
HAL Id: hal-02267568
https://hal.science/hal-02267568v1

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tensor Decomposition and Non-linear Manifold
Modeling for 3D Head Pose Estimation

Dmytro Derkach, Adrià Ruiz, Federico M Sukno

To cite this version:
Dmytro Derkach, Adrià Ruiz, Federico M Sukno. Tensor Decomposition and Non-linear Manifold
Modeling for 3D Head Pose Estimation. International Journal of Computer Vision, 2019, 127 (10),
pp.1565-1585. �10.1007/s11263-019-01208-x�. �hal-02267568�

https://hal.science/hal-02267568v1
https://hal.archives-ouvertes.fr

International Journal of Computer Vision manuscript No.
(will be inserted by the editor)

Tensor Decomposition and Non-linear Manifold Modeling for 3D Head
Pose Estimation

Dmytro Derkach · Adria Ruiz · Federico M. Sukno

Received: date / Accepted: date

Abstract Head pose estimation is a challenging computer
vision problem with important applications in different
scenarios such as human-computer interaction or face
recognition. In this paper, we present a 3D head pose
estimation algorithm based on non-linear manifold
learning. A key feature of the proposed approach is that it
allows modeling the underlying 3D manifold that results
from the combination of rotation angles. To do so, we use
tensor decomposition to generate separate subspaces for
each variation factor and show that each of them has a clear
structure that can be modeled with cosine functions from
a unique shared parameter per angle. Such representation
provides a deep understanding of data behavior. We show
that the proposed framework can be applied to a wide
variety of input features and can be used for different
purposes. Firstly, we test our system on a publicly available
database, which consists of 2D images and we show that
the cosine functions can be used to synthesize rotated
versions from an object from which we see only a 2D
image at a specific angle. Further, we perform 3D head
pose estimation experiments using other two types of
features: automatic landmarks and histogram-based 3D
descriptors. We evaluate our approach on two publicly
available databases, and demonstrate that angle estimations
can be performed by optimizing the combination of these
cosine functions to achieve state-of-the-art performance.

Keywords 3D head pose · Manifold learning · Tensor
decomposition

D. Derkach and F.M. Sukno
Department of Information and Communication Technologies
Pompeu Fabra University, Barcelona, Spain
E-mail: dmytro.derkach@upf.edu; federico.sukno@upf.edu

Adria Ruiz
INRIA, Univ. Grenoble Alpes, Institute of Enginnering,
CNRS, 38000 Grenoble, France
E-mail: adria.ruiz-ovejero@inria.fr

1 Introduction

Head pose estimation is a relevant problem for several
computer vision applications, including human-computer
interaction, video conferencing, face recognition and facial
motion analysis (Wang et al., 2018). Head pose estimation
has traditionally been performed on 2D images, but
advances in 3D acquisition systems have led to a growing
interest in methods that operate on 3D data (Seemann
et al., 2004; Fanelli et al., 2013). These methods are less
sensitive to changes in illumination and viewpoint than 2D
image-based approaches, which makes them more accurate
and robust. Therefore, in this work we focus on head pose
estimation from 3D data.

The goal of head pose estimation is to predict the relative
orientation between the camera and a 3D mesh of the target
head. This orientation is usually represented by three
angles: rotation around vertical axis (yaw angle), around the
side-to-side axis (pitch angle), and around the front-to-back
axis (roll angle). Despite the fact that standard features
used to represent 3D meshes lie in high-dimensional
spaces, a key observation to solve this problem is that
the aforementioned angles define a lower-dimensional
manifold with only 3 degrees of freedom. This fact makes
tensor decomposition and manifold learning appealing
frameworks for the estimation of the orientation parameters.
In particular, factorization methods such as multi-linear
decomposition (De Lathauwer et al., 2000; Wang et al.,
2017b), are able to separate the variations produced by the
different factors (i.e. angles) into separate subspaces, thus
obtaining specific parametrizations for each of them. On the
other hand, manifold learning (Wang et al., 2017a) can be
used to find the low-dimensional manifold structure defined
by the orientation angles.

In this context, some previous works have attempted
to use the frameworks described above for head pose

2 Dmytro Derkach et al.

estimation. Concretely, methods such as Isomap (Raytchev
et al., 2004) or Local Linear Embedding (Fu and Huang,
2006) have been explored in order to learn the underlying
manifold structure defined by the orientation parameters.
Even though the cited methods are able to learn generic
low-dimensional data representations, the resulting
manifold is only defined implicitly and, therefore, it is
difficult to introduce specific constraints to model the
inherent structure defined by rotation variations.

In order to address this limitation, we propose a novel
approach to learn the manifold defined by 3D rotations.
In particular, our method is able to explicitly model
its underlying structure with an analytic form which
takes into account the specific constraints imposed by
orientation variations. For this purpose, we use multi-linear
decomposition over data descriptors in order to split the
variation factors (i.e. yaw, pitch and roll) and obtain a set
of subspaces whose coefficients are governed by an unique
parameter. These coefficients define a continuous curve
in each of the sub-spaces that corresponds to the pose
variation along one of the rotation angles. We demonstrate
that the proposed approach can be applied to a wide variety
of input features and, further, the obtained coefficients
can be modeled in terms of trigonometric functions,
which are indeed the bases to explain rotation effects.
Thus, we introduce a minimization framework for pose
estimation based on tensor decomposition constrained by
trigonometric functions so that the solutions obtained are
always compatible with the underlying rotation manifold.
Preliminary results of our approach were presented in
(Derkach et al., 2018).

In our experiments, we start by investigating the
structure of the subspace obtained by multi-linear
decomposition of 2D images when such subspace
corresponds to one rotation angle using 2D images.
We show that the obtained coefficients correctly describe
the rotation effect, and they can indeed be modeled by
a trigonometric function. We also demonstrate that these
coefficients can be used to synthesize rotated versions
of an object from which we only see one image at a
particular rotation angle. Then, we generalize this result to
rotations along any of the 3 spatial axes and demonstrate
its usefulness by applying it to head pose estimation.
We perform 3D head pose estimation experiments using
other two types of features: automatic landmarks and
histogram-based 3D descriptors. We evaluate our approach
over two large and publicly available 3D face corpora: the
SASE (Lüsi et al., 2016b) and BIWI databases (Fanelli
et al., 2013) and demonstrate that angle estimations can
be performed by optimizing the combination of cosine
functions to achieve state-of-the-art performance.

The rest of the paper is organized as follows. Section 2
introduces a brief review of the existing approaches for

head pose estimation. In Section 3 we give an overview
of tensor decomposition methods, especially focusing
on the higher order SVD (HOSVD). Section 4 explains
how the tensor decomposition framework can be used to
model data variations caused by rotations and shows how
it can be applied for pose estimation. Then in Section 5 we
perform qualitative experiments on a dataset of images with
rotation about only one axis. In this experiment we show
how the obtained coefficients can be modeled using cosine
functions. Once the coefficients are obtained, we show
that they can be used to synthesize rotated versions from
an object from which we have only seen a 2D image at a
specific angle. In Section 6 we demonstrate the application
of the proposed framework to the problem of 3D head
pose estimation from depth data using two different type of
features. Finally, Section 7 concludes the paper.

2 Related work

There exist a considerable number of works that have
addressed head pose estimation (Murphy-Chutorian and
Trivedi, 2009) and an extensive review of all of them is
out of the scope of this paper. Instead, we will focus on
those approaches that are more related our work, namely
methods that either use manifold learning algorithms or
those that perform head pose estimation based on 3D data.
It should also be mentioned that there is a recent trend of
promising methods based on powerful machine learning
algorithms, such us random projection forests (Lee et al.,
2015), convolutional random forests (Lee et al., 2017)
and convolutional neural networks (CNNs) (Chen et al.,
2016; Lathuilière et al., 2017; Lathuilire et al., 2019; Liu
et al., 2016; Ahn et al., 2014; Patacchiola and Cangelosi,
2017; Ruiz et al., 2018), although they have been applied
mainly to head pose estimation from 2D images. A few
notable exceptions are the POSEidon network (Borghi
et al., 2017; Borghi et al., 2019), with an architecture
based on triple regressive CNNs to combine depth, motion
images and appearance cues (all of which are estimated
exclusively from the depth stream), and the work from
Wang et al. (2019), who employ two sub-networks based
on GoogleNet (Szegedy et al., 2015) to perform coarse and
fine pose estimation, reporting results both on 2D images
and depth-only information.

2.1 Manifold-based methods

Many methods have considered the model of the underlying
manifold structure of head pose variations (Sundararajan
and Woodard, 2015; Wang et al., 2017a). The main
idea behind these methods is that, regardless of the
dimensionality of the input features representing the mesh,

Tensor Decomposition and Non-linear Manifold Modeling for 3D Head Pose Estimation 3

there should be at most three degrees of freedom for head
pose variation, thus defining a 3D manifold (Raytchev et al.,
2004). However, in general, this manifold is embedded
non-linearly in the ambient space defined by the features,
which has led researchers to explore non-linear manifold
learning methods such as Locally Linear Embedding
(Fu and Huang, 2006), Isomap (Raytchev et al., 2004),
Synchronized Submanifold Embedding (Zhu et al.,
2014), Homeomorphic Manifold Analysis (Peng et al.,
2014), Neighborhood Preserving Embedding or Locality
Preserving Projection (BenAbdelkader, 2010) for head pose
estimation from 2D images.

An interesting possibility to enhance the embedding
results is to adopt a supervised strategy and use head pose
labels in order to learn the manifold structure. For example,
Balasubramanian et al. (2007) presented a Biased Manifold
Embedding (BME) framework in which the distance metric
between features is modified so that heads under similar
poses are brought closer to each other than they would
be under the unbiased (unsupervised) case. Similarly,
Wang and Song (2014) consider head-pose information to
constrain the distances between data points and present a
regression variant of Fisher Discriminant Analysis (FDA),
which they call supervised neighborhood-based FDA.
An alternative approach is followed by BenAbdelkader
(2010), who firstly apply unsupervised manifold learning
methods and then employ the head pose information to train
regressors in the resulting low-dimensional manifolds.

Liu et al. (2010) argue that a single manifold is
not enough for head pose estimation and that appearance
variations such as changes in identity, scale and illumination
make it necessary the use of multiple different manifolds to
model pose parameters. Thus, authors presented a clustering
method to construct multiple manifolds, each of which
characterizes the underlying subspace of some subjects.
Peng et al. (2014) also learn multiple manifolds; they use
Homeomorphic Manifold Analysis to build a separate
manifold for each subject and learn non-linear mappings to
relate each subject-manifold with a common pose-manifold
whose topology is predefined as a unit circle or sphere (for
addressing rotations about one or two axes, respectively).

The most similar work to ours is probably the one
from Takallou and Kasaei (2014), who learn a non-linear
tensor model based on multi-linear decomposition for head
pose estimation from 2D images. They build a three-way
tensor to account for identity, pose and pixels information,
targeting only yaw rotations. During training, they find
individual-dependent mappings between each training pose
and a unified pose manifold based on tensor decomposition.
At test time, each query image is projected into pose
and identity subspaces, which results in as many pose
coefficients as identities in the training set. The final
pose estimate is obtained by validating the available pose

coefficients in terms of compliance with the unified pose
manifold (e.g. inversely to the distance to training samples).

