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LEVEL LOWERING: A MAZUR PRINCIPLE IN
HIGHER DIMENSION

by

Boyer Pascal

Abstract. — For a maximal ideal m of some anemic Hecke algebra Tf
of a similitude group of signature (1,d — 1), one can associate a Galois
Fj-representation p,, as well as a Galois ']Tgm—representation pm. For
1 > d, on can also define a monodromy operator N, as well as N for
every prime ideal m < m, giving rise to partitions an and dg of d. As
with Mazur’s principle for GLs, analysing the difference between these
partitions, we infer informations about the liftings of p,,, in characteristic
zero known as level lowering problem.
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1. Introduction

Let ' = EF™ be a finite CM extension of Q with £/Q an imaginary
quadratic field and F'* totally real. Consider then a similitude group G/Q
as in §2 and a place v of F' above a prime number p = uu® split in £ and
such that G is split at p with G(Qp) ~ Q) x GLa(Fy) x [ ], (BEF)™,
cf. §2. For any finite set S 3 v of places of F, let T® be the anemic
Hecke algebra and, for £ an algebraic representation of G(Q), we denote
by ']I‘gq the quotient of T* of ¢é-cohomological Satake’s parameters. For
any maximal ideal m of T2, and for a prime ideal m < m, we denote by

pa: Galpg — GLd(@l)

the Galois Q,-representation associated to m, cf. [21], where Galpg is
the Galois group of the maximal extension of F' which is unramified
outside S. By Cebotarev’s density theorem and the fact that a semi-
simple representation is determined, up to isomorphism, by characteristic
polynomials, then the semi-simple class p,, of the reduction modulo [ of
pw depends only of the maximal ideal m of ’]I‘f containing m.

Main assumptions: we now suppose

— [F(exp(%F) : F]| > d: there exists then v as above such that the
order q, of the residue field at v is of order > d modulo l;

— P 15 absolutely irreducible,

— and as a representation of the Weil group at v, up to the action of the
monodromy operator, the semi-simplification of py, , 1s a multiplicity
free direct sum of characters.

Remark. Note first that for every m < m, as p,, is supposed to be ab-
solutely irreducible, then ps has, up to homothety, only one stable Z;-
lattice.

We are interested in the set {m < m} and the various partitions dg,,
of d associated to the unipotent operators N, N
diny = (n1(1‘t~1) >no(m) = > nr(ﬁl))

)

with d = ny(m) + ---n,.(M) where the n;(m) are the sizes of Jordan’s
blocks of the nilpotent operator Nj. More precisely, the restriction pg ,
of ps to the decomposition group at v can be written as a direct sum

Pivw = SPh, ) (Pv1) @ - D SPy,, ) (Pur)
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where (ny(m) > --- = n,(m)) is a partition of d and where we suppose
the p,; to be characters and

1 —n;(m) 3 —n;(m) n;(m) — 1
T) @Pv,z‘(T T)’

where N, induces isomorphisms pv,i<W) — Pv,i(w)

Spni(ﬁ)(pwi) = Puil ) D @ puil

for 0 < § < n;(m) — 1 and is trivial on p, ;(

1.1. Notation. — We denote by Ty, the Young diagram of

disp = (na(@) = - = ny(m))

labelled by the pm(w) so that

{pm(l — nl(gl) + 2k) k=0, ,n(m) — 1}

are the labels of i-th line.

As the order of unipotency of the monodromy operator is trivially less
than d, for | > d we can define its logarithm in F; and so define the
modulo [ nilpotent monodromy operator N, associated to p,, at the
place v: recall that as p,, is supposed to be irreducible, each of the pg
has, up to homothety, a unique stable Z;-lattice so that vav is well
defined and does not depend on the choice of m < m. We then denote
by dp, the partition of d given by the sizes of Jordan’s blocks of vav,
and Ty, , its labelled Young diagram.

1.2. Notation. — For anym < m, we obtain Ty, from Ty, by breaking
into 0(m, ) pieces its i-th line. We then denote by 6(m) the mazimum of
the 6(m, 1) and speak about degeneration of monodromy when there exists
m c m with 6(m) > 0.

By classical arguments due to Carayol, we can also define a represen-
tation
pu : Galpg — GLq(T ),

interpolating the pg for all m < m. By Cebotarev such a py is, up to
isomorphism, uniquely determined and by construction

Pm ®Zl @l = @ P
mcm

is semi-simple.

Main results: Under the previous assumptions,
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— Mazur’s principle: there exists m < m such that dg,, = cfm,v.

— The lenght of pm ®7, I, which is equal to #{Mm < m}, is greater than
1 + maxgen 0(m).
As usual this statement should be translated in its automorphic version.

— In the case d = 2 when there exists a lifting m with 7, ~ Sta(x.),
our multiplicity free hypothesis means that ¢, # 1 mod [. When
the modulo [ monodromy operator NW} is trivial, which means that
the modulo [ reduction of 73 , is unramified, then our statement says
that there exists a lifting m’ of the same level as 75 outside v and
with 7z , unramified. This is exactly the statement of the classical
Mazur’s principle.

— For d > 2 with m such that 7, ~ Stq(x,), the multiplicity free
hypothesis is equivalent to asking the order of ¢, € F* to be greater
than d. For dy, = (t; =ty > --- > t,) the result then insures the

existence of m’ © m with w4 of the same level as g outside v and
such that

T v = Sttl (XU,1> X X Sttr (Xv,r)~

For any partition d of d, we denote by d* its dual partition where the
lines of d* are the columns of d. Then 7 , has non trivial vectors
invariant under I,_ «(0O,) the parahoric subgroup associated to the

dual partition of dg_,, cf. (5.6). In the case where

T o 18 thus unramified. Moreover {m  m} is then of order at least
d.

— Using the usual automorphic cyclic base change, one can formulate
a statement for automorphic representations w of GLy with 7 ~ 7¢.

The strategy rests on the study of the cohomology of KHT Shimura
vatieties. More precisely, for any open compact subgroup I of G(A™), let
denote by Sh;, — Spec O, the Kottwitz-Harris-Taylor Shimura variety
with level I, cf. definition 2.4, where O, is the ring of integers of the
local field F, of F' at v. If one believe that Tate conjecture is true, then
in the sense of definition 5.1, m should be KHT-typic which implies that
Pm appear in the cohomology of Shy, localized at m, cf. proposition 5.3.
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1.3. Definition. — (cf. the introduction of [15])
We say that m is KHT-free if the cohomology groups of the Kottwitz-
Harris-Taylor Shimura variety of notation 2.4, localized at m, are free.

From [9], any of the following properties ensure KHT-freeness of m.

(1) There exists a place wy ¢ S of F' above a prime p; splits in E, such
that the multi-set Sy (w;) of roots of the characteristic polynomial
Py (X) of p(Froby,), does not contain any sub-multi-set of the
shape {«, qu,a} where q,, is the order of the residue field of F' at
wy. This hypothesis is called generic in [16].

(2) When [F(exp(2im/l)) : F]| > d, if we suppose the following prop-
erty to be true, cf. [9] 4.17. If 0 : Gr — GL4(Q)) is an ir-
reducible continuous representation such that for all place w ¢ S
above a prime z € Z split in F, then P, ,(6(Frob,)) = 0 (resp.
Py (0(Frob,)) = 0) implies that € is equivalent to p,, (resp. v ),
where m" is the maximal ideal of ’]Tg associated to the dual mut-
liset of Satake parameters, cf. [9] notation 4.4. In [17], the authors
proved that the previous property is verified in each of the following
cases:

e cither 7, is induced from a character of Gk where K/F is a
cyclic galoisian extension;

e or I = dand SLy(k) © 7,,(Gr) © F, GLy(k) for some subfield
k c F[.
(3) In [14], we proved m to be KHT-free as soon as p,, is irreducible

and [F(exp(2in/l)) : F] > d.

By Cebotarev’s theorem, the hypothesis [F(exp(2in/l)) : F] > d al-
lows to pick places v of F' such that the order of ¢, modulo [ is greater
than d. In theorem 5.5 we then add the assumptions that m is both
KHT-free and KHT-typic. If one believe in Tate’s conjecture then m
should always be KHT-typic, cf. proposition 5.3.

The two main ingredients of the proof are:

— first we show, cf. proposition 3.1, that the filtration given by the
monodromy operator at v, of the middle cohomology group of the
geometric generic fiber of Shy,, is strict, i.e. also gives a filtration
of the modulo [ cohomology group.
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— We construct a Z-structure of the monodromy operator on the
nearby cycle perverse sheaf which coincides with the usual mon-

odromy operator over ; and such that [F; its order of nilpotency is
d.

From this two points, we infer both
h

UO acting on the [F;-cohomology

— a nilpotent monodromy operator Nﬁi
group in middle degree of Shy ,;

— a Zy-monodromy operator Ny, ol P,

such that the following main observation occurs (cf. corollary 4.2):
Suppose that m is KHT-free and KHT-typic in the sense of definition
5.1, then the (multi)-set of Jordan’s blocks of Ny, ®z F, is the union
over {m < m}, of the (multi)-set of Jordan’s block of Ng.,.

