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GALOIS F-MONODROMY, LEVEL FIXING
AND THARA’S LEMMA

by

Boyer Pascal

Abstract. — We exhibit cases of a level fixing phenomenon for galoisian
automorphic representations of a CM field F', with dimension d > 2.
The proof rests on the freeness of the localized cohomology groups of
KHT Shimura varieties and the strictness of its filtration induced by
the spectral sequence associated to the filtration of stratification of the
nearby cycles perverse sheaf at some fixed place v of F. The main
point is the observation that the action of the unipotent monodromy
operator at v is then given by those on the nearby cycles where its order
of nilpotency modulo | equals those in characteristic zero. Finally we
infer some consequences concerning level raising and Thara’s lemma.
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1. Introduction

In [27], Ribet considers an absolutely irreducible representation

7 Gal(Q/Q) — GLy(F)),

which is modular of level NV, meaning that it arises from a cusp form of
weight 2 and trivial character on I'o(V).
a) Then for a prime p { [N such that

Tr p(Frob,) = +(p+1) mod [,

he proves that p also arises from a modular form of level pN which is
p-new, i.e. the automorphic representation associated to this modular
form has a local component at p which is isomorphic to the Steinberg
representation of GLs(Q,).

b) Using Cebotarev density theorem, there exists infinitely many
primes p { [N such that p(Frob,) is conjugate to p(c) where ¢ is the
complex conjugation ¢ € Gal(Q/Q). Then we have both

p=—1 mod [ and Tr p(Frob,) =0 mod I,

so that p is p-new for infinitely many p.

In [30] Sorensen generalizes this level raising congruences in higher
dimension for a connected reductive group G over a totally real field F'*
such that G is compact. One might also look at [1] theorem 1.1 and
theorem 4.1, for the case of automorphic representations of unitary type

of GLQn .

In this article, in higher dimension, we rather try to find mild con-
ditions where level lowering is impossible, i.e. where p is modular of
level pN but not of level N. To do so we consider a finite CM exten-
sion F'= EF™T of Q with £/Q imaginary quadratic and F'* totally real.
Let p : Gal(F/F) — GLg,(V) be an irreducible l-adic representation

of dimension d. Let I' be a stable Z;-lattice of V' and suppose that the
modulo [ reduction p of p is still irreducible so that, up to homothety, I'
is uniquely defined.

Consider now p # [ and a place v of F' above p: we denote by F, the
completion of F' at v with O, its ring of integers and k, its residue field
with order ¢,. We then denote by

en(l) = l ifg, =1 mod
v\ 1 the order of g, modulo I, otherwise
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Thanks to Grothendieck’s theorem, we know that the action of the
inertia subgroup I, at v is quasi-unipotent and let N, be the nilpotent
monodromy operator. Such a nilpotent operator defines a standard par-
tition

dpp=(n1 =n9=---n, 21)

of d = ny+---+n, corresponding to the decomposition of the restriction
p» of p to the decomposition group at v:

Pv = SPm (pv,l) @ et @ Spnr (pv,r)7
where the p,; are irreducible and

1—n; 3—n; n; —1
SP, vi) = Pug — - : )
pnz (p ) ) p ) ( 2 2 2 )

where N, induces isomorphisms p, ;(*=4+2) — pm(%) for 0 <

6 <n; — 1 and is trivial on pv,i(”gl).

If [ > ny, then we can also consider the nilpotent operator N, of the
action of I, modulo [ which also defines a partition d5, of d which is

) (‘D pv,i(

)@ @ puil

smaller than d,, for the Bruhat order. As in [11], one may ask for a
condition so that ds . = d, ., especially when there is as much irreducible
constituents in the Frobenius semi-simplification of p, as in p,. To be
relevant such a condition should not be about the place v.

To state our result, consider a similitude group G/Q as in §2, and for
any open compact subgroup I of G(A®), let denote by Sh;, — Spec O,
the Kottwitz-Harris-Taylor Shimura variety with level I, cf. definition
2.4. For any finite set S of places of F, let ']I‘gq be the Hecke algebra
defined, cf. 2.5, as the image of the abstract unramified Z;-Hecke algebra
of G(A%) outside S acting on the cohomology of Sh;, with coefficients
in a local system V, 7, where I is unramified away from S.

Consider then a maximal cohomological ideal m of T2, and for a prime
ideal m < m, we denote by

Pm - Galp,g — GLd(@l)

the Galois Q-representation associated to m, cf. [22], where Galpg is
the Galois group of the maximal extension of F' which is unramified out-
side S. By Cebotarev’s density theorem and the fact that a semi-simple
representation is determined , up to isomorphism, by characteristic poly-
nomials, then the semi-simple class p,, of the reduction modulo [ of pg
depends only of the maximal ideal m of T containing m. For all prime x
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of Z split in E and a place w ¢ S of F' above x, we moreover denote by
Prw(X) the characteristic polynomial of 5,,(Frob,,) and let Sy(w) be its
multi-set of roots. We also denote by N, & the monodromy opertator at
v of pz and N%m its modulo [ reduction.

1.1. Definition. — (cf. the introduction of [12])
We say that m is KHT-free if the cohomology groups of the Kottwitz-
Harris-Taylor Shimura variety of notation 2.4, localized at m, are free.

From [8], any of the following properties ensure KHT-freeness of m.

(1) There exists a place w; ¢ S of F' above a prime p; splits in £, such
that the multi-set Sy (w;) of roots of Py, 4, (X) does not contain any
sub-multi-set of the shape {«, q,,a} where g, is the order of the
residue field of F' at w;. This hypothesis is called generic in [13].

(2) When [F(exp(2in/l)) : F| > d, if we suppose the following prop-
erty to be true, cf. [8] 4.17. If 0 : Gr — GL4(Q)) is an ir-
reducible continuous representation such that for all place w ¢ S
above a prime z € Z split in F, then P, (0(Frob,)) = 0 (resp.
Py 4 (0(Frob,)) = 0) implies that 6 is equivalent to 5, (resp. Dy ),
where mY is the maximal ideal of Tg associated to the dual mut-
liset of Satake parameters, cf. [8] notation 4.4. In [18], the authors
proved that the previous property is verified in each of the following
cases:

e cither p,, is induced from a character of Gx where K/F is a
cyclic galoisian extension;

e orl >dand SLy(k)  p,(Gr) < F, GL4(k) for some subfield

k‘CFl.

1.2. Theorem. — Suppose that

— Pm 1S irreducible,

— the set S,(m) of irreducible sub-quotients of the restriction of pm
to the decomposition group at v is made of characters. Moreover,
whatever is the F,-character Xv, we assume that S,(m) does not

contain {xv, xo(1), -, xu(ex(l) — 1)}.
— m s KHT-free in the sense of definition 1.1.