In contrast to our work, all of the above methods use 2D
images and most of them do not target rotations about the
three spacial axes, they consider rotations about only one
or two axes. Moreover, none of them provides an analytic
formulation for the pose manifold.

2.2 3D methods review

Head pose estimation has traditionally been performed
on 2D images. But recent advances in 3D acquisition
systems have led to a growing interest in methods that
operate on 3D data. These methods are less sensitive to
changes in illumination and viewpoint than 2D image-based
approaches, which makes them more accurate and robust.

An important distinction between different approaches is
the type of input data that is used. Firstly, very few methods
use only depth information, typically relying on curvatures,
symmetry planes or most salient facial landmarks, such as
the nose tip (Breitenstein et al., 2008; Sun and Yin, 2008; Li
and Pedrycz, 2014).

In contrast, a majority of head pose estimation
algorithms working in 3D, use also RGB data as additional
source of information, facilitating aspects such as face
detection and estimation of fiducial points. In this category
we find approaches based on the fusion of 2D and 3D
features (e.g. SIFT, HOG) to train regressors (Wang et al.,
2013), template fitting (Martin et al., 2014), such as 3D
Morphable Models (Ghiass et al., 2015; Yu et al., 2017),
or depth features initialized by 2D face detection (Papazov
et al., 2015).

Finally, it is also common to take advantage of temporal
information for tracking the head pose across sequences
of frames (Tulyakov et al., 2014; Gu et al., 2017; Barros
et al., 2018; Tan et al., 2018), which considerably improves
performance. However, tracking-based algorithms often
benefit from the fact that test sequences usually start with
nearly frontal head poses and their accuracy to detect
initial head poses other than frontal is not clear. Thus,
when comparing our results, we will focus on methods that
provide estimation results on a per-frame bases, without
tracking.

Interestingly, we see that previous methods targeting
head pose estimation from 3D data have not taken advantage
of the underlying manifold structure of 3D head rotations.
In contrast, we present a method that is able to explicitly
model its underlying manifold structure with an analytic
form that takes into account the specific constraints imposed
by orientation variations.

4 Dmytro Derkach et al.

3 Technical background: Tensor decomposition

In this section, we give a review of tensor decomposition
methods, especially focusing on the higher order SVD
(HOSVD) (Bergqvist and Larsson, 2010; Comon, 2014;
Kolda and Bader, 2009).

In many scenarios, data can be naturally represented as
multidimensional arrays and, therefore, it is beneficial to
take into account its inherent structure in order to analyze
it. For this purpose, the use of tensors is a natural solution.
In particular, a tensor is also known as a n-way array or a
n-mode matrix. Vectors and matrices can be considered as
first and second order tensors, respectively. First of all, we
will start by reviewing the standard SVD decomposition for
second order tensors.

For matrix A ∈ Rm×n we recall the SVD as being:

A =UΣV T =
r

∑
k=1

σkukvT
k =

r

∑
k=1

σkuk⊗vk (1)

and for the elements ai j of A we have

ai j =
r

∑
k=1

uikσkkvik (2)

Here ⊗ denotes the tensor (or outer) product x⊗ y =∆

xyT ; Σ is a diagonal (r× r) matrix with nonzero singular
values of A (the square roots of the eigenvalues of AT A) on
its diagonal; uk and vk are the orthonormal columns of the
matrix U (m× r) and V (n× r), respectively, with vk being
the eigenvectors of AT A and uk = Avk/σk (Bergqvist and
Larsson, 2010).

The SVD is useful whenever we have a two-dimensional
data set {ai j}, which is naturally expressed in term of a
matrix A (second order tensor). In the application of this
paper we will deal with cases where the dimension is bigger
than two. Specifically, we will be interested in modeling
data that depends on 5 factors (fifth order tensor): features,
identity and 3 rotations about orthogonal spatial axes.

The SVD may be generalized to higher order tensors
(or multiway arrays). Given T ∈ RI1×I2×...×I5 , the
decomposition of the fifth order tensor can be expressed as

T = ∑
J1

· · ·∑
J5

gJ1J2...J5u(1)
J1
⊗u(2)

J2
⊗·· ·⊗u(5)

J5
(3)

or as a mode product (De Lathauwer et al., 2000)

T = G ×1 U (1)×2 U (2) · · ·×5 U (5) (4)

where G ∈RJ1×J2×...×J5 is the core tensor and U (n) ∈RIn×Jn

– are the factor matrices (which are orthogonal) and can
be thought of as the principal components in each mode.

Fig. 1 (a) Illustration of a 3D tensor decomposition. (b) Unfolding of
the (I× J×K)-tensor T to the (I× JK)-matrix, the (J×KI)-matrix
and the (K× IJ)-matrix

The graphic representation of the Higher Order SVD (3D)
is shown on the Figu. 1(a);

The n-mode product of a tensor G ∈ RJ1×J2×...×JN by a
matrix U ∈ RIn×Jn denoted by G ×n U is an (J1× J2×·· ·×
Jn−1× In× Jn+1× ·· ·× JN)-tensor of which the entries are
given by

(G ×n U) j1 j2··· jn−1in jn+1··· jN = ∑
jn

g j1 j2··· jn−1 jn jn+1··· jN uin jn (5)

In HOSVD, all matrices U (n) can be calculated by
performing a matrix SVD on the In×(I1I2 · · · In−1In+1 · · · IN)

matrix obtained by a flattering or unfolding of T (Bergqvist
and Larsson, 2010; De Lathauwer et al., 2000).

The n-mode matricization (or unfolding) of a tensor
T ∈ RI1×I2×...×IN is denoted by T(n) and arranges the
n-mode fibers to be columns of the resulting matrix. Tensor
element (i1, i2, . . . , iN) maps to matrix element (in, j),
where

j = 1+
N

∑
k=1
k 6=n

(ik−1)Jk; Jk =

k−1

∏
m=1
m 6=n

Im, k > 1

0 otherwise

(6)

An example of unfolding of the third order tensor T is
shown in Fig. 1(b)

Since U (n) matrices are orthogonal, G in Eq. 4 is easily
calculated using Eq. 7 and it is called the core tensor which

Tensor Decomposition and Non-linear Manifold Modeling for 3D Head Pose Estimation 5

shows the interactions of U (n) matrices – factor matrices
(De Lathauwer et al., 2000).

G = T ×1 U (1)T ×2 U (2)T · · ·×5 U (5)T
(7)

4 Proposed method

4.1 Multilinear decomposition and estimation of 3D
rotations

In the following, we explain how the tensor decomposition
framework described in Sec. 3 can be used to model
data variations caused by rotations. Consider a training
set composed by N samples xn ∈ RD f . For instance,
in head pose estimation, xn refers to a D f -dimensional
vector representing a 3D-descriptor extracted from a mesh.
Moreover, we assume that each xn is labelled according to
its identity plus 3 values defining its corresponding rotation
angles (i.e yaw, pitch and roll). By discretizing these values
into Dy, Dp and Dr bins respectively, we can represent the
whole dataset as a 5-way tensor T ∈ RNid×Dy×Dp×Dr×D f ,
where Nid is the number of subjects (identities) in the
training set.

By using Eq. 4, we can decompose T as:

T = G ×U (id)×U (y)×U (p)×U (r)×U (f) (8)

where G is the core tensor that governs the interaction
between the five different factors defining the dataset:
identity, rotation in the three angles and appearance (or
features) of a sample. Specifically, note that each U (∗) is a
matrix spanning a subspace for a given factor. Therefore,
its rows u(∗) can be seen as vectors representing the data
behavior for each parameter of the factor subspace.

For example, the rows of matrix U (id) encode the
distinctive characteristics that define the shape of the object
xn ∈ RD f . At the same time, each row in the matrices
U (y),U (p) and U (r) provides coefficients that define the
rotation of the object by a particular angle about each axis.
And finally, the product by G and U (f) can be interpreted
as a mapping of the shaped and rotated object into feature
space.

Thus, from our 5-way tensor, we have 4 modes that
correspond to factor subspaces plus another one that
corresponds to our input features and is usually combined
with the core in the auxiliary variable W = G ×U (f).
This variable can be understood as a basis that represents
the principal axes of variation in feature space across the
various factors (the other tensor modes) and how they
interact with each other to reconstruct the input features
(Vasilescu and Terzopoulos, 2002).

After obtaining the decomposition of the tensor T , a
sample x can be reconstructed as:

x = W ×u(id)×u(y)×u(p)×u(r), (9)

where W = G ×U (f) and {u(y), u(p),u(r)} are row vectors
from matrices {U (y), U (p), U (r)}. Therefore, it is also
theoretically possible to estimate the rotation angles for a
given test sample x ∈ RD f by minimizing its reconstruction
error (Tenenbaum and Freeman, 1997; Zhang et al., 2015):

argmin
u(y),u(p),u(r),u(id)

‖x−W ×u(y)×u(p)×u(r)×u(id)‖ (10)

Unfortunately, this becomes a minimization problem
in which we need to simultaneously solve for 3 viewpoint
parameterizations vectors (yaw u(y), pitch u(p) and roll
u(r)), and the identity vector u(id). There exist approaches to
solve the above minimization, e.g. iterative estimates of one
factor at a time or gradient-based optimization (Bakry and
Elgammal, 2014). However, they cannot guarantee accurate
estimates and the resulting solutions are often not compliant
with the manifold structure of the different subspaces. Thus,
the final estimates are typically obtained by applying some
correction to the results from the minimization of Eq. 10
(e.g. nearest neighbor search (Takallou and Kasaei, 2014))
so that they become compatible with the manifold structure
implicitly defined by the training examples.

4.2 Introducing rotation manifold constraints

In Sec. 4.1, we have described the use of tensor
decomposition to model the effect of 3D rotations much
like any other factor; e.g. notice how rotation factors and
identity are treated in an equivalent manner. However, such
general treatment does not take advantage of the special
structure that can be expected for rotation subspaces leading
to the generic formulation in Eq. 10, whose practical use is
limited.

Indeed, note that regardless of the resulting dimensionality
of the yaw, pitch and roll vectors (u(y), u(p) and u(r)), each of
them shall theoretically encode only the rotation about only
one axis. Hence, the coefficients of each of these vectors
are expected to be governed by a single parameter (their
corresponding rotation angle), describing a one-dimensional
manifold embedded in the higher dimensional ambient
space obtained by the tensor decomposition.