The existence of various liftings of p,, with different levels at v produce
constraints on the partition dy, , given by the Jordan blocks of the modulo
[ monodromy operator, which have to be smaller than all the dg,. We

can then see our result as a reciprocal statement.
Remark. Concerning the link with the results of [13], we refer the reader
to §6 where we consider the case p,, reducible.

To see that situations as in the main results really exist, we can follow
the strategy of Ribet in [23], where he considers an absolutely irreducible
representation

71 Gal(Q/Q) — GLy(F),
which is modular of level N, meaning that it arises from a cusp form of
weight 2 and trivial character on I'g(N). Then for a prime p { [N such
that
Tr p(Frob,) = +(p+1) mod [,

with p+1 £ 0 mod [, he proves that p also arises from a modular form of
level pN which is p-new, i.e. the automorphic representation associated
to this modular form has a local component at p which is isomorphic to
the Steinberg representation of G Ly(Q,).

In [26] Sorensen generalizes this level raising congruences in higher
dimension for a connected reductive group G over a totally real field F'*
such that G, is compact. One might also look at [1] theorem 1.1 and
theorem 4.1, for the case of automorphic representations of unitary type
of GLy,. More generally it seems that level raising is more or less settle,
cf. theorem 5.1.5, or theorem 4.4.1 of [2].
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We also need to be convinced that such degeneration of the monodromy
when passing modulo [, could also appears when m is supposed to be
KHT-free. For example, as pointed out to me, the two following newforms
which can be found at https://www.pnas.org/content/pnas/94/21/11143.full.pdf

- f@) =q—2¢* — ¢ +2¢* + ¢ +2¢° — 2¢" + - - - € S5(Tp(11)),
— (@) =q+ @ +2¢® —q* —2¢° +2¢° — q" + - - € So(To(77)),

give Galois representations py and p, which are congruent modulo 3. In
Serre’s 1972 Inventiones paper it is shown that the image of this modulo
3 representation is G'Ly(F3) so that p, is irreducible. Note then that
the 3-adic representation p, has non trivial monodromy at 7 and p; is
unramified at 7 with 7 #% —1 mod 3. Consider then a real quadratic
field F'™ in which 7 splits and which is linearly disjoint over Q with the
fixed field of Ker(p,). Let D/F* a quaternion algebra which is non split
t one real place and one place above 11. The base change of g to F'*
gives a cohomological automorphic representation of G Ly(Ap+) whose 3-
adic Galois representation appears in the cohomology of a Shimura curve
attached to D: the 3-adic monodromy at a place dividing 7 is then non
trivial while the modulo 3 monodromy is. Base changing to F' = F*E for
some suitable quadractic imaginary field E, we then obtain an example
of a maximal ideal m which is KHT-free and with degeneration of the
monodromy at v.

2. KHT-Shimura varieties and its nearby cycles

Let F' = FTE be a CM field with E/Q quadratic imaginary and F'*
totally real. Let B/F be a central division algebra with dimension d? with
an involution of second kind #. For § € B*=~!, consider the similitude
group G/Q defined for any Q-algebra R by

G(R) :=={(\,g) € R* x (B” ® R)” such that g = AL,

with B? = B ®p, I' where ¢ = | is the complex conjugation and fz is
the involution z +— 2% := Bx*B~1. Following [21], we assume from now
on that G(R) has signatures (1,d — 1), (0,d),---,(0,d).

2.1. Definition. — Let Spl be the set of places v of F' such that p, :=
vig # 1 is split in E and B} ~ GL4(F,).
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We now suppose that p = uu® splits in £ so that
G(Qy) ~Q x| [(BF)
wlu
where w describes the places of F' above u and we fix a place v € Spl

dividing p.

2.2. Definition. — For a finite set S of places of Q containing the
places where G is ramified, denote by T2 Hz¢s T, abs the abstract un-

abs T
ramified Hecke algebra where Ty aps ~ Zy[ X (T,)|"V= for T, a split torus,
W, the spherical Weyl group and X""(T,) is the set of Z;-unramified
characters of T,.

Example. For x = uu® split in ¥ we have

ITac,abs = Hzl[Tw,i: L= 17 7d]7
|u

where T, ; is the characteristic function of
i d—1i

— i
GLy(Oy) diag(ty, -, @w, L, -+, 1)GL4(Oy) € GL4(Fy).
We then denote by Z the set of open compact subgroups

UP(ma, - ymy) = U x 2 x | [Ker(OF, — (O, /Py))
=1

where UP is any small enough open compact subgroup of G(A»*) and
OBW is the maximal order of B, with maximal ideal P,, and where
v =11, ,v, are the places of ' above u with p = uu®.

2.3. Notation. — For I = UP(mq,---,m,) € I, we will denote by
I’(n) := UP(n,mg, - ,m,). We also denote by Spl(I) the subset of Spl
of places which does not divide the level I.

2.4. Notation. — As defined in [21], attached to each I € T is a
Shimura variety called of KHT-type and denoted by

Shy, — Spec O,

where O, denote the ring of integers of the completion F, of F' at v.
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Let 0g : E <> Q be a fixed embedding and write ® for the set of
embeddings o : F' — Q, whose restriction to £ equals oy. There exists
then, cf. [21] p.97, an explicit bijection between irreducible algebraic
representations & of G over Q, and (d+1)-uple (ao, (CTU’)UE@) where ag € Z
and for all o € ®, we have a, = (a,1 < --- < as4). We then denote by

‘/ézzl
the associated Z;-local system on Shy .

2.5. Notation. — Let ']I‘? be the image of T3, inside

2d—2 '

@ 11_1)1'1 H}ree(ShI,ﬁvﬂ Vg,Z,)

1=0 7
where the limit concerned the ideals I which are mazximal at each places
outside S, and Shy, 1is the geometric generic fiber of Shy,,.

Remark. Hj,,, is the free quotient of the cohomology group H'. From
the main result of [9], the torsion classes of any of the H'(Sh;z,,V,7)
raise in characteristic zero, so one can erase the index free in the previous
notation.

To each maximal ideal m of T¢[1/I], or equivalently a minimal prime
of T? , which we now supposed to be non-Eisenstein, is associated an
irreducible automorphic representation Il which is £-cohomological, i.e.
there exists an integer ¢ such that

H'((Lie GR)) @x C,U, 1L, ®") # (0),
where U is a maximal open compact subgroup modulo the center of G(R).

2.6. Notation. — Let denote by Scusp,(m), the supercuspidal support
of its local component at v, denoted Ilg.,,. NoteV) that the modulo 1
reduction of Scusp, (m) is independent of the choice of m < m: we denote
it Scusp,,(m).

Recall that the geometric special fiber Shy 5, of Shy,, is equipped with
the Newton stratification

>d >d—1 =1 _
Sh7s, © Shis ~ < --- < Shi; = Shys,,

(1t follows, through the Langlands correspondence, from Cebotarev’s theorem and
the fact that a semi-simple representation is determined, up to isomorphism, by its
characteristic polynomials.
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where for 1 < h < d, Shigﬂ (resp. Shi;‘v) is the closed (resp. the open)
Newton stratum of height h and of pure dimension d — h, defined as the
sub-scheme where the connected component of the universal Barsotti-
Tate group is of rank greater or equal to h (resp. equal to h).

Moreover for 1 < h < d, the Newton stratum Sh;’;“ is geometrically
induced under the action of the parabolic subgroup P 4_p(F}), defined
as the stabilizer of the first h vectors of the canonical basis of F¢. Con-
cretely, cf. [3] §10.4, this means that there exists a closed sub-scheme
Sh;g}ﬂ stabilized by the Hecke action of P, 41 (F,) and such that

@Shlz”}zn)&v = (1(&11 Sh]:vl‘zn)jv,ﬁ) X Ph,a—n(Fy) GLd(FU>

n n

2.7. Notation. — For a representation m, of GL4(F,) with coefficients

either Q, or Fy, and n € %Z, we set my{n} = m, ® V" where v(g) :=

Gv valdet@) - Recall that the normalized induction of two representations

Tp1 and T, o of respectively G Ly, (F,) and GLy,,(F,) is

GLn1 +ng (Fv)

. n n
™ X my o= indp "1 7%1{?2} ®7TU72{—?1}7

and we define inductively

Ty X oo X g = (M X+ X Te_1) X Tg =T X (Mg X -+ X ).

Recall that a representation m, of GL4(F),) is called cuspidal (resp.
supercuspidal) if it is not a subspace (resp. a subquotient) of a proper
parabolic induced representation. When the field of coefficients is of
characteristic zero then these two notions coincides, but this is no more
true over IF;. For example the modulo [ reduction of an irreducible Q-
representation is still cuspidal but not necessary supercuspidal, its su-
percuspidal support being a Zelevinsky segment.

