
HAL Id: hal-02267548
https://hal.science/hal-02267548v1

Preprint submitted on 19 Aug 2019 (v1), last revised 11 Oct 2023 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local F_l-monodromy and level fixing
Pascal Boyer

To cite this version:

Pascal Boyer. Local F_l-monodromy and level fixing. 2019. �hal-02267548v1�

https://hal.science/hal-02267548v1
https://hal.archives-ouvertes.fr


LOCAL Fl-MONODROMY AND LEVEL FIXING

by

Boyer Pascal

Abstract. — We tackle three related problems. The first deals
with freeness of localized cohomology groups of Harris-Taylor perverse
sheaves, defined on the special fiber of some Kottwitz-Harris-Taylor
Shimura variety. We then study the nilpotent monodromy operator
acting both on the global cohomology of KHT Shimura variety and
on the perverse sheaf of vanishing cycles. We then exhibe cases of
level fixing phenomenon in the sense where the level at some fixed
place of any rise in characteristic zero of an irreducible automorphic
representation, is fixed equals to the one modulo l.
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1. Introduction

Let F be a finite extension of Q and ρ : GalpF̄ {F q ÝÑ GLQlpV q
an irreducible l-adic representation of dimension d. Let Γ be a stable
Zl-lattice of V and suppose that the modulo l reduction ρ of ρ is still
irreducible so that, up to homothety, Γ is uniquely defined.

Consider now p ‰ l and a place v of F above p: we denote Fv the com-
pletion of F at v and Ov its ring of integers. Thanks to Grothendieck’s
theorem, we know the action of inertia subgroup Iv at v to be unipotent,
defining the nilpotent monodromy operator Nv. Such a nilpotent oper-
taor defines a partition dρ,v “ pn1 ě n2 ě ¨ ¨ ¨nr ě 1q of d “ n1`¨ ¨ ¨`nr.

If l ě n1, then we can also consider the nilpotent operator N v of the
action of Iv modulo l which also defines a partition dρ,v of d which is

smaller than dρ,v for the Bruhat order. As in [8], one may ask for a

condition so that dρ,v “ dρ,v, especially when there is as much irreducible

constituants in the semi-simplification of ρ̄v as in ρv.
To state our result, let TS be the unramified Zl-Hecke algebra of GpAS

F q

outside a finite number of place S of F and consider a maximal cohomo-
logical ideal m of TS and a prime ideal rm Ă m and denote ρ :“ ρ

rm. The
semi-simple class ρm of the reduction modulo l of ρ

rm depends only of the
maximal ideal m of T containing rm. For all prime x of Z split in E and
a place w R S of F above x, we then denote Pm,wpXq the characteristic
polynomial of ρmpFrobwq and Smpwq its multiset of roots.

1.1. Definition. — We say that m is free if any of this following prop-
erty is verified:

– α P Smpwq ñ qwα R Smpwq where qw is the cardinal of the residue
field at w;

– ρm is induced from a character of GK where K{F is a cyclic ga-
loisian extension;

– l ě d and SLdpkq Ă ρmpGF q Ă Fˆl GLdpkq for some subfield k Ă Fl.

Remark. These conditions come from [4] so that the cohomology of KHT-
Shimura varieties localized at m are torsion free, see the next section. In
particular you can replace them by any other property which insures
freeness of the cohomology.

1.2. Theorem. — Suppose that

– ρm is irreducible,
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– for every irreducible subquotient % of the restriction to ρm to the
decomposition group at v, then the cardinal mp%q of the Zelevinsky
line of %q, cf. notation 3.1, is strictly greater than d,

– and m is free in the sense of definition 1.1.

Then the two partitions dm,v and d
rm,v associated respectively to the unipo-

tent operator at v for ρ
rm,v and ρm,v, are the same.

Such a property is orthogonal to those of [8] to have some level lowering
statement and we will prove that indeed, under the hypothesis of the
previous theorem, we obtain some level fixing statement, cf. proposition
4.1, which can also be stated as follow.