To illustrate the above, consider a simple example
with a dataset composed of 2D images of different objects
rotating with respect to a single axis (e.g, yaw angle). In
this scenario, the data depends on three factors: yaw angle,
object identity, and features (for which we can directly

6 Dmytro Derkach et al.

Fig. 2 Visualization of the first three coefficients of the pose variation subspace for a dataset of single object rotated about the vertical axis.

use the pixels). Using this dataset, we can build a tensor
and decompose it analogously to Eq. 8. By following
this procedure, we obtain three different matrices: U (f),
U (y) and U (id), spanning the sub-spaces corresponding to
features, rotation and identity, respectively. In Figure 2 we
show the values of the first three columns of matrix U (y),
corresponding to different images of a ”duck” object. We
can see that the values displayed in Figure 2 approximately
describe a spiral curve, making apparent that the coefficients
of the rotation subspace follow a uni-dimensional manifold
structure. This is consistent with the fact that the variations
captured by this subspace correspond to a single parameter:
the rotation angle about the vertical axis. As we will show
later in the experiments, this behaviour is not specific
for rotations about a single axis but holds for general
3D-rotations and also for different types of features.

Based on this observation, we propose to introduce
explicit constraints over the rotation coefficients {u(y),
u(p),u(r)} so that we can carry out their joint estimation
directly over the underlying rotation manifold. For this
purpose, we re-write Eq. 9 as follows:

x = W ×u(id)×u(y)×u(p)×u(r)

= W ×u(id)× f(y)(ω(y))× f(p)(ω(p))× f(r)(ω(r)) (11)

where f(∗) : R → RD∗ are parametric functions taking
as input an angle ω(∗) and giving as output a vector of
coefficients u(∗). In this way, we explicitly force the rotation
subspaces to be one-dimensional manifolds governed by
ω(∗).

By considering the reparametrization defined in Eq. 11,
the estimation of the rotation angles given a test sample x
can be obtained by minimizing the following reconstruction
error:

argmin
ω(y),ω(p),ω(r),u(id)

‖x− x̂‖ (12)

x̂ = W ×u(id)× f(y)(ω(y))× f(p)(ω(p))× f(r)(ω(r))

where W = G ×U (f) and the optimized variables are the
angles ω∗ and the vector u(id).

This re-formulation of Eq. 10 allows to minimize
the reconstruction error directly fulfilling the manifold
structure of the rotation subspaces and reducing the number
of coefficients to optimize from (Nid + Dy + Dp + Dr) to
(Nid + 3). As we will show in the experimental results, this
offers a crucial advantage with respect to the framework
described in Sec. 4.1.

4.3 Constraints definition using trigonometric functions

In the previous section, we have discussed the advantages
of incorporating specific constraints into the rotation
coefficients u(∗) (see Eq. 9) in order to explicitly model
the pose changes of samples x. For this purpose, we have
parametrized each u(∗) by using a function f(∗) with a single
angle ω(∗) as input. However, we have not discussed yet the
specific definition of f(∗) used in this work.

To do so it is important to remember that we are looking
for functions that transform a rotation angle into a set of
coefficients that produce the desired rotation effect (once
appropriately combined by means of W). In this sense we
may draw an analogy between the vectors u(∗) = f(∗)(ω(∗))
and 3D rotation matrices, which also have multiple
coefficients that in reality depend on a single parameter.1

1 Of course this applies to rotations about a single axis; the
general 3D-rotation case, depending on 3 parameters, could be anyway
decomposed in the product of 3 such rotation matrices, analogous to
the product of f(y)(ω(y))× f(p)(ω(p))× f(r)(ω(r)) in Eq. 11.

Tensor Decomposition and Non-linear Manifold Modeling for 3D Head Pose Estimation 7

Therefore, it is reasonable to hypothesize that the relation
between the coefficients of the rotation subspaces and their
corresponding rotation angles can be modeled by means of
trigonometric functions.

Going back to the example from Fig. 2, we can see
that the displayed rotation parameters describe an elliptical
trajectory, compatible with the above hypothesis. This
becomes more evident in Fig. 3, where we show the values
of these coefficients separately against the rotation angle. It
can be seen that the resulting wave-forms strongly resemble
those from the cosine functions. It should be mentioned
that, while we only display the first 3 dimensions of the
rotation subspace (corresponding to the first 3 columns
of matrix U (y)), the remaining columns follow a similar
pattern. Therefore, we will model f(∗) as vectors of real
functions based on cosines parameterized as follows:

f(∗)(ω(∗)) =
(

f1(ω
(∗)), f2(ω

(∗)), . . . fD∗(ω
(∗))
)

(13)

f j(ω
(∗)) = α

(∗)
j cos(β (∗)

j ω
(∗)+ γ

(∗)
j)+ϕ

(∗)
j (14)

1≤ j < D∗

where α
(∗)
j ,β

(∗)
j ,γ

(∗)
j and ϕ

(∗)
j are parameters defining

each specific cosine function. Note that, given a rotation
subspace, there will be a different set of parameters for
each dimension of the subspace, thus defining a spiral-like
structure that analytically represents the underlying
manifold.

To obtain the values of the parameters α
(∗)
j ,β

(∗)
j ,γ

(∗)
j and

ϕ
(∗)
j that define the analytic curves for each dimension of the

rotation subspaces we solve the following minimization:

argmin
α
(∗)
j ,β

(∗)
j ,γ

(∗)
j ,ϕ

(∗)
j

‖u(∗)i j − f j(ω
(∗)
i)‖ (15)

where u(∗)i j are the elements of matrices U (y),U (p),U (r)

obtained from the decomposition of the training tensor
and ω

(∗)
i is the value corresponding to the i-th bin of the

discretized rotation angles used to construct the tensor. For
example, given a rotation range of [−Θ ,Θ] and a uniform
discretization:

ω
(∗)
i =

2 i−D∗−1
D∗−1

Θ 1≤ i≤ D∗ (16)

4.4 Implementation details

Optimization method: Given previous definitions, during
learning and inference we need to minimize Eq. 15 and 12,
respectively. Given that in both cases the objective function
is differentiable with respect to the optimized parameters,
we use gradient-descent based optimization. Concretely,
we employ the L-BFGS method (Byrd et al., 1994) which

is a Quasi-Newton approach. L-BFGS employs the first
and second order derivatives of the objective function in
order to iteratively update the optimized variables. The
key difference between L-BFGS and other Quasi-Newton
methods is that the Hessian matrix is approximated with
a low-rank compact form, which renders the optimization
process much more efficient in terms of space and
computational cost. The required first-order derivatives of
Eq. 12 and 15 used during optimization are provided in the
Appendix. Moreover, note that L-BFGS does not require to
explicitly compute the second-order derivatives give that the
Hessian matrix is approximated from first-order gradients.

Training: The different steps involved to train the
proposed 3D pose estimation framework are summarized
in Algorithm 1. We start from a set of feature vectors {X},
each labeled with an identity and its yaw, pitch and roll
angles. Depending on the input data, these angles may need
to be discretized so that we obtain angular bins that are
consistent across all identities. This allows to organize the
input data into the 5D tensor T , which is decomposed to
obtain the core tensor G and the subspace matrices U (∗) for
each of the 5 factors in the tensor.

Testing: The feature-subspace matrix U (f), representing
the input space, is combined with the core to form the
auxiliary tensor W ; the identity-subspace matrix U (id) is
kept unchanged and the rotation-subspace matrices U (y),
U (p) and U (r) are reparameterized in terms of cosine
functions. Note that, for each rotation angle, there are as
many cosine functions as dimensions in the yaw, pitch and
roll subspaces, but all the functions in a given subspace are
governed by the same unique free variable, respectively
ω(y),ω(p),ω(r).

During testing, the unknown identity and rotation
angles of a feature vector x are estimated (Algorithm 2).
This is done by solving the minimization in Eq. 12 using
the auxiliary tensor W and the parameters learned during
training for each function f(∗). Note that, because the
factor subspaces are obtained by means of HOSVD,
their parameters are sorted in terms of their eigenvalue.
Therefore, even though each angular subspace results in
D∗−1 cosine functions, those with the smallest eigenvalues
are typically discarded due to their sensitivity to noise.

5 Experiments with a single rotation axis

In order to show that the proposed framework can be
applied to a wide variety of input features, we perform
several experiments. The first experiment is performed
on the COIL-20 database (Nene et al., 1996), where we
simply use the pixels of 2D images as features and use our
framework to impose analytic constraints to out-of/-plane
rotations of a variety of objects. Further, in Section 6,
we perform 3D head pose estimation experiments using

8 Dmytro Derkach et al.

Fig. 3 Values of the first three coefficients of the viewpoint subspace for the example from Figure 2. The blue curves show the actual values of
the first three columns of matrix U (y) and the red curves show their least-squares approximation with cosine functions

Algorithm 1: Training Phase
Input : {X} – set of feature vectors for each of the subjects

and each of the rotation angle labeled with
ω(y),ω(p),ω(r);
D(∗) – number of the bins to discretize rotation;

Output: W and set of parameters α(∗),β (∗),γ(∗),ϕ(∗) for each
of the rotation;

1 Build 5D tensor T ∈ RI1×I2×...×I5

2 Decompose T using HOSVD (Eq. 8)
3 T = G ×1 U (id)×2 U (y)×3 U (p)×4 U (r)×5 U (f)

4 Compute W :
5 W = G ×5 U (f)

6 foreach ω(∗) ∈ {ω(y),ω(p),ω(r)} do
7 foreach j-th column in matrix U (∗); (1≤ j < D∗) do
8 foreach i-th bin of the discretized rotation angles

(1≤ i≤ D∗) do
9 argmin

α
(∗)
j ,β

(∗)
j ,γ

(∗)
j ,ϕ

(∗)
j
‖u(∗)i j − f j(ω

(∗)
i)‖ ;

10 where f j(ω
(∗)
i) is from Eq. 14;

11 end
12 end
13 end

Algorithm 2: Test Phase
Input : x – feature vector of unknown subject
Output: estimated angles – ω(y),ω(p),ω(r)

1 Initialize :
2 ω(y) = 0;ω(p) = 0;ω(r) = 0;
3 u(id) as vector with zeros;
4 Define functions using Eq. 14:
5 foreach j-th column in matrix U (∗); (1≤ j < D∗) do
6 f (y)j (ω(y)) = α

(y)
j cos(β (y)

j ω(y)+ γ
(y)
j)+ϕ

(y)
j

7 f (p)
j (ω(p)) = α

(p)
j cos(β (p)

j ω(p)+ γ
(p)
j)+ϕ

(p)
j

8 f (r)j (ω(r)) = α
(r)
j cos(β (r)

j ω(r)+ γ
(r)
j)+ϕ

(r)
j

9 end
10 Estimate angles ω(y),ω(p),ω(r) :
11 argmin

ω(y),ω(p),ω(r),u(id) ‖x− x̂‖
12 where x̂ = W × f(y)(ω(y))× f(p)(ω(p))× f(r)(ω(r))×u(id)

other two types of features: automatic landmarks and
histogram-based 3D descriptors.

Fig. 4 Sample images for the 20 subjects in COIL-20 dataset.

5.1 Image rotation manifold

We start our experiments using 2D images that capture
rotations of simple objects along only one axis: the vertical
axis (yaw angle). We consider the Columbia University
Image Library (COIL-20) data-set (Nene et al., 1996). The
COIL-20 is an often-used dataset that contains a total of
1440 grayscale images from 20 different objects. Each
image, of size 128 × 128 pixels, shows one of the objects
at a particular rotation angle over a black background.
There are 72 images for each object, taken at intervals of
approximately 5◦, thus covering the full range of rotations
between 0 and 360 degrees. As the only pre-processing step,
each image was downsampled to 32 × 32 pixels and these
were concatenated in row vectors of 1024 values which
constituted our input features. Figure 4 shows some sample
images of this dataset.

