements of the core functionality, designing and
performing tests and preparing the rest of the
qualification data as described in Chapter 7.

10. Related work

Gene-Auto is related to many European and French
projects around the development of tools for safety
critical systems. Most importantly TOPCASED,
SPaCIFY, ES_PASS and OpenEmbedd. Gene-Auto
is also related to the synchronous language
community of modelling safety critical embedded

real-time systems such as the SCADE Suite15
(based on the Lustre language) and PolyChrony/
SME (based on the Signal language). However, the
difference from these is that Gene-Auto semantics is
based on the Simulink/Stateflow semantics that
cannot be fully mapped to the synchronous dataflow
languages in a simple and traceable manner.

The MathWorks’ RTW Embedded Coder16 is a C
code generator belonging to the Matlab/Simulink
toolsuite that is quite powerful and widely used.
However, while it allows some user-side customi-
sation it is a closed proprietary tool and not qualified
in the DO178/ED-12 sense. The open-source
Scilab/Scicos toolset contains also a C code
generator. Like RTW it does not generate Ada code
and unlike the Gene-Auto toolset and RTW it
generates a function call for each block. This doesn’t
allow carrying out optimisations during the code
generation and the code requires potentially more
stack space at runtime. The code generation
functionality is also integrated with the rest of the
toolset’s functionality, making it thus hard to qualify
or customise.

On the formal side there are important related works
that rely on compiler verification and validation [12],
[13], but the verification is focused on instances of
compilation. A promising approach consists in the
formal development of a correct-by-construction
compiler, e.g. [14]. Our current work is based on this
later approach. However, there is a significant
difference with our proposal. In order to avoid
departing from the usual industrial approach of
qualification and ease its acceptance by the
certification authorities, we do not work at the
semantic level directly. Infact, we developed a two-
step approach: in the first step, we translate the
natural specification of requirements into a formal
specification using the Coq proof assistant; then in
the second step, these requirements are proved
correct with respect to the semantics of the
languages.

11. Conclusions

We have presented the development of an open
toolset designed for critical embedded applications.
The evolution of Gene-Auto is on one hand
motivated by the benefits of having an open
customisable architecture to allow first, the generic
handling of similar modelling formalisms as well as
target languages, but secondly also different kinds of
tool interoperation on various system design and
implementation levels. On the other hand, the
evolution of Gene-Auto is constrained by having a
small and robust core that is qualified primarily
according to the DO-178/ED-12 standards, but also

15 http://www.esterel-technologies.com/products/scade-suite/
16 http://www.mathworks.com/products/rtwembedded/

 Page 10/10

other domain specific safety and quality standards
used in e.g. space and automotive industries. The
initial user-side experiments have shown the
usability of Gene-Auto in an industrial environment.
The growing number and complexity of requirements
for embedded software, together with the multitude
of different development and verification tools used
in the design process only increase the need for
open and reliable production tools.

12. Acknowledgements

Gene-Auto grew out of the ITEA (Information
Technology for European Advancement) project
ITEA 05018. The original Gene-Auto Consortium
involved the industrial partners: Continental
Automotive France, Airbus France, Barco, EADS-
Astrium, Israel Aerospace Industries, Thales Alenia
Space; SMEs: IB Krates, Alyotech, and academic
institutions: INPT-IRIT/Université de Toulouse,
INRIA and Tallinn University of Technology. After the
project’s end in December 2008 Gene-Auto has
been developed further with the support of some of
the former Consortium members and follow-up
projects are being set up. The development of the
Ada SPARK backend was funded by AdaCore and
jointly performed by AdaCore and IB Krates. The
work on EMF is funded through the ITEA2 OPEES
project. The authors want to thank all the
contributors of the Gene-Auto project!