Then the two partitions dy, and dg, associated respectively to the unipo-

tent operator at v for pg. and py.,,, share the same mazximal nilpotency
as explained below in definition 1.3.
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Two characters o, Y, : FX — @, (resp. F,), viewed by the Artin
isomorphism as characters of the Weil group at v, are said inertially
. . ; . . X
equivalent, and we write x/ ~" x,, if there exists £ : Z — Q; (resp.
F,) such that x/, ~ x, ® (£ o val). We then denote by C, (resp. C,) the
set of characters y, : F) — @lx (resp. le) modulo inertial equivalence.
For m < m as above, we write

Prap = @ P, X

XvECy
where pay, = SPn () (Xv1) @ -+ @ Sy (o) (Xor) With Xu1, - Xoyr
inertially equivalent to x,, and ng1(xw) = -+ = na,r(Xy). In the same
way, we write
pm,v = @ ﬁm,ilﬂ
Yuegv

as well as 7y 1(X,) = -+ = Nnr(Xy)-

1.3. Definition. — We say that pg, and py,,, share the same mazimal

nilpotency if for every X, € C, there ewists x, whose modulo | reduction
is inertially equivalent to X, with ng1(Xy) = w1 (X,)-

Remarks:

— For GLs and the proper Shimura curves of [14] associated to a
totally real field F'* # @, our second hypothesis is ¢, # —1 mod [
and the conclusion is d , = di -

— In [10] corollary 2.9, ‘we explained how to construct automorphic
congruences between tempered representations, one being ramified
at v while the other is not. To do so we need to start from a
non trivial torsion class in the cohomology of some KHT Shimura
variety. In section 3 of [10], we construct torsion cohomology classes
associated to some maximal ideal m but in these constructions p,,
is always reducible, as it is also in theorem 1.1 of [1].

The main idea to prove the theorem, is to analyze the monodromy
action at the place v, inside the cohomology groups of the compact KHT
Shimura variety Sh;, — Spec O,. This cohomology localized at m is
computed through the spectral sequence, cf. (2.11)

/20 5 p+q
El,m Eoo,m?

associated to the filtration of stratification of the free perverse sheaf of
nearby cycles. As p,, is supposed to be irreducible, it degenerates at
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E, after tensoring with Q,. Moreover, by definition of KHT-freeness of
m, we know that the E7  are all free. The main step is then to prove
that all the E}% are also free so that the monodromy action N7 on
the cohomology groups is purely of local nature and can be read on the
sheaf of nearby cycles, cf. proposition 4.1 and the proof of theorem 1.2
in §5. The result follows then from the theorem 2.12, originally proved
by Carayol in [15] for G' Ly, which describes the Z;-cohomology localized
at m of our KHT Shimura variety as a tensor product oy, ®T§m Pm, Where

— o 1S a ']I‘S7 n-module on which Galg g acts trivially,
—and py : Galpg — GLg(TZ,,) is a stable lattice of Py, P, cf.
theorem 5.1 of [29].

More precisely, the freeness of the £7y, implies that the nilpotency of the
modulo I reduction of N5%° is maximal so that it has to be the same as
those of Num.

One might expect similar results in other situations where enters arith-

metic geometry. Although this level fixing phenomenon seems specific to
these situations, cf. for example theorem 4.1 of [1].
Remark. Using the main results of [9], you could replace everywhere the
characters by irreducible supercuspidal representations such that their
modulo [ reduction remains supercuspidal. The main issue is the lemma
3.2 which is obvious for characters and which is one of the main results
of [9] for supercuspidal representations which remain supercuspidal after
modulo [ reduction.

In the work of Ribet, the main tool for proving the level raising, is
Ihara’s lemma. In higher dimension, Clozel, Harris and Taylor proposed a
conjectural version of Thara’s lemma for compact unitary groups. In [12]
we proved some instances of this conjecture implied by a non compact
version of Thara’s lemma for H4*(Sh;; ,F))n. In the last section, we
first prove that Thara’s lemma for compact unitary group implies Ihara’s
lemma for KHT unitary groups. When the order ¢, of the residual field at
the place v is such that ¢, =1 mod [, we then prove that Ihara’s lemma
implies that the partitions dy, = dg, are maximal, cf. the remark after
proposition 7.2 and, thanks to theorem 1.2, this level raising property is
in fact equivalent to Ihara’s lemma, cf. proposition 7.3.
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2. The monodromy operator acting on the cohomology

Let F' = FTE be a CM field with E/Q quadratic imaginary and F'*
totally real. Let B/F be a central division algebra with dimension d* with
an involution of second kind . For 8 € B*=!, consider the similitude

group G/Q defined for any Q-algebra R by
G(R) :=={(\,g) € R* x (B” ®q R)” such that gg* = A

with B? = B ®p, F' where ¢ = |y is the complex conjugation and fg is
the involution z — 2% := B2*~1. Following [22], we assume from now
on that G(R) has signatures (1,d — 1), (0,d),--- , (0,d).

2.1. Definition. — Let Spl be the set of places v of F' such that p, :=
vig # 1 is split in B and B} ~ GLg4(F,).

We now suppose that p = uu® splits in F so that
G(Q) ~Q x [ [(BI)"
wlu
where w describes the places of F' above u and we fix a place v € Spl
dividing p.

2.2. Definition. — For a finite set S of places of Q containing the
places where G is ramified, denote by TS, = Hm¢S T, abs the abstract un-

abs -
ramified Hecke algebra where Ty aps ~ Zi[ X (T,)|"V= for T, a split torus,
W, the spherical Weyl group and X*"(T,) is the set of Z;-unramified
characters of T,.

Ezample. For x = uu® split in £ we have
P:l-v|-“z,abs = Hzl[Tw,i D= ]-7 s 7d]7
wlu
where T, ; is the characteristic function of
; d—i

—
GL4(Oy) diag(toy, -+, @, L, -+, 1)GL4(Oy) < GL4(Fy).
We then denote by Z the set of open compact subgroups

UP(m, -+ my) = U x 2 x | [ Kex(©f, — (O, /P1))
i=1
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where UP is any small enough open compact subgroup of G(A»*) and
Op,, is the maximal order of B,, with maximal ideal P,, and where
v =, - ,0, are the places of ' above u with p = uu®.

2.3. Notation. — For I = UP(mq,---,m,) € Z, we will denote by
I'(n) := UP(n,ma,--- ,m,). We also denote by Spl(I) the subset of Spl
of places which does not divide the level 1.

2.4. Notation. — As defined in [22], attached to each I € T is a
Shimura variety called of KHT-type and denoted by

Shy, — Spec O,

where O, denote the ring of integers of the completion F, of F' at v.

Let 0y : E < @, be a fixed embedding and write ® for the set of
embeddings ¢ : F < Q; whose restriction to E equals oy. There exists
then, cf. [22] p.97, an explicit bijection between irreducible algebraic
representations & of G over Q; and (d+1)-uple (ag, (@5)ses) Where ag € Z
and for all o € ®, we have a, = (a,1 < -+ < a,4). We then denote by

Ve,
the associated Z,;-local system on Shy ,.