Following Algorithm 1, the input data was arranged in a
tensor. Due to the fact that images have only rotation about
one axis (yaw), we built a 3-D tensor of size 20× 72× 1024
(T ∈ R20×72×1024). Then we applied tensor decomposition
to obtain the core tensor and coefficients for each of the data
factors subspaces. We can consider this a special case of
Eq. 8 that reduces to:

T = G ×U (id)×U (y)×U (f) (17)

where U (id), U (y) and U (f) span the identity, rotation
and feature subspaces, respectively. In particular, we are
interested in U (y) ∈ R72×72; each element u(y)i j contains

Tensor Decomposition and Non-linear Manifold Modeling for 3D Head Pose Estimation 9

Fig. 5 Coefficients from the first, third, fifth and eighth dimensions of the viewpoint subspace for the entire range of angles. On the top of the figure
we also show sample images of some objects with rotation angles in correspondence to those displayed by the coefficient curves (at the bottom).
Blue curves show the actual values of matrix U (y) obtained by tensor decomposition while the red curves show their least-squares approximation
with cosine functions.

the coefficient of the j-th subspace dimension for the i-th
rotation angle. Thus, each column U (y) shows the behaviour
of a particular dimension of the rotation subspace when
the yaw angle varies and, as hypothesized in Section
4.3, it should approximately generate the waveform of a
trigonometric function. Figure 5 shows the coefficients of
a few columns of matrix U (y) (in blue color) together with
their cosine-based approximations (in red). The latter were
computed by minimizing Eq. 14 for each column of matrix
U (y), yielding an analytic representation f(y)(ω(y)) of the
underlying manifold structure of the rotation subspace, as
defined in Eq. 14.

We can observe in Figure 5 that the curves described
by the coefficients of U (y) are indeed quite similar to
cosine functions. On the other hand, we also see that the
cosine-based approximations do not produce a perfect fit
of the curves. This can be reasonably explained by the fact
that, apart from rotations, the COIL-20 dataset includes also

rather important variations in size, which for our settings
can be considered spurious effects. Nevertheless, taking into
account that we are trying to model out-of-plane rotations
with 2D pictures using directly their pixels as input features,
the curves in Figure 5 comply strikingly well with the
hypothesized behavior.

5.2 Synthesizing rotations

After rotation coefficients have been modeled, another
way to assess the behavior of the proposed framework is by
synthesizing multiple views of an object from which only
one specific rotation angle has been observed.2 Specifically,
given an input object (represented by feature vector x)
whose rotation is ω

(y)
0 , we can obtain its identity vector

2 This process is coined translation in the seminal work by
Tenenbaum and Freeman (2000).

10 Dmytro Derkach et al.

Fig. 6 Image obtained by means of the synthesis procedure (Eq. 11)
for a few example objects. The top row shows one image for each
of 4 sample objects from the COIL-20 database. These images are
used to estimate the identity vectors u(id) for each object, which
are combined with trigonometric function f(y) in order to synthesize
images at different rotation angles. In the lower part of the image we
see the synthesized images (top lines) and the corresponding original
images in the dataset (bottom lines) for each of the objects.

u(id) and combine it with f(y) to synthesize unknown
views of the same object according to different rotation
angles ω(y) 6= ω

(y)
0 using Eq. 11. Figure 6 illustrates the

images obtained by means of this procedure for a few
objects, as well as the corresponding actual images from
the database (for each experiment, the input tensor was
re-build by removing all the images at the rotation angle to
be synthesized). We can see, again, that the quality of the
synthesized images is not perfect and we can identify some
minor artifacts not present in the original images; yet, in
all cases we can clearly identify the object as well as the
specific rotation angle that was synthesized, indicating that

f(y) has successfully captured the effect of the rotation angle
in this dataset.

To quantify the impact of introducing the trigonometric
constraints in the synthesis of unseen rotations, we reserved
∼ 10% of the data (the first 7 rotated views3 of all
objects)to be used as test-set and re-built tensor T with the
remaining data (65 views × 20 objects). The new tensor
was decomposed and the resulting rotation subspace was
approximated by estimating f(y)(ω(y)). Then, we set up
a pose transfer experiment, which consists in using an
image from the test set as source from which we wish to
synthesize images with the same pose for all other objects
in the database and compare the result to the actual images
captured with that pose.

Let image x(ids,ωs) from the test set be the source
with identity ids and pose ωs (both of which we assume
unknown). We start by estimating its rotation ω̂

(y)
s using the

subspaces spanned by the training tensor using a simplified
version of Eq. 12 (since there are no pitch and roll effects):

(ω̂
(y)
s , û(id)

s) = argmin
ω(y),u(id)

‖x(ids,ωs)−W ×u(id)× f(y)(ω(y))‖

(18)

Then, we can use any other object form the training
set as the target identity idt 6= ids, for which we wish to
synthesize a new image x̂(idt ,ωs) with the same pose as
x(ids,ωs), as follows:

x̂(idt ,ωs) = W ×u(id)
t × f(y)(ω̂(y)

s) (19)

where u(id)
t is the identity vector of the target object and

is available from the training set. Once the synthesized
image x̂(idt ,ωs) is computed, we can evaluate its quality by
comparing it with the actual x(idt ,ωs), which is part of the
test set. We do so by computing the peak signal to noise
ratio (PSNR), taking the difference between the original
and synthesized images as noise:

PSNR = 10 log10

(
I2
MAX

MSE(x̂(idt ,ωs)−x(idt ,ωs))

)
(20)

where IMAX = 255 for 8-bit images and MSE is the mean
squared error between the actual and synthesized images.

We repeated the above procedure taking each of the 7 ×
20 test images as source and transferred their pose to each
of the other 19 objects in the dataset, resulting in a total of 7
× 20 × 19 = 2,660 comparisons. The average PSNR of the

3 These samples cover approximately a viewpoint range from 5 to
35 degrees.

Tensor Decomposition and Non-linear Manifold Modeling for 3D Head Pose Estimation 11

synthesized images with respect to the originals was of 18.8
dB (± 4.37 dB standard deviation).

To provide a baseline for the above numbers, we
repeated the same experiment without the trigonometric
constraints. This implies using Eq. 10 instead of Eq. 12,
i.e. we estimate directly the coefficients of the rotation
subspace u(y) without constraining them to follow the
manifold structure imposed by f(y)(ω(y)). The resulting
PSNR was slightly lower (16.1 ± 3.52 dB), which suggests
that the imperfect fit of the trigonometric approximation
(e.g. Fig. 5) is overcome by the benefits of the manifold
structure that allows obtaining more accurate estimates of
the subspace parameters. In the next section we will see
that, when working with 3D data and multiple rotation axes,
the difference between the constrained and unconstrained
solutions becomes considerably higher.

Finally, note that our framework allows generating
synthetic views by directly specifying the desired angle,
without the need to estimate the pose subspace parameters
from an actual source image as we did in the above
experiment. However, this would not be possible in the
unconstrained case, in which the coefficients u(y) that
correspond to the rotation subspace are not modeled
analytically. This led us to design our experiment in terms
of pose transfer, to allow for a fair comparison of the
constrained and unconstrained cases.

6 Experiments on 3D head pose estimation

In this section we demonstrate the application of the
proposed framework to the problem of 3D head pose
estimation from depth data. In contrast to the tests from
Section 5.1, experiments of the present section imply
full deployment of our framework, given that we address
datasets where head rotations are not constrained to a single
axis but contain combinations of yaw, pitch and roll angles
at the same time.

Given that our framework focuses on analytically
modeling the underlying structure of the rotation manifold
in general, it can be applied to a wide variety of input
features. Nevertheless, the appropriate selection of input
features is important to achieve quantitative results that
demonstrate the relevance and applicability of the proposed
method. Thus, we have selected the two main features
from the system presented in (Derkach et al., 2017), which
obtained the first place in the recent Head Pose Estimation
Challenge organized on the SASE database (Lüsi et al.,
2017). These features are composed by: 1) automatically
detected landmarks and 2) histogram-based descriptors
extracted around the landmarks. For completeness, we
briefly review these features in Section 6.1 and provide
pointers to external sources for more detailed information.
Then, in Sections 6.2 and 6.4, we report experiments over

two large and publicly available 3D face corpora: the
SASE (Lüsi et al., 2016b) and BIWI databases (Fanelli
et al., 2013).

6.1 Feature extraction

Landmarks: we use Shape Regression with Incomplete
Local Features (SRILF) (Sukno et al., 2015) to locate the
following 12 facial landmarks: inner and outer eye corners,
nose corners, mouth corners, nose root, nose tip and chin
tip. The SRILF algorithm combines the response from
local feature detectors for each of the targeted landmarks
with statistical constraints that ensure the plausibility of
landmark positions on a global basis. An important aspect of
this algorithm is that it integrates combinatorial search with
partial set matching to infer possibly missing landmarks;
which inherently provides tolerance to distorted or missing
data (occlusions). This is an advantage in applications such
as head-pose estimation with sensors like Kinect, which
capture depth information from a single view. Under large
head rotations, the generated depth maps will have large
parts of the face missing due to self-occlusions and it is
crucial to be able to exploit partial information (Fig. 7).

Local appearance descriptors: Once the facial landmarks
are available, we use their location in order to extract the
second type of features, namely local surface descriptors
around landmark points. We use 3D Shape Contexts (3DSC)
(Frome et al., 2004) as local descriptors, slightly modified
to increase their sensitivity to viewpoint and robustness
to noise. 3DSC are based on a spherical histogram
computed on a neighbourhood of the interest point, i.e
landmark locations, and have been shown to perform well
as descriptors of the facial surface (Sukno et al., 2012).
Similarly to other popular descriptors representing 3D
geometry (Johnson and Hebert, 1999; Tombari et al., 2010;
Rusu et al., 2009), 3DSC uses the surface normal at the
interest point to appropriately orient the reference system

Fig. 7 Positions of the landmarks estimated automatically by SRILF
in a head scan showing large yaw rotation. Two views of the same scan
are provided: the original view (as seen from the camera) is shown to
the left and a rotated view (to simulate a frontal shot) is shown to the
right. Landmarks lying on the surface are indicated in blue color, while
those off-the-surface (estimated by inference) are displayed in red.

12 Dmytro Derkach et al.

Fig. 8 Example of the 3D mesh of a face with automatically obtained
landmarks

of the local neighbourhood, aiming for rotational invariance
4. Because our objective is to identify viewpoint, such
normal-based orientation is not convenient, hence we will
orient the reference systems of all local neighbourhoods
based on the normal to the camera sensor. This choice
avoids also the computation of surface normals, which are
known to be especially sensitive to noise (Papazov et al.,
2015; Tombari et al., 2010).