2.8. Definition. — (sec [27] §9 and [5] §1.4) Let g be a divisor of

d = sg and m, an irreducible cuspidal Q;-representation of GL4(F,).
The induced representation

1-— 3 — -1
i 28}><7r1,{ S}x--~><7rv{s

} (2.8)

holds a unique irreducible quotient (resp. subspace) denoted Sts(m,) (resp.
Speh(m,)); it is a generalized Steinberg (resp. Speh) representation.
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Remark. For x, a character, Speh,(x,) is the character x, o det of
GL(F,).

Let 7, be an irreducible cuspidal Q-representation of GL,(F,) and fix
t > 1 such that tg < d. Thanks to Igusa varieties, Harris and Taylor

=t
constructed a local system on Sh_ gg —
sSvsdtg

€1y

Ly, (mo[tlp)m; = (:Dl Ls,(0o,i)15;

where

— m[t]p is the representation of D, which is the image of the con-

tragredient of St;(m,) by the Jacquet-Langlands correspondence,
— D, 44 is the central division algebra over F, with invariant g,
— with maximal order denoted by D, 4,
— and with (7, [t]D)Ipitq = @™ pu,i with p,; irreductible.

The Hecke action of Py 444(F)) is then given through its quotient
Prgatg(Fy) = GLg(F,) x GLg_1g(F,) = GLa_1y(F,) x Z,

where GLy(F,) X GL4_4y(F,) is the Levi quotient of the parabolic
Py .a—14(F,) and the second map is given by the valuation of the deter-
minant map G'Ly,(F,) — Z. These local systems have stable Z;-lattices
and we will write simply L(m,[t]p)t;; for any Zy-stable lattice that we
do not want to specify. ‘

2.9. Notations. — For Il; any Q;-representation of G Ly(F,), and = :
17— Z, defined by =(1) = ¢'/2, we introduce

tg—d

HT@l:EOTU’ Ht) = E@l (Wv[t]D)E ) Ht R="2
and its induced version

P —tg=d
HT g, (m, 1) i= (£, (molt1p)ry @ ®Z™" ) xp,,, (1) GLalF),

where the unipotent radical of Py 4—14(Fy) acts trivially and the action of

¢ *
= (5 ) ) € G x Py (B < W,
where W, s the Weil group at v, is given

tg—d
2, where deg :

— by the action of g& on 1y and deg(o,) € Z on =
W, — Z sends geometric Frobenius to 1,
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— and the action of (g™, g%, val(det g¢) — dego,) € G(A®?) x

GLd—tg(Fv) X 7. on ﬁ@l (ﬂ-v[t]D)EC@ Etgz_d
We also introduce
HT@laE(ﬂ_v’ Ht) = HT@ME(?TU’ Ht)[d — tg],
and the perverse sheaf
P@l (t, Wv)m = j%?!*HT@bEOTU’ Stt(ﬂ'v)> ® L(ﬂ'v),

and their induced version, HTg (m,,I1;) and Pg, (¢, m,), where

tg _ ;tg o ;=tg . =tg =>tg _
j7 =905 :Shr{ — Sh7{ « Shzg,

and 1L s the local Langlands correspondence composed by contragredient.

We will also denote by HTg, ((my,11;) := HTg (7, I1;) ® Ve and simi-
larly for the other notations as for evample Py, (t,7,) == Pg,(t,m,) ® V.

Finally we denote by Sh;;fv,#l = Sh;’;v \Shz};vjh and

h . =h =h
J#£1 ¢ Shz,gﬂ,;él - ShI,gv — Shzs, .

Remarks:

— We will simply denote by P(t,,) any Z-lattice of Pg,(t,m,) that
we do not want to precise except that it is stable under the various
actions. We will use a similar convention for the other sheaves
introduced before. When considering F;-coefficients, we will put F;
in place of Q; in the notations.

— Recall that 7] is said inertially equivalent to 7,, and we write m, ~;
7!, if there exists a character ¢ : Z — Q, such that 7/, ~ 7, ® (o
valodet). We denote by e, the order of the inertial class of .

— Note, cf. [4] 2.1.4, that Fg, (¢, 7,) depends only on the inertial class
of m, and

Pg,(t, ) = ex,Pg, (¢, )
where Pg, (¢, 7,) is an irreducible perverse sheatf.

— Over Z;, we also have the p+-perverse structure which is dual to
the usual p-structure.

2.10. Notation. — Let denote by

(1) l, ifq, =1 mod
“\ = the order of q, modulo I, otherwise
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Remark. For a cha@cter@) Xv and when ¢ < e,({), up to homothety there
is only one stable Z;-stable lattice of L(m,[t]p). From the description of
the modulo [ reduction of St;(x,) in [6], the same is then true for P(t, x,).

2.11. Notation. — Let denote by
= d—1
W, = R, (@[d - 1))

the nearby cycles autodual free perverse sheaf on the geometric special

fiber Shy s, of Shy,.

In cite [10] proposition 3.1.3, we proved the following splitting

d
=@ @D Y,
9=1 oeScuspg, (9)
where Scuspg, (g) is the set of inertial equivalence classes of irreducible
F;-supercuspidal of GL,(F,) and where
\IjQ ®Zl @l = @ LIjﬂ'v?

my€Cusp(o)

where Cusp(p) is the set of inertial equivalence classes of irreducible Q-
cuspidal representations which modulo [/ reduction is inertially equivalent
to o.

We now fiz a Fj-character o. Following the constructions of [7] §2.3,

— using the adjonction j,7* — Id, we can first define a filtration
Fﬂll(\lfg) = Fﬂ!d(\ljg) =",

where Fil!'(¥,) is the saturated image of j7"j="*¥, — ¥,. The
graded parts grf(W,) are free perverse sheaves. Over Q, this filtra-
tion coincides with the iterated kernel of N,, i.e. Filf(¥,) ®z, F; ~
Ker(NF ®z F,). We also write coFily(¥,) := W,/ Filf(¥,).

— For every 1 < h < d, we have a short exact sequence of free Hecke-
perverse sheaves

0 — jZtz el (W) — e (U,) — Pich =" el (W,) — 0, (2.11)

()For a general supercuspidal representation 7, whose modulo ! reduction o is still
supercuspidal, the same is true if ¢ < m(g) where m(p) is either the order of the
Zelevinsky line of p if it is > 1, otherwise m(p) := .
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where

- 1—h
el e B @ ATyl Su)( 5

XvECusp(0) 2
— Dually using the adjunction Id — j,j*, we can define a cofiltration
coFil%(W,) — - -+ — coFilL(T,),

where coFil%(W,) is the saturated coimage of ¥, — jZ"j="* T,
The graded parts gr’(¥,) are also given by

0 — Pjrtis " el (U,) — gth(V,) — P52t iar e (T,) — 0,

where

e (W) @5 T~ @ HT (x Stalu) ().

XvE€Cusp(o) 2

— We can also refine the previous filtration to obtain Fill*(V¥,) whose
]

)
graded parts grr"(V,) are free Z;-perverse sheaves, cf. [7] §1, such
that

1—-t+20

5 )

g’ (V) Rz Q= @B P HT (xw, Ste(xw))(

Xxv€Cusp(0)

for some 0 <6 <t —1.

Remark. As the order of g, modulo [ is > d then Cusp(p) contains only
characters so that, cf. (3.2), the Harris-Taylor local systems have only
one intermediate extension, i.e.

jlh '*jlh gr' (\IJ ) = p+]1_hhl*j1h gr' (\Ij )'

Exchange basic step: to go from filtration to another, one can repeat the
following process to exchange the order of appearance of two consecutive



LEVEL LOWERING: A MAZUR PRINCIPLE IN HIGHER DIMENSION 15

subquotient:
P/ \
P2(<: X —>> P1
P / T
T,
where

— P, and P, are two consecutive subquotient in a given filtration and
X is the subquotient gathering them as a subquotient of this filtra-
tion.

— Over Qy, the extension X ®z, Q is split, so that on can write X as
an extension of Pj by P| with P{ < P, and P, — Pj have the same
cokernel T', a perverse sheaf of torsion.

Remark. In the particular case when P, and P, are intermediate exten-
sions of local systems living on different strata such that the two associ-
ated intermediate extensions for the p and p+ t-structure are isomorphic,
then T is necessary zero and X is then split over Z,.

Repeating exchange basic steps, on can then pass from Fil}(¥,) to

Fil} (0,).

2.12. Lemma. — The socle (resp. the cosocle) of ¥, lF up to

is,
multiplicities, ji.2HT (o, Sta(o ))(d21) (resp. ji-*HT (o, Std(g))(Td)).