2.5. Notation. — Let T? be the image of T2, inside

abs
2d—2 )
@ lim H (S, Veg,)
=0 g

where the limit concerned the ideals I which are mazximal at each places
outside S, and Shy;, is the geometric generic fiber of Shy,.

To each maximal ideal m of T? [1/1], or equivalently a minimal prime

of Tf , which we now supposed to be non-Eisenstein, is associated an
irreducible automorphic representation Il which is £&-cohomological, i.e.
there exists an integer ¢ such that

H'((Lie G(R)) ®& C, U, L, ® ™) # (0),

where U is a maximal open compact subgroup modulo the center of G(R).
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2.6. Notation. — Let denote by Scusp,(m), the supercuspidal support
of its local component at v, denoted Ilg.,,. NoteV) that the modulo 1
reduction of Scusp,(m) is independent of the choice of m < m: we denote
it Scusp,,(m).

Recall that the geometric special fiber Shy 5, of Shy,, is equipped with
the Newton stratification

>d >d—1 =1 _
Sthv C SthU cC - C ShI,EU = Sthv,

where for 1 < h < d, Shi’;ﬂ (resp. Sh;gv) is the closed (resp. the open)
Newton stratum of height h and of pure dimension d — h, defined as the
sub-scheme where the connected component of the universal Barsotti-
Tate group is of rank greater or equal to h (resp. equal to h).

Moreover for 1 < h < d, the Newton stratum Sh;i,fv is geometrically
induced under the action of the parabolic subgroup P, 4 (F,), defined
as the stabilizer of the first h vectors of the canonical basis of F¢. Con-
cretely, cf. [2] §10.4, this means that there exists a closed sub-scheme
Sh;" — stabilized by the Hecke action of Py q—n(F,) and such that

1,8y,1p

@Shlz”}zn),% = (@ Shlzfzn),gv,ﬁ) X Pha—n(Fy) GLd(FU)‘

n n

2.7. Notation. — For a representation m, of GL4(F,) with coefficients
either Q; or Fy, and n € 37, we set m,{n} = m, ® V" where v(g) :=

Gv valdet@) - pecall that the normalized induction of two representations

Tp1 and T, o of respectively G Ly, (F,) and GLy,,(F,) is

T X Tg 1= 1ndPn1 :Q(}?v) 771171{?} ®7TU72{—? .

Recall that a representation m, of GL4(F,) is called cuspidal (resp.
supercuspidal) if it is not a subspace (resp. a subquotient) of a proper
parabolic induced representation. When the field of coefficients is of
characteristic zero then these two notions coincides, but this is no more
true over F;. For example the modulo [ reduction of an irreducible Q-
representation is still cuspidal but not necessary supercuspidal, its su-
percuspidal support being a Zelevinsky segment.

(1t follows, through the Langlands correspondence, from Cebotarev’s theorem and
the fact that a semi-simple representation is determined, up to isomorphism, by its
characteristic polynomials.
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2.8. Definition. — (sec [32] 89 and [4] §1.4) Let g be a divisor of
d = sg and m, an irreducible cuspidal Q;-representation of GL4(F,).
The induced representatz’on

}Xﬂv{ }X

holds a unique irreduczble quotient (resp. subspace) denoted Stq(m,) (resp.
Speh,(m,)); it is a generalized Steinberg (resp. Speh) representation.

s—1

(2.8)

7rv{

Remark. For x, a character, Speh,(x,) is the character y, o det of
GLL(F,).

Let 7, be an irreducible cuspidal Q,-representation of GL,(F,) and fix
t > 1 such that tg < d. Thanks to Igusa varieties, Harrls and Taylor

constructed a local system on ShI
»Svs ]-t_q

€1y

£@z (ﬂ-”[ 1tg @ £@z ’0” i/ 1eg

where

— my[t]p is the representation of D,  which is the image of the con-
tragredient of St;(m,) by the Jacquet-Langlands correspondence,

— D, 4 is the central division algebra over F, with invariant g,

— with maximal order denoted by D, 4,

— and with (m,[¢] D)IDUX,tg = @;™ pv,i with p,; irreductible.

The Hecke action of Py 444(F)) is then given through its quotient
Piga—tg(Fy) = GLyy(Fy) X GLitg(Fy) = GLa—1g(Fy) % Z,

where G Ly (F,) x GLg—1y(F,) is the Levi quotient of the parabolic
P,y a-ty(F,) and the second map is given by the valuation of the deter-
minant map GL,(F,) - Z. These local systems have stable Z,-lattices
and we will write simply £(m,[t] p)1;, for any Zy-stable lattice that we
do not want to specify.

2.9. Notations. — For Il; any Q;-representation of G Liy(F,), and = :
%Z — le defined by E(%) = ¢'2, we introduce

®IL®E"T

1ig

HTg, 1, (7. 1) := Lg,(m[t]p)5;
and its induced version

I/{\T‘@l(ﬂ'v, Ht) = <£@l (Wv[t]D)E® Ht ® Et

g—d
2 > X Pig.d—tg(Fy) GLd(Fv)a
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where the unipotent radical of Py q—14(F,) acts trivially and the action of

¢k
= (5 g ) ) € G x Py (B < W,
where W, 1s the Weil group at v, is given

tg—d
=, where deg :

— by the action of g¢ on 1y and deg(o,) € Z on =
W, — Z sends geometric Frobenius to 1,
— and the action of (g%, g, val(det g¢) — dego,) € G(A®Y) x
tg—d
GLd—tg(Fv> X 7, on E@l (Wv[t]D)

Q=2
We also introduce

HTg, (0, 11,) := HTg, (. 11,)[d — tg],

Teg

and the perverse sheaf
Pg,(t, m)1; = j%f’!*HT@bE(m, St(my)) ® L(m,),

and their induced version, HTg (my, I1;) and Pg (t,7,), where

tg __ ;tg >tg . =tg =tg _
J~ 9 =19057Y Shy g < Shz ¢ < Shrs,

and 1L is the local Langlands correspondence composed by contragredient.
We will also denote by HT@hg(m,Ht) = HT@l(m,Ht) ® Ve and simi-
larly for the other notations as for example Py, (t,7,) == Pg,(t,m,) ® V.

Remarks:

— We will simply denote by P(t,,) any Z-lattice of Pg,(t,m,) that
we do not want to precise except that it is stable under the various
actions. We will use a similar convention for the other sheaves
introduced before. When considering F;-coefficients, we will put F;
in place of Q; in the notations.

— Recall that 7] is said inertially equivalent to m,, and we write m, ~;
7!, if there exists a character ¢ : Z — Q, such that 7/, ~ 7, ® (o
valodet). We denote by e, the order of the inertial class of .