1.3. Corollary. — Consider two automorphic representations Π1 and
Π2 whose Satake’s parameters at places outside S, are congruent modulo
l and prescribed by m. Then let K1 and K2 be open compact subgroups
of GLdpA8q such that, ΠKi

i ‰ p0q for i “ 1, 2. Suppose moreover that
K1,v “ PipFvq X GLdpOvq where for i “ 1, 2, Pi is a standard parabolic
subgroup associated to a partition di of d which we suppose to be maximal
for the previous property. Then up to conjugacy, we have d1 “ d2.

The main idea to prove previous theorem, is to deal with the co-
homology groups of some compact Kottwitz-Harris-Taylor Shimura
variety XI,v ÝÑ SpecOv with level I, an open compact subgroup
of GpA8q where G{Q is some similitude group with signatures
p1, n ´ 1q, p0, nq, ¨ ¨ ¨ , p0, nq at infinity, cf. [9]. To each maximal ideal rm
as before, is associated an irreducible automorphic representation Π

rm

with local component at v denoted Π
rm,v with supercuspidal support

Scuspvprmq whose modulo l reduction is independant of the choice of
rm Ă m: we denote it Scuspvpmq.

Consider the spectral sequence of vanishing cycles at the place v lo-
calized at m; as by hypothesis m is such that ρm is irreducible, then
Ep,q

1,m bZl Ql ñ Ep`q
8,m degenerates at E1 and is concentrated in degree

p`q “ d´1. The hypothesis m free implies that En
8,m are all free; in the

next section we will prove that all the Ep,q
1,m are also free. Recall that each

of these Ep,q
1 can be described as a successive extension of the middle

cohomology group of a Haris-Taylor perverse sheaves and we are lead
to prove that the localizition at m of the cohomology groups of Harris-
Taylor perverse sheaves are free. As an application of this freeness, we
then deduce that the monodromy Zl-action is purely of local nature and
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can be read on the sheaf of nearby cycles. In §3, we then study this local
monodromy cf. proposition 3.2.

2. Uniformity of nilpotency on the cohomology

From now on we fix a maximal ideal m of TS verifying the hypothesis
of theorem 1.2. We want to prove that the partition d

rm associated to any
minimal prime ideal rm Ă m depends only on m.

Let then F “ F`E be a CM field with E{Q quadratic imaginary and
let B{F be a central division algebra with dimension d2 with a involution
of second specie ˚. For β P B˚“´1, consider the similitude groupe G{Q
defined for any Q-algebra R by

GpRq :“ tpλ, gq P Rˆ ˆ pBop
bQ Rq

ˆ such that gg7β “ λu,

where Bop “ BbF,cF where c “ ˚|F is the complex conjugation and 7β is
the involution x ÞÑ x7β :“ βx˚β´1. Following [9], we can manage so that
GpRq has signatures p1, d ´ 1q, p0, dq, ¨ ¨ ¨ , p0, dq. We moreover suppose
that p “ uuc splits in E so that

GpQpq » Qˆp ˆ
ź

w|u

pBop
w q

ˆ

where w describes the places of F above u. We ask then Bv to be split,
isomorphic to GLdpFvq.

We then denote I the set of open compact subgroup

Up
pmq “ Up

ˆ Zˆp ˆ
r
ź

i“1

KerpOˆ
Bvi
ÝÑ pOBvi

{Pmi
vi
q
ˆ
q

where Up is any small enough open compact subgroup of GpAp,8q and
OBvi

is the maximal order of Bvi with maximal ideal Pvi and where
v1, ¨ ¨ ¨ , vr are the places of F above u with p “ uuc.

