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In this paper, we develop a sufficient stability condition for a
class of coupled first-order linear hyperbolic PDEs with constant
coefficients that appear when considering target systems for
backstepping boundary control. Using a backstepping transform,
the problem is reformulated as a stability problem for a difference
equation with distributed delay. Finding the explicit solution to
the backstepping kernels, we derive an explicit sufficient condi-
tion depending on the plant coefficients. This stability condition
is compared to an existing stability result based on a Lyapunov
analysis. Both the proposed and existing sufficient conditions
are then contrasted in some examples to a (computationally
expensive) numerical approximation of a necessary and sufficient
condition for exponential stability to illustrate their conservatism.

Index Terms—Hyperbolic Partial Differential Equations, Dif-
ference equations, Stability analysis, Backstepping design.

I. INTRODUCTION

Systems of first-order hyperbolic PDEs, often representing
systems of conservation and balance laws, have been broadly
studied both from the control and analysis perspectives. They
appear in many practically relevant engineering models, in-
cluding those of electric transmission lines [1], hydraulic
channels [2], pipelines [3]-[4], heat exchangers [5] and oil well
drilling [6]. Different control approaches have been employed
for the stabilization or observation of such systems (see
for instance [6], [7], [8], [9], [10] and [11]). These control
designs are accompanied by a stability analysis to ensure that
the resulting closed-loop system (or, equivalently, the target
system in the case of backstepping control) is stable. When
in-domain and boundary couplings are both present (both of
which can be sources of instability), the stability analysis of
these systems can be challenging. Therefore, practical ways to
guarantee their stability are required.

Some existing stability conditions for systems of conserva-
tion and balance laws (in different norms) can be found for in-
stance in [12]. Other available results, based on (weighted L2)
Lyapunov functions, are [13] and [14] for the nonlinear and
switched hyperbolic cases, respectively. The authors of [15]
treat the case of symmetric hyperbolic PDEs, and prove the
stability of these systems under the hypothesis of dissipation
both inside the domain and through the boundary conditions.
In [16], a sufficient stability condition was developped for
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a coupled hyperbolic PDE-ODE system using a Lyapunov
functional. Singular perturbation analysis was used in [17]
for systems of conservation laws and in [18] for hyperbolic
systems of balance laws. This method was explored in [19] and
[20] for the development of sufficient stability conditions for
systems of hyperbolic PDEs coupled to an ODE, and in [21]
for the case of a wave equation coupled to an ODE. Also,
in [22], Input-to-State Stability (ISS) bounds for hyperbolic
PDEs are used to give sufficient conditions for stability of
systems of two coupled hyperbolic PDEs in the sup norm.

Interestingly, systems of first-order hyperbolic PDEs can be
transformed to neutral functional equations as in [23] or to a
difference-delay system as in [24]. In [25], the authors estab-
lished the equivalence between a single first-order hyperbolic
PDE and systems described by an integral delay equation by
proving that the mapping between the solutions is unique in
appropriate spaces. Furthermore, it is easier to analyze the
stability when converting the first-order hyperbolic PDEs to
a delay form. In [26], a difference equation with distributed
delay was derived from 2 coupled hyperbolic PDEs to achieve
a robust stabilization with respect to input delays.

Given this relation between hyperbolic PDEs and delay
systems it makes sense to also consider existing stability
results for the latter. In the case of difference equations with
pointwise and distributed delays, stability conditions can be
found in [27] and [28], and, in the case of delay-differential
equations in [29], [30], [31], [32] and [33].

The motivation for this work is to enlarge the class of
target systems that can be considered when designing a back-
stepping controller. In the first available backstepping designs
for these systems, boundary reflections in the target system
were regarded as undesirable and were eliminated, together
with some well-chosen in-domain coupling terms, allowing
for a relatively simple stability analysis [9], [34], [35], [36].
Given that all of these systems were finite-time stable (and
many were minimal-time convergent [37], [38]) the question of
adding degrees of freedom to the controller was not extremely
urgent to address. Nevertheless, recent results have made clear
that removing reflections often results in closed-loop systems
that have zero delay margins [39], [26]. Since it is now known
that, in general, some reflections must be preserved, we end up
with few target system options for which the stability analysis
is simple. At the same time, any new target systems will
naturally be exponentially stable instead of finite-time stable,



2

which means that adding degrees of freedom that allow us to
alter the rate of convergence and transient responses is more
important than ever. It is within this context that we develop
a new sufficient condition for the stability analysis of such
target systems that is easy to verify and depends explicitly on
the system coefficients.

It should be noted that this is not the first time alternate
target systems have been studied. As an example, some recent
works on boundary control of port-Hamiltonian systems, have
also considered alternative internal coupling structures [40],
[41], yet these designs rely on canceling boundary reflections
and the use of specific strict Lyapunov functions for stability
analysis, which impose a particular structure for the retained
closed-loop system (it requires some degree of dissipation in
the domain).

In this work, we analyze the stability of a class of 2 × 2
linear hyperbolic coupled PDEs. Using a backstepping trans-
formation, the original system is mapped to a target system
that can be written as a difference equation with distributed
delay. This fact highlights the usefulness of the backstepping
technique not only for control design, but for analysis as well.
Furthermore, to the best of the authors’ knowledge, few easily
verifiable conditions exist for the class of systems obtained
after this backstepping transform, which contain a distributed
delay, and even then they would not be expressed in terms of
the original system parameters, adding a supplementary layer
of complexity to the analysis.

The contribution of this paper is the introduction of an easy
to apply, explicit in terms of the plant parameters, sufficient
condition for stability for a class of hyperbolic PDEs that
can be naturally obtained through the backstepping procedure
when applied to sytems of 2 × 2, counterconvecting, linear
hyperbolic PDEs with constant coefficients.

In order to construct this result, we need to derive the ex-
plicit expressions of the backstepping kernels, using a similar
procedure to that used in [42]. Incidentally, combining the
results of [42] and the present paper yields analytic expressions
of the complete set of backstepping kernels (both direct and
inverse) which can be useful for analyzing transient behavior
of the closed-loop system. These analytic expressions allow
us to express the target system as a difference equation with
distributed delay for which a necessary and sufficient stability
condition can be found in the Laplace domain [43]. Upper-
bounding some of the terms in this necessary and sufficient
condition we are able to derive a relatively simple sufficient
stability condition, which is roughly equivalent (in terms of
complexity) to that in [12, Theorem 5.4] for the same class
of PDEs. These two explicit sufficient conditions obtained by
completely different approaches are then compared and shown
to not be equivalent, as neither one implies the other.

In order to illustrate the conservatism of the proposed
condition, it is compared to a numerical approximation of
the necessary and sufficient condition. This approximation
is obtained by leveraging the explicit expressions of the
backstepping kernels in order to both restrict the region of
the complex plane where unstable poles may exist and then
to determine a stopping criterion that, for stable systems and
with a perfect computer, should result in a finite execution

time. In practice, some tolerance is added in order to account
for numerical errors and to avoid infinite execution times for
unstable systems.

The paper is organized as follows. In Section II, we present
the class of systems under consideration. In Section III, we
reformulate the original system as a difference equation with
distributed delay by means of a backstepping transform and we
give the associated necessary and sufficient stability condition
in the Laplace domain. In Section IV, an explicit sufficient
stability condition in terms of the original system coefficients
is proposed. This condition is compared to an existing (and
similarly complex) condition obtained by Lyapunov analysis
directly and through some examples. A numerical approxi-
mation of the necessary and sufficient condition is then con-
structed. In Section V, this numerical approximation is applied,
together with both explicit conditions, to some illustrative
examples to assess the conservatism of the proposed condition.
Concluding remarks are given in Section VI.

Throughout this paper, we use the following definitions. We
define the functional space χ .

= L2([0, 1];R) × L2([0, 1];R),
the space where the PDE states will be defined, with the
associated norm

(1) ‖ (ϕ,ψ) ‖χ
.
=

(∫ 1

0

ϕ2(θ)dθ +

∫ 1

0

ψ2(θ)dθ

)1/2

,

for any (ϕ,ψ) ∈ χ . We define as well the partial trajectory
of a function ϕ as ϕ[t](θ)

.
= ϕ(t+ θ), θ ∈ [−τ, 0), with norm

in L2([−τ, 0);R), τ > 0

(2) ‖ ϕ[t] ‖L2([−τ,0);R)
.
=

(∫ 0

−τ
ϕ2(t+ θ)dθ

)1/2

for t ≥ τ , and its norm in C1([−τ, 0];R) will be defined as

(3)
‖ ϕ[t] ‖C1([−τ,0];R)

.
= max
θ∈[−τ,0]

|ϕ(t+ θ)|+ max
θ∈[−τ,0]

|ϕt(t+ θ)|

for t ≥ τ . ∂tϕ will designate the partial derivative of ϕ with
respect to the independent variable t.