Proof. — The result follows quite immediately from [10] where we
described the sheaves of cohomology of the ¥, ®; F, as the mod-

ulo [ reduction of its Z;-cohomology sheaves. From this computation
we deduce that the socle of grf'(¥,) ®z, Q;, up to multiplicities, is
JtHTg, (0,Sta(0))(%522).  From the filtration Fil7(¥,), we then
deduce that the socle of ¥, ®z, F,

— contains j;?HT (0, Sta(0))(52),

— and if it contains something else, without considering multiplicities,
it has to be j;¢HT (0, Sta(0))(=52) for 1 <6 < d.
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We argue by contradiction by assuming that j;?HT (0, Sta(0))(<522) for

some 1 < 6 < d, belongs to the socle. By duality then j-¢HT (o, Stq(0)) (=42

belongs to the cosocle so that HT (o, St4(0))(4=522) is a subquotient of

v, ®z IF; which contradicts the main result of [10)].
For the cosocle, we conclude by duality. O

Remark. The same arguments, with more precautions, allow to show
that non split extensions inside ¥,®z Q; between Harris-Taylor perverse

sheaves remains non split in ¥, ®z F;.

When dealing with sheaves, there is no need to introduce the local
system V; 7z because it suffices to add ®z,V; 7, to the formulas. We now
consider a fixed local system V, 7 and, following previous notations, we
write Wye := U, ®z V7. We then have a spectral sequence

BPY = HP9(Sh g, (W) = B (Shig Veg). (219

As pointed out in [13], if for some m the spectral sequence is concen-
trated in middle degree, i.e. EV% = 0 for p+ ¢ # d — 1, and all the
Ef’lﬁi—l_p are free, then, for [ > d, the action of the monodromy operator
N{jﬁ{f" on H'(Shyz,, V{,@l>m comes from the action of N, on ¥, ®7 Q.

The aim of the next section is to prove that this property remains true
over F,.

3. A saturated filtration of the cohomology
The aim of this section is the following proposition.

3.1. Proposition. — Consider a mazximal ideal m of ']I'f such that:

— Pp 8 trreducible;

—m is KHT-free;

— the restriction pm, to the decomposition group at v is, in the
Grothendieck group and up to the action of N,, the direct sum of
character. We moreover suppose that the set S,(m) of modulo I
eigenvalues of p,,(Frob,) does not contain any subset of the form

(N @A, - ,qﬁ”(l)fl)\}, where e,(1) is defined in 2.10.
Then the EY'L are torsion free and trivial for p+q # d — 1.

1,m

Note that, as (2.13) after localization at m, degenerates at FE
over Q;, then the spectral sequence gives us a saturated filtration of

2

)
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H*"(Shy3,, Vez,)m- The proof uses Grothendieck-Verdier duality which
explains we need that the p and p+ intermediate extensions of Harris-
Taylor local systems HT(m,,St:(m,)) to be isomorphic. In [10], for a
irreducible cuspidal representation m, of GL,(F,) and 1 <t < d/g such
that the modulo [ reduction of St;(m,) remains irreducible, we proved
that

i S HT (my, 1) ~ P* 5 9 HT (m,, 1y,). (3.2)
The proof is rather difficult but almost obvious in the case where m, is
a character in which case the condition is that ¢ < e,(l) which is clearly
true with the hypothesis e, (l) > d.

Proof. — As m is supposed to be KHT-free, then all the £  are free.
Moreover, as p,, is irreducible, then, cf. [5] §3.6, the E7y ®7 Q, are all
zero if p+q # d—1. As by hypothesis py,, is made of characters, we can
consider direct factors W, for ¢ € Scusp,(m) a character. Moreover as
ey(l) > d, in ¥, ®7 Q, we have only to deal with characters y, so that,

by (3.2), the p and p+ intermediate extensions coincide.

3.3. Proposition. — (cf. [10] §2.3) We have the following equivariant
resolution

d—h

_ h—d e
0 = ji HT (xo, Sta (xof =5 —1) x Spehy_p,(xo{h/2})) @2 —> -

— G HT (X, Str(xo(—1/2)) x x0{h/2}) ® 2
j!=hHT(Xva Sth(X’U)) - pj!thT(Xva Sth(X?))) — 0. (34)

N

—

Note that

— as this resolution is equivalent to the computation of the sheaves
cohomology groups of Pj;." HT (x,, Sti(X.)) as explained for example
in [10] proposition B.1.5 of appendice B, then, over Q,, it follows
from the main results of [4].

— Over 7, as every terms are free perverse sheaves, then all the maps
are necessary strict.

— This resolution, for a a general supercuspidal representation with
supercuspidal modulo [ reduction, is one of the main result of [10]
§2.3. However the case of a character y, as above, is almost obvious.
Indeed as the strata Shi}fgml are smooth, then the constant sheaf,
up to shift, is perverse and so equals to the intermediate extension
of the constant sheaf, shifted by d — h, on Shlszgml. In particular its
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sheaves cohomology groups are well known so that the resolution
is completely obvious for ?j= ,*H T1-(Xv, Sta(Xv)) if one remember

that Speh;(x,) is just the character Xv © det of GL;(F,).

The stated resolution is then simply the induced version of the
resolution of ”jl HTr (X0, Str(xy)): recall that a direct sum of
intermediate extensmns is still an intermediate extension.

By adjunction property, the map

= _6 =
G HT (x, Sth(Xv{T}) x Speh;(x,{h/2})) ® =°/2

6—1

s G HT (St ) x Speh (0 (h/2) ©F'T (35

is given by
-5 _
HT (xo, Stn(xo{-}) x Spehs(xo{h/2})) Q=2

g (POt (e 1HT<Xmsth(Xv{—})XSpeh5 1 {h/2}))@=

s—1

)
(3.6)

To compute this last term we use the resolution (3. 4) Premsely denote
by H := HT(x0, Stn(x{152}) x Spehs_ (x.{h/2})) ®Z°7, and write the

previous resolution as follows
0—K— j7"H — Q — 0,
0 — Q N j—h+§ 1/}_[ N j—h+5 1/}_[ N O,
with
, 1—6 0—1 —5/2
H' = HT (X0, St (ol —5 ) x (Spehs_y (ol —=1/2) < xof 5= 1) {h/2} ) @

As the support of K is contained in Sh[>2+5+1 then Pi"*%'K = K and
G=hHox (PRI s zero.  Moreover Zf’zh*‘s'(p]*h“s '"H) is zero by con-
struction of the intermediate extension. We then deduce that

6=1

j:h+§7*( h+§'(j_h+5 1HT(XU,Stt(Xv{—})XSpeh§ 1(Xv{h/2})> ®="
~ HT(XU,Sth(Xv{T})

« (Spebs_ (el -1/2) % ol o D) (h/2}) @ (3.7

)
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3.8 — Fact. In particular, up to homothety, the map (3.7), and so those

of (3.6), is unique. Finally as the maps of (3.4) are strict, the given maps
(3.5) are uniquely determined, that is, if we forget the infinitesimal parts,
these maps are independent of the chosen ¢ in (3.4).

For every 1 < h < d, let denote by i(h) the smallest index i such that
H(Shrs,, i HT (Xv, Sta(Xo)))m has non trivial torsion: if it does not
exist then we set i(h) = +o0. By duality, as Pj,, = P*jy, for Harris-Taylor
local systems associated to characters, note that when i(h) is finite then
i(h) < 0. Suppose by absurdity there exists h with i(h) finite and denote
ho the biggest such h.

3.9. Lemma. — For 1 < h < hy then i(h) = h — hy.
Remark. A similar result is proved in [9] when the level is maximal at v.

Proof. — a) We first prove that for every hy < h < d, the cohomology
groups of j;"HT(x.,,I1;) are torsion free. Consider the following strict
filtration in the category of free perverse sheaves

(0) = Fil ™'~ (xy, h) > Fil ¥ (xy, h) > - -
> Fil "(x0, h) = 57" HT (x,, TT)  (3.9)

where the symbol <—— means a strict monomorphism with graded parts

Y @St ntuth20) ()

Over Q;, the result is proved in [4] §4.3. From [7] such a filtration can
be constructed over Z; up to the fact that the graduate parts are only
known to verify

gr_k(va h) - .] *kHT(Xva Hh{

— h
pj!;kHT<XU7 Hh{

e Stkh<xv{h/2}>><”2i> s g, )

Y @ Sttt/

and we can conclude thanks to (3.2). The associated spectral sequence
localized at m, is then concentrated in middle degree and torsion free
which gives the claim.

b) Before watching the cases h < hg, note that the spectral sequence
associated to (3.4) for h = hy + 1, has all its E; terms torsion free and
degenerates at its Fy terms. As by hypothesis the aims of this spectral

h
- p+j!ikHT(Xva Hh{
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sequence is free and equals to only one Es terms, we deduce that all the
maps

— —6 _
HO (S s, 57 H T (xSt (o5 1) % Spebs(xof/2}) ©Z°72)

—

m

e 1-9
H (Shys,. 37" HTe (xo, Stn (ol —5—1)

x Speh;_ (v {h/2})) ®E'T")_ (3.10)

are saturated, i.e. their cokernel are free Z;-modules. Then from the
previous fact stressed after (3.7), this property remains true when we
consider the associated spectral sequence for 1 < h' < hy.

c¢) Consider now h = hy and the spectral sequence associated to (3.4)
where

EYY = HP*2(Shyg,, j, "
HTe(x0, St (x0(=4/2)) x Speh, (xo{h/2})) ®E2)n  (3.11)