Attached to each I P I is a Shimura variety XI ÝÑ Ov where Ov

denote the ring of integers of the completion Fv of F at v. Let denote

Ψv :“ RΨηvpZlrd´ 1sqp
d´ 1

2
q

the nearby cycles autodual free perverse sheaf on the geometric special
fiber XI,s̄v of XI . Using the Newton stratification and following the con-

structions of [7], we can define a Zl-filtration Fil‚pΨvq whose graduates
are free isomorphic to some free perverse Harris-Taylor sheaf defined as
follows.
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2.1. Notation. — For a representation πv of GLdpFvq and n P 1
2
Z, set

πvtnu :“ πv b q´n val ˝det
v . Recall that the normalized induction of two

representations πv,1 and πv,2 of respectively GLn1pFvq and GLn2pFvq is

π1 ˆ π2 :“ ind
GLn1`n2 pFvq

Pn1,n1`n2 pFvq
πv,1t

n2

2
u b πv,2t´

n1

2
u.

Recall that a representation πv of GLdpFvq is called cuspidal (resp.
supercuspidal) if it’s not a subspace (resp. subquotient) of a proper
parabolic induced representation. When the field of coefficients is of
characteristic zero then these two notions coincides, but this is no more
true for Fl.

2.2. Definition. — More precisely let πv be an irreducible Ql-
representation then its modulo l reduction is still cuspidal but not
necessary supercuspidal: in this case its supercuspidal support is a seg-
ment r%, %νs´1s where % is irreducible supercuspidal and s is either equal
to 1 or of the following shape s “ mp%qlk for k P N. In the former case
we say that πv is of %-type ´1 and otherwise of %-type k.

Let πv be an irreducible cuspidal Ql-representation of GLgpFvq and fix
t ě 1 such that tg ď d. Thanks to Igusa varieties, Harris and Taylor
constructed a local system on X“tg

I,s̄,1h

LQlpπvrtsDq1h “
eπv
à

i“1

LQlpρv,iq1h

where pπvrtsDq|Dˆv,h
“

Àeπv
i“1 ρv,i with ρv,i irreductible. The Hecke action

of Ptg,d´tgpFvq is then given through its quotient GLd´tgˆZ. These local

systems have stable Zl-lattices and we will write simply LpπvrtsDq1h for

any Zl-stable lattice that we don’t want to specify.

2.3. Notations. — For Πt any representation of GLtg and Ξ : 1
2
Z ÝÑ

Zˆl defined by Ξp1
2
q “ q1{2, we introduce

ĄHT 1pπv,Πtq :“ LpπvrtsDq1h b Πt b Ξ
tg´d

2

and its induced version

ĄHT pπv,Πtq :“
´

LpπvrtsDq1h b Πt b Ξ
tg´d

2

¯

ˆPtg,d´tgpFvq GLdpFvq,
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where the unipotent radical of Ptg,d´tgpFvq acts trivially and the action of

pg8,v,

ˆ

gcv ˚

0 getv

˙

, σvq P GpA8,vq ˆ Ptg,d´tgpFvq ˆWv

is given

– by the action of gcv on Πt and degpσvq P Z on Ξ
tg´d

2 , and
– the action of pg8,v, getv , valpdet gcvq´deg σvq P GpA8,vqˆGLd´tgpFvqˆ
Z on LQlpπvrtsDq1h b Ξ

tg´d
2 .

We also introduce

HT pπv,Πtq1h :“ ĄHT pπv,Πtq1hrd´ tgs,

and the perverse sheaf

P pt, πvq1h :“ j“tg
1h,!˚

HT pπv, Sttpπvqq1h b Lpπvq,

and their induced version, HT pπv,Πtq and P pt, πvq, where

j“h “ ih ˝ jěh : X“h
I,s̄ ãÑ Xěh

I,s̄ ãÑ XI,s̄

and L_ is the local Langlands correspondence.

Remark. Recall that π1v is said inertially equivalent to πv if there exists

a character ζ : Z ÝÑ Qˆl such that π1v » πv bpζ ˝ val ˝ detq. Note, cf. [1]
2.1.4, that PQlpt, πvq depends only on the inertial class of πv and

PQlpt, πvq “ eπvPQlpt, πvq

where PQlpt, πvq is an irreducible perverse sheaf.