— Note, cf. [3] 2.1.4, that Py, (¢, 7,) depends only on the inertial class
of m, and

P@z (t, ’/TU) = emp@l (t, 7Tv)

where Pg, (¢, 7,) is an irreducible perverse sheaf.
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— For a character® , and when ¢ < e,(l), up to homothety there is
only one stable Z;-stable lattice of £(m,[t]p). From the description
of the modulo [ reduction of St;(x,) in [5], the same is then true for
P(t, xv)-

— Over Z,;, we also have the p+-perverse structure which is dual to
the usual p-structure.

2.10. Notation. — Let denote by

U, := RV, (Z[d - 1])(%)

the nearby cycles autodual free perverse sheaf on the geometric special

fiber Shy s, of Shy,.

Following the constructions of [6] §2.3, we can then define a Z-
filtration Fil*(W¥,) whose graded parts gr"(W,) are free Z;-perverse
sheaves, cf. [6] §1, of the following shape

1—t+20

S) g (1)

PjieVHT (my, Ste(m,))(

1—t+4+20

5 )
for some 0 < § < t — 1, where <» means a bimorphism®, that is
both a epimorphism and a monomorphism, and where the lattice
HT(m,, Sty(m,)) depends of the construction in the general situation but
we will see that, with our hypothesis, up to isomorphism, there is only
one such stable lattice.
Remarks:

< P HT (my, Sto(m) )

— In [9], we prove that if you always use the adjunction maps
gihi=h* — 1d (resp. Id — j7"5="*) then all the previous graded
parts are isomorphic to p-intermerdiate (resp. p+) extensions. In
our situation this issue disappear thanks to lemma 3.2.

— We can easily arrange the filtration so that it is compatible with
the nilpotent monodromy operator N,, i.e. so that for any r the

()For a general supercuspidal representation 7, whose modulo ! reduction o is still
supercuspidal, the same is true if ¢ < m(g) where m(p) is either the order of the
Zelevinsky line of p if it is > 1, otherwise m(p) := .

G)by [6] corollary 1.4.6, the p and p+ intermediate extensions are free
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image of Fil'(¥,) ®; Q, under N, is some Fil*") (@) ®z, Q for
some decreasing function ¢.

— When dealing with sheaves, there is no need to introduce the local
system Vg7 because it suffices to add ®z,V; 7, to the formulas.

We now consider a fixed local system V.7 and, following previous
notations, we write Ve , := W, ®z V; 7. We then have a spectral sequence

EYY = H"(Shy s, 007" (Veo)) = HP™(Shy g, Vez,)- (2.11)

As pointed out in [11], if for some m the spectral sequence is concen-
trated in middle degree, i.e. EV% = 0 for p+ ¢ # d — 1, and all the

Ef’ffl_l_p are free, then, for [ > d, the action of the monodromy operator

Ngoke on H'(Shyz,, Ve 7, )m comes from the action of N, on W,, cf. §5.
We now want to undegtand the relation between the modulo [ reduc-
tion N, N of N§oho and Ny . We first write

H (Shrg,, Vez ) ®z, Q =~ @ T ® pr,

mcm

where we view Il as a Tg ®z, Q;-module and ps as a representation of
Galp g, the Galois group of the maximal extension of /' which is unram-
ified outside S.

The cohomology with Z;-coefficients is then a lattice of this decompo—
sition which is stable by the action of both Tsm and Galpg. As p,, i
supposed to be irreducible, we then have the followmg analog in hlgher
dimension of a theorem of Carayol in [15].

2.12. Theorem. — (cf. [29] theorem 5.6) As a Tgn|Galrs]-module,
H™ (Xug, Vez,)m =~ 0w Qrs - Pm;
for some T*Sim—module owm on which Galpg acts trivially and
m : Galpg — GLq(T¢ )

is a stable lattice of Ps, P, cf. theorem 5.1 of [29].

Note that the monodromy operator N, of oy, is then equals to ch’olf}"

so that in particular (N%°)" is zero modulo [ if and only if Nﬁm =0.
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3. A saturated filtration of the cohomology

The aim of this section is the following proposition.

3.1. Proposition. — Under the hypothesis of theorem 1.2, the E’f”g1 are
torsion free and trivial for p +q # d — 1.

Note that, as (2.11) after localization at m, degenerates at F;
over Q;, then the spectral sequence gives us a saturated filtration of
H*Y(Shy ., Ve 7, )m- As the proof uses Grothendieck-Verdier duality and
we need to understand the difference between the p and p+ intermediate
extensions of Harris-Taylor local systems HT'(m,, St:(7,)).

3.2. Lemma. — With the previous notations, we have an isomorphism

PjEt H T (X, ) = P 520 HTr (X, ).

Proof. — By definition we have
HTE(XM Hh)[h - d] (Zl)\ ShTh ® Uy,

1,80,1),

where the action of the fondamental group goes through the character x..
As, cf. [24], ShZh 1 is smooth over SpecF,, then P := (Zl)|Sh>h ®1II,

i
is perverse for the two t-structures with

h<+1, ch<+1,! >
Zl—+ *P e PD<Y and Zl—+ P e Ptp>1,
h

[]

Proof. — (of proposition 3.1)
As m is supposed to be KHT-free, then all the £  are free. Moreover,

as Py, is irreducible, then, cf. [4] §3.6, the BT ®Z Q, are all zero if
p+q # d—1. Recall, cf. [9] proposition 3.1.3, that we have the following
splitting

d
EB SERZ
=1 geScuspF (9)
where Scuspg,(g) is the set of inertial equivalence classes of irreducible
F;-supercuspidal representations of G'L 4(F,), with the property that the
irreducible constituents of ¥, ®z Q, are exactly the perverse Harris-
Taylor sheaf associated to an irreducible cuspidal Q;-representation of
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some G'L4(F,) such that the supercuspidal support of the modulo [ re-
duction of 7, is a segment associated to the inertial class o. In particular
for every o € Scuspg, (g), the cohomology groups of ¥, are torsion free.

Remark. When computing the m-localized cohomology groups, we are
only concerned with ¢ € Scusp,(m) which are characters. Moreover as
ey(l) > d, in ¥, ®z, Q,; we have only to deal with characters y, so that,
by the previous lemma, the p and p+ intermediate extensions coincide.

3.3. Proposition. — We have the following equivariant resolution

d—h

_ h—d e
0 = jr HT (xo, Sta(xol —5—1) * Spehg_p (xufh/2}) ®E 2" — -+

— TV HT (X0, Sta (o (—1/2)) X xo{h/2}) ® Z2 —
G HT (X, St (o)) — i " HT (X, Str(x0)) — 0. (3.4)

Note that

— as this resolution is equivalent to the computation of the sheaves
cohomology groups of Pj;." HT (x,, Stx(X.)) as explained for example
in [9] proposition B.1.5 of appendice B, then, over Q,, it follows from
the main results of [3].