We define the Banach algebra A equipped with a standard
convolution product in the sense of [43]. A consists of BIBO-
stable generalized functions of the form

(4) g(t) = g0(t) +

∞∑
i=1

giδ(t− ti),

with g0 ∈ L1(R+;R) and
∑∞
i=1|gi|< ∞. δ denotes the unit

Dirac distribution. The algebra A is equipped with the norm

(5) ‖ g ‖A
.
=‖ g0 ‖L1 +

∞∑
i=1

|gi|.

We denote Â the set of Laplace transforms of elements
in A. Â is a Banach algebra with unit. The norm on Â
satisfies ‖ ĝ ‖Â=‖ g ‖A, where ĝ stands for the Laplace
transform of g ∈ A.
Jn and In, for n ∈ Z, stand for the Bessel functions and

the modified Bessel functions of the first kind, respectively.



3

Given a set Ω ⊆ R, its characteristic function 1Ω : R→ R is
defined as

1Ω(θ)
.
=

{
1 if θ ∈ Ω
0 otherwise.

A function f defined on ω ⊆ C is Lipschitz-continuous with
Lipschitz constant m on ω, if there exists a constant m ≥ 0
such that |f(z1)− f(z2)|≤ m|z1− z2|, ∀z1, z2 ∈ ω, where |·|
denotes the modulus of an element in C.

II. PROBLEM STATEMENT

We are interested in the stability analysis of a class of 2×
2 linear first-order hyperbolic coupled PDEs. Systems under
consideration are of the form

(6) ∂tu(t, x) +
1

r1
∂xu(t, x) = σ1v(t, x)

(7) ∂tv(t, x)− 1

r2
∂xv(t, x) = σ2u(t, x)

for all t ≥ 0, x ∈ [0, 1], where 1
r1

> 0 and 1
r2

> 0
are the transport velocities associated to the two transport
equations (6) and (7) respectively. The coefficients σ1 and σ2

represent constant in-domain couplings between the PDEs.
The associated initial conditions are

(8)
u0(·) .

= u(0, ·)
v0(·) .

= v(0, ·),

defined in L2([0, 1],R). In addition, u(t, x) and v(t, x) satisfy
the following boundary conditions

(9)
u(t, 0) = qv(t, 0)

v(t, 1) = ρu(t, 1)

for all t > 0, where ρ and q are boundary coupling coefficients
such that
(10) |ρq|< 1.

Note that if |ρq|≥ 1, the system cannot be stable [12, Theorem
2.6]. We assume that ρ and q are not both zero. Without loss
of generality, we consider that q 6= 0.

The reader will notice first that no diagonal coupling terms
are considered in (6)-(7). This is partly because these terms
can be removed using an exponential transform together with
the backstepping control design presented in [9], [10], and
therefore such a target system is always achievable (when con-
sidering constant-coefficient equations), and also because, if
kept, they prevent the development of the explicit expressions
for the backstepping kernels. One could also attempt to use
only the exponential change of variables such as that in [11],
[44] in order to absorb the diagonal coupling terms into the
off-diagonal ones at the expense of non-constant coefficients,
which pose the same problem. Therefore we only consider
the case where diagonal coefficients either do not appear in
the original system or, more likely, are compensated by a
backstepping-based control.

Our goal is therefore to construct sufficient stability condi-
tions that guarantee the exponential stability of system (6)-(9)
in an L2 sense. That is, for any (u0, v0) ∈ χ, there exist µ > 0

and C ≥ 0, such that the solution (u, v) of system (6)-(9)
satisfies

(11) ‖ (u(t, ·), v(t, ·)) ‖χ≤ C ‖ (u0, v0) ‖χ e−µt, t ≥ 0.

As a first step, we will employ a backstepping transform
that leads to a target system where the in-domain couplings
are shifted to the boundary. The structure of the target system
will then allow us to reformulate the system as a difference
equation with distributed delay.

III. DIFFERENCE EQUATION WITH DISTRIBUTED DELAY

In this section, we consider the class of PDEs described
by (6)-(9) and establish an equivalent realization as a dif-
ference equation. The objective of this section is to give a
necessary and sufficient stability condition of the system. To
do so, we use a backstepping transform, then the Laplace
transform and therefore analyze the BIBO stability [43] in
Laplace domain.

A. Backstepping transform

In order to rewrite the original system in a difference equa-
tion form, we employ the following Volterra transformation
used in [10]

(12)

u(t, x) = α(t, x)−
∫ x

0

L11(x, y)α(t, y)dy

−
∫ x

0

L12(x, y)β(t, y)dy

v(t, x) = β(t, x)−
∫ x

0

L21(x, y)α(t, y)dy

−
∫ x

0

L22(x, y)β(t, y)dy,

where the kernels Lij , i, j ∈ {1, 2} verify the following PDEs
in the triangular domain T .

= {(x, y) ∈ [0, 1] × [0, 1], y ≤
x} [10]

(13)

1

r1
∂xL

11(x, y) +
1

r1
∂yL

11(x, y) = σ1L
21(x, y)

1

r1
∂xL

12(x, y)− 1

r2
∂yL

12(x, y) = σ1L
22(x, y)

1

r2
∂xL

21(x, y)− 1

r1
∂yL

21(x, y) = −σ2L
11(x, y)

1

r2
∂xL

22(x, y) +
1

r2
∂yL

22(x, y) = −σ2L
12(x, y),

with boundary conditions

(14)

L12(x, x) = −σ1
r1r2

r

L11(x, 0) = L12(x, 0)
r1

qr2

L21(x, x) = σ2
r1r2

r

L22(x, 0) = L21(x, 0)
r2

r1
q,

where we denote r .
= r1 + r2.

Given q 6= 0, equations (13)-(14) are of the class considered
in [10, Theorem A.2]. Accordingly, these equations have a
unique solution Lij , i, j ∈ {1, 2} in C∞(T ;R).
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To the best of the authors’ knowledge, an analytic solution
for these equations is not given in the literature, including [10].
Since an analytic solution is needed in our analysis, we
develop in Appendix A the explicit expression of the back-
stepping kernels in terms of Bessel functions.

Lemma 1: PDEs (13) with boundary conditions (14), have
a unique smooth solution, given by (63)-(66).
The proof is given in Appendix A.

We consider the following target system

(15)

∂tα(t, x) +
1

r1
∂xα(t, x) = 0

∂tβ(t, x)− 1

r2
∂xβ(t, x) = 0,

with initial conditions

(16)
α0(·) .

= α(0, ·)
β0(·) .

= β(0, ·),

defined in L2([0, 1],R), and boundary conditions

(17) α(t, 0) = qβ(t, 0)

(18)
β(t, 1) = ρα(t, 1) +

∫ 1

0

Nα(y)α(t, y)dy

+

∫ 1

0

Nβ(y)β(t, y)dy,

where

(19)
Nα(y)

.
= L21(1, y)− ρL11(1, y)

Nβ(y)
.
= L22(1, y)− ρL12(1, y).

The backstepping transform (12) is a bounded linear oper-
ator from χ to χ [10], and maps the target system (15)-(18)
to the original system (6)-(9). Notice that the backstepping
transform (12) is an inverse transform, i.e., it explicitly maps
the target system to the original system. It is used instead of
the direct transform since it allows us to write the boundary
condition (18) as function of the states α and β.

Proposition 2: For any initial condition (α0, β0) ∈
χ, the target system (15)-(18) has a unique weak solu-
tion (α(t, ·), β(t, ·)) ∈ χ, for t ≥ 0 and β[t](·, 1) ∈
L2([−r, 0);R), ∀t ≥ r.

Proof: An initial condition (α0, β0) ∈ χ is mapped,
by the backstepping transform (12), to an initial condi-
tion (u0, v0) ∈ χ . According to [12, Theorem A.4], the
Cauchy problem (6)-(9) with this initial condition has a unique
solution (u(t, ·), v(t, ·)) ∈ χ . Since the transform (12) is a
boundedly invertible operator from χ to χ, we conclude the
proof.

Remark 1: Assume that u0 and v0 ∈ C1([0, 1];R), and the
initial conditions of the original system verify the following
compatibility conditions

(20)

u0(0) = qv0(0)

v0(1) = ρu0(1).

u′0(0) = −q r1

r2
v′0(0)− qr1σ2u0(0) + r1σ1v0(0)

v′0(1) = −ρr2

r1
u′0(1)− r2σ2u0(1) + ρr2σ1v0(1).