Over Zl, we also have the p`-perverse structure which is dual to
the usual p-structure and the graduate grrpΨvq of Fill‚pΨvq are free Zl-
perverse sheaves of the following shape

pj“h!˚ HTZlpπv, Sttpπvqqp
1´ t` 2δ

2
q ã� grrpΨvq

ã� p`j“h!˚ HTZlpπv, Sttpπvqqp
1´ t` 2δ

2
q

for some 0 ď k ď t ´ 1, where ã� means a bimorphism, that is both a
epimorphism and a monomorphism, and where HTZlpπv, Sttpπvqq means
a certain lattice of the Harris-Taylor local system.
Remarks:
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– In [6], we proved that if you always use the adjunction maps
j“h! j“h,˚ Ñ Id then all the previous graduates are isomorphic to
p-intermerdiate extensions.

– Moreover if we are only interested in maximal ideal m such that
Scuspvpmq is multiplicity free, then for all πv P Scuspvpmq the two
intermediate extensions coincide.

– Finally we can easily arrange the filtration so that it is compatible
with the nilpotent monodromy operator Nv, i.e. so that for any
r the image of FilrpΨvq bZl Ql is some FilφprqpΨvq bZl Ql for some
decreasing function φ.

We then have a spectral sequence

Ep,q
1 “ Hp`q

pXI,s̄v , gr´ppΨvqq ñ Hp`q
pXI,η̄v ,Zlq.

Note moreover it’s straightforward to replace the constant sheaf Zl by
the sheaf VZl,ξ attached to any irreducible algebraic representation ξ of
GpQq.

As pointed out in [8], if for some m the spectral sequence is concen-

trated in middle degree, i.e. Ep,q
1,m “ 0 for p`q ‰ d´1, and all the Ep,d´1´p

1,m

are free, then the action of the monodromy operator on Hd´1pXI,η̄v ,Zlqm
comes from its action on Ψv: we can then say that the nilpotency of the
monodromy Galois action is m-uniform i.e. for every rm Ă m the parti-
tion d

rm is equal to dm. The local question of the nilpotency of Nv will be
studied in the next section.

2.4. Proposition. — Under the hypothesis of theorem 1.2, the Ep,q
1,m are

torsion free and trivial for p` q ‰ d´ 1.

Proof. — In [4], we proved that under any of the conditions of definition
1.1, H ipXI,η̄v ,Zlqm is torsion free concentrated in degree i “ d´1. More-

over Ep,q
1,mbZl Ql is zero if p` q ‰ d´ 1 so we are lead to prove that Ep,q

1,m

is torsion free. In [5] we prove it if Scuspvpmq is multiplicity free. Here
using the main result of [6], we will prove that if all the En

8,m are torsion
free then the same is true for all the Ep,q

1,m.
Recall, cf. [6] proposition 3.1.3, that we have the following splitting

Ψv »

d
à

g“1

à

%PScuspFl
pgq

Ψ%
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where ScuspFlpgq is the set of inertial equivalence classes of irreducible

Fl-supercuspidal representation of GLgpFvq, with the property the irre-

ducible constituant of Ψ% bZl Ql are exactly the perverse Harris-Taylor

sheaf associated to a irreducible cuspidale Ql-representations of some
GLgpFvq such that the supercuspidal support of the modulo l reduction
of πv is a segment associated to the inertial class %, cf. definition 2.2.
In particular for every % P ScuspFlpgq, the cohomology groups of Ψ% are
torsion free.