By definition of hg, we know that some of the E% ™7 should have a non
trivial torsion subspace. We saw that
— the contributions from the deeper strata are torsion free and
— H"(Sthv,jthHTg(Xv, I1;,))m are zero for i < 0 and is torsion free
for ¢ = 0, whatever is 1I,.
— Then there should exist a non strict map d}"?. But, we have just
seen that it can not be maps between deeper strata.
— Finally, using the previous points, the only possibility is that the
cokernel of

— -1 —
1 (S, 57 H T (e, St (x5 1) % ot/ 21) @ 172)

—

H°(Shy,s, , j; " HTe(Xo, Stho (X0))),, (3:12)

has a non trivial torsion subspace.

m

In particular we have i(hg) = 0.
d) Finally using the fact 2.18 and the previous points, for any 1 < h <
hg, in the spectral sequence (3.11)

— by point a), E5 is torsion free for ¢ = hg — h + 1 and so it is zero
if p+ 2q # 0;
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— by affiness of the open strata, cf. [9] theorem 1.8, E5? is zero for
p + 2q < 0 and torsion free for p + 2g = 0;
— by point b), the maps d5? are saturated for q=hog—h+2;
by point ¢), dy 2(ho— h+1) ho—h+1
torsion subspace.
— Moreover, over Q;, the spectral sequence degenerates at Es and
EP?T =0if (p,q) # (0,0).
We then deduce that H*(Shys,, ?ji;" HTe (X, 1) )m is zero for i < h — hg
and for ¢ = h — hg it has a non trivial torsion subspace. O

has a cokernel with a non trivial

Consider now the filtration of stratification of ¥, constructed using

the adjunction morphisms j;"5="* as in [7]

Fil{ (¥,) <> Filf (¥,) <> - - Fil¥(¥,) (3.13)
where Fil]"(,) is the saturated image of j;"j="*W¥, — W,
Remark. Recall that the filtration Fill® is a reﬁnement of Fﬂ_‘ as one can
see it in the next proposition.
For our fixed y,, let denote Filj, (V) —f» Filj(¥,) such that
Filll’x (V) ®z, Q ~ Fil{ (¥,,) where ¥, is the direct factor of ¥ ®z, Q
associated to x,, cf. [7].

3.14. Proposition. — (cf. [10] 3.5.5) We have the following resolu-
tion of gri’y, (V)

_ d—h
0 — JrHT (Xv, LTha(x0)) ® Ly(xo(—5—)) —

g d—h-—1
G HT (X, LT a1 (X)) ®L9(Xv(T
— i "HT (X, Str(x0)) @ L(xo) — grty, (¥) — 0, (3.15)

) —

where
— LTy ps(xw) — Sta(xo{—0/2}) x Spehs(x,{h/2}), is the only irre-
ducible sub-space of this induced representation,

— and IL s the local Langlands correspondence composed by contragre-
dient.

Remarks:

— As explained after proposition 3.3, it amounts to describe the germs
of the Z;-sheaf cohomology of gr{?xv(\llvé). Over Q;, the resolution
(3.15) is then proved in [4].
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— Over Z, it is proved in full generality in [10] for every irreducible
supercuspidal representation m, in place of y,. It amounts to prove
that the germs of the sheaf cohomology of gr,lm (U, ¢) are free. The
case of a character is however much more simple. Indeed consider
then the torsion part of the cokernel of one of these maps. Note that,
thanks to (3.2), such a cokernel must have non trivial invariants un-
der the action the Iwahori sub-group at v. We then work at Iwahori
level at v. As said above, it amounts to understand the germs of the
Zy-sheaf cohomology of grf’, (V) which are described, cf. [18], by
the cohomology of the Lubin-Tate tower. By the comparison the-
orem of Faltings-Fargues, cf. [19], one is reduced to compute the
cohomology of the Drinfeld tower in Iwahori level which is already
done in [24]: we then note that there are all free Z;-modules.

We can then apply the previous arguments a)-d) above, for h < hg
(resp. h > hg) the torsion of H'(Shys,,gr’y, (Woe))m is trivial for any
i < h— hg (resp. for all 7) and the free parts are concentrated for i = 0.
Using then the spectral sequence associated to the previous filtration,
we can then conclude that H'"*(Sh;;,, ¥, ¢)m would have non trivial
torsion which is false as m is supposed to be KHT-free. n

4. Local behavior of monodromy over [,

Recall that g is a fixed Fj-character and ¥, is the associated direct
factor of ¥,. Over Q;, the monodromy operator define a nilpotent mor-
phism N, : ¥, ®z Q — Vv, ®z, @Q, compatible with the filtration
Fil} (¥,) in the sense that Fil!'(¥,) ®z, Q, coincides with the kernel of

N ;‘@. The aim of this section is to construct a Z-version N, of N 00,
el ’

such that Fil!(¥,) ®z, I, coincides with the kernel of N ®z, F;.

First step: consider
0 — Fil} (¥,) — ¥, —> coFil} (¥,) — 0,
and the following long exact sequence

0 — Hom(coFil} (¥,), ¥,) —> Hom(¥,, ¥,)
— Hom(Fil} (¥,), ¥,) —> ---
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where Hom is taken in the category of equivariant Hecke perverse
sheaves.®  Note that N,5, € Hom(V,, ¥,) ®; Q, comes from

Hom(coFil} (¥,), ¥,) ®z, Q;, so that we focus on Hom(coFil} (¥,), ¥,).
From
0 — grf(¥,) — coFil} (¥,) —> coFil}(¥,) — 0,
we obtain
0 — Hom(coFil}(V¥,), ¥,) —> Hom(coFil}, ¥,) —

Hom(grf (¥,), ¥,) — Ext'(coFil(¥,), ¥,)) — - --
Note then that N,g, € Hom(coFil}, ¥,) ®z @Q, does not belong to the
image of Hom(coFil} (¥,), ¥,) ®z, Q.
4.1. Lemma. — The Zy-module Ext'(coFil} (V,),V,)) is torsion free.

Proof. — Let a € Ext'(coFilf(¥,), ¥,)) which is killed by some power of
[ and let
0— W, — P —> coFil}(¥,) — 0,

be the extension defined by a. Applying ®%@l, this short exact sequence
split so that P can be written

0 — coFil, (¥,) — P — W, - 0,
so that composing through P we obtain
0 — coFil, (,) —> coFil2(¥,) — T — 0,
0—V,— U, — T —0,

for the same torsion perverse sheaf 17" appearing as cokernel of the two
previous maps. By tensoring with ®z I, we then obtain

— —2
0 — *h~ (T ®g, F;) — coFil, (¥,) ®z,

F,
— coFil}(V,) ®z Fi — *h(T ®z, F,) — 0,

1
and
0—*h" (T ®gF) — ¥,z F
— U, @ F — "h(T @z F)) — 0,

(3)We do not ask the map to be Galois equivariant as NQ a is not.
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where we denote by Ph*K the p-perverse cohomology complexes of
K. As by lemma 2.12, the socle of ¥, ®z F, is, up to multiplicity,
IRt HTg (o, Sta(0))(42) then it has to be a constituant of PhH (T ®g, F).
But, using that the order of ¢, modulo [ is strictly greater than d,

JtHT, (0,St4(0))(%52) is not a constituant of coFil(¥,) @z F. We

then deduce that T is forced to be zero, which means that the extension
P is split, i.e. o € Ext!(coFilf(¥,),¥,) is zero. O

We are then led to study
Hom(gr?(¥,), ¥,) ~ Hom(gr{ (¥,), Fil, (gr/ (T,)))
where
0 — Fill(gr/ (¥,)) — Fil} (¥,) —> coFilL(Fil{ (¥,) — 0.

Note that, up to an unramified Galois twist, gri(¥,) ®z, Q =~
Fili(gr%(\llg))@)zl@l and the cosocle of gr} (¥,)®z F; (resp. Fili(gr%(‘l@))@zl
;) is some multiple, depending on the lattice of j=2*gr?(¥,) (resp.

7=2* Fill (gri(V,)), of j-2HT (o, Sta2(0)). Consider then
0 — P_ —> Fill(grk(¥,)) — 7522=2* Fill (grl(¥,)) — 0,

where P_ has support in Sh>®. Then using as before long exact sequence,
we note that

Hom(grf (¥,), Fil, (g11(P,))) ~ Hom ("), " g1{ (V,), "j5.%5 =" Fil, (gr1(T,)))-

In particular if the two local systems ?j;;2j=2*gr?(¥,) and Pj;;25=>* Fil} (gr} (¥,))
were isomorphic, then there exist a element in Hom(gr?(¥,), Fil, (gri(¥,)))

which is an isomorphism. This element then gives us a Z;-morphism
N, € Hom(¥,, ¥,) so that Fil.(gr!(¥,)) is in the image.