Adapting the proof of [10, Theorem A.1] to C1([0, 1];R), we
have that the target system (15) has a unique solution α(t, x)
and β(t, x) verifying α(t, ·) and β(t, ·) ∈ C1([0, 1];R), ∀t ≥ 0
and β[t](·, 1) ∈ C1([−r, 0];R), ∀t ≥ r.

B. Distributed delay form

Following the method of characteristics, the transport equa-
tions (15) can be written as the following difference equations

(21) α(t, x) = α(t− r1x, 0), ∀t ≥ r1x

(22) β(t, x) = β(t− r2(1− x), 1), ∀t ≥ r2(1− x)

∀x ∈ [0, 1]. Plugging equations (21)-(22) in the terms of the
boundary condition (18) verified by β(t, 1) and using (17)
yield

(23)
α(t, 1) = α(t− r1, 0)

= qβ(t− r, 1),∫ 1

0

Nα(y)α(t, y)dy = q

∫ 1

0

Nα(y)β(t− r2 − r1y, 1)dy

=
q

r1

∫ r

r2

Nα

(
θ − r2

r1

)
β(t− θ, 1)dθ,∫ 1

0

Nβ(y)β(t, y)dy =

∫ 1

0

Nβ(y)β(t− r2(1− y), 1)dy

=
1

r2

∫ r2

0

Nβ

(
1− θ

r2

)
β(t− θ, 1)dθ.

Finally, the difference equation with distributed delay satisfied
by β(t, 1) is

(24) β(t, 1) = ρqβ(t− r, 1) +

∫ r

0

N(θ)β(t− θ, 1)dθ

for t ≥ r, with

(25)
N(θ) =

1

r2
Nβ

(
1− θ

r2

)
1[0,r2](θ)

+
q

r1
Nα

(
θ − r2

r1

)
1(r2,r](θ), θ ∈ [0, r].

Notice that Nα and Nβ ∈ C∞([0, 1];R) (as defined
in (19)) and N ∈ C∞([0, r];R) ⊂ L1([0, r];R) (as defined
in (25)). N(θ) can be expressed in terms of the Bessel
functions (see Appendix A, equation (69)). The continuity
of N at r2 is ensured due to the same expression satisfied
by N(θ) for θ ∈ [0, r2] (equation (67)) and θ ∈ (r2, r]
(equation (68)).

Equations (21)-(22) represent the solution to the PDE states
inside the domain as a function of the solution at the bound-
aries.

One can check that the stability of β(·, 1) implies in
particular the stability of the state β satisfying (22). In turn, the
stability of the state α is ensured at x = 0 by (17) and inside
the domain by (21). Furthermore, due to the boundedness
and the invertibility of the backstepping transfrom, there is
an equivalence between the stability of the original and the
target systems.
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We also note that for t ∈ [0, r], the regularity of the
solution of the target system (15)-(18) depends on the reg-
ularity of the initial conditions α0 and β0. Thus, since the
transform (12) is boundedly invertible from χ to χ [10],
any initial condition (u0, v0) ∈ χ is mapped to an initial
condition (α0, β0) ∈ χ. Therefore, (α(t, ·), β(t, ·)) ∈ χ
for t ∈ [0, r].

Consequently, we will focus our analysis on the boundary
stability criterion and give stability conditions for β(·, 1)
satisfying the difference equation with distributed delay (24).

C. Necessary and sufficient stability condition

We now present a necessary and sufficient stability condi-
tion for our system rewritten as a difference equation with
distributed delay. Using the Laplace transform, the character-
istic equation associated to (24) is

(26) φ̂(s)
.
= 1− ρqe−sr −

∫ r

0

N(θ)e−sθdθ = 0.

For the stability analysis, we restrict our study to the half-
plane Re(s) ≥ 0. Consider the transfer function

(27) Ĝ(s)
.
=
−
∫ r

0
N(θ)e−sθdθ

1− ρqe−sr
·

With |ρq|< 1, one can verify that the conditions required
by [43, Theorem 1] are fulfilled by Ĝ allowing us to apply
the stability result therein. In addition, we have that

(28) F̂ (s)
.
=

Ĝ(s)

1 + Ĝ(s)
=
−
∫ r

0
N(θ)e−sθdθ

φ̂(s)

and

(29)
∣∣∣1 + Ĝ(s)

∣∣∣ =

∣∣∣φ̂(s)
∣∣∣

|1− ρqe−sr|
·

Since N(·) ∈ C∞([0, r];R),
∫ r

0
N(θ)e−sθdθ is a Finite Im-

pulse Response (FIR) filter, the stability of F̂ (s) is equivalent
to the absence of roots of φ̂(s) in the complex right half-plane.
According to [43, Theorem 1], φ̂ has an inverse in Â if and
only if

(30) inf
Re(s) ≥0

|1 + Ĝ(s)|> 0,

which, by (29), is equivalent to

(31) inf
Re(s) ≥0

|φ̂(s)|> 0.

Condition (31) is necessary and sufficient for the expo-
nential stability of β(·, 1) satisfying (24) in L2((−r, 0];R)
according to [45, Remark 1], provided that (α0, β0) ∈ χ.
The stability of system (6)-(9) in the χ-norm is consequently
equivalent to (31).

This necessary and sufficient condition cannot be easily
verified since it requires the evaluation of

∣∣∣φ̂∣∣∣ at every point s
in the complex right half-plane (RHP). This evaluation is com-
plicated by the distributed delay term (integral term in (26))
and, therefore, it is not a practical tool to check the stability
of the system under consideration.

However, one may proceed by upper-bounding the modulus
of the terms in φ̂. This yields a simpler (only sufficient)

condition, that is much easier to apply and depends only on
the system coefficients. This is the purpose of Section IV-A.

Another approach to tackle this problem would be to numer-
ically approximate this condition. This is done in Section IV-C
for validation purposes. Despite being more computationally
expensive, the numerical approximation is less conservative
than the explicit criterion. Crucially for the implementation
of the algorithm, we only need to verify condition (31) in
a compact domain in the RHP which can be analytically
bounded in terms of the system coefficients, as will appear
in Section IV-C.

Both alternatives require some sort of solution of N(θ). It
is possible to get the backstepping gains without an explicit
expression, by using numerical successive approximations.
Nevertheless, applying this method is more complicated than
using their analytic expressions and could yield more conser-
vative criteria since approximation errors have to be taken into
account. Instead, we explicitly solve the hyperbolic PDEs (13)-
(14) and obtain the resulting expression of N(θ). This is
essential in order to state an explicit stability criterion and to
construct the compact domain where the numerical algorithm
makes the tests. In addition, it is used to derive the expressions
of many parameters required by the algorithm (as will be
detailed in section IV-C). Appendix A contains the derivations
of the explicit solution to the hyperbolic PDEs satisfied by
the backstepping kernel gains, leading to the expressions
of N(θ), N ′(θ) and the upper-bounds of their absolute values.

IV. STABILITY ANALYSIS OF A DIFFERENCE EQUATION
WITH DISTRIBUTED DELAY: SUFFICIENT CONDITIONS

In this section, we present the explicit sufficient stability
condition for the system under consideration, obtained by
relaxing the necessary and sufficient condition previosly pre-
sented. This explicit criterion, in terms of the system coeffi-
cients is compared to a similarly complex criterion available in
the literature and, by numerically approximating the necessary
and sufficient condition, an algorithm is constructed. Its task
is to verify the validity of (31) inside a compact domain in
the RHP.

A. Explicit sufficient condition

We state now a sufficient stability condition of the system
under consideration, depending on the sign of σ1σ2 and ρq.
In order to simplify the notation, we define the parameters

(32) a
.
= qr2σ2 + ρr1σ1

(33) R
.
= r1r2σ1σ2.

Proposition 3: If the constant parameters of system (6)-(9)
satisfy either of the following set of inequalities:

(i)
σ1σ2 ≥ 0, ρq ≥ 0 and

|a|+|R|
(

1

1 + |ρq|
− 1− |ρq|

2

)
< 1− |ρq|,

(ii)
σ1σ2 ≥ 0, ρq < 0 and

|a|+|R|1 + |ρq|
2

< 1− |ρq|,
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(iii)

σ1σ2 < 0, ρq ≥ 0 and

|a|I0
(√
|R|
)

+ |R|
(

1

1 + |ρq|
− 1− |ρq|

2

)
×
[
I0

(√
|R|
)
− I2

(√
|R|
)]

< 1− |ρq|,

(iv)

σ1σ2 < 0, ρq < 0 and

|a|I0
(√
|R|
)

+ |R|1 + |ρq|
2

×
[
I0

(√
|R|
)
− I2

(√
|R|
)]

< 1− |ρq|,

then, system (6)-(9) is exponentially stable in the χ-norm in
the sense of (11).