6.2 3D head pose estimation using SASE database

The data in SASE has been acquired with Microsoft Kinect
2 camera and contains RGB and depth images in pairs. The
entire database includes 50 subjects (32 male and 18 female)
in the range of 7-35 years old, with more than 600 frames per
subject. For each person, a wide range of yaw, pitch and roll
variations are included. Specifically, yaw and pitch angles
vary within±75 ◦, while roll angles vary within±45 ◦ (Lüsi
et al., 2016a).

The SASE database is divided in two sets: Training
(comprising 28 subjects with a total of ∼ 17K images)
and Validation (12 subjects, ∼ 7K images) (Derkach et al.,
2017). Thereby, we have used each of these sets for training
and testing, respectively. As mentioned before, we base
our tests on the system described in (Derkach et al., 2017),
which is used as baseline. Therefore, we use two types
of features: automatically detected landmarks and local
appearance around landmark points.

Following (Derkach et al., 2017), we start by isolating
the head region using clustering and using the obtained
result to build a 3D mesh M that contains the head and
part of the shoulders. Then, mesh M is fed to the SRILF
algorithm with the aim to automatically detect 12 prominent
facial landmarks. An example of the 3D mesh of the
face with the obtained landmarks is illustrated on Figure

4 Such invariance, however, is only partially achieved in 3DSC since
the orientation of the surface normal still leaves one degree of freedom
undefined (the sphere’s azimuth) (Sukno et al., 2013)

8. Once the facial landmarks are available, we use their
coordinates as input features to train and test our approach
as described in Section 4. It is worth to mention that the use
of SRILF to extract the input features provides robustness
to both expression changes and missing parts. The latter is
especially important in databases such as SASE and BIWI,
because large pose variations induce self-occlusions that
are likely to affect the visibility of some landmarks. SRILF
deals with this problem by statistically inferring missing
landmarks, thus providing a complete set of landmark
coordinates even under occlusions.

6.2.1 Pose estimation from landmarks

During the training phase, we follow Algorithm 1 in order
to build a 5D tensor T ∈ R28×40×40×30×36 defined by:
28 subjects, 40 bins discretizing yaw and pitch angles in
the range of [−75◦..75◦], 30 bins for roll in the range of
[−55◦..55◦], and 36-dimensional features (12 landmarks
× 3 coordinates, centered at the nose tip to remove any
translation effect). In order to fill all cells in this 5D tensor
we need around 1.3 million samples, and it is obvious that
the SASE database does not have this amount; it provides
only about 5% of them. Thus, ∼ 95% of the training data
had to be generated synthetically. Specifically, if there is not
a sample with i-th identity and target angles yaw ω(y), pitch
ω(p) and roll ω(r), we look for the closest sample with the
same identity i from the training set and rotate it to the target
angles (the amount of rotation is easily computed as the
difference between the target angles and the ground-truth
angles from the selected sample).

After the tensor is built, we decompose it using Eq. 8,
and perform dimensionality reduction, obtaining the core
tensor G ∈ R28×3×3×3×10, matrix U (id) ∈ R28×28 for the
identity subspace, matrices U (y) ∈ R40×3, U (p) ∈ R40×3 and
U (r) ∈ R30×3 for yaw, pitch and roll subspaces, and matrix
U (F) ∈ R36×10 for the features subspace.

Next, we fit cosine functions to the pose coefficients
(Eq. 14) and obtain four parameters (α(∗)

j ,β
(∗)
j ,γ

(∗)
j

and ϕ
(∗)
j) for each dimension of the three rotation

subspaces (yaw, pitch and roll), thus achieving an analytic
representation of the structure of the rotation manifolds.
The results of the approximated coefficients for 3D pose
variations are illustrated in Figure 9. For each of the rotation
subspaces (yaw, pitch and roll), the first, second and third
coefficients of all angle variations are plotted with two
colors. The blue curves are the original values from the
first three columns of the matrices U (y),U (p) and U (r) and
the red curves are the approximated values obtained with
cosine functions. It can be observed that the trigonometric
approximation provides an excellent fit for the three rotation
angles, with only minor deviations that could be easily
attributed to noise in the data or in the extracted features.

Tensor Decomposition and Non-linear Manifold Modeling for 3D Head Pose Estimation 13

Based on the obtained coefficients and similarly to the
case with 2D images, we can synthetically generate sets of
landmarks by sampling our analytic manifold. For example,
given a particular subject and target angles ω(y), ω(p) and
ω(r), we can synthesize the corresponding set of landmarks
using Eq. 11. If this procedure is repeated while varying one
of the angles, we can get a graphical illustration of how the
effect of this angle has been captured by our framework.
Figure 10 shows an example in which identity, pitch and roll
angles are fixed, while yaw varies from −75◦ to 75◦.

After all function parameters are obtained, we use
the estimation approach based on the minimization of
the reconstruction error (Eq. 12) to test all images in
the Validation subset of SASE database (∼ 7K facial
images). We compared the obtained results of the proposed
framework with respect to the standard approach based on
minimizing the reconstruction error without constraints
and then correcting the solution to lie on the manifold5.
implicitly defined by the training samples (which we refer
to as Implicit constraints).

Table 1 summarizes the average pose estimation
errors obtained by each approach. It can be seen

5 The results obtained from the minimization are forced to comply
with the rotation manifold after each iteration using nearest-neighbour
search. Results without such correction would be worse than those
reported and not meaningful for comparison, since this is a widespread
practice. Notice that no constraints are applied to the identity subspace
in any of the experiments in this paper.

Fig. 9 Curves defined by the coefficients in each of the subspaces
corresponding to the head pose variation along one of the rotation axes
using landmark extimation as a features. The first column corresponds
to yaw rotation and shows the curves built from the coefficients of the
first 5 columns of matrix U (y) (blue) and their approximation with a
cosine function (red). The second and third columns correspond to
pitch and roll angles, respectively

Table 1 Average pose estimation errors tested on the SASE database
using landmark estimates as features

Yaw Pitch Roll Average
Implicit
constraints 12.18 13.51 10.38 12.02

Explicit constraints
(proposed) 6.50 7.07 6.06 6.54

that the straight-forward application of multi-linear
decomposition for head pose estimation yields quite large
estimation errors. Nevertheless, by introducing our explicit
manifold-compliant constraints, there is a drastic reduction
of the estimation errors, which become competitive with
state of the art methods (see below).

It is important to note that both methods compared
in Table 1 attempt to take into account the fact that
rotations define a manifold. The key difference is that in our
formulation we incorporate the constraints directly into the
minimization (e.g. Eq. 12). In contrast, in the case of using
implicit constraints, the minimization is firstly performed
without constraints (as in Eq. 10) and compliance to the
manifold is enforced only afterwards (the final solution
is obtained by iteratively alternating between these two
steps). Thus, even though in practice the constraints from
both approaches shall define fairly similar manifolds, the
unconstrained minimization from Eq. 10 is performed
on a space of relatively much higher dimension than the
manifold, hence leading to poor performance.

Fig. 10 Example of generated landmarks using trigonometric
functions (Eq. 11). Landmark coordinates change with rotation about
the vertical axis (yaw angle), i.e. identity, pitch and roll angles are
fixed, and the yaw angle varies from −75◦ to 75◦. Thus, according
to the position of the landmarks, we can see how the face progressively
rotates from left (orange) to right (blue).

14 Dmytro Derkach et al.

Fig. 11 Illustration of a 3D mesh of the face with the neighbourhoods
used to compute local descriptors.

Fig. 12 Curves defined by the coefficients in each of the subspaces
corresponding to head pose variation along one of the rotation axes
using local descriptors as features. The first column corresponds to
yaw rotation and shows the curves built from the coefficients of 5
columns of matrix U (y) (dashed blue lines) and their approximation
with a cosine function (red solid lines). The second and third columns
correspond to pitch and roll angles, respectively.

6.2.2 Pose estimation from local surface appearance

In this section we perform experiments with the local
surface descriptors presented in Section 6.1 as input
features. An interesting aspect of using these descriptors is
that, because they are based on spatial histograms of local
patches from the surface, rotations will have a non-linear
effect on the descriptor values. An illustration of a 3D mesh
of the face with the local descriptors is provided in Figure
11.

Similarly to the experiment with landmarks from the
previous section, for the training phase we firstly build a
5D tensor T ∈ R28×40×40×30×512, i.e. now the features
dimension is 512. Secondly, we decompose it using Eq. 8.
Thirdly, we estimate the coefficients for each of the

Table 2 Average pose estimation errors of the proposed framework
and previous works on the SASE database

Yaw Pitch Roll Average
Lüsi et al. (2016a) 22 19 18 19.67
Derkach et al. (2017) 6.51 7.49 6.52 6.84
Proposed LMK 6.50 7.07 6.06 6.54
Proposed DESC 6.21 6.64 4.6 5.82

factor subspaces to obtain an analytic representation of the
structure of the rotation manifolds by fitting cosine functions
(Eq. 14). The results of the approximated coefficients for
3D pose variations are illustrated in Figure 12. Finally,
we use the modeled coefficients to estimate the 3D head
pose based on the minimization of the reconstruction error
(Eq. 12).

Note that, following (Derkach et al., 2017), we build
12 different tensors and produce different estimates for
each angle (i.e. one per landmark descriptor). However,
because of the potential presence of occlusions, it is not
guaranteed that all estimated landmarks will actually lie on
the mesh surface.6 Indeed, when parts of the facial surface
are missing, it is possible that some landmarks are estimated
relatively far from the mesh M , i.e. they are inferred in the
position where we would statistically expect them to be,
despite no surface has been captured there (Fig.7).

Therefore, we use the indicator function 1(‖x̂`−M ‖<
ε) to filter out the estimates from landmarks x̂` that
are estimated off the surface and produce our final
appearance-based estimate as the average of the remaining
ones:

ω
(∗) =

∑`1
(
‖x̂`−M ‖< ε

)
ω

(∗)
`

∑`1
(
‖x̂`−M ‖< ε

) (21)

where ω
(∗)
` are the estimated angles from the `-th landmark

descriptor; the distance from x̂` to M is computed as the
distance to the nearest mesh vertex:

‖x̂`−M ‖= min
v j∈M

‖x̂`− v j‖ (22)

Table 2 summarizes the average pose estimation errors
of the proposed framework using both landmarks and
appearance features on the SASE database. In this table,
we also compare our results to other methods reporting
head pose estimation error on the SASE database. Since
this database is rather new, only a few papers have
reported results on it. We can see that the proposed method
outperforms state-of-the-art methods on the same dataset.

In order to give more insights about the effectiveness
of the proposed framework, in Table 3 we compare our

6 We consider that a landmark is on the surface when its distance to
it is relatively small as compared to the mesh resolution.

Tensor Decomposition and Non-linear Manifold Modeling for 3D Head Pose Estimation 15

Table 3 Pose estimation errors (mean ± standard deviation) of the proposed method against regression and DNNs tested using the same surface
descriptors as input.