Consider now an irreducible Ql-cuspidal representation πv,u of %-type
u. In [6] proposition 2.4.2, we proved the following equality in the
Grothendieck group of equivariant Fl-perverse sheaves

F
´

pj
“tgup%q
!˚ HT pπv,u,Πtq

¯

“ mp%qlu
s´tmp%qlu

ÿ

r“0

pj
“tgup%q`rg´1p%q
!˚

HT
`

%, rlpΠtq
ÝÑ
ˆV%pr ` tmp%ql

u,ă δuq
˘

b Ξr g´1
2 . (2.5)

where with the notation of [2] propositions 3.2.2 et 3.2.7, V%pr`tmp%ql
u,ă

δuq is the sum of some of the irreducible subquotients of the modulo l re-
duction of the Steinberg representation Strg´1p%qpπv,´1q where rlpπv,´1q »

%.
Remark. In particular, in order to prove that the cohomology of Harris-
Taylor perverse is concentrated in middle degree, we only have to deal
with those associated to a fixed cuspidal πv,´1 of %-type ´1 where, by one
of the main result of [6], the p and p` intermediate extensions coincide.

Recall the following resolution of pj“tg!˚ HT pπv,´1, Sttpπv,´1qq

0 Ñ j“sg! HT pπv,´1, Stspπv,´1t
t´ s

2
uqˆSpehs´tpπv,´1tt{2uqqbΞ

s´t
2 ÝÑ ¨ ¨ ¨

ÝÑ j
“pt`1qg
! HT pπv,´1, Sttpπv,´1p´1{2qq ˆ πv,´1tt{2uq b Ξ

1
2 ÝÑ

j“tg! HT pπv,´1, Sttpπv,´1qq ÝÑ
pj“tg!˚ HT pπv,´1, Sttpπv,´1qq Ñ 0. (2.6)
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which is proved in [1] for Ql-coefficients and in [6] over Zl. By adjunction
property, the map

j
“pt`δqg
! HT pπv,´1, Sttpπv,´1t

´δ

2
uq ˆ Spehδpπv,´1tt{2uqq b Ξδ{2

ÝÑ j
“pt`δ´1qg
! HT pπv,´1, Sttpπv,´1t

1´ δ

2
uqˆSpehδ´1pπv,´1tt{2uqqbΞ

δ´1
2

(2.7)

is given by

HT pπv,´1, Sttpπv,´1t
´δ

2
uq ˆ Spehδpπv,´1tt{2uqq b Ξδ{2

ÝÑ

pipt`δqg,!j
“pt`δ´1qg
! HT pπv,´1, Sttpπv,´1t

1´ δ

2
uqˆSpehδ´1pπv,´1tt{2uqqbΞ

δ´1
2

(2.8)

From [6], we have

pipt`δqg,!j
“pt`δ´1qg
! HT pπv,´1, Sttpπv,´1t

1´ δ

2
uqˆSpehδ´1pπv,´1tt{2uqqbΞ

δ´1
2

» HT
´

πv,´1, Sttpπv,´1t
1´ δ

2
uq

ˆ
`

Spehδ´1pπv,´1t´1{2uq ˆ πv,´1t
δ ´ 1

2
u
˘

tt{2u
¯

b Ξδ{2 (2.9)

Fact. In particular, up to homothety, the map (2.9), and so those of
(2.8), is unique. Finally as the map of (2.6) are strict, the given maps
(2.7) are uniquely determined, that is if we forget the infinitesimal parts,
these maps are independent of chosen t in (2.6).

For every 1 ď t ď d, let denote iptq the smaller index i such that
H ipXI,s̄v ,

pj“tg!˚ HTZlpπv,´1, Sttpπv,´1qqqm has non trivial torsion: if it
doesn’t exists then set iptq “ `8. By duality, as pj!˚ “

p`j!˚ for cuspidal
representation πv,´1 of %-type ´1, note that when iptq is finite then
iptq ď 0. Suppose by absurdity there exists t with iptq finite and denote
t0 the bigger such t.

2.10. Lemma. — For 1 ď t ď t0 then iptq “ t´ t0.

Remark. A similar result is proved in [4] when πv,´1 is a character and
when the level is maximal at v.
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Proof. — Note first that for every t0 ď t ď s, then the cohomology
groups of j“tg! HT pπv,´1,Πtq are torsion free. Indeed there exists a filtra-
tion

p0q “ Fil0pπv,´1, tq ãÑ Fil´dpπv,´1, tq ãÑ ¨ ¨ ¨

ãÑ Fil´tpπv,´1, tq “ j“tg! HT pπv,´1,Πtq

with graduates

gr´kpπv,´1, tq »
pj“kg!˚ HT pπv,´1,Πtt

t´ k

2
u b Stk´tpπv,´1tt{2uqqp

t´ k

2
q.