Proof: In this proof, we rely on the necessary and
sufficient condition (31), which is fulfilled if

(34) sup
Re(s) ≥0

|1− φ̂(s)|< 1.

|1− φ̂(s)| can be bounded as

(35)

|1−φ̂(s)|=
∣∣∣∣ρqe−sr+

∫ r

0

N(θ)e−sθdθ

∣∣∣∣≤ |ρq|+∫ r

0

|N(θ)|dθ.

Using (35), a sufficient condition for (34) is

(36)
∫ r

0

|N(θ)|dθ < 1− |ρq|.

The crucial point is then the upper-bound of
∫ r

0
|N(θ)|dθ

given in (84) in Appendix A, depending on the sign of σ1σ2

and ρq. Substituting these expressions into (36), we conclude
the proof.

Remark that inequality (36) can be tested by numerically ap-
proximating the integral term and using the expression of N(θ)
in (69). In the case of spatially varying coefficients σ1(x)
and σ2(x), (36) can also be tested, with N(θ) generated
numerically using the successive approximation method.

Following the assumptions of Remark 1, and according
to [45, Remark 1], the sufficient condition of Proposition 3
implies the point-wise exponential stability of system (24). In
other words, there exist µ > 0 and C ≥ 0 such that

(37) |β(t, 1)|≤ C sup
−r≤θ≤0

|β(θ, 1)|e−µ(t−r), t ≥ r.

Let us now compare the presented result to some existing
results in the literature, and apply it to some illustrative
examples.

B. Comparison of the explicit sufficient condition with other
criteria and numerical validation

In order to evaluate the conservatism of the sufficient
condition in Proposition 3, we compare it with other sufficient
conditions from the literature for the stability of systems of
linear first-order hyperbolic PDEs. In particular, we compare
it with a Lyapunov-based exponential stability condition for
linear systems of balance laws presented in [12] and an ISS
and small-gain based result in [22].

Table I
COMPARISON BETWEEN THE CONDITION OF PROPOSITION 3 AND

CONDITION (39) REQUIRED BY [12, THEOREM 5.4] FOR THE STABILITY
OF SYSTEM (6)-(9)

case Condition required by Proposition
3 satisfied if

Condition (39)
required by [12,

Theorem 5.4]
satisfied if

σ1σ2 > 0 or
only one of

them is equal
to zero

ρq ≥ 0

|a|+|R|
(

1
1+|ρq| −

1−|ρq|
2

)
<

1− |ρq|

ρq < 0

|a|+|R| 1+|ρq|
2

< 1− |ρq|

(Not satisfied)

σ1 = 0,
σ2 = 0

|ρq|< 1 |ρq|< 1

σ1σ2 < 0

ρq ≥ 0

|a|I0
(√
|R|
)

+

|R|
(

1
1+|ρq| −

1−|ρq|
2

)
×
[
I0
(√
|R|
)
− I2

(√
|R|
)]

<

1− |ρq|

ρq < 0

|a|I0
(√
|R|
)

+ |R| 1+|ρq|
2

×
[
I0
(√
|R|
)
− I2

(√
|R|
)]

<

1− |ρq|

ρ2 < −σ2
σ1

r2
r1
< 1

q2

According to [12, Theorem 5.4], system (6)-(9) (with
constant coefficients σ1 and σ2) is exponentially stable in
the L2-norm if there exists a 2 × 2 positive diagonal real

matrix Π
.
=

[
π1 0
0 π2

]
such that

(38)
Σ>Π + ΠΣ � 0

‖ P ‖2 < 1

where Σ =

[
0 −σ1

−σ2 0

]
and P =

 0 q
√

π1

π2

r2
r1

ρ
√

π2

π1

r1
r2

0

.

The norm considered in (38) is the spectral-norm, defined
as the square root of the largest eigenvalue of P ᵀP . This
condition was originally derived for systems with diagonal
coupling terms, possibly spatially varying. In case of (6)-(9),
condition (38) reduces to: either σ1 = σ2 = 0 , or

(39)

σ1σ2 < 0, and

ρ2 < −σ2

σ1

r2

r1
<

1

q2
·

Otherwise, if σ1σ2 > 0 or only one of them is equal to zero,
no conclusion can be made regarding the stability. We present
in Table I the sufficient conditions required by Proposition 3
and [12, Theorem 5.4] for the different signs of σ1σ2 and ρq.

One may check that in the case of σ1 = σ2 = 0 , system (6)-
(9) is viewed as a system of two linear conservation laws with
two reflection terms at the boundaries. In the case of σ1σ2 <
0 , the condition of Proposition 3 and (39) are both sufficient
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Table II
VALIDATING EXAMPLES. ALL THESE SYSTEMS ARE STABLE

Example of system (6)-(9)
(σ1, σ2, r1, r2, ρ, q)

Condition of
Proposition 3

Condition (39)
required by [12,

Theorem 5.4]

(1.1, 0.4, 1, 1.2, 0.4,−0.5) Satisfied Not satisfied
(σ1σ2 > 0)

(−0.8, 0.7, 1, 1.2, 0.4, 0.25) Satisfied Satisfied
(1.3,−0.95, 1.8, 0.44,

0.45, 0.25)
Satisfied Not satisfied

(1.3,−1.2, 1.8, 1.5,
0.45, 0.25)

Not satisfied Satisfied

(2.3,−3.5, 0.8, 1.1,
0.5,−0.7)

Not satisfied Not satisfied

and can be applied simultaneously. For the sake of clarity, we
give some numerical examples in Table II.

Another criterion for the stability of symmetric hyperbolic
PDEs is found in [15]. When applying [15, Theorem 2.1] for
the class of 2× 2 constant-coefficients, the required condition
is

(40)

σ1 + σ2 = 0, and

c1r2 + ρ2 ≤ r2

r1
≤ 1

q2
− c2

r2

q2
,

with c1 ≥ 0 and c2 ≥ 0 and c1 and c2 are not both zero. This
criterion, developed under the hypothesis of a dissipation on
both equation and the boundary is more restrictive than [12,
Theorem 5.4] regarding the stability of the system with respect
to the values of σ1 and σ2.

Using recent ISS results and a small-gain property, another
sufficient stability condition for a related class of systems of
hyperbolic PDEs is given in Chapter 9 of [22]. When applied
to system (6)-(9), this condition requires the existence of a
constant K > 0, with (|ρ|+|q|)e−K < 1, such that

(41)

(√
e2K − eK

K
r2|σ2|+

√
|ρ|

)

×

(√
e2K − eK

K
r1|σ1|+

√
|q|

)
< 1.

This condition is not satisfied for the examples considered in
Table II so an extra column was not added. It will however
be compared to the numerical algorithm developed in the next
section.

As we can see from these results, the stability of some sys-
tems can be tested using the condition required by Proposition
3. Nevertheless, many other cases are still not covered, i.e.
we cannot conclude regarding the stability of many plants by
applying both sufficient criteria. The conservatism in our ap-
proach is a result of bounding the modulus of the exponential
terms in φ̂ in (35). An alternative is to consider the necessary
and sufficient condition and numerically approximate it. That
will be the goal of the next section, where an algorithm is
constructed and reveals to be less conservative than both ap-
proaches previously compared at a much higher computational
cost.

C. Numerical approximation of the Necessary and Sufficient
condition

We develop a numerical test of the condition (31) for the
stability of system (24), based on the explicit expressions
of N(θ), N ′(θ) and the upper-bounds of their absolute values,
given in Appendix A. Our objective is to test the absence of
zeros (up to a certain precision) in the right half plane of the
characteristic equation (26).

Notice that numerical algorithms for spectrum analysis
for time-delay systems as DELAY_PSA developed in [46],
YALTA in [47] or DDE-BIFTOOL in [48] require explicit
characteristic quasipolynomials. However, such analytic rep-
resentation can not be handled in our problem, and we are
restricted to use only a numerical realization for the distributed
delay. For this, a numerical algorithm for (pseudo)spectrum of
the time-delay plant (24) is developed in this section.