13. References

[1] Toom, A., Naks, T., Pantel, M., Gandriau, M.,
Indrawati: Gene-Auto - an Automatic Code
Generator for a safe subset of Simulink-Stateflow
and Scicos. In: European Congress on Embedded
Real-Time Software (ERTS), Toulouse,
29/01/2008-01/02/2008 http://www.sia.fr, 2008

[2] Izerrouken, N., Thirioux, X., Pantel, M., Strecker,
M.: Certifying an Automated Code Generator Using
Formal Tools : Preliminary Experiments in the
GeneAuto Project. In: European Congress on
Embedded Real-Time Software (ERTS), Toulouse,
29/01/2008-01/02/2008 http://www.sia.fr, 2008

[3] The EDONA project: “Plate-forme EDONA Studio
et référentiel commun”.
http://www.edona.fr/scripts/home/publigen/content/t
emplates/show.asp?P=124&L=FR&ITEMID=21

[4] The EDONA project: “EDONA Newsletter n3
December 2009”.
http://www.edona.fr/home/liblocal/docs/EDONA_Ne
wsletter_n3_December_2009-v1.pdf, 2009

[5] Besnard, L., Gautier, T., Ouy, J., Talpin, J.-P.,
Bodeveix, J.-P., Cortier, A., Pantel, M., Strecker,
M., Garcia, G., Rugina, A., Buisson, J., Dagnat, F.
Polychronous Interpretation of Synoptic, a Domain
Specific Modeling Language for Embedded Flight-
Software. In Bujorianu, M. and Fisher, M. (editors),

Workshop on Formal Methods for Aerospace
(FMA) EPTCS 20, 2010

[6] Barnes, J. High Integrity Software: The SPARK
Approach to Safety and Security. Addison-Wesley.
ISBN 0-321-13616-0. http://www.praxis-
his.com/sparkada/sparkbook.asp, 2006

[7] Izerrouken, N., Pantel, M., Thirioux, X., Machine-
Checked Sequencer for Critical Embedded Code
Generator, Springer LNCS proceedings of
ICFEM'09, 09/12/2009-12/12/2009, Rio De Janiero
– Brazil, 2009.

[8] Bruno Barras and Bruno Bernardo. The implicit
calculus of constructions as a programming
language with dependent types. In Roberto M.
Amadio (editor), FoSSaCS, volume 4962 of Lecture
Notes in Computer Science, pages 365–379.
Springer, 2008.

[9] Pierre Letouzey. Extraction in coq: An overview. In
Arnold Beckmann, Costas Dimitracopoulos, and
Benedikt Löwe, editors, CiE, volume 5028 of
Lecture Notes in Computer Science, pages 359–
369. Springer, 2008.

[10] Stéphane Glondu. Extraction certifiée dans Coq-en-
Coq. Journées Francophones des Langages
Applicatifs (JFLA2009), 2009.

[11] Brunette, C., Talpin, J.-P., Besnard, L., Gauthier, T:
"Modeling multi-clocked data-flow programs using
the Generic Modeling Environment". Synchronous
Languages, Applications, and Programming
(SLAP'06). Elsevier, March 2006.

[12] Pnueli, A., Siegel, M., Singerman, E.: Translation
validation. In: Proceedings of the Tools and
Algorithms for Construction and Analysis of
Systems Conference (TACAS’98). Volume 1384,
pages 151–166, 1998

[13] Necula, G.C.: Translation validator for an optimizing
compiler. ACM SIGPLAN Notices 35(5) pages 83–
94, 2000

[14] Leroy, X.: Formal certification of a compiler back-
end or : Programming a compiler with a proof
assistant. Proceedings of the 33rd Symposium on
Principles Of Programming Languages (POPL’06)
41(1) pages 42-54, 2006

[15] Rugina, A.-E., Dalbin, J.-C.: Experiences with the
GENE-AUTO Code Generator in the Aerospace
Industry. In: European Congress on Embedded
Real-Time Software and Systems (ERTS2),
Toulouse, 19/05/2010-21/05/2010 http://www.sia.fr,
2010

14. Glossary

MDE: Model-Driven Engineering

ACG: Automatic Code Generator

MOF: Meta Object Facility

EMF: Eclipse Modeling Framework

OCL: Object Constraint Language

ATL: ATLAS Transformation Language

