Adaptative Inference Cost With Convolutional Neural Mixture Models - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Adaptative Inference Cost With Convolutional Neural Mixture Models

Résumé

Despite the outstanding performance of convolutional neural networks (CNNs) for many vision tasks, the required computational cost during inference is problematic when resources are limited. In this context, we propose Convolutional Neural Mixture Models (CNMMs), a probabilistic model embedding a large number of CNNs that can be jointly trained and evaluated in an efficient manner. Within the proposed framework, we present different mechanisms to prune subsets of CNNs from the mixture, allowing to easily adapt the computational cost required for inference. Image classification and semantic segmentation experiments show that our method achieve excellent accuracy-compute trade-offs. Moreover, unlike most of previous approaches, a single CNMM provides a large range of operating points along this trade-off, without any re-training.
Fichier principal
Vignette du fichier
CNMM_ICCV2019.pdf (9.79 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02267564 , version 1 (19-08-2019)

Identifiants

Citer

Adrià Ruiz, Jakob Verbeek. Adaptative Inference Cost With Convolutional Neural Mixture Models. ICCV 2019 - International Conference on Computer Vision, Oct 2019, Seoul, South Korea. pp.1872-1881, ⟨10.1109/ICCV.2019.00196⟩. ⟨hal-02267564⟩
134 Consultations
93 Téléchargements

Altmetric

Partager

More