Second step: we want to prove that the local systems j=%*grf(¥,) and
32 Fil (gri (¥,)) are isomorphic. Consider first the following situation:
let £}, and L1 be Z;-local systems on a scheme X such that:

— 811, = (Lri1/Lr) R, Q is irreducible and we introduce

grkFlL T 7B,
|
Y

£k+1;> £k+1 ®Z @l~
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We moreover suppose that the gri,, ®z, F; are also irreducible so
the various stable lattices of gr,,, are homothetic.

— Li1®7, @ = L ®z, Q @ gry, @7, Q.
We then have

0—Ly®gry, — Ly — T —0,
where T is torsion and can be viewed as a quotient
Ly L, > T, gy = gy > T,
with, cf. also the exchange basic step of §2
Ly = Lri1 = 8lhiq, g1 = Ly — L.

As gry 4 ®z, Q is irreducible, then gr,, +1 < 8744 is given by multiplica-
tion by I° and the extension is characterized by this 4.
Consider then the Z;-local system £ := j=*W, and recall that

L ®Zl @l = @ HT@[ (Xv,ia X'U,i)a
i=1

where we fix any numbering of Cusp(o) = {Xv1, - s Xvr}. For k =
1,---,r, we introduce

E(@L - > @?:1 HT(XU,Z‘; Xv,i)

|
Y _
L——L®; Q.

Let denote by T}, the torsion local system such that

0—Ly®gry, — Lry1 — Thp1 — 0,

where gr, ., := Ly41/Ls, as above. We can apply the previous remark
and denote by ¢ the power of [ which define the homothety gr, ., —
gry.1 = Tiy1. The set of §; for k£ = 1,--- | r is then a numerical data to

characterize £ inside j='*¥, ®z Q.
(i) From the main result of [10], cf. its introduction paragraph,
Fil} (gr{ (¥,)) is obtained as follows

0 — Fily(gr} (V,)) — jZin "V, — izl iz “V, — 0,
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so that j=2* Fill (gr] (¥,)) ~ Ph='i®*PjZ1 71" ¥,. With the previous
notations, we have

=1 =1 =1
0— p];q,!*ﬁk - p];el,!*ﬁkﬂ - p]¢1,!*Tk+1 — 0,

from which we obtain the following description of j=2* Fill(gr{ (¥,)):

o
— there exists local systems £, for k = 1,--- ,r so that L ® Q ~

D'y HTg, (Xuyis Sta(x) (—1/2);
— with grf, ; defined, as before, with

0—Lf®gry,, — L, — The1 — 0,

where T}, is killed by [Or+1,

Finally j=2* Fil} (gr}(¥,)) is described with the same numerical data {J, :
k=1, ,r}as j=*0,.

(i) The same arguments apply with j;llv*j;l’*\llg so that the local
system L= p*hliQ’*“j;ll’,*j;l’*\I/Q is also characterized by the same
numerical data {0x : k = 1,--- ,r} except that L can not directly be
identified to j=**gr?(¥,). Indeed we are interested in the lattice of
@XvECusp(g) j'TkQHT@l(XvaSt?(xv))(il/Q) given by \I]Q/ Fll,l(\I/Q) But by
now the previous lattice of P; := Pj;;2L described by {0y : k=1, -1} is
obtained using a filtration where P; appears as the socle of the perverse
sheaf () defined as follows:

0 — P52t~ *coFill(W,) —> coFil (¥,) — Q — 0.

As explained in §2, we have to use basic exchange steps as many times
as needed to move P; until it appears as the cosocle of Filf(¥,) < W,
ct. the discussion before lemma 2.12.

Note then that all the perverse sheaves which are exchanged with
Py during this process, are lattice of ji." HTg (X, Str () (FEE2) with
h = 3. As explained in the remark after the definition of the exchange
basic step, as Pi;2HT (Xv, Sta(Xo)) =~ P52 HT (X0, Sta(Xy)), for all these
exchange, we have T' = 0 and P, remains unchanged during all the basic
exchange steps.
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Third step: at this stage we constructed a Z;-version of the monodromy

operator

W,/ Fil} (U

N, :

such that the kernel of
N, ®z, Fi: (V,/Fil} (V,)) @z F, — ¥, ®z F,

does not contain any irreducible subquotient of gr?(¥,) @

Recall that we suppose the order of ¢, modulo [ to be > d so that
the irreducible constituants of grf(¥,) ®z F; are disjoint from that of
(T,/Fil2/(¥,)) ®z Fi.

Moreover, arguing as in lemma 2.12, we see that the socle of
(\IJQ/ Fil,l(lllg)) ®7z, F, is up to multiplicity jfdeTE(g, Std(g))(%)
which is a constituant of grf(¥,) ®z F;.

From the previous facts, we then deduce that the kernel of N, ®z, F;:
V,®z Fi — V,®z F, is reduced to Fil{ (¥,) ® F; and is so the modulo
[ reduction of the kernel of N,,.

4.2. Corollary. — Under the hypothesis of the proposition 3.1 on m,
the action of N, on VU, defined above for every F;-character o, induces
a nilpotent monodromy operator NC"’“’ on H°(Shrs,, Wye)m such that

the (multi)-set of Jordan’s blocks of Ny, := N&ho @z F, acting on

H(Shys,, Yy e)m Qg Fi, is the disjoint union under {f < wm}, of the
(multi)-sets of Jordan’s blocks of Ni.,.

——=coho

Proof. — Recall first that the (multi)-set of Jordan’s blocks of Ng&°M ®y
Q, (resp. Nﬁzzo) is given by the collection of the dimensions ey ,(r)
(resp. Emu(r)) of Ker(Ngho ®z Q)" (resp. KerN;OZO) for r > 1: the
columns of the Young diagram associated to N7 @z Q, are of length
emp(r + 1) — emyp(r) for r = 0.

— Proposition 3.1 gives us that the Fj-spectral sequence of nearby

cycles degenerates at E; B
— while from above, we know that €y,(r) is the sum over the ;-

characters ¢ of the Fi-dimension of H(Shys,, Filf (¥,¢))m ®z, Fi.
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— But this dimension is also the Q;- dimension of H(Shys,, Fil (W, ))m®Zz
Q,; and so equals to emw (7).

The result then follows from

HO(Shl,Evv Fﬂr(\lj&f))m ®Zl @l = C_D HO(Shl,Evv Fﬂr(q]&f))ﬁv

mcm
and the fact that N, = Nnﬁ‘ffo ®T§,m Téﬁ‘ .

5. Mazur’s principle

5.1. Definition. — (cf. [25] §5) We say that m is KHT-typic if, as a
T¢ [ Galp,s]-module,

Hdil(ShI,m V&Z)m =~ On ®T§S,m Pm,
for some Tsym-module om on which Galpg acts trivially and
pm : Galps — GL4(T? )
is the stable lattice of (—Bﬁcm P introduced in the introduction.

Remark. When m is both KHT-typic and verifies the hypothesis of propo-
sition 3.1, then Nf{jﬁ" induces a monodromy operator Ny, on py.

As explained in [21], the @;-cohomology of Shy; can be written as
H™ M (Shig, Vegm = @ (@) @V(n™),

TI'E.AgJ(m)

where

— Ag 1(m) is the set of equivalence classes of automorphic representa-
tions of G(A) with non trivial I-invariants and such that its modulo
[ Satake’s parameters outside S are prescribed by m,

— and V(7®) is a representation of Galpg.

As p,, is supposed to be absolutely irreducible, then as explained in
chapter VI of [21], if V(7*) is non zero, then 7 is a weak transfer of
a ¢-cohomological automorphic representation (II,4) of GL4(Ap) x Aj
with IIV ~ II¢ where ¢ is the complex conjugation. Attached to such a
IT is a global Galois representation pr; : Galps —> GLg(Q;) which is
irreducible.
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5.2. Theorem. — (cf. [20] theorem 2.20)

If priy is strongly irreducible, meaning it remains irreducible when it is
restricted to any finite index subgroup, then V(n™) is a semi-simple rep-
resentation of Galpg.

Remark. The Tate conjecture predicts that V(7*) is always semi-simple.

5.3. Proposition. — We suppose that for all m € A¢ (m), the Galois
representation V(w®) is semi-simple. Then m is KHT-typic.

Proof. — By proposition 5.4 of [25] it suffices to deal with Q,-coefficients.
From [21] proposition VII.1.8 and the semi-simplicity hypothesis, then
V(7®) ~ Re(m)®™™ where Re() is of dimension d. We then write

(7°)! ®g, Re(m) = (n*) @rs __ (T¢,5)"
and (7%)! ®g, V(1*) ~ (7°)H®nm) @ps (']I‘? —)4 and finally

emg 6™
d—1 s d
H <Shl7ﬁ’ ‘/fv@l)m = M ®T;§,m,@l <T£7m’@l) ’
with M ~ (—BﬁeAU(m)((WOO)I)@"(”). The result then follows from [21]

theorem VII.1.9 which insures that Re(m) ~ pg, if m is the prime ideal
associated to m, O

5.4. Definition. — Let p(m), be the filtration of pm ®z, F; defined by
its iterated socle, that is

— p(m)o is the socle of pm ®z, F,

— and fori =1, p(m);/p(m);_1 is the socle of (pm ®7z, F))/p(m);_1.
The depth of m is then the length of this filtration.
5.5. Theorem. — (Mazur’s principle) Let m be a maximal ideal of
T?Z such that:

— P 15 absolutely irreducible and its restriction to the decomposition
group at v is, up to the action of the monodromy operator, a direct

sum of characters;
— m s KHT-free and KHT-typic.