Yaw Pitch Roll Average
Regression 6.95 ± 8.17 7.97 ± 10.3 6.22 ± 7.99 7.05 ± 8.88
DNN 6.04 ± 7.62 6.84 ± 10.1 6.44 ± 8.21 6.44 ± 8.71
Proposed 6.21 ± 7.77 6.64 ± 10.0 4.60 ± 6.82 5.82 ± 8.30

method based on trigonometric constraints to the results
obtained by using linear regression and Deep Neural
Networks (DNNs) with the same input features and under
the same strategy of producing independent estimates
based on each landmark descriptor and combining them by
means of eq. 21. We selected the appearance-based features
for comparison, as they produced more accurate results
than landmarks. Regression experiments were performed
using ridge regression with cross-validation to tune the
regularization parameter. The DNN experiments were
based on the recent architecture from (Borghi et al., 2017),
addressed specifically to head pose estimation. Because in
our case the features are already available, we used only the
last layers of their proposed architecture. Concretely, the
used network is composed by three fully-connected layers
with 128, 84, and 3 channels, where the two first layers
use a tanh activation function and the last layer outputs
the predictions for the three different angles. As in (Borghi
et al., 2017), the network parameters have been optimized
by minimizing the L2 loss and using Stochastic Gradient
Descent (SGD). The results in Table 3 show that our method
compares favorably to the mentioned alternatives. It should
be emphasized that the objective of Table 3 is to provide
a comparison to other popular techniques under the same
input features while removing the impact of the latter.
However, DNN approaches are known to benefit from the
ability to determine their own features, which is not possible
under these experimental settings.

6.3 Discretization, scalability and complexity

The good performance reported in the previous section
comes at the price of requiring training data for all angle
combinations, e.g., if we discretize yaw, pitch and roll
into Dy, Dp and Dr bins, then we would ideally need
Dy × Dp × Dr training images for each object/person to
perform the HOSVD. While there exist alternative ways to
decompose the tensor that tolerate missing data (Xu et al.,
2015; Zhao et al., 2015), it is worth noting that there are
other two aspects that can alleviate this issue in a simpler
manner:

1. The fact of working with 3D data allows (under
certain conditions7) to synthesize virtual samples by
rotating existing ones to the desired (yaw, pitch, roll)
combination. For each bin (i, j,k) of the tensor, with
center at wi jk = (ω

(y)
i ,ω

(p)
j ,ω

(r)
k) (see Eq. 16), we select

the closest unused sample M with ground-truth angles
wM = (ω

(y)
M ,ω

(p)
M ,ω

(r)
M) and rotate it by wi jk −wM to

obtain the synthesized sample M̂ which is now at the
desired angles. Input features can then be computed on
M̂ and used to fill bin (i, j,k) of tensor T .8

2. Because we model each dimension of the rotation
manifold by means of cosine functions, we may
estimate these accurately even when using smaller
numbers of bins.

Based on the above, we repeated the experiments from
the previous section while reducing the number of bins
used to discretize the rotation angles. We started from the
discretization used in the previous section (40 × 40 × 30
bins), which yields bins of approximately 4 degree for each
rotation axis and progressively reduced the number of bins
proportionally for the 3 axes.

The results are summarized in Tables 4 and 5, for
the landmark and local surface descriptors, respectively,
We can see that in both cases, the number of bins can
be drastically reduced while maintaining performance
relatively unchanged. In the case of landmarks, the errors
increased less than 2% while reducing the size of the
input tensor by 330 times (to 6 × 6 × 4 bins), after which
errors finally rose. Similarly, in the case of local surface
descriptors, it was possible to reduce the tensor up to 64
times with no impact on performance.

The reason for this robustness to the discretization size
is, again, the use of trigonometric constraints to model
the manifold structure of the rotation subspaces. Fig. 13
illustrates this by showing how the input data and the
estimated cosines vary as we progressively reduce the
number of bins used to discretize the rotation angles. We
start by showing the case of 20×20×15 bins, in which
the input data clearly defines cosine curves. As we reduce
the number of bins, the shapes defined by the input data

7 Depending on the way in which the data is captured and the
extent of the considered rotations, self-occlusions may jeopardize this
strategy.

8 All experiments in this paper have been performed following this
strategy,

16 Dmytro Derkach et al.

Table 4 Effect of angular discretization on the proposed method using landmarks as input features.

Num of bins (y,p,r) Memory used by T Yaw error Pitch error Roll error Avg. error
40 × 40 × 30 369.1 MB 6.50 ± 8.74 7.07 ± 10.33 6.06 ± 10.51 6.54 ± 9.89
20 × 20 × 15 46.14 MB 6.46 ± 8.38 7.07 ± 10.30 5.87 ± 10.21 6.47 ± 9.67
10 × 10 × 8 6.15 MB 6.44 ± 8.48 7.09 ± 10.05 5.97 ± 10.09 6.50 ± 9.57

8 × 8 × 6 2.95 MB 6.58 ± 8.61 6.99 ± 9.86 5.90 ± 9.43 6.49 ± 9.31
6 × 6 × 4 1.11 MB 6.60 ± 8.22 7.16 ± 10.48 5.87 ± 10.18 6.54 ± 9.68
4 × 4 × 3 378 KB 7.18 ± 8.53 7.15 ± 9.97 6.14 ± 9.20 6.82 ± 9.25
3 × 3 × 2 142 KB 7.29 ± 9.73 7.37 ± 9.97 7.55 ± 10.97 7.40 ± 10.24

Table 5 Effect of angular discretization on the proposed method using local surface descriptors as input features.

Num of bins (y,p,r) Memory used by T Yaw error Pitch error Roll error Avg. error
40 × 40 × 30 5.13 GB 6.21 ± 7.82 6.64 ± 10.03 4.60 ± 6.82 5.83 ± 8.33
20 × 20 × 15 656.3 MB 6.33 ± 7.94 6.67 ± 10.03 4.68 ± 6.90 5.89 ± 8.39
10 × 10 × 8 87.5 MB 6.20 ± 7.83 6.77 ± 9.93 4.68 ± 6.67 5.88 ± 8.25

8 × 8 × 6 42.0 MB 6.54 ± 7.88 7.31 ± 10.44 5.76 ± 7.55 6.54 ± 8.72
6 × 6 × 4 15.8 MB 6.59 ± 7.99 7.34 ± 10.06 5.60 ± 7.48 6.51 ± 8.58
5 × 5 × 5 10.9 MB 6.80 ± 8.18 7.29 ± 10.02 5.61 ± 7.38 6.57 ± 8.60
4 × 4 × 3 5.3 MB 7.54 ± 8.64 8.11 ± 10.71 6.45 ± 7.77 7.37 ± 9.12

Fig. 13 Effect of the discretization in the estimated cosines used to approximate the rotation subspaces. The blue dots (joined by dashed lines)
indicate the actual data samples per subject (bins) used to estimate the cosine functions, which are plotted with red solid lines. Each row shows a
different discretization setting, from 20 bins for yaw and pitch (15 for roll) at the top row to just 5 bins (4 for roll) at the bottom row.

seem to deviate from the cosine shapes; yet a least-squares
approximation (following Eq. 15) is enough to recover
cosine functions with very similar parameters as those
obtained with larger numbers of bins. In the last row of Fig.
13, the cosines are estimated from just 5 data points for
yaw and pitch (4 points for roll), leading to less accurate

estimates. The tensor size, however, is 480 times smaller
than the original.

Tables 4 and 5 also indicate the memory required
to store the data tensor for the different discretization
choices. To compute these values we assumed storage
in double-precision using the training set of the SASE

Tensor Decomposition and Non-linear Manifold Modeling for 3D Head Pose Estimation 17

database to build the tensors, which implies storing the
data of 28 subjects. The growth of the tensor size is linear
in the number of subjects and cubic with respect to the
inverse of the bin size. Thus, the scalability of the approach
is dominated by the number of bins required to accurately
estimate the cosine functions. As discussed above, the
approach is robust to small numbers of bins.

In terms of complexity, once the features have been
extracted, the run-time during the test stage is dominated
by the minimization in Eq. 12. Since our goal was not
a real-time system, we solved this minimization using a
Matlab package (Schmidt, 2012) without applying any
special optimization. In spite of this, the landmark-based
estimates took only 37.8 ms per frame (on average) on a
desktop PC based on an Intel i7-4770 CPU @3.4 GHz with
24 GB of RAM. On the other hand, the descriptor-based
estimates (of considerably higher dimensionality) required
an average processing time of 0.83 seconds.

6.4 3D head pose estimation using BIWI database

The BIWI Database (Fanelli et al., 2013), acquired with a
Kinect 1 sensor, contains 24 sequences of RGB-D images
of subjects moving their heads over a range of roughly
±75◦ for yaw, ±60◦ for pitch and ±50◦ for roll. In total
this database consists of around 17K images. Because there
is no standard experimental protocol for this database, we
perform our experiments under a leave-one-sequence-out
strategy, so that no sequence is used for training and test at
the same time. All other settings were kept as described in
the previous section for the SASE database.

Table 6 summarizes our results, as well as those
presented by previous works reporting pose estimation
errors on this database. For each method, we show the
average absolute error per angle together with the respective
standard deviations (when provided by the authors). We also
indicate the type of input data that is used (depth, RGB or
both) and if pose estimates are produced separately for each
frame or using also temporal information (e.g. tracking).

Note that, despite the fact that our approach is the only
one using just depth information without tracking, our
results are quite competitive. Indeed, we clearly outperform
other methods not doing tracking except for (Papazov et al.,
2015), who reported smaller averages but considerably
higher standard deviations. Additionally, we achieve results
that are comparable to some of the tracking-based methods
listed in Table 6. Note, however, that we do not use any
temporal information and produce our pose estimates
independently for each frame, which implies that our results
reflect the average performance at fully automatic operation
under arbitrary initial head poses.

In the last column of Table 6 we also indicate the
methods that are based on DNNs, thus highlighting the

growing interest on Deep Learning methods for pose
estimation. In the context of such methods, some of
which very recent, we still observe that our results are
quite competitive. Indeed, we achieve lower overall pose
estimation error than all methods reporting per-frame
estimates, regardless of whether they use depth or RGB
data as input.

On the other hand, even though we have not focused on
optimizing operation speed, it is worth noting that several
methods in Table 6 are targeted to real time operation. In
our case, the limitations to operate in real-time comes firstly
from the extracted features (see (Derkach et al., 2017)),
and then by the minimization of Eq. 12, which can be
time-consuming in the case of high-dimensional features.
Nevertheless, our method is not actually tied to any specific
feature descriptor, which makes it feasible to replace the
features used in this work by real-time alternatives, such
as those in (Papazov et al., 2015). As indicated in Section
6.2.2, for low-dimensional features (e.g. ∼36 dimensions),
the minimization of Eq. 12 is easily achievable in real-time
using a Matlab-based implementation (Schmidt, 2012) in
a standard desktop-PC; in case of features of considerably
higher dimension, there would be the need to investigate a
more efficient implementation.