This study requires the consideration of the whole RHP.
However, having the explicit expression of N(θ) and therefore
the behavior of φ̂, we can restrict our analysis to a compact
subset of the RHP, which is the only subset of the RHP where
equation (26) can have roots as detailed by Lemma 4. This
will allow us to construct a finite initial grid for the evaluation
of φ̂ which we will then refine as needed. Using the Lipschitz
constant of φ̂ the algorithm can conclude on the absence of
roots in a region around each evaluation point. Whenever the
evaluation of φ̂ is insufficient to guarantee the absence of roots
between two adjacent evaluation points, the evaluation grid is
refined around those points. This operation is repeated until
the algorithm can either guarantee the absence of roots in the
initial compact set (in which case we conclude that the system
is stable) or a certain tolerance level in the grid size or value
of |φ̂| is reached (in which case we cannot conclude on the
stability of the system).

Let the compact subset of C:
C .

= {s = z + iy ∈ C s.t. 0 ≤ z ≤ zl and |s|≤ M(z)}, where
we define

(42)

zl
.
=
|ρq|
r

+ ν

M(z)
.
=
|N(r)|e−zr + |N(0)|+ ν̄

z (1− e−zr)

1− |ρq|e−zr
,

with

(43)

N(0) =
1

r
(a+R)

N(r) =
1

r
(a− ρqR).

The values of a and R are given in (32) and (33) respec-
tively. ν and ν̄, given in (82), are the upper-bounds of |N(θ)|
and |N ′(θ)| respectively.

An illustration of such a compact is shown in Figure 1.
The parameters chosen for this example are σ1 = 2, σ2 =
1.5, r1 = 0.85, r2 = 1.1, ρ = 0.7 and q = −0.4.

Lemma 4: By definition of C, we have that

∃ ε > 0, such that ∀s ∈ RHP \ C,
∣∣∣φ̂(s)

∣∣∣ ≥ ε.



8

0 0.5 1 1.5 2

z

-10

-8

-6

-4

-2

0

2

4

6

8

10

y

C̄

C

Figure 1. Grid G0 construction inside C̄ ⊃ C

Proof: z > zl yields

(44)

|φ̂(s)|=
∣∣∣∣1− ρqe−sr − ∫ r

0

N(θ)e−sθdθ

∣∣∣∣
≥ 1− |ρqe−sr|−

∣∣∣∣∫ r

0

N(θ)e−sθdθ

∣∣∣∣
≥ 1− |ρq|e−zr − ν

∫ r

0

e−zθdθ

≥ 1− |ρq|e−zr − ν

z
+
ν

z
e−zr

≥ 1− |ρq|e−zr − ν

z

≥ 1− |ρq|
zr
− ν

z

= 1− zl
z
> 0.

On the other hand, if |s|> M(z), and by integrating by
parts the term

∫ r
0
N(θ)e−sθdθ to get

(45)

∫ r

0

N(θ)e−sθdθ = −N(r)

s
e−sr +

N(0)

s

+
1

s

∫ r

0

N ′(θ)e−sθdθ,

we have

(46)

|φ̂(s)|≥ 1−|ρq|e−zr− |N(r)|e−zr

|s|
− |N(0)|
|s|

− ν̄

z|s|
(1−e−zr)

≥ 1− M(z)

|s|
> 0.

Note that M(z) is strictly decreasing with the in-

crease of z and limz→0M(z) =
|N(r)|+|N(0)|+ν̄r

1− |ρq|
and limz→∞M(z) = |N(0)| .

Let us first construct a grid defined as a set G0 of nodes in a
compact C̄ containing C as depicted in Figure 1. The nodes in
the grid are equally distant along the z and y axis with steps
denoted by δz and δy respectively.

0 0.5 1 1.5 2

z

-8

-6

-4

-2

0

2

4

6

8

y

0.4 0.6 0.8 1 1.2

z

-1.4

-1.2

-1

-0.8

y

B̄(s̄, ̺)

s̄
̺

Figure 2. Closed ball B̄(s̄, %)

In order to cover all the compact subset C̄ by means of a
finite number of nodes, we consider B̄(s, %) consisting in a
closed ball centered at each s ∈ G0 and having a radius

(47) %
.
=

1

2

√
δz2 + δy2

as shown in Figure 2. Notice that C ⊂ C̄ ⊂ ∪s∈G0 B̄(s, %) .
The algorithm is based on the following Lemma.

Lemma 5: Let the parameter

(48) κ
.
= r|ρq|+1

2
r2ν.

If at a certain point s̄ ∈ G0,

(49)
∣∣∣φ̂(s̄)

∣∣∣ > κ%,

then
∣∣∣φ̂(s)

∣∣∣ > 0 ∀s ∈ B̄(s̄, %).

Proof: having N ∈ C∞([0, r];R), φ̂ is Lipschitz-
continuous. Furthermore

(50)∣∣∣∣∣∣φ̂(s1)
∣∣∣− ∣∣∣φ̂(s2)

∣∣∣∣∣∣ ≤ ∣∣∣φ̂(s1)− φ̂(s2)
∣∣∣

≤ max
s∈C̄

{∣∣∣∣ ∂∂z φ̂(s)

∣∣∣∣ , ∣∣∣∣ ∂∂y φ̂(s)

∣∣∣∣} |s1 − s2|,

with

(51)

∂

∂y
φ̂(s) = i

∂

∂z
φ̂(s)

= irρqe−sr + i

∫ r

0

θN(θ)e−sθdθ,

which makes
∣∣∣φ̂∣∣∣ Lipschitz-continuous with Lipschitz constant

upper-bounded by κ.
In the light of this fact, the algorithm will start by

calculating
∣∣∣φ̂(s)

∣∣∣ ∀s ∈ G0. If ∀s ∈ G0, (49) is satisfied,

then
∣∣∣φ̂(s)

∣∣∣ > 0 ∀s ∈ C̄. Consequently,
∣∣∣φ̂(s)

∣∣∣ > 0 ∀ Re(s) ≥
0 and the system is stable according to the equivalent
condition (31). Otherwise, a more detailed grid will be
constructed by considering further nodes in the vicinity of
every point s ∈ G0 where (49) is not verified (starting by
the point where

∣∣∣φ̂∣∣∣ has the lowest value) and by dividing
the radius of the closed ball in (47) by 2. We will denote a
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Figure 3. Example grid after the fourth iteration of the algorithm.

refined grid obtained at the vicinity of a point s̄ .
= z̄+ iȳ ∈ C̄

after k recursive iterations by

Gk(s̄)
.
=
{
s = z + iy ∈ C̄ s.t. z ∈

{
z̄ − δz

2k
, z̄, z̄ +

δz

2k

}
and y ∈

{
ȳ − δy

2k
, ȳ, ȳ +

δy

2k

}}
.

(52)

In a refined grid Gk ,
∣∣∣φ̂∣∣∣ is calculated at all the newly

considered nodes and a test similar to (49) will be executed.
Before visiting another node in the original grid G0, the
algorithm will track all the nodes in a refined grid using a
similar technique of a depth-first search.
The algorithm will backtrack a node by moving to a higher-
level grid Gk−1 if all the nodes of Gk verify

(53)
∣∣∣φ̂(s)

∣∣∣ > κ
%

2k
·

The iteration progress is shown in Figure 3. First, we
consider a point s̄ in G0 (blue ‘×’), such that

∣∣∣φ̂(s̄)
∣∣∣ does not

satisfy (49). Subsequently, G1(s̄) is constructed (red circles).
If the lowest value of

∣∣∣φ̂∣∣∣ in G1(s̄) does not satisfy (53)
(for k = 1), then G2(¯̄s) is constructed by adding more nodes
in the vicinity of ¯̄s

.
= argmins∈G1(s̄)

∣∣∣φ̂(s)
∣∣∣ as shown in pink

‘+’ signs. The algorithm will iterate in the same way to
get the nodes pointed in black asterisks and cyan squares in
subsequent steps.

The construction of a refined grid Gk will always be priority
to the node s̄ = argmins∈Gk−1

∣∣∣φ̂(s)
∣∣∣ before backtracking the

other nodes, in order to reduce the total time needed for a
complete test in the case of unstable system.

The same procedure is repeated until one of the situations
below occurs:
• The algorithm could visit all the points considered in G0

(and all the refined grids) and either the inequality (49)
or (53) is satisfied for all the created nodes. The system
is therefore stable.

• The process is still iterating at a certain point, by ex-
ploring more detailed grids until

∣∣∣φ̂∣∣∣ reaches a tolerance
level ε (a predefined value), then the algorithm will return
that there is no guarantee for the stability of the system.