Let dp, = (t1 = -+ = t,) be the partition of d given by the Jordan blocks
of Nmﬂ,. Then there exists m < m such that
Py = Sptl (Xv,l) ® D SptT (Xv,r)a

where x,,; are non isomorphic characters.
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For d a partition of d, its associated parahoric subgroup is
1,(0,) = Ker(GL4(O,) — Py(k(v))) (5.6)

where Py is the standard parabolic subgroup associated to d. The domi-
nance order (dy = ---d,) < (e; = --- = e;) is the given by

k k
>1: Z d; < Z e;.

Recall, cf. lemma 1.1.7 of [13] that IT, ~ Sttl(XU 1) X -+ % Sty (Xor) has
non trivial invariant vectors upon I, ((’) ) if and only if d is smaller than
the dual partition e* of e := (¢; > - -+ > t,) whose lines are the rows of e.
The theorem then says that Il , has non trivial invariant vectors upon
]Jm 1]>I< (Ov) .

Proof. — We will consider three different types of situations at v:

— infinite and we then denote by H(I"(00))wm 1= H°(Sho(s0) 5., Yu.e)m
and H(1"(0))m := H(I"(0))m ®z, F;

— H(I",d)w := H(Shyv1,(0,),5.» Yoe)m and H(I,d)y = H(I',d)n 7,
Fz;

— H(I", B)m := JSE (H(I7(0))m) ““" O and H(IY, h) := H(I", h)m
F;; where JghLd is the Jacquet functor associated to the parabolic
Ph(Fv)'

We also denote by T¢ (17, d) the image of T%,_ inside H (I, d)n. Let d be
minimal for the previous dominance order, such that H(I?,d*), # 0 and
consider now a broken row in vav that is A € F; such that g,\ does not
belong to the same line with ) in the labelled Young diagram of N,

Zy

5.7. Lemma. — There exists m < m with H(I",d")s # (0), such that
inside T4 ,, the liftings™® )\1 and Xs of g\ and X, do not belong to the

same line, i.e. \j/\y # g
Proof. — Let denote by pn(d) = pm ®rs Te(1°,d*) and Ny,(d) =
Neww ®rs Te(I°,d*). We consider then the eigenspaces V;(\) and V()

for the eigenvalue A of the action of Frob,, respectively, on the F;-vector
spaces

Im Ny, (d) ®7, F; < pu(d) ®7z, F,.

(ef. the multiplicity free hypothesis
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Note that, as the eigenvalues of Frob, acting on pn ®z, F; are supposed
to be pairwise distinct, then

dimg, V(N) = 4§ < ms, H(I",d*)s # (0)}.

Note that if the conclusion of the lemma were not true, then
dimg V7(X) = dimg V(X). Indeed this is true over @, and from
corollary 4.2, we know that the image of N ®; F; is the modulo I
reduction of the image of Ny, ,, which gives us the previous equality.

Consider now the previous filtration p(m, d); of pu(d) ®z, F;, where all

the graded parts gr,(m, d) are a direct sum of p,,. If we want dimg, V7(A)
to be equal to the number f{m < m;, H(I",d")s # (0)} of irreducible
subquotients of py(d) ®z, F,, then Frob, should induces an isomorphism
V(g,A) — Vi(\). But note that V(g,\) intersects p(m,d)o and, as g\ —
) is broken in Tmm, and the eigenvalues are all distinct, then Frob, acts
trivially on V(g,\) n p(m)° so that dimg, Vi(A) < dimg, V(g,\) = f{f
m;, H(I",d")ix # (0)}. =

End of the proof: recall that d was taken minimal such that H(I",d"),, #
0. By freeness of the cohomology groups, there exists m < m with
Hg,(I",d")m # 0, so that dg, is greater that d and finally, by mini-
mality of d, we have d = dg ,, and it remains to prove that they are
equal to d,, ,. Note that dg , is obtained from d,, , by glueing some of its
line so that if it were note equal to d,, ,, the previous lemma would tell
us that d were not maximal.

]

5.8. Proposition. — With the previous notations, for every 0 < 1 <
r — 1 where r is the depth of m, then gr'(m) is irreducible and then
isomorphic to p,.

Proof. — Automorphic representation 7z in level [V(o0) having a cus-
pidal support at v made of characters, are in finite numbers so that
pm @7, T e is defined over a noetherian ring R inside [ [5_,, K& where
the finite extension K3 /Q is the field of definition of pz. We then denote
by k = R/m and we still denote by p,, the associated r-vector space with
its action of the Galois group.

By construction gr(m) is then a semi-simple Galgg-module with un-

derlying representation space a free rank T?”S) ®r k-module V@ where
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']I‘g i ']I‘?]ff ). We then have a Ti,(gi) [Galfp s]-equivariant isomorphism
ﬁm ®R R = ﬁm ®n HomGale (ﬁma V)7

where Galgpg acts on the first factor, and Ti’g) on the second. As a
deformation of p,, over the local k-algebra Tz’s) Qg K, it is given by a

map R, — Tz’s) ®r k where R is the usual deformation ring. The
previous isomorphism implies that this last map has to factor through
the residue field of R;_which is k. Moreover from R = T theorem, we
have a surjection

S S, (1)
Rﬁm - T£7m - vamz

so that Tg ]’S) ~ k. By Nakayama’s theorem, T‘?;Si) is then a local ring
corresponding to an unique m. O

The set of partitions dg , for various m < m, could be used to obtain
informations about the depth of m. Consider for example the following
situation:

o i)(m) = {CY, Qv - - - 7qg_1a};

— N,y 1S zero;

— there exists m < m such that I3, ~ Sty4(x,) for some character y,.

5.9. Lemma. — With the hypothesis of 5.5 and the three above assump-
tions, then the depth of m is greater than d.

Proof. — By construction each of the p,(m) is a direct sum of copies of
P SO that the nilpotent monodromy operator Ny, acts trivially. We
then deduce that Ny, sends p(m); onto p(m);_;. Our last hypothesis

then implies that N # 0 so that the depth of m should be greater

m,v

than d. O
More generally, consider
— r maximal such that there exists o with {a, ¢, - - ,¢ ta} <
S,(m). We also denote by ey, - ,e,_1 the associated eigenvectors
of p(Frob,).
— Let denote by ig = 0 <7; < -+ <1 < r—1 the indexes ¢ such that
e; € Ker Nm,v.

— We moreover assume the existence of m < m such that Il ~
St,(x»)x? where ¥, is a character of F* such that y,(w,) = «
and where ? means a irreducible representation we do not want to
precise.
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5.10. Lemma. — With the hypothesis of 5.5 and the three above as-
sumptions, then the depth of m is strictly greater than k.

Proof. — The existence of m implies that there exists an eigenvector f,_;
of pm(Frob,) ®z F for the eigenvalue ¢ v such that (N COhO)T Yft) #
0. We first mtroduce the following notations:

— i such that f._; € p(m);;

—for <j<r—1let f; = N; V7 (froa).

Through p(m); — p(m);/p(m);_1, the image of fi, by Ny, is zero so
that f;,_1 € p(m);_1. As S,(m) is supposed to be multiplicity free then
the image of f;, 1 in p(m),—1/p(m);—o ~ ﬁ?mi’l belongs to the space
generated by the e; _; in each of the copies of p,,. We can then repeat
the previous observation so that the image of f;, 1 € p(m);_o and that
finally the depth of m should be greater than k. m

6. The reducible case

In [13], N&t @y F, was wrongly identified with the direct sum of

N, so that [13] proposition 3.1.12 is false. The aim of loc. cit. was
to give conditions on dy, so that the torsion of the cohomology of the
KHT-Shimura variety is non trivial, and then play with the level in order
to obtain level lowering.

In this section we want to resume the strategy of [13] and give a correct
statement about level lowering. From the main result of [14], we then
have to consider the case where p,, is reducible. In [13] the irreducibility
hypothesis for p,, was used to insure the free quotients of the various
cohomology groups to be concentrated in middle degree. To keep this
property we then make the following hypothesis.

Hypothesis: We now consider the case where

— P 1s reducible

— and the semi-simplification of its restriction to the decomposition

group at v, which we write @._; Sp,, (Xv,;) without taking into

account the monodromy operator, verifies the following property
where Sp,, (Xu,) = Xu,i(552) @ -+ - xvi(251) as before:

e the Xm(%) fori =1,---,rand 0 < t; < s; — 1, are

pairwise distinct, i.e. y, (1224

2
(1fs]~2+2t]~) whatever are ¢; and t; verifying the previous

) is not isomorphic to any of
the x,
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inequality. Taking ¢ = j, we obtain in particular that, for all
1 =1,---,r, the order of ¢, modulo [ is strictly greater than
Si.

e Finally we impose that there exists ¢ # j with s; # s;.