7 Conclusions

In this work we address 3D head pose estimation from depth
data by proposing a novel approach to learn the manifold
defined by 3D rotations. In particular, our method is able
to explicitly model the underlying structure of the rotation
manifold with an analytic form that takes into account the
specific constraints imposed by orientation variations. For
this purpose, we use multi-linear decomposition to split the
pose variation factors into separate sub-spaces accounting
for yaw, pitch and roll effects. We show that the coefficients
within each of these subspaces define a continuous curve
that can be modeled in terms of trigonometric functions,
which are indeed the bases to explain rotation effects. We
exploit this fact to introduce a minimization framework for
pose estimation based on tensor decomposition constrained
by trigonometric functions so that the obtained solutions are
always compliant with variations in rotation parameters. To
the best of our knowledge, the proposed method is the first
approach combining tensor decomposition with non-linear
modelling in order to explicitly impose structure over the
learned manifold.

We show that the proposed modeling based on
trigonometric functions can accurately model the effect
of rotation variations in pose sub-spaces, by means of
qualitative examples on 2D and 3D datasets. We also
provide quantitative results of head pose estimation in
two public databases, which demonstrate the advantages

18 Dmytro Derkach et al.

Table 6 Average pose estimation errors and standard deviations of the proposed frame-work and previous works on the BIWI database

Method Temporal Errors ± Std Domain DNN-basedInformation Yaw Pitch Roll
Fanelli et al. (2011) Yes 8.9 ± 13.0 8.5 ± 9.9 7.9 ± 8.3 depth No

Padeleris et al. (2012) Yes 2.4 ± 1.8 3.0 ± 2.16 2.8 ± 2.1 depth No
Baltrušaitis et al. (2012) Yes 6.3 5.1 11.3 RGB + depth No

Wang et al. (2013) No 8.8 ± 14.3 8.5 ± 11.1 7.4 ± 10.8 RGB + depth No
Ahn et al. (2014) Yes 2.6 ± 2.5 3.4 ± 2.9 2.8 ± 2.4 RGB CNN

Meyer et al. (2015) Yes 2.1 2.1 2.4 depth No

Papazov et al. (2015) No 2.5 ± 8.3 1.8 ± 4.3 2.9 ± 12.8 RGB + depth NoYes 3.0 ± 9.6 2.5 ± 7.4 3.8 ± 16.0
Chen et al. (2016) No 9.9 ± 12.4 12.8 ± 17.2 6.9 ± 9.8 RGB No

Li et al. (2016) Yes 3.0 3.2 5.3 RGB + depth No
Liu et al. (2016) Yes 4.5 ± 3.8 4.3 ± 2.7 2.4 ± 1.9 RGB CNN

Gu et al. (2017) No 3.91 ± 3.82 4.03 ± 3.61 3.03 ± 3.05 RGB CNN
Yes 3.14 ± 3.12 3.48 ± 2.89 2.60 ± 2.76 CNN + RNN

Lathuilière et al. (2017) No 3.1 4.7 3.1 RGB No
Yu et al. (2017) Yes 2.5 1.5 2.2 RGB + depth VGG-16

Ruiz et al. (2018) No 4.81 6.61 3.27 RGB ResNet-50
Borghi et al. (2019) Yes 2.6 ± 1.5 2.4 ± 1.3 2.9 ± 1.5 depth POSEidon+

Lathuilire et al. (2019) No 3.74 4.02 3.28 RGB VGG-16
2.37 5.22 4.04 ResNet-50

Wang et al. (2019) No 4.76 ± 4.33 5.48 ± 3.23 4.29 ± 3.30 RGB GoogleNet5.16 ± 5.32 4.23 ± 5.13 5.39 ± 2.61 depth
Proposed LMK No 3.6 ± 4.6 3.8 ± 4.8 5.2 ± 5.8 depth No
Proposed DESC No 3.3 ± 4.2 3.4 ± 4.4 3.3 ± 3.7 depth No

introduced by the proposed constraints. Firstly, on the
challenging SASE database, we show that directly applying
existing multi-linear decomposition approaches yields
poor pose estimation errors, which dramatically improve
when introducing the proposed trigonometric constraints,
reaching the lowest angle estimation errors reported so far
on this database. Later, we also report results on the widely
used BIWI database, showing that the proposed framework
is not only of theoretical interest but it can be translated into
a practical system to produce competitive pose estimation
results.

ACKNOWLEDGMENTS

This work is partly supported by the Spanish Ministry
of Economy and Competitiveness under project grant
TIN2017-90124-P, the Ramon y Cajal programme, and
the Maria de Maeztu Units of Excellence Programme
(MDM-2015-0502). Adria Ruiz work is partially funded by
ANR grant ANR-16-CE23-0006.

References

Ahn B, Park J, Kweon IS (2014) Real-time head orientation
from a monocular camera using deep neural network.
In: Asian Conference on Computer Vision, Springer, pp
82–96

Bakry A, Elgammal A (2014) Untangling object-view
manifold for multiview recognition and pose estimation.
In: European Conference on Computer Vision, Springer,
pp 434–449

Balasubramanian VN, Ye J, Panchanathan S (2007)
Biased manifold embedding: A framework for
person-independent head pose estimation. In: Computer
Vision and Pattern Recognition (CVPR), IEEE, pp 1–7

Baltrušaitis T, Robinson P, Morency LP (2012) 3D
constrained local model for rigid and non-rigid facial
tracking. In: Computer Vision and Pattern Recognition
(CVPR), IEEE, pp 2610–2617

Barros JMD, Mirbach B, Garcia F, Varanasi K, Stricker
D (2018) Fusion of keypoint tracking and facial
landmark detection for real-time head pose estimation. In:
Winter Conference on Applications of Computer Vision
(WACV), IEEE, pp 2028–2037

BenAbdelkader C (2010) Robust head pose estimation using
supervised manifold learning. In: European Conference
on Computer Vision, Springer, pp 518–531

Bergqvist G, Larsson EG (2010) The higher-order singular
value decomposition: Theory and an application [lecture
notes]. IEEE Signal Processing Magazine 27(3):151–154

Borghi G, Venturelli M, Vezzani R, Cucchiara R (2017)
Poseidon: Face-from-depth for driver pose estimation. In:
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp 4661–4670

Tensor Decomposition and Non-linear Manifold Modeling for 3D Head Pose Estimation 19

Borghi G, Fabbri M, Vezzani R, s calderara, Cucchiara
R (2019) Face-from-depth for head pose estimation on
depth images. IEEE Transactions on Pattern Analysis and
Machine Intelligence (in press).

Breitenstein MD, Kuettel D, Weise T, Van Gool L, Pfister H
(2008) Real-time face pose estimation from single range
images. In: Computer Vision and Pattern Recognition,
IEEE, pp 1–8

Byrd RH, Nocedal J, Schnabel RB (1994) Representations
of quasi-newton matrices and their use in limited memory
methods. Mathematical Programming 63(1-3):129–156

Chen J, Wu J, Richter K, Konrad J, Ishwar P (2016)
Estimating head pose orientation using extremely low
resolution images. In: Southwest Symposium on Image
Analysis and Interpretation (SSIAI), IEEE, pp 65–68

Comon P (2014) Tensors: a brief introduction. Signal
Processing Magazine 31(3):44–53

De Lathauwer L, De Moor B, Vandewalle J (2000) A
multilinear singular value decomposition. SIAM journal
on Matrix Analysis and Applications 21(4):1253–1278

Derkach D, Ruiz A, Sukno FM (2017) Head pose
estimation based on 3-D facial landmarks localization and
regression. In: 12th IEEE International Conference on
Automatic Face & Gesture Recognition (FG 2017), IEEE,
pp 820–827

Derkach D, Ruiz A, Sukno FM (2018) 3D head pose
estimation using tensor decomposition and non-linear
manifold modeling. In: International Conference on 3D
Vision (3DV), IEEE, pp 505–513

Fanelli G, Weise T, Gall J, Van Gool L (2011) Real time
head pose estimation from consumer depth cameras.
In: Joint Pattern Recognition Symposium, Springer, pp
101–110

Fanelli G, Dantone M, Gall J, Fossati A, Van Gool L
(2013) Random forests for real time 3D face analysis.
International Journal of Computer Vision 101(3):437–458

Frome A, Huber D, Kolluri R, Bulow T, Malik J (2004)
Recognizing objects in range data using regional point
descriptors. In: European conference on computer vision,
Springer, pp 224–237

Fu Y, Huang TS (2006) Graph embedded analysis for
head pose estimation. In: International Conference on
Automatic Face and Gesture Recognition, IEEE, pp 6–8

Ghiass RS, Arandjelović O, Laurendeau D (2015) Highly
accurate and fully automatic head pose estimation from a
low quality consumer-level rgb-d sensor. In: Proceedings
of the 2nd Workshop on Computational Models of Social
Interactions: Human-Computer-Media Communication,
ACM, pp 25–34

Gu J, Yang X, De Mello S, Kautz J (2017) Dynamic
facial analysis: From bayesian filtering to recurrent neural
network. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp 1548–1557

Johnson A, Hebert M (1999) Using spin images for
efficient object recognition in cluttered 3D scenes.
IEEE Transactions on Pattern Analysis and Machine
Intelligence 21(5):433–449

Kolda TG, Bader BW (2009) Tensor decompositions and
applications. SIAM review 51(3):455–500

Lathuilière S, Juge R, Mesejo P, Muñoz-Salinas R, Horaud
R (2017) Deep mixture of linear inverse regressions
applied to head-pose estimation. In: Conference on
Computer Vision and Pattern Recognition, vol 3, pp
4817–4825

Lathuilire S, Mesejo P, Alameda-Pineda X, Horaud R
(2019) A comprehensive analysis of deep regression.
IEEE Transactions on Pattern Analysis and Machine
Intelligence (in press).:1–1

Lee D, Yang MH, Oh S (2015) Fast and accurate head pose
estimation via random projection forests. In: International
Conference on Computer Vision, IEEE, pp 1958–1966

Lee D, Yang MH, Oh S (2017) Head and body orientation
estimation using convolutional random projection forests.
IEEE Transactions on Pattern Analysis and Machine
Intelligence pp 1–14

Li D, Pedrycz W (2014) A central profile-based 3D face
pose estimation. Pattern Recognition 47(2):525–534

Li S, Ngan KN, Paramesran R, Sheng L (2016)
Real-time head pose tracking with online face template
reconstruction. IEEE transactions on pattern analysis and
machine intelligence 38(9):1922–1928

Liu X, Lu H, Li W (2010) Multi-manifold modeling for head
pose estimation. In: International Conference on Image
Processing (ICIP), IEEE, pp 3277–3280

Liu X, Liang W, Wang Y, Li S, Pei M (2016) 3D head pose
estimation with convolutional neural network trained on
synthetic images. In: International Conference on Image
Processing (ICIP), IEEE, pp 1289–1293

Lüsi I, Escalera S, Anbarjafari G (2016a) Human head
pose estimation on SASE database using random hough
regression forests. In: Video Analytics. Face and Facial
Expression Recognition and Audience Measurement,
Springer, pp 137–150

Lüsi I, Escarela S, Anbarjafari G (2016b) SASE: RGB-depth
database for human head pose estimation. In: European
Conference on Computer Vision, Springer, pp 325–336

Lüsi I, Jacques Junior JCS, Gorbova J, Baró X, Escalera
S, Demirel H, Allik J, Ozcinar C, Anbarjafari G (2017)
Joint challenge on dominant and complementary emotion
recognition using micro emotion features and head-pose
estimation: Databases. In: International Conference on
Automatic Face and Gesture Recognition, IEEE, pp
809–813