A description of the algorithm is detailed in Algorithm 1.
Remark 2: Let us notice that the stability analysis of (24)

can be carried out using the Nyquist stability criterion. Indeed,
the associated characteristic equation (26) is equivalent to 1 +
Ĝ(s) = 0, where Ĝ(s) is defined in (27). This last equality
corresponds to the characteristic equation of a feedback system
whose open-loop transfer function is Ĝ(s), which is stable
and strictly proper. In order to get stability for this feedback
system, it is required that the Nyquist graph of Ĝ(iω) does not
encircle −1. Since Ĝ(s) is strictly proper, the graph of Ĝ(iω)
has to be generated only over the finite frequency interval
ω ∈ [0, ωmax] where ωmax is such that |Ĝ(iω)|< 1 for all
ω ≥ ωmax.

The construction of this frequency interval can be obtained as
follows. From (45), we have, for all ω > 0,

|N̂(iω)|≤ |N(0)|+|N(r)|+ν̄r
ω

,

where N(0) and N(r) are defined in (43) while ν̄ is defined
in (82). Introducing

ωmax =
|N(0)|+|N(r)|+ν̄r

1− |ρq|
,

we have that, for all ω > ωmax, |N̂(iω)|< 1 − |ρq|, which
in turn implies |Ĝ(iω)|< 1 from (27). The Nyquist graph of
Ĝ(iω) requires a numerical approximation of the distributed
delay, that can be performed using standard techniques [49].
This algorithm leads to a simpler numerical test of stability
than the one developed in Section IV-C, that can be used
to test stability or instability with reduced complexity and a
graphical criterion. The algorithm developed in Section IV-C
uses instead analytical properties of the characteristic equation
for testing stability or instability, which also points to the
numerical location of (possible) poles of the plant in the right-
half complex plane.

We would like to emphasize the importance of the derivation
of the kernel expressions in the Appendix A as they provide
the possibility of having the explicit criterion and constructing
the algorithm.

V. SIMULATION RESULTS

In order to illustrate the validity of the algorithm, let
us take the example of system (6)-(9) with the following
parameters: σ1 = 2.3, σ2 = −3.5, r1 = 0.8, r2 = 1.1, ρ = 0.5
and q = −0.7. One can check that sufficient conditions
suggested in Proposition 3, [12, Theorem 5.4] and [22] fail to
prove the stability of this system. Meanwhile, the algorithm
described above is able to visit all the nodes and successfully
verify the criterion (53) as depicted in Figure 4.

Furthermore, let us compare the stability domains obtained
by the explicit criterion of Proposition 3, condition (39)
required by [12, Theorem 5.4], condition (41) obtained in
[22] and the numerical algorithm. We take the following
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Algorithm 1: Numerical Approximation
Input:
system parameters: σ1, σ2, r1, r2, ρ and q
a tolerance level: ε
steps: δz and δy

1 Calculate parameters: a, R, ν, ν̄, zl, M(z), κ and %
2 Initialize : k ← 0
3 Construct C by taking z ← 0 to zl by δz

and y ← −M(z) to M(z) by δy
4 Consider C̄ ⊃ C and construct G0 .

= {s = z + iy ∈
C̄ s.t. z = n1δz, n1 ∈ N and y = n2δy, n2 ∈ Z}

5 forall s ∈ G0 do
6 Calculate

∣∣∣φ̂(s)
∣∣∣

7 end
8 if mins∈G0

∣∣∣φ̂(s)
∣∣∣ > κ% then

Output: System stable
9 return

10 else
11 Consider the set of

nodes Sk .
=
{
s ∈ Gk s.t.

∣∣∣φ̂(s)
∣∣∣ ≤ κ %

2k

}
12 Take the node s̄ = argmins∈Gk

∣∣∣φ̂(s)
∣∣∣

13 k ← k + 1
14 Construct Gk(s̄) as in (52)
15 forall s ∈ Gk do
16 Calculate

∣∣∣φ̂(s)
∣∣∣

17 end
18 if mins∈Gk

∣∣∣φ̂(s)
∣∣∣ > κ %

2k
then

19 if All nodes ∈ Sk−1 are visited then
20 k ← k − 1
21 if k=0 then

Output: System stable
22 return
23 else
24 go to 19
25 end
26 else
27 Take another node s̄ ∈ Sk−1

28 go to 14
29 end
30 else
31 if mins∈Gk

∣∣∣φ̂(s)
∣∣∣ < ε then

Output: No conclusion
32 return
33 else
34 go to 11
35 end
36 end
37 end
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Figure 4. Main and refined grids created by the algorithm after a complete
process for the system with parameters: σ1 = 2.3, σ2 = −3.5, r1 =
0.8, r2 = 1.1, ρ = 0.5 and q = −0.7.
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Figure 5. Stability domain as function of the pair (ρ , σ2) for fixed r1 =
0.5, r2 = 1.1, σ1 = 1 and q = 1.2.

example: r1 = 0.5, r2 = 1.1, σ1 = 1 and q = 1.2. ρ is
varied in order to have −1 < ρq < 1 with a step of 0.02
and σ2 is taken between −1.6 and 1.6, with a step of 0.04.

As depicted in Figure 5, if the pair (ρ , σ2) is inside
the dashed red curve then the system is stable according to
Proposition 3. If it is inside the the solid blue curve, then it is
guaranteed to be stable by [12, Theorem 5.4]. And if it is inside
the dotted magenta curve, it is guaranteed to be stable by [22].
For these values, the stability domain obtained by applying
the condition (41) of [22] is included in the domain obtained
by Proposition 3. There is no inclusion between Proposition
3 and [12, Theorem 5.4]. As expected, the stability domain
obtained by the numerical approximation algorithm (shaded
area inside the black dash-dotted curve) covers all the other
stability domains.

VI. CONCLUSION

In this paper, a stability analysis of a class of 2 × 2
linear first-order hyperbolic coupled PDEs is presented. A
backstepping transformation yields a delay form of the original
system. Then, the explicit expressions of the kernel gains
of the backstepping transform are derived using the Bessel
functions of the first kind. These expressions are used to obtain
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an explicit stability criterion in terms of the constant system
coefficients, depending on their sign. The criterion is validated
through academic examples. A numerical algorithm that guar-
antees the stability of the system in a less conservative way is
developed. It works by testing if the necessary and sufficient
condition is satisfied in a compact space in the right half plane.
Interestingly, if we could deal with perfect computers, the
algorithm would guarantee the stability with a finite number of
steps. Future works will be focused on extending these results
to general cases of linear first-order hyperbolic coupled PDEs,
for instance, by taking into consideration diagonal in-domain
couplings.
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APPENDIX A
PROOF OF LEMMA 1

We derive the exact analytic solution for the kernel
gains Lij , i, j ∈ {1, 2} satisfying the hyperbolic PDEs (13)
with boundary conditions (14), as functions of the constant
parameters (σ1, σ2, r1, r2, ρ and q) of the original system (6)-
(9). Notice that the solution given in [42] using the Bessel
and Marcum Q-functions cannot be applied since the class of
systems considered is a 2 × 2 coupled hyperbolic PDEs, in
contrast to the 4× 4 systems that appear in (13)-(14).

We first find the integral equations satisfied by Lij before
applying the successive approximation method that leads to
power series expressions of these gains. Bessel functions and
modified Bessel functions of the first kind are then used to
give their exact analytic solution. Next, we find the analytic
expressions of N(θ) and N ′(θ) and give upper-bounds of their
absolute values. These solutions, as well as the upper-bounds,
will be used to express the sufficient condition for the stability
of the considered system, given in Proposition 3 in Section
IV-A, and in the numerical approximation of the necessary
and sufficient condition (31) developed in section IV-C.

A. Integral Equations
Following the method of characteristics, and integrating

through the characteristic lines emerging from the boundaries
(14) where the kernels are defined, we find that Lij , i, j ∈
{1, 2} verify the following integral equations

(54)

L11(x, y) = −σ1

q

r2
1

r
+ r1σ1

∫ y

0

L21(ξ + x− y, ξ)dξ

+
σ1

q

r1

r2

∫ (x−y)
r1r2
r

0

L22

(
ξ

r1

+ (x− y)
r1

r
,− ξ

r2
+ (x− y)

r1

r

)
dξ,

L12(x, y) = −σ1
r1r2

r

+ σ1

∫ (x−y)
r1r2
r

0

L22

(
ξ

r1

+ x
r1

r
+ y

r2

r
,− ξ

r2
+ x

r1

r
+ y

r2

r

)
dξ,

L21(x, y) = σ2
r1r2

r
− σ2

∫ (x−y)
r1r2
r

0

L11

(
ξ

r2

+ x
r2

r
+ y

r1

r
,− ξ

r1
+ x

r2

r
+ y

r1

r

)
dξ,

L22(x, y) = σ2q
r2
2

r
− r2σ2

∫ y

0

L12(ξ + x− y, ξ)dξ

− σ2q
r2

r1

∫ (x−y)
r1r2
r

0

L11

(
ξ

r2

+ (x− y)
r2

r
,− ξ

r1
+ (x− y)

r2

r

)
dξ.