— Over Zy, as every terms are free perverse sheaves, then all the maps
are necessary strict.

— This resolution, for a a general supercuspidal representation with

supercuspidal modulo [ reduction, is one of the main result of [9]
§2.3.

Proof. — For the case of a character y, as above, the argument is almost
obvious. Indeed as the strata Sh?ffgml are smooth, then, cf. the proof of
the lemma 3.2, the constant sheaf, up to shift, is perverse and so equals
to the intermediate extension of the constant sheaf, shifted by d — h, on
Sh;ffgu,l. In particular its sheaves cohomology groups are well known so
that the resolution is completely obvious for pji’?!*HTﬂ(Xv, Str(xw)) if
one remember that Speh,(x,) is just the character y, o det of GL;(F,).
The stated resolution is then simply the induced version of the resolu-
tion of pjlihlf!*H Tr-(Xv, Sta(Xo)): recall that a direct sum of intermediate
extensions is still an intermediate extension. O
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By adjunction property, the map

. —0 -
3 HT (o, Sta(xol—5}) x Speh; (xu{h/2})) @ =72

6—1

s G HT (St L ) x Spel s (0 (A/2) @27 (35

is given by
-5 _
HT (xo, Stn(xo{-}) x Spebs(xo{h/2})) ®z92

g (POt (e 1HT<Xmsth(Xv{—})XSpeh5 1o {h/2}))@=

s—1

)
(3.6)
To compute this last term we use the resolution (3. 4) Prec1sely denote
by H := HT(x0, Sta(x{*52}) x Spehs_; (x.{h/2})) ®Z°%, and write the
previous resolution as follows
0—>K—>]' h+6H/_’Q_’O
O N Q N J!—h+§ IH _ j!;h—l-(s IH N 07
with

1—-9 0—1 _
M i= HT (o, Sta(xof =5 1) (Spehs_; (oo =1/2) v —5—)) {h/2} ) @7
As the support of K is contained in Sh[>2+5+1 then Pi"*%'K = K and
G=hHox (PRI s zero.  Moreover Zf’zh*‘s'(p]*h“s '"H) is zero by con-
struction of the intermediate extension. We then deduce that

JTIOR PO 1HT(XU,Stt(Xv{—})><Speh5 1(xo{h/2}))®E">

6=1

2))
~ HT(XU,Sth(XU{T})

< (Spebs_ (el -1/2)) % el S5 D) (h/2}) @ (3.7

3.8 — Fact. In particular, up to homothety, the map (3.7), and so those

of (3.6), is unique. Finally as the maps of (3.4) are strict, the given maps
(3.5) are uniquely determined, that is, if we forget the infinitesimal parts,
these maps are independent of the chosen ¢ in (3.4).

For every 1 < h < d, let denote by i(h) the smallest index i such that
H¥(Shys,, i HT (Xv, Sta(Xo)))m has non trivial torsion: if it does not
exist then we set i(h) = +o0. By duality, as Pj,, = Py, for Harris-Taylor
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local systems associated to characters, note that when i(h) is finite then
i(h) < 0. Suppose by absurdity there exists A with i(h) finite and denote
ho the biggest such h.

3.9. Lemma. — For 1 < h < hy then i(h) = h — hy.

Remark. A similar result is proved in [8] when the level is maximal at v.

Proof. — a) We first prove that for every hy < h < d, the cohomology
groups of j;"HT(x,,I1;) are torsion free. Consider the following strict
filtration in the category of free perverse sheaves

(0) = Fil™'~%(x,, h) > Fil=(x,, h) > ---
> Fil " (xu, h) = 5" HT (o, 111)

where the symbol <}- means a strict monomorphism, with graded parts

h—k h—k

5 }®Stk—h(Xv{h/2}))(T)'

gt " (X, h) =~ D5 HT (x, 1§

Over Q,, the result is proved in [3] §4.3. From [6] such a filtration can
be constructed over Z; up to the fact that the graduate parts are only
known to verify

h—k
2

< PG HT (X, T

Pjie HT (X, T

@St/ 2)) () < (v, )

h—k h—k

5 J® Stk—h(Xv{h/Q}))(T)»

and we can conclude thanks to lemma 3.2. The associated spectral se-
quence localized at m, is then concentrated in middle degree and torsion
free which gives the claim.

b) Before watching the cases h < hg, note that the spectral sequence
associated to (3.4) for h = ho + 1, has all its E terms torsion free and
degenerates at its Fy terms. As by hypothesis the aims of this spectral
sequence is free and equals to only one Es terms, we deduce that all the
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maps

m

— —0 _
HO (Shy s, 57" HTe(xor Sta(xof 1) x Spehy(xo{h/2})) @ =7%)

b 1—-96
H°(Shrs,, 37" HTe (X, Sth(Xv{T})

x Spehy_, (xo{h/2})) ®E7") _ (3.10)

are saturated, i.e. their cokernel are free Z;-modules. Then from the
previous fact stressed after (3.7), this property remains true when we
consider the associated spectral sequence for 1 < b’ < hyg.

c¢) Consider now h = hg and the spectral sequence associated to (3.4)
where

(1]

EYY = HP*?9(Shyg,, j; "+
HT: (X0, Str(xo(—q/2)) x Speh, (xo{h/2})) ® E%)w (3.10)

By definition of hg, we know that some of the E% " should have a non
trivial torsion subspace. We saw that
— the contributions from the deeper strata are torsion free and
— Hi(sh[”g,u,j!:hOHTg(XfU, I11,))m are zero for i < 0 and is torsion free
for i = 0, whatever is IIj,.
— Then there should exist a non strict map dy?. But, we have just
seen that it can not be maps between deeper strata.
— Finally, using the previous points, the only possibility is that the
cokernel of

— -1 —
H"(Shygs,, ji hOHHT&(XU,S‘?ho(Xv{?}) x Xoiho/2})) ® EY?)

—>

H°(Shyg,, 5" HTe(Xo, Stho (X0))),,  (3.11)

has a non trivial torsion subspace.

m

In particular we have i(hg) = 0.
d) Finally using the fact 2.18 and the previous points, for any 1 < h <
ho, in the spectral sequence (3.10)

— by point a), E5 is torsion free for ¢ = hg — h + 1 and so it is zero
if p+ 2q # 0;
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— by affiness of the open strata, cf. [8] theorem 1.8, E5? is zero for
p + 2q < 0 and torsion free for p + 2g = 0;
— by point b), the maps d5? are saturated for ¢ > hg — h + 2;
. by pOiIlt C), d2—2(ho—h+1),ho—h+1
torsion subspace.
— Moreover, over Q;, the spectral sequence degenerates at Es and
EP?T =0if (p,q) # (0,0).
We then deduce that H*(Shys,, ?i" HTe (X, 1) )m is zero for i < h — hg
and for ¢ = h — hg it has a non trivial torsion subspace. O

has a cokernel with a non trivial

Consider now the filtration of stratification of ¥, constructed using
the adjunction morphisms j;"5="* as in [6]

Fﬂll(\lfg) —+ Fﬂ!2<\119) e Fﬂ!d(\llg) (3.11)
where Fill'(¥,) is the saturated image of j"j="*¥, — W,. For our
fixed x,, let denote Fil!l,Xv(\IJ) «} Fil} (¥,) such that Filixv(\lf) ®z, Q@ ~
Fil{ (¥,,) where U, is the direct factor of W ®7z, Q, associated to y,, cf.
[6].