The associated spectral sequence localized at m is then concentrated in
middle degree and torsion free. Then the spectral sequence associated to
(2.6) has all its E1 terms torsion free and degenerates at its E2 terms.
As by hypothesis the aims of this spectral sequence is free and equals to
only one E2 terms, we deduce that all the maps

H0
`

XI,s̄,v, j
“pt`δqg
! HT pπv,´1, Sttpπv,´1t

´δ

2
uqˆSpehδpπv,´1tt{2uqqbΞδ{2

˘

m

ÝÑ

H0
`

XI,s̄,v, j
“pt`δ´1qg
! HT pπv,´1, Sttpπv,´1t

1´ δ

2
uq

ˆ Spehδ´1pπv,´1tt{2uqq b Ξ
δ´1
2

˘

m
(2.11)

are strict. Then from the previous fact stressed after (2.9), this property
remains true when we consider the associated spectral sequence for 1 ď
t1 ď t0.

Consider now t “ t0 where we know the torsion to be non trivial. From
what was observed above we then deduce that the map

H0
`

XI,s̄,v, j
“pt0`1g
! HT pπv,´1, Stt0pπv,´1t

´1

2
uq ˆ πv,´1tt0{2uqq b Ξ1{2

˘

m

ÝÑ

H0
`

XI,s̄,v, j
“t0g
! HT pπv,´1, Stt0pπv,´1q

˘

m
(2.12)

has a non trivial torsion cokernel so that ipt0q “ 0.
Finally for any 1 ď t ď t0, the map like (2.12) for t ` δ ´ 1 ă t0 are

strict so that the H ipXI,s̄v ,
pj“tg!˚ HT pπv,´1,Πtqqm are zero for i ă t ´ t0

while when t` δ´ 1 “ t0 its cokernel has non trivial torsion which gives
then a non trivial torsion class in H t´t0pXI,s̄v ,

pj“tg!˚ HT pπv,´1,Πtqqm.
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Remark. Note from (2.5) that for any πv of type % and for every t, then
the torsion of H ipXI,s̄v ,

pj“tg!˚ HT pπv,Πtqqm is trivial for any i ď 1 ´ t0
which gives us the corresponding informations about the associated map
(2.12).

Let consider now the filtration of stratification of Ψ% constructed using
the adjunction morphisms j“tg! j“tg,˚ as in [3]

Fil0! pΨ%q ãÝ|Ñ Fillg! pΨ%q ãÝ|Ñ Fill2g! pΨ%q ãÝ|Ñ ¨ ¨ ¨ ãÝ|Ñ Fillsg! pΨ%q

where Filltg! pΨ%q is the saturated image of j“tg! j“tg,˚Ψ% ÝÑ Ψ%. For our
fixed πv,´1, let denote Filg!,πv,´1

pΨq ãÝ|Ñ Filg! pΨ%q such that Filg!,πv,´1
pΨqbZl

Ql » Filg! pΨπv,´1q where Ψπv,´1 is the direct factor of ΨbZl Ql associated
to πv,´1, cf. [3]. From the main result of [6], we have then the following
resolution of Filg!,πv,´1

pΨq

0 Ñ j“sg! HT pπv,´1, Spehspπv,´1qq b Lgpπv,´1p
s´ 1

2
q ÝÑ

j
“ps´1qg
! HT pπv,´1, Spehs´1pπv,´1qq b Lgpπv,´1p

s´ 2

2
q ÝÑ

¨ ¨ ¨ ÝÑ j“g! HT pπv,´1, πv,´1q b Lgpπv,´1 ÝÑ Filg!,πv,´1
pΨq Ñ 0 (2.13)