A general form of these integral equations can be found
in [10]. Let us write equations (54) in a compact matrix form
as

(55) L(x, y) = L0 +A[L](x, y),

with L(x, y)
.
=


L11(x, y)
L12(x, y)
L21(x, y)
L22(x, y)

, L0
.
=


−σ1

q
r21
r

−σ1
r1r2
r

σ2
r1r2
r

σ2q
r22
r

.

A is a linear integral operator defined as

(56)
A[L]

.
=


0 0 r1σ1A1

σ1

q
r1
r2
A2

0 0 0 σ1A3

−σ2A4 0 0 0
−σ2q

r2
r1
A5 −r2σ2A1 0 0



L11

L12

L21

L22

 ,
with

(57)

A1[Lij(·, ·)](x, y)
.
=

∫ y

0

Lij(ξ + x− y, ξ)dξ,

A2[L22(·, ·)](x, y)
.
=

∫ (x−y)
r1r2
r

0

L22

(
ξ

r1
+(x−y)

r1

r
,

− ξ

r2
+ (x− y)

r1

r

)
dξ,

A3[L22(·, ·)](x, y)
.
=

∫ (x−y)
r1r2
r

0

L22

(
ξ

r1
+ x

r1

r

+ y
r2

r
,− ξ

r2
+ x

r1

r
+ y

r2

r

)
dξ,

A4[L11(·, ·)](x, y)
.
=

∫ (x−y)
r1r2
r

0

L11

(
ξ

r2
+ x

r2

r

+ y
r1

r
,− ξ

r1
+ x

r2

r
+ y

r1

r

)
dξ,

A5[L11(·, ·)](x, y)
.
=

∫ (x−y)
r1r2
r

0

L11

(
ξ

r2
+(x−y)

r2

r
,

− ξ

r1
+ (x− y)

r2

r

)
dξ.
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B. Successive approximation and power series expressions

The solution of the integral equation (55) will be gener-
ated using the method of successive approximations (see, for
instance, [50] and [51]) as

(58) L(x, y) =

∞∑
n=0

An[L0](x, y),

with A0[L0] = L0. We denote Lijk (x, y) = Ak[L0](x, y), k ∈
N. We denote as well γ(x, y)

.
= σ1σ2(x − y)(r2x + r1y)

and γ̄(x, y)
.
= σ1σ2(x − y)(r1x + r2y). In order to get the

general term of the power series satisfied by each Lij(x, y)
as in (58), the first few terms (Lijk (x, y), k = 1 · · · 5) have
been expressed. The patterns were then obtained by induction.
Adding the consecutive terms of each Lij , i, j ∈ {1, 2}, we
get the following power series expressions:

(59)

L11(x, y) = −r
2
1

r

σ1

q

∞∑
m=0

(−1)m

m!2

[
r2
1r2

r2
γ(x, y)

]m
+
r2
1r2

r2
σ1σ2(r2x+ r1y)

×
∞∑
m=0

(−1)m

m! (m+ 1)!

[
r2
1r2

r2
γ(x, y)

]m
,

L12(x, y) = −r1r2

r
σ1

∞∑
m=0

(−1)m

m!2

[
r1r

2
2

r2
γ̄(x, y)

]m
+ q

r1r
3
2

r2
σ1σ2(x− y)

×
∞∑
m=0

(−1)m

m! (m+ 1)!

[
r1r

2
2

r2
γ̄(x, y)

]m
,

L21(x, y) =
r1r2

r
σ2

∞∑
m=0

(−1)m

m!2

[
r2
1r2

r2
γ(x, y)

]m
+
r3
1r2

r2

σ1σ2

q
(x− y)

×
∞∑
m=0

(−1)m

m! (m+ 1)!

[
r2
1r2

r2
γ(x, y)

]m
,

L22(x, y) = q
r2
2

r
σ2

∞∑
m=0

(−1)m

m!2

[
r1r

2
2

r2
γ̄(x, y)

]m
+
r1r

2
2

r2
σ1σ2(r1x+ r2y)

×
∞∑
m=0

(−1)m

m! (m+ 1)!

[
r1r

2
2

r2
γ̄(x, y)

]m
.

C. Explicit expressions

Using the Bessel functions of the first kind J0 and J1 [52],
we have that

(60)

L11(x, y) = −r
2
1

r

σ1

q
J0

(
2r1
√
r2

r

√
γ(x, y)

)

+
r1
√
r2

r

√
σ1σ2(r2x+ r1y)

x− y

× J1

(
2r1
√
r2

r

√
γ(x, y)

)
,

L12(x, y) = −r1r2

r
σ1J0

(
2
√
r1r2

r

√
γ̄(x, y)

)

+ q

√
r1r

2
2

r

√
σ1σ2(x− y)

r1x+ r2y

× J1

(
2
√
r1r2

r

√
γ̄(x, y)

)
,

L21(x, y) =
r1r2

r
σ2J0

(
2r1
√
r2

r

√
γ(x, y)

)

+
r2
1

√
r2

qr

√
σ1σ2(x− y)

r2x+ r1y

× J1

(
2r1
√
r2

r

√
γ(x, y)

)
,

L22(x, y) = q
r2
2

r
σ2J0

(
2
√
r1r2

r

√
γ̄(x, y)

)

+

√
r1r2

r

√
σ1σ2(r1x+ r2y)

x− y

× J1

(
2
√
r1r2

r

√
γ̄(x, y)

)
.

Notice that for x = y, the above expressions are well
defined and simplify to

(61)

L11(x, x) = −r
2
1

r

σ1

q
+
r2
1r2

r
σ1σ2x

L12(x, x) = −r1r2

r
σ1

L21(x, x) =
r1r2

r
σ2

L22(x, x) = q
r2
2

r
σ2 +

r1r
2
2

r
σ1σ2x.

Since it can be problematic to numerically manipulate (60)
around x = y, we can use some properties of the Bessel
functions as [52]

(62)

Jn(ξ) =
ξ

2n
(Jn−1(ξ) + Jn+1(ξ))∀n ∈ Z and ∀ξ ∈ R,

to get
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(63)

L11(x, y) =

[
−r

2
1

r

σ1

q
+
r2
1r2

r2
σ1σ2(r2x+ r1y)

]
× J0

(
2r1
√
r2

r

√
γ(x, y)

)
+
r2
1r2

r2
σ1σ2(r2x+ r1y)

× J2

(
2r1
√
r2

r

√
γ(x, y)

)
,

(64)

L12(x, y) =

[
−r1r2

r
σ1 + q

r1r
3
2

r2
σ1σ2(x− y)

]
× J0

(
2
√
r1r2

r

√
γ̄(x, y)

)
+ q

r1r
3
2

r2
σ1σ2(x− y)

× J2

(
2
√
r1r2

r

√
γ̄(x, y)

)
,

(65)

L21(x, y) =

[
r1r2

r
σ2 +

r3
1r2

r2

σ1σ2

q
(x− y)

]
× J0

(
2r1
√
r2

r

√
γ(x, y)

)
+
r3
1r2

r2

σ1σ2

q
(x− y)

× J2

(
2r1
√
r2

r

√
γ(x, y)

)
,

(66)

L22(x, y) =

[
q
r2
2

r
σ2 +

r1r
2
2

r2
σ1σ2(r1x+ r2y)

]
× J0

(
2
√
r1r2

r

√
γ̄(x, y)

)
+
r1r

2
2

r2
σ1σ2(r1x+ r2y)

× J2

(
2
√
r1r2

r

√
γ̄(x, y)

)
.

Remark 3: In the case σ1σ2 < 0, it may be easier to use
the modified Bessel functions of the first kind In, having the
relation Jn(iξ) = inIn(ξ), ∀n ∈ Z, ∀ξ ∈ R [52].

APPENDIX B
EXPRESSION AND BOUNDS OF N(θ)

A. Expression of N(θ)

The explicit criterion given in Proposition 3 is based on the
expressions of N(θ) and the upper-bound of |N(θ)|, θ ∈ [0, r],
as function of the original system parameters (σ1, σ2, r1, r2, ρ
and q). In the sequel, we find these expressions before differ-
entiating N(θ) and upper-bound its absolute value.