3.12. Proposition. — We have the following resolution of FiliXU(\I/)

_ d—1
0 — 5= HT (X0, Spehy(xo)) @ L(xo(——)) —

2
—d d—2
]!7(1 1HT<XU7 Spehd—l(Xv)) ®L(XU(T)) -

- — § HT (X0, xo) @ L) — Fill | (¥,) —> 0, (3.13)

where we recall that 1L is the local Langlands correspondence composed by
contragredient.

Remarks:

— As explained after proposition 3.3, it amounts to describe the germs
of the Z;-sheaf cohomology of Fil,{XU (W,¢). Over @, the resolution
(3.13) is then proved in [3].

— Over 7Z;, it is proved in full generality in [9] for every irreducible
supercuspidal representation m, in place of y,. It amounts to prove
that the germs of the sheaf cohomology of Fil,{xqj (W, ) are free.

Proof. — We then just need to verify that every map is strict. Consider
then the torsion part of the cokernel of one of these maps. Note that,
thanks to lemma 3.2, such a cokernel must have non trivial invariants
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under the action the Iwahori sub-group at v. We then work at Iwahori
level at v. As said above, it amounts to understand the germs of the
Zy-sheaf cohomology of Fil,{XU (¥) which are described, cf. [19], by the
cohomology of the Lubin-Tate tower. By the comparison theorem of
Faltings-Fargues, cf. [20], one is reduced to compute the cohomology of
the Drinfeld tower in Iwahori level which is already done in [28]: we then
note that there are all free Z;-modules. O

We can then apply the previous arguments a)-d) above, so that
H'(Shys,, Filin(\va{)m has non trivial torsion for i = 1 — hy and its free
quotient is zero for ¢ # 0.

Consider now the other graded parts. We also have a similar resolution

— d—h
0— ]!7dHT(va LThd(Xv)) ® Lg(Xv<—>) -

2
. d—h-—1
g d 1f‘]T(XW LTh,d—l(Xv)) ® Lg(Xv(T)) —

T j!:hHT(va Sth(Xv)) ® Lg(Xv) - Fﬂ!}fXU(\D) — 0, (3'14)

where

LTy ns(xo) = Sta(xu{—0/2}) x Spehs(xu{h/2}),

is the only irreducible sub-space of this induced representation. By
the same arguments, for h < hg (resp. h > hg) the torsion of
H'(Shyg,, Fil (W, ¢))m is trivial for any i < h — ho (resp. for all i)
and the free parts are concentrated for ¢ = 0. Using then the spectral
sequence associated to the previous filtration, we can then conclude that
H'7%(Shyz,, ¥, ¢)m would have non trivial torsion which is false as m is
supposed to be KHT-free.

m

4. Local behavior of monodromy over F,

Let o be a Fj-character. In [6] §2.3, we explained how to construct a
filtration Fill*(V,) of ¥,, called exhaustive, whose graded parts grr”(V,)
are free Z;-perverse sheaves of the following shape

. _ _ 1—h+20

grt” (W) ®z, Qi = "ji" HTg, (xo, Sta () (————)
for some 0 < § <t — 1 and y, a Q-character whose modulo ! reduction
is inertially equivalent to . In order to compute the cohomology groups
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localized at m of Shy,, by hypothesis on m, we are only concerned with
the cases where 1 < h < ¢,(l). For a character y,, with modulo [ reduction
inertially equivalent to g, and for 2 < h < d, consider r,, 1 (h) such that

grr"e =M (W,) is isomorphic to P(h, x,)(+52). Then N/~ induces a
map

Nh—l
Fill™e+ M (@ ) = Fill"e - "y )

| |

Fillxv:+®) (\I;Q)]\M)grrmf(h) (W,),

so that N(x,,h) ®z @ is an isomorphism. In this section we want to
prove that this property remains true modulo [.

4.1. Proposition. — Suppose e,(q) > t, then the morphism on
Fill'+® (w,)/ Fill'-M~1(¥,) induced by the monodromy operator N,, is
strict.

Proof. — Recall first that the filtration Fill*(¥,) is constructed so that
it is compatible with the action of N, in the sense that, over Q;, the
image of Fill"(¥,) is some Fill?"(¥,). We then have to prove that for
every r_(h) < r < ri(h), we have a p-epimorphism N, : Fill"(¥,) —
Fill¢(r)(\ll o) which is clearly equivalent to prove that for every 1 < b’ < h,
then N, induces a isomorphism

1—h +26
2

Pje HT (X, St (X))

Pt HT (o, Star (X)) (

)—>

1—n +22(6 — 1))’ (4.9)

for every 1 < 0 < h/, where each of these two perverse sheaf is given by
the graded parts gri”(¥,) and grr?™)(W,).

Recall that under the hypothesis that e,(q) > h > I, then the reduc-
tion modulo I of x, [P ]| p®Ly(x0) @St (Xy) is irreducible so that there ex-
ists, up to homothety, an unique stable lattice of HT'(x,, Sty(x»)) which
means that to prove (4.2) is a isomorphism, it suffices to prove its reduc-
tion modulo [ is non zero. To do so, it suffices to work in the Iwahori
level and use the arguments of [11] §3.1 where the monodromy action is,
thanks to Rapoport-Zink cf. [23] 3.6.13, described explicitly and is of
maximal nilpotency. O]
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5. Level fixing property

Consider as before a maximal ideal m associated to the modulo [ re-
duction of an irreducible automorphic representation Il with m < m:
recall that m corresponds to the multiset of modulo [ Satake parameters
at almost all places where Il is unramified.

A classical question is then to know if it is possible to find another
prime ideal m’ such that at a fixed place v, the level of Il , is strictly
lower (resp. higher) of whose of Il ,: we then speak of level lowering
(resp. raising) phenomenon.

In this section we are interested in the opposite situation where what-
ever is m < m, then the level at v is constrained by m.