We can then apply the previous arguments so that H ipXI,s̄v ,Filg!,πv,´1
qm

has non trivial torsion for i “ 1´ t0 and with free quotient zero for i ‰ 0.
Consider now the other graduates which are either associated to some

πv of type % or to grtg! pΨ%q for t ě 2. In the last case, we also have similar
resolution like before

0 Ñ j“sg! HT pπv,´1, LTt,spπv,´1qq b Lgpπv,´1p
s´ t

2
q ÝÑ

j
“ps´1qg
! HT pπv,´1, LTt,s´1pπv,´1qq b Lgpπv,´1p

s´ t´ 1

2
q ÝÑ

¨ ¨ ¨ ÝÑ j“g! HT pπv,´1, Sttpπv,´1qq b Lgpπv,´1 ÝÑ Filtg!,πv,´1
pΨq Ñ 0

(2.14)

where LTt,t`δpπv,´1q is the irreducible subspace of Sttpπv,´1t´δ{2uq ˆ
Spehδpπv,´1tt{2u. By the same arguments the torsion ofH ipXI,s̄v ,Filtg!,πv,´1

pΨqqm
is trivial for any i ď 1´ t0 and the free parts are concentrated for i “ 0.
The case of the other πv can then be deduce from the previous remark.
Using then the spectral sequence associated to the previous filtration, we
can then conclude that H1´t0pXI,s̄v ,Ψ%qm would have non trivial torsion
which is false from our choice of m, so that the proposition is proved.
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3. Local behavior of monodromy over Fl
Recall for each 1 ď g ď d with s :“ td

g
u, over Ql, that N s´1

v induces an

isomorphism from the graduate of ΨvpQlq isomorphic to Pps´1, πvqp
s´1

2
q

to the one isomorphic to Pps ´ 1, πvqp
1´s

2
q. In this section we want

to prove that this property remains true modulo l. In order to define
Nv over Zl, we suppose that l ě d. Recall from [6] that we have a
filtration Fill‚pΨ%q whose graduate grrpΨ%q are free Zl-perverse sheaves
of the following shape

grrpΨvq »
pj“h!˚ HTZlpπv, Sttpπvqqp

1´ t` 2δ

2
q

for some 0 ď k ď t´ 1 and cuspidal irreducible πv of type %.

3.1. Notation. — We denote mp%q to be equal to the cardinal of the
Zelevinsky line of % if it is not equal to 1, otherwise mp%q “ l.

3.2. Proposition. — Suppose mp%q ą d, then for all r, the morphism
induced by the monodromy operator Nv from FilrpΨ%q to Ψ%, is strict.

Proof. — Recall first that the filtration Fil‚pΨ%q is constructed so that it

is compatible with the action of Nv in the sense that, over Ql, the image
of FilrpΨ%q is some FilφprqpΨ%q. We then have to prove that for every r,

we have a p-epimorphism Nv : FilrpΨ%q � FilφprqpΨ%q which is clearly
equivalent to prove that for every irreducible cuspidal representation πv
of GLgpFvq and for every 1 ď t ď d{g, then Nv induces a isomorphism

pj“tg!˚ HTZlpπv, Sttpπvqqp
1´ t` 2δ

2
q ÝÑ

pj“tg!˚ HTZlpπv, Sttpπvqqp
1´ t` 2pδ ´ 1q

2
q, (3.3)

where each of these two perverse sheaf is given by some graduates grrpΨvq

and grφprqpΨvq. Under the hypothesis that mp%q ą d, then the reduction
modulo l of πvrtsDbLgpπvqbSttpπvq is irreducible so that there exists, up
to homothety, an unique stable lattice of HT pπv, Sttpπvqq which means
that to prove (3.3) is a isomorphism, it suffices to prove its reduction
modulo l is non zero.
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Remark. This is the only place in the proof where we use the hypothesis
mp%q ą d, cf. also the remark after the proof.