For θ ∈ [0, r2], evaluating (64) and (66) at x = 1 and y =

1− θ

r2
yields

(67)

1

r2
L22

(
1, 1− θ

r2

)
=

[
q
r2

r
σ2 +

R

r2
(r − θ)

]
J0

(
2
√
Rθ(r − θ)
r

)

+
R

r2
(r − θ)J2

(
2
√
Rθ(r − θ)
r

)
,

− ρ

r2
L12

(
1, 1− θ

r2

)
=

[
ρ
r1

r
σ1 − ρq

R

r2
θ

]
J0

(
2
√
Rθ(r − θ)
r

)

− ρq R
r2
θJ2

(
2
√
Rθ(r − θ)
r

)
,

where R is defined in (33). For θ ∈ (r2, r], evaluating (63)

and (65) at x = 1 and y =
θ − r2

r1
yields

(68)

q

r1
L21

(
1,
θ − r2

r1

)
=

[
q
r2

r
σ2 +

R

r2
(r − θ)

]
J0

(
2
√
Rθ(r − θ)
r

)

+
R

r2
(r − θ)J2

(
2
√
Rθ(r − θ)
r

)
,

−ρq
r1
L11

(
1,
θ − r2

r1

)
=

[
ρ
r1

r
σ1 − ρq

R

r2
θ

]
J0

(
2
√
Rθ(r − θ)
r

)

− ρq R
r2
θJ2

(
2
√
Rθ(r − θ)
r

)
.

Plugging these expressions in (19) and (25) we obtain

(69)
N(θ) =

(
a

r
+
d(θ)

r2

)
J0

(
2
√
h(θ)

)
+
d(θ)

r2
J2

(
2
√
h(θ)

)
, ∀θ ∈ [0, r],

where we defined

(70)

d(θ)
.
= R [r − θ(1 + ρq)] ,

h(θ)
.
=
R

r2
θ(r − θ)

and a is defined in (32).

B. Bounds of |N(θ)| and |N ′(θ)|
The following calculations will be valid for σ1σ2 ≥ 0. The

case where σ1σ2 < 0 will be treated next. We find an upper
bound of |N(θ)| using some properties of the Bessel functions
of the first kind [52] such as

(71)

∣∣∣J0

(
2
√
h(θ)

)∣∣∣ ≤ 1, ∀θ ∈ [0, r]∣∣∣J0

(
2
√
h(θ)

)
+ J2

(
2
√
h(θ)

)∣∣∣ ≤ 1, ∀θ ∈ (0, r).
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By remarking that |d(θ)|≤ |R|r , we have

(72) |N(θ)|≤ 1

r
(|a|+|R|) .

Differentiating N(θ) we get

(73)

N ′(θ) =
d′(θ)

r2

[
J0

(
2
√
h(θ)

)
+ J2

(
2
√
h(θ)

)]
+

(
a

r
+
d(θ)

r2

)
J ′0

(
2
√
h(θ)

) h′(θ)√
h(θ)

+
d(θ)

r2
J ′2

(
2
√
h(θ)

) h′(θ)√
h(θ)

,

with

(74)

d′(θ) = −R(1 + ρq),

h′(θ) =
R

r

(
1− 2

θ

r

)
,

J ′0

(
2
√
h(θ)

)
=

1

2

[
J−1

(
2
√
h(θ)

)
− J1

(
2
√
h(θ)

)]
= −J1

(
2
√
h(θ)

)
,

J ′2

(
2
√
h(θ)

)
=

1

2

[
J1

(
2
√
h(θ)

)
− J3

(
2
√
h(θ)

)]
.

Plugging (74) in (73) and using (62) yields

(75)

N ′(θ) = −R
r2

[
1 + ρq +

(
1− 2

θ

r

)(
a+

1

2

d(θ)

r

)]
× J0

(
2
√
h(θ)

)
− R

r2

[
1 + ρq +

(
1− 2

θ

r

)(
a+

2

3

d(θ)

r

)]
× J2

(
2
√
h(θ)

)
− 1

6

R

r2

d(θ)

r

(
1− 2

θ

r

)
J4

(
2
√
h(θ)

)
.

Using the inequalities verified by the Bessel func-
tions of first kind:

∣∣∣J0

(
2
√
h(θ)

)
+ J2

(
2
√
h(θ)

)∣∣∣ ≤ 1

and
∣∣∣J0

(
2
√
h(θ)

)
+ 4

3J2

(
2
√
h(θ)

)
+ 1

3J4

(
2
√
h(θ)

)∣∣∣ ≤ 1

and by remarking that
∣∣1− 2 θr

∣∣ ≤ 1, we can bound |N ′(θ)|
as

(76) |N ′(θ)|≤ |R|
r2

(
1 + ρq + |a|+ |R|

2

)
.

We should note that when σ1σ2 < 0, |N(θ)| and |N ′(θ)| are
bounded differently. Recalling (69) and according to Remark
3, N(θ) can be written in this case as

(77)

N(θ) =

(
a

r
+
d(θ)

r2

)
I0

(
2
√
h̄(θ)

)
− d(θ)

r2
I2

(
2
√
h̄(θ)

)
,

where we have defined

(78) h̄(θ)
.
= |h(θ)|= |R|

r2
θ(r − θ).

According to the property of the modified Bessel func-
tions [52]: ∀n ∈ Z, In(θ) − In+2(θ) ≥ 0, ∀θ ≥ 0 and

In(·) − In+2(·) is a strictly increasing function, |N(θ)| can
be bounded as

(79)

|N(θ)|≤ |a|
r
I0

(√
|R|
)

+
|R|
r

[
I0

(√
|R|
)
− I2

(√
|R|
)]
.

N ′(θ) in this case can be deduced from (75) by following
Remark 3 as

(80)

N ′(θ) = −R
r2

[
1 + ρq +

(
1− 2

θ

r

)(
a+

1

2

d(θ)

r

)]
× I0

(
2
√
h̄(θ)

)
+
R

r2

[
1 + ρq +

(
1− 2

θ

r

)(
a+

2

3

d(θ)

r

)]
× I2

(
2
√
h̄(θ)

)
− 1

6

R

r2

d(θ)

r

(
1− 2

θ

r

)
I4

(
2
√
h̄(θ)

)
.

|N ′(θ)| can be bounded using the modified Bessel functions
as in (79)

(81)

|N ′(θ)|≤ |R|
r2

(
1+ρq+|a|+ |R|

2

)[
I0

(√
|R|
)
−I2

(√
|R|
)]

+
R2

6r2

[
I2

(√
|R|
)
− I4

(√
|R|
)]
.

We define ν and ν̄ as upper-bounds of |N(θ)| and |N ′(θ)|
respectively, as function of the system parameters, deduced
from (72), (76), (79) and (81):

(82)

ν=



1

r
(|a|+R)

if σ1σ2 ≥ 0,

|a|
r
I0

(√
|R|
)

+
|R|
r

[
I0

(√
|R|
)
− I2

(√
|R|
)]

if σ1σ2 < 0,

ν̄

=



|R|
r2

(
1 + ρq + |a|+ |R|

2

)
if σ1σ2 ≥ 0,

|R|
r2

(
1 + ρq + |a|+ |R|

2

)[
I0

(√
|R|
)
− I2

(√
|R|
)]

+
R2

6r2

[
I2

(√
|R|
)
− I4

(√
|R|
)]

if σ1σ2 < 0.

The values of ν and ν̄ in (82) will be used in the construction
of the algorithm in section IV-C. However, in order to be
more precise, and give the integral term in the sufficient condi-
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tion (36) a less conservative approximation, we express |d(θ)|
depending on the sign of ρq as

(83) |d(θ)|=



|R|[r − θ(1 + ρq)]1[0, r
1+ρq ](θ)

+|R|[−r + θ(1 + ρq)]1( r
1+ρq ,r]

(θ)

if ρq ≥ 0,

|R|[r − θ(1 + ρq)]
if ρq < 0,

which yields the following upper-bound of
∫ r

0
|N(θ)|dθ, us-

ing (69), (77) and (83)

(84)∫ r

0

|N(θ)|dθ ≤

|a|+|R|
(

1
1+|ρq| −

1−|ρq|
2

)
if σ1σ2 ≥ 0 and ρq ≥ 0,

|a|+|R| 1+|ρq|
2

if σ1σ2 ≥ 0 and ρq < 0,

|a|I0
(√
|R|
)

+ |R|
(

1
1+|ρq| −

1−|ρq|
2

)
×
[
I0

(√
|R|
)
− I2

(√
|R|
)]

if σ1σ2 < 0 and ρq ≥ 0,

|a|I0
(√
|R|
)

+ |R| 1+|ρq|
2

[
I0

(√
|R|
)
− I2

(√
|R|
)]

if σ1σ2 < 0 and ρq < 0.
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