Proof. — (of theorem 1.2)

By KHT-freeness of m, we are in the situation of proposition 3.1 so that
the nilpotency of the monodromy operator Nmﬂ, on P, is given by those
of Ng%“’ ®z, IF; on the cohomology which is controlled by the action of
the local monodromy operator NV, on the vanishing cycle sheaves. More
precisely, consider a F;-character o in the support of Pm,p- FoOr any prime
ideal m < m we have

P = Sptl (Xv,l) ®---D SptT (Xv,r)u

where xy1, -+, Xv,r are characters some of them being isomorphic to o
modulo I. Let then t5(0) := max{t; s.t. x,; ®z F; ~ o} and

t := max{tz(0) s.t. m < m}.
Choose any m such that ¢ = t5(p), then as pg is irreducible, from [25]
Hrﬁ,v = Sttl (XvJ) X ”'Sttr (X'U,’I“)7

with, say, t; = ¢ and x,1 ®g, F, ~ o. Let r; be the indexes such that
gr'+(W,) ~ P(t1, xo)(+52). By proposition 4.1, N~ induces an
isomorphism

NPt g™ (W,) ~ g (0,).

By proposition 3.1, the spectral sequence associated to the filtration of ¥,

induces a saturated filtration of H%(Shy s, ¥, ¢)m, and thus a F-filtration
of

H°(Shys, Upe)m ®z, Fr ~ H(Shys,, ¥pe @5 Fi)u.

l
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——=coho

Then we deduce that (N, )~! # (0) and then an_l is non zero on the
direct factor p,, , as defined in the introduction. Note also as N is zero
on Py, then N;ﬂ, IS necessary zero on p .

Consider now any m’ < m and let y, be a character such that y, ®z,
F; ~ o. As the modulo [ reduction of N!~! acting on pg.,, is non zero
then there must exist x,1 ~" x,» such that Sp, (xv,1) is a direct factor of
Pap With £ > t: by maximality of the definition of ¢ we then have ¢, = t,
and the theorem is proved. ]

Remark. Using the main result of [9], one can state and prove in the same
way, the above statement without the hypothesis that Scusp, (m) contains
only characters but cuspidal representation with modulo [ reduction still
supercuspidal.

6. Automorphic congruences

Consider a KHT-free maximal ideal m as in theorem 1.2. From the
proof of proposition 3.1 we then deduce that the H(Shy s, , Pji;" HT¢ (Xv, h))m
are free and concentrated in degree ¢ = 0 so that

HO(Shy s, "ji" HTe (X, h)m @7, F1 >

HO (Shlyg'u Y p]'zhHTf,Fl (T[ (XU)7 h))m
= HO(ShI,§u7 pj!:hHTE(X;v h))m ®Zl Fl’ (61)
whatever is x} such that the modulo [ reduction r;(/,) of x/, is isomorphic

to those of x,. Recall then from [4], the description of the Q,-cohomology
groups of ?ji-" HT¢(x,, h) localized at m.

6.2. Proposition. — (cf. [4] §3.6 with® s =1)
For x, an wunitary character of F,), then, for 1 < h < d, as a
Tw|GL4(F,)]-module, we have

lim H°(Shror, s, "i Hl e g, (xo M))w >~ @D m(IHIT*)" ®IL,,

I, MeA(L,§,h,xv,m)

where

M As Pm 1s supposed to be irreducible, the integer s of [4] §3.6 is necessary equal to
1.
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— A(I, h, xv,m) is the set of irreducible £-cohomological automorphic
representations II of G(A) with non zero invariants under 1V with
modulo | Satake’s parameters prescribed by m,

— such that 11, is of the following shape

Hv = Sth(Xv) X \Ijv

where W, is a representation of G Ly (F,),
— and m(I1) is the multiplicity of 11 in the space of automorphic forms.

Remark. We write the local component IL, of IT € A(I,&, h, x,, m) as
HU =~ Stt1 (Xv,l) X X Stty- (XU,T) X ‘;[j:n

where

— the x,,; are inertially equivalent characters,

— W}, is an irreducible representation of G Ly yr 4 (F,) whose cusp-
idal support, made of character by hypothesis, does not contain a
character inertially equivalent to x, ;.

Then II contributes &k times in the isomorphism of the previous proposi-
tion, where k = #{1 < ¢ < r such that ¢, = h}.

We are now in the same situation as in [7] where we prove that the
conjecture 5.4.3 implies the conjecture 5.2.1 and the translation in terms
of automorphic congruences explained at the end of §5.2 The situation
here is much more simple as s = 1.

6.3. Corollary. — Let 11 be an irreducible automorphic representation
of G(A) which is &-comological of level K and such that

— its modulo | Satake’s parameters are given by m,

— and its local component I, at v is isomorphic to 11, ~ Stp(x,) x ¥y,
where x, s a characters and ¥, is an irreducible representation of
GL4n(F,).

Consider then any character x., of F, which is congruent to x, modulo .
Then there exists an irreducible automorphic representation II' of G(A)
which 1s £-cohomological of the same level K and such that

— its modulo | Satake’s parameters are given by m,
— 1ts local component at v is of the following shape

I ~ Sty (X)) x W
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7. Thara’s lemma and level raising

In the Taylor-Wiles method, Thara’s lemma is the key ingredient to
extend a R = T property from the minimal case to a non minimal one.
In higher dimension, Clozel, Harris and Taylor in their first proof of Sato-
Tate theorem [16], proposed a generalization which involves, for example,
a similitude group G over Q verifying the following hypothesis.

— there exists a prime number p’ = u/(u')¢ decomposed in FE, such
that p’ # p and G(A®*") is isomorphic to our previous G(A®*),

— the associated unitary group of G(R) is compact and

- G(Qy) ~ T (B%)* where w' describe the places of F
above u’,

— where there exists a place v'|u’ such that B, ~ B, for all w'|u’
distinct from v" and B, ~ GL4(F,) while B, is a division algebra
with invariant 1/d.

With the previous notations, consider a finite set S of places of F

and a maximal ideal m of the anemic Hecke algebra ']I‘f such that p,, is
absolutely irreducible.

7.1. Conjecture. — Let U be an open compact subgroup of G(A)
unramified outside S and let © be an irreducible sub-representation of
C*(GQ\G(A)/U",F)w, where U = U,U . Then its local component
T, al v 1S generic.

More precisely the conjecture is supposed to be true for all similitude
groups G/Q such that the associated unitary group of G(R) is compact.
We can also formulate a similar conjecture for similitude groupe G as
in §2 to define a KHT Shimura variety. We could then hope that any
irreducible sub-space of

lim H* Y (Shye(n) 5,5 Fo)ms

n

as a representation of GLg4(F),), is necessary generic. In [12] §2.3, we
prove that if this KHT version of Ihara’s conjecture would be true then
the Clozel-Harris-Taylor usual version would also be true. We now first
want to prove a reciprocal statement for G and G as above.