Recall that if m < m appears in the cohomology of our KHT Shimura
variety such that pg is reducible then Tj , is a rectangle. It is in particular
excluded from the previous hypothesis, i.e. for every m < m then pg is
irreducible. In particular the free quotients of the cohomology localized
at m are still concentrated in middle degree but there might be non trivial
torsion classes. Note also that the modulo [ reduction of pg depends on
m but also of the chosen stable lattice inside it.

As now KHT-typicness is no more verified, we consider, for a partition
d of d, a Galpg-equivariant filtration of the free quotient H (1", d")u free

of H(I",d")y, so that each graded part is a stable lattice of some pg with

]%Z(O”) # (0). The modulo [ reductions of each of these lattices, give

then partitions of d associated to the Jordan blocks of the monodromy
operator at v and we denote by dy ,(d) the minimal one.

Remark. Note that, a priori, dy,(d) might depend on the choice of the
filtration of H(I",d")m free-

6.1. Definition. — (cf. [13] §1.1 and definition 1.3.1)
For d a partition of d, we denote by dV the partition such that its Young
diagram is obtain from those of d by deleting its first column.

We then say that wm is degraded relatively to d if dV = (dy = dy > - --)
is not contained in dy,(d) = (t1 = ta = ---) i.e. there exists i = 1 such
that d; > t;. o

6.2. Proposition. — Let d minimal such that H(I", d*)w free # (0) and
suppose that m is degraded relatively to d, then for every w € Spl(I)\{v},
there exists m < m with non zero invariant vectors upon I(w) defined as
follows:

— outside v and w it coincides with I"";

— at w it is of parahoric type for a partition (t,1,--- 1) for some
t<d;

— at v, I(w), = I,(e*) with e < d.
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Proof. — By hypothesis dy, ,(d) is strictly smaller than d. We first want
to prove that in the spectral sequence which degenerates in E; over Q,
Ei’g‘l = Hp+q(Sh]vI§* (Ov):§1l7 grrfp(\ljmé.))m = Hp+q(ShIUIQ* (Ov)’giﬂ \Ithg)m,

some of the EP7 for p + ¢ € {0,1} are not torsion free. We argue by
contradiction. From lemma 3.9, there is then no nontrivial torsion classes
in the initial terms of the spectral sequence. We follows the proof of
theorem 5.5. First the conclusion of lemma 5.7 is still true. Indeed

— consider a Galpg-equivariant filtration Fil® of H (1", d")m, free such
that the graded parts gr are free and irreducible after inverting .

— Modulo [ we then obtain a filtration with graded parts gr* isomor-
phic to I'/I[' where I' is some stable lattice of some pg: we then
denote by d(k) the associated partition given by the monodromy
operator.

— Let k£ be minimal such that in the labelled Young diagram of d(k),
there exists g,A and \ which are not in the same line: by hypothesis
such a k exists.

— Let denote by Vi()\) the eigenspace of Frob, acting on Fil, for

——=coho <

the eigenvalue A. Note then that the dimension of N, "Vi(g,\)
is strictly less than dim V,()\) and this inequality remains true for
every k' > k.
— The conclusion is then similar to those in the proof of 5.7.
If there were no torsion, then following the proof in the previous section,

by minimality of d, we would obtain m < m such that d = dg, would be
equal to dm,(d) which is not the case as m is supposed to be degraded
relatively to d.
So we know that at least one of the E; for p 4+ ¢ € {0,1}, has non
trivial torsion classes. We now take up the arguments of [13] §3.3:
— There should exists hg such that the cokernel of (3.12) has non trivial
torsion. In particular, cf. [5], there should exists an automorphic
representation I, irreducible, £-cohomological with

Hv = Stt0+1(X1},0) X Sttl (Xv,l) X X Sttr (Xv,r)a

where Y, ; are characters of F,* and ¢y, -- ,t, are integers we do not
want to precise at this point;

— to have non trivial torsion in level I[,(d*), TI¥ should have non
trivial invariant vectors under IV and the partition associated to
(to,1,t1, - ,t,) should be less than d.
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— From lemma 3.9, then H'~*(Shyvy, (%) 5,, im HT (Xv, Xv))m has non
to+1

. . . . ,—H
trivial torsion subspace where e* is the dual of (1,--- ,1,¢1,- - , ).
to+1
——

—If tg = 2 then as (1,--- ,1,ty, - ,t,) < (to,L,t1, - ,t,) < d. We
then consider the spectral sequence (2.13) in level 1V],(e*) so that
the initial terms are all torsion, some of then being non zero. The
proof of proposition 3.1 then gives us that E!, are then torsion and
non zero for some i.

We now have to deal with the case where tg = 1 and ¢ = d. As
in the proof of [13] lemma 3.3.3, we then consider coFil{(¥,.) :=
U, ¢/ Fil/ (¥, ¢) and its Z-exhaustive filtration where now P(1, y,) does
not appear anymore so that the spectral sequence associated to this
filtration degenerates as before in F; with torsion free initial terms. In
particular as in the proof of corollary 4.2, the dimensions ey, (r) (resp.
Emo(r)) of N, ®z Q; (resp. (Nﬁﬁzo)’”) for r > 2 coincide while for r = 1
we have €y, (1) = emp(1) + 6 for some 0 < § < e (2) — emp(1).

The labelled Young’s diagrams of N;O, ];O are then obtained from those of
d allowing to untie its first column. We then argue as before to conclude
that dV has to be contained in every labelled Young’s diagram of the
modulo [ reduction, relatively to lattices given by the cohomology, of

mw and so in particular d" is contained in dwo(d) telling that m is not
degraded. o

Finally, we deduce that there exists some non trivial torsion classes
in some of the HZ‘(ShIUIU(d/mv, Ve 7, )m. From the main result of [11], up
to increase the level at some extra place w € Spl(I)\{v} where the level
become parahoric for (t,1--- 1) for some ¢ < d, we can lift m with level
I,(e*) at v.

O

7. Automorphic congruences

As in [8], we can use the freeness of the cohomology groups of the
Harris-Taylor perverse sheaves, to produce automorphic congruences.
Consider then m verifying the hypothesis of proposition 3.1 so that the
Hi(Sh;s,,Pj"HT¢ (X0, h))m are free and concentrated in degree i = 0
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with

HO(Shys,, "ji" HTe(xo, 1) )n @7, B =
H°(Shys,, %" HT 5, (ri(x0), ) )m
= HO(ShI,EU: pj!:hHTs(X;a h))m &7z, Fl, (7.1)
whatever is x! such that the modulo [ reduction (%) of x} is isomorphic

to those of y,. Recall then from [5], the description of the Q,-cohomology
groups of 5" HT;(x,, h) localized at m.

7.2. Proposition. — (cf. [5] §3.6 with® s =1)
For x, an wunitary character of F), then, for 1 < h < d, as a
T3 [GLa(F,)]-module, we have

lim H°(Shyor, s, 755" HT g, (X, B)Jm = @ mI)M*)" 1L,
I, e A(I,£,h,xv,m)
where

— A(I, h, xv,m) is the set of irreducible £-cohomological automorphic
representations II of G(A) with non zero invariants under IV with
modulo | Satake’s parameters prescribed by m,

— such that 11, is of the following shape

IT, ~ Stn(x.) x ¥,
where W, is a representation of GLgy_p(F,),

— and m(I1) is the multiplicity of I1 in the space of automorphic forms.

Remark. We write the local component I1, of I € A(, &, h, x,, m) as
Hv = Sttl (Xv,l) XX Sttr (Xv,r) X \Il;”

where

— the x,, are inertially equivalent characters,

— W}, is an irreducible representation of G'Ly_yr  (F,) whose cusp-
idal support, made of character by hypothesis, does not contain a
character inertially equivalent to x, ;.

) As Pm 1s supposed to be irreducible, the integer s of [5] §3.6 is necessary equal to
1.
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Then II contributes &k times in the isomorphism of the previous proposi-
tion, where k = #{1 < i < r such that ¢; = h}.

We are now in the same situation as in [8] where we prove that the
conjecture 5.4.3 implies the conjecture 5.2.1 and the translation in terms
of automorphic congruences explained at the end of §5.2 The situation
here is much more simple as s = 1.

7.3. Corollary. — Let I1 be an irreducible automorphic representation
of G(A) which is §-comological of level K and such that

— its modulo | Satake’s parameters are given by m,

— and its local component I, at v is isomorphic to 1, ~ St (x,) x ¥y,
where x, 1S a characters and ¥, is an irreducible representation of
GLy 1(F,).

Consider then any character x, of F which is congruent to x, modulo .
Then there exists an irreducible automorphic representation I of G(A)
which s &-cohomological of the same level K and such that

— its modulo | Satake’s parameters are given by m,
— its local component at v is of the following shape

I ~ Sty (x)) x ¥
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