Martin M, Van De Camp F, Stiefelhagen R (2014) Real
time head model creation and head pose estimation on
consumer depth cameras. In: International Conference on

20 Dmytro Derkach et al.

3D Vision (3DV), IEEE, vol 1, pp 641–648
Meyer GP, Gupta S, Frosio I, Reddy D, Kautz J (2015)

Robust model-based 3D head pose estimation. In:
Proceedings of the IEEE International Conference on
Computer Vision, IEEE, pp 3649–3657

Murphy-Chutorian E, Trivedi MM (2009) Head pose
estimation in computer vision: A survey. IEEE
transactions on pattern analysis and machine intelligence
31(4):607–626

Nene SA, Nayar SK, Murase H, et al. (1996) Columbia
object image library (coil-20)

Padeleris P, Zabulis X, Argyros AA (2012) Head pose
estimation on depth data based on particle swarm
optimization. In: Computer Society Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW), IEEE, pp 42–49

Papazov C, Marks TK, Jones M (2015) Real-time 3D head
pose and facial landmark estimation from depth images
using triangular surface patch features. In: Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp 4722–4730

Patacchiola M, Cangelosi A (2017) Head pose estimation in
the wild using convolutional neural networks and adaptive
gradient methods. Pattern Recognition 71:132–143

Peng X, Huang J, Hu Q, Zhang S, Metaxas DN (2014)
Head pose estimation by instance parameterization. In:
International Conference on Pattern Recognition (ICPR),
IEEE, pp 1800–1805

Raytchev B, Yoda I, Sakaue K (2004) Head pose estimation
by nonlinear manifold learning. In: International
Conference on Pattern Recognition (ICPR), IEEE, vol 4,
pp 462–466

Ruiz N, Chong E, Rehg JM (2018) Fine-grained head pose
estimation without keypoints. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, pp 2074–2083

Rusu RB, Blodow N, Beetz M (2009) Fast point feature
histograms (fpfh) for 3d registration. In: International
Conference on Robotics and Automation, Citeseer, pp
3212–3217

Schmidt M (2012) minfunc: unconstrained differentiable
multivariate optimization in matlab. Software available at
http://www cs ubc ca/˜ schmidtm/Software/minFunc htm

Seemann E, Nickel K, Stiefelhagen R (2004) Head
pose estimation using stereo vision for human-robot
interaction. In: International Conference on Automatic
Face and Gesture Recognition, IEEE, pp 626–631

Sukno F, Waddington J, Whelan P (2012) Comparing 3D
descriptors for local search of craniofacial landmarks. In:
International Symposium on Visual Computing, Springer,
pp 92–103

Sukno F, Waddington J, Whelan P (2013) Rotationally
invariant 3D shape contexts using asymmetry patterns. In:

International confernece on computer graphics theory and
applications, pp 7–17

Sukno FM, Waddington JL, Whelan PF (2015) 3-D facial
landmark localization with asymmetry patterns and
shape regression from incomplete local features. IEEE
transactions on cybernetics 45(9):1717–1730

Sun Y, Yin L (2008) Automatic pose estimation of 3D
facial models. In: International Conference on Pattern
Recognition, pp 1–4

Sundararajan K, Woodard DL (2015) Head pose estimation
in the wild using approximate view manifolds. In:
International Conference on Computer Vision and Pattern
Recognition Workshops, IEEE, pp 50–58

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov
D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going
deeper with convolutions. In: Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp 1–9

Takallou HM, Kasaei S (2014) Head pose estimation and
face recognition using a non-linear tensor-based model.
IET Computer Vision 8(1):54–65

Tan DJ, Tombari F, Navab N (2018) Real-time accurate
3d head tracking and pose estimation with consumer
rgb-d cameras. International Journal of Computer Vision
126(2-4):158–183

Tenenbaum JB, Freeman WT (1997) Separating style and
content. In: Advances in neural information processing
systems, pp 662–668

Tenenbaum JB, Freeman WT (2000) Separating style
and content with bilinear models. Neural computation
12(6):1247–1283

Tombari F, Salti S, Di Stefano L (2010) Unique signatures
of histograms for local surface description. In: European
conference on computer vision, Springer, pp 356–369

Tulyakov S, Vieriu RL, Semeniuta S, Sebe N (2014) Robust
real-time extreme head pose estimation. In: International
Conference on Pattern Recognition (ICPR), IEEE, pp
2263–2268

Vasilescu MAO, Terzopoulos D (2002) Multilinear
analysis of image ensembles: Tensorfaces. In: European
Conference on Computer Vision, Springer, pp 447–460

Wang B, Liang W, Wang Y, Liang Y (2013) Head
pose estimation with combined 2D SIFT and 3D HOG
features. In: International Conference on Image and
Graphics (ICIG), IEEE, pp 650–655

Wang C, Song X (2014) Robust head pose estimation via
supervised manifold learning. Neural Networks 53:15–25

Wang C, Guo Y, Song X (2017a) Head pose estimation
via manifold learning. In: Manifolds-Current Research
Areas, InTech

Wang K, Wu Y, Ji Q (2018) Head pose estimation on
low-quality images. In: International Conference on
Automatic Face & Gesture Recognition (FG 2018), IEEE,

Tensor Decomposition and Non-linear Manifold Modeling for 3D Head Pose Estimation 21

pp 540–547
Wang M, Panagakis Y, Snape P, Zafeiriou S, et al. (2017b)

Learning the multilinear structure of visual data. In:
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp 4592–4600

Wang Y, Liang W, Shen J, Jia Y, Yu LF (2019) A deep
coarse-to-fine network for head pose estimation from
synthetic data. Pattern Recognition 94:196–206

Xu Y, Hao R, Yin W, Su Z (2015) Parallel matrix
factorization for low-rank tensor completion. Inverse
Problems and Imaging 9(2):601–624

Yu Y, Mora KAF, Odobez JM (2017) Robust and accurate
3D head pose estimation through 3dmm and online head
model reconstruction. In: International Conference on
Automatic Face & Gesture Recognition (FG 2017), IEEE,
pp 711–718

Zhang H, El-Gaaly T, Elgammal A, Jiang Z (2015)
Factorization of view-object manifolds for joint object
recognition and pose estimation. Computer Vision and
Image Understanding 139:89–103

Zhao Q, Zhang L, Cichocki A (2015) Bayesian cp
factorization of incomplete tensors with automatic rank
determination. IEEE transactions on pattern analysis and
machine intelligence 37(9):1751–1763

Zhu Y, Xue Z, Li C (2014) Automatic head pose
estimation with synchronized sub manifold embedding
and random regression forests. International Journal
of Signal Processing, Image Processing and Pattern
Recognition 7(3):123–134

22 Dmytro Derkach et al.

Appendix

For the objective function of Eq. 15, partial derivatives should be computed with respect to variables α
(∗)
j ,β

(∗)
j ,γ

(∗)
j ,ϕ

(∗)
j .

Let us rewrite this equation as:
argmin

α
(∗)
j ,β

(∗)
j ,γ

(∗)
j ,ϕ

(∗)
j
‖u(∗)i j − f j(ω

(∗)
i)‖= argmin

α
(∗)
j ,β

(∗)
j ,γ

(∗)
j ,ϕ

(∗)
j

E(α(∗)
j ,β

(∗)
j ,γ

(∗)
j ,ϕ

(∗)
j)

Where error function E can be written in element form as:
E(α(∗)

j ,β
(∗)
j ,γ

(∗)
j ,ϕ

(∗)
j) = 1

2 ∑i
(
u(∗)i j − (α

(∗)
j cos(β (∗)

j ω
(∗)
i + γ

(∗)
j)+ϕ

(∗)
j)
)2

Thus, partial derivatives of the function E become:

∂E
∂α

(∗)
j

= ∑i
(

cos(β (∗)
j ω

(∗)
i + γ

(∗)
j) · (α(∗)

j cos(β (∗)
j ω

(∗)
i + γ

(∗)
j)−u(∗)i j +ϕ

(∗)
j)
)

∂E
∂β

(∗)
j

= α
(∗)
j ∑i

(
ω

(∗)
i sin(β (∗)

j ω
(∗)
i + γ

(∗)
j) · (u(∗)i j −α

(∗)
j cos(β (∗)

j ω
(∗)
i + γ

(∗)
j)−ϕ

(∗)
j)
)

∂E
∂γ

(∗)
j

= α
(∗)
j ∑i

(
sin(β (∗)

j ω
(∗)
i + γ

(∗)
j) · (u(∗)i j −α

(∗)
j cos(β (∗)

j ω
(∗)
i + γ

(∗)
j)−ϕ

(∗)
j)
)

∂E
∂ϕ

(∗)
j

= ∑i
(
α
(∗)
j cos(β (∗)

j ω
(∗)
i + γ

(∗)
j)+ϕ

(∗)
j +u(∗)i j

)
Similarly to the previous case, the error function in Eq. 12 can be written as:

E(ω(y),ω(p),ω(r),u(id)) = 1
2 ∑n

(
xn− x̂n

)2

where xn using Eq. 14 is:
xn = ∑i ∑ j ∑k ∑l

(
Wi jkln · f (y)i (ω(y)) · f (p)

j (ω(p)) · f (r)k (ω(r)) ·u(id)l

)
Now we can compute partial derivatives with respect to variables ω(y),ω(p),ω(r) and each l-th element in vector u(id):

∂E
∂ω(y) =−∑n

(
(xn− x̂n) · ∂ x̂n

∂ω(y)

)
;

∂ x̂n
∂ω(y) =−∑i ∑ j ∑k ∑l

(
Wi jkln ·α

(y)
i sin(β (y)

i ω(y)+ γ
(y)
i)β

(y)
i · f (p)

j (ω(p)) · f (r)k (ω(r)) ·u(id)l

)
;

∂E
∂ω(p) =−∑n

(
(xn− x̂n) · ∂ x̂n

∂ω(p)

)
;

∂ x̂n
∂ω(p) =−∑i ∑ j ∑k ∑l

(
Wi jkln · f (y)i (ω(y)) · (α(p)

j sin(β (p)
j ω(p)+ γ

(p)
j)β

(p)
j) · f (r)k (ω(r)) ·u(id)l

)
;

∂E
∂ω(r) =−∑n

(
(xn− x̂n) · ∂ x̂n

∂ω(r)

)
;

∂ x̂n
∂ω(r) =−∑i ∑ j ∑k ∑l

(
Wi jkln · f (y)i (ω(y)) · f (p)

j (ω(p)) · (α(r)
k sin(β (r)

k ω(r)+ γ
(r)
k)β

(r)
k) ·u(id)l

)
;

∂E
∂u(id)l

=−∑n
(
(xn− x̂n) · ∂ x̂n

∂u(id)l

)
;

∂ x̂n

∂u(id)l

= ∑i ∑ j ∑k
(
Wi jkln · f (y)i (ω(y)) · f (p)

j (ω(p)) · f (r)k (ω(r))
)