7.2. Proposition. — Take | > d such that p’ =1 mod [ and consider
a mazximal ideal m which is KHT-free. Then the Ihara’s conjecture for G
implies the Ihara’s conjecture for G.
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Proof. — Thanks to [26] theorem 6.23, we hace a rigid-analytic uni-
formization of Shy 5 , as

GQ\(x aa=)x T B ),

wlu/, w#v’

where € is the Drinfeld rigid-analytic space of GL4. By [21] §4.5.3, this
uniformization allows us to compute the cohomology of Shy; , through
a spectral sequence

EZ;#I _ EXt%Ld(F,) (sz_q_z(éd,ﬁﬂ(d . 1)“711“ ) = HP'*“I(Sh[,ﬁval)a

where I, is supposed to be the inversible group of the maximal order of
B,

Asl>dand p’ =1 mod [, we are then in the banal case where the
theory of Fj-representations and those over Q; are the same, cf. [31].

Recall, cf. [28], that the Hi(4,7Z;) are torsion free so that

Hi(éd,Fl) ~ Hi(Kde,Zl) @Zl Fl.
We then localize the previous spectral sequence at m so that, £V ®z,
Q = (0)if p+¢q # d— 1: in particular it degenerates at E.
Indeed as a GLy(F,)-representation, H?47279(); Q,) is isomor-

phic to LTy ,(d,q) defined as the unique irreducible sub-space of

Stq+1(]lv/(%l)) x Speh,_, 1(1,()) so that, as m is not pseudo Eisen-
stein, then the only irreducible automorphic representations II of G(A)
giving a non zero term in the spectral sequence are those for which
I, ~ Stq(x,) with x, a character inertially equivalent to the trivial
one. Then it is well-known, cf. [17] theorem 1.3 for example, that for
0<q<d—1,theonly £V ® Q; which is non zero, is forp =d—1—gq
with p,q = 0.

By the previous remark, the same is then true over F; so that we
have a filtration of Hd_l(ShI,ﬁU, ,F))m with graded parts the Ef 79 By

1m
hypothesis each of these Ef’;l_q’q satisfies the Thara property at the place

v, so that the same is true for Hd*1(8h17ﬁv,,Fl)m.
[

We now want to give some consequences of Thara’s lemma in relation
with theorem 1.2. Consider then a maximal ideal m of the anemic Hecke
algebra Tg¢ which is KHT-free and such that p, is irreducible. We
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moreover suppose that ¢, =1 mod [ with [ > d, and that S,(m) is made
of characters. Let then p € S,(m) and we denote by s its multiplicity.

7.3. Proposition. — If Thara’s lemma is true for G, then there exists
m < m such that g, >~ Sts(xy) x ¥, where x, = ¢ mod [, and ¥, is a
irreducible representation of GL4_s(F,) whose modulo [ reduction has a
supercuspidal support disjoint from® p.

Proof. — The strategy is to suppose that the conclusion is false and then
prove that Thara’s lemma is then not verified. Let then ¢ < s maximal
such that there exists m < m with ITg ~ St;(x,) x I, such that x, = o
mod [. Then, by proposition 6.2, for all h > ¢, the H(Shys,, Pe(Xv, 1))m
are zero and the spectral sequence associated to Fill*(¥,) gives

HO<Sh17§v7 P&(XU7 t)>m ®ZZ Fl - HD(Sh17§v7 \Dgé)m ®Zl Fl

The idea is then to construct an irreducible F;[G Ly(F,)] sub-module of
H°(Shrs,, Pe(Xv: t))m ®7z, F, which is not generic. By proposition 6.2,
Iz is a Q[GL4(F,)] sub-module of H°(Shys,,Pe(X0v,t))m so that, by
taking a saturated lattice, Iz ®z F, is a F;[GLy(F,)] sub-module of
H(Shys,, Pe(Xv,t))m @z, Fi. Using the fact that the strata are induced
and s < d < [ so that St;(x,) ®z, I, is irreducible isomorphic to St;(o),
we are then reduced to prove that St;(o) x (I', ®, ;) has an irreducible
sub-space which is not generic, whatever is the stable lattice of I', taken
to compute (I, ®z, F;).

As m is not pseudo-Eisenstein and S, (m) is made of characters, then I,
is of the following shape Sty (Xy.1) X - - - X Sty, (X») Where, as we supposed
t < s, at least one of the characters Y, ; is congruent to o modulo [. Take
then an irreducible sub-space 7 of (I'y ®g, F;). If 7 is not generic we are
done, otherwise 7 ~ St, ;(¢) x ¥ where the supercuspidal support of ¢
does not contain p. We then conclude by noting that St;(0) x Sts_:(0)
has a non generic subspace. Indeed St;(9) x Sts_;(0) is the modulo [
reduction of St;(x,(52)) x Sts—¢(xv(5)) which has an unique irreducible
subspace which is non generic, and we conclude as an irreducible non
generic representation does not have any irreducible generic subquotient.

O

(®)Recall that as g, = 1 mod I, then the F;-Zelevinsky line of ¢ is {o}.
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Remark. In the previous proof, note that St;(¢) x Sts_;(0) is also the
modulo [ reduction of St;(x,(—%52)) x Sts—(x»(—35)) which has an unique
irreducible sub-space which is Sts(x.), so that St;(0) x Sts_(0) is the
direct sum of a generic representation with a non generic one.

Regarding theorem 1.2, Ihara’s lemma tells us that dn, = ds, and is
maximal, i.e. the order of nilpotency of N, on each of the block associated
to an irreducible F;-representation g is equal to the multiplicity of o inside
Sy(m) viewed as a multi-set. The reciprocal is also true and could be
stated as follows.

7.4. Proposition. — Let m be as in theorem 1.2 with ¢, = 1 mod [.
We suppose that for every o € S,(m) with multiplicity s, there exists
m < m, such that g, ~ Sts(x,) x I, where x, = ¢ mod I, and T, is a
irreducible representation of GL4_s(F,). Then Ihara’s lemma is true.

Proof. — We consider the filtration of H'(Shy5,, ¥, ¢)m induced by the
spectral sequence associated to the previous filtration Fill*(W,) of U,.
Recall that it degenerates at F; and each of the graded parts are torsion
free. We then have a F)-filtration of the F;-cohomology and we want to
prove that each of these graded parts verifies the Thara’s property.

By theorem 1.2, the only non zero contributions are those of

1—s5+ 2k

H'(8hr . Pe(s, o) (—

))m @Zl Fl;

with 0 < k£ < s — 1. By proposition 6.2, this is, up to multiplicty,
isomorphic to Sts(0) x (A, ®7, ;) where A, is a Z;-stable lattice of T, :=
Ste, (Xw1) X - -+ X Sty (Xv,) Where the x,,; are characters non isomorphic
to o modulo [. It then suffices to prove that all the x,; are pairwise non
isomorphic modulo [ so that A, ® F, is generic.

Take for example 01 := x,1®7, F;. By the level raising property, there
must exists m; such that g, , ~ St (x;,1) X Wy, with X}, ; = X1 mod
and where s; equals the multiplicity of o; in S,(m). Then theorem 1.2
implies that ¢; = s;, so that all the others yx,; for 2 < i < r are not

congruent to x,,; modulo [.
O
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