To do so, consider then a maximal ideal m as in the previous section,
i.e. such that for any rm Ă m such that Π

rm is cohomological and its local
component at v is isomorphic to Sttpπvqˆπ

1
v for some representation π1v we

will have to choose such that it doesn’t interact with πv. Take for example
π1v “ χ1,v ˆ ¨ ¨ ¨ ˆ χr,v such that the supercuspidal support of the modulo
l reduction of π1v is disjoint from the Zelevinsky line of %. Then from the
previous section, its monodromy is given by the local monodromy on Ψv

so that in particular, if it happens that the monodromy on the modulo l
reduction of ρ

rm,v is maximal on the part associated to Sttpπvq, then (3.3)
is necessary non trivial for such pπv, tq. We are then reduced to study
the nilpotency of ρ

rm,v.
Consider now a finite extention Lv{Fv such that the restriction of ρv

to the Galois group of Lv is unramified and let L{F be a CM field glob-
alizing Lv{Fv. By base change the local component of the automorphic
representation Π1 :“ BCL{F pΠq associated to ρ1 :“ ρ|GL is of the following
form

Π1v » Stspξ1q ˆ ¨ ¨ ¨ ˆ Stspξgq ˆ χ1 ˆ ¨ ¨ ¨ ˆ χr

where ξ1, ¨ ¨ ¨ , ξg and χ1, ¨ ¨ ¨ , χr are characters. We are then reduce to the
case of pρ1,Π1q; the idea is then to realize ρ1 in the cohomology of a K-H-T
Shimura variety over L through a spectral sequence like in the previous
section, i.e. which degenerates in E1 with all Ep,q

1 free. As remarked
before, the monodromy is then obtained from those on the vanishing
cycle sheaves. As we are in Iwahori level, we can use the arguments of
[8] §3.1 where the monodromy action is, thanks to Rapoport-Zink cf.
[10], described explicitly and is of maximal nilpotency.

4. Level fixing property

Consider as before a maximal ideal m associated to the modulo l re-
duction of an irreducible automorphic representation Π

rm with rm Ă m:
recall that m corresponds to the multiset of modulo l Satake parameters
at almost all places where Π

rm is unramified.
A classical question is then to know if it is possible to find another

prime ideal rm1 such that at a fixed place v, the level of Π
rm1,v is strictly
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lower (resp. higher) of whose of Π
rm,v: we then speak of level lowering

(resp. rising) phenomenon.
In this section we are interested in the opposite situation where what-

ever is rm Ă m, then the level at v is given by m: we call it a level fixing
phenomenon.

4.1. Proposition. — Let m a maximal ideal of TS cohomological veri-
fying the following properties:

– the order of qv modulo l is strictly greater than d;
– there exists a prime ideal rm Ă m such that

Π
rm,v » Stt1pχv,1q ˆ ¨ ¨ ¨ Sttrpχv,rq,

with t1 ě ¨ ¨ ¨ ě tr and where χv,1, ¨ ¨ ¨ , χv,r are characters;
– the supercuspidal support of the modulo l reduction of Π

rm,v is the
union of r unlinked Zelevinsky segments

r
ď

i“1

rrlpχv,iq, rlpχv,iν
ti´1
qs;

– ρm is irreducible and m is free in the sense of definition 1.1.

For any prime ideals Ăm1, Ăm2 contained in m and for any open compact
subgroup Kv of GLdpFvq, then Π

Ăm1,v has non trivial Kv-invariants vectors
if and only if the same is true for Π

Ăm2,v.

Proof. — From the last property we are in the situation of proposition
2.4 so that the nilpotency of the monodromy operator Nv on ρm,v is given
by its action on the vanishing cycle sheaves. From the second hypothesis,
proposition 3.2 applies so that the partition dm,v is t1 ě ¨ ¨ ¨ ě tr.

Finally the third hypothesis tells us that dm,v is formally maximal in

particular for any rm1 Ă m with

Π
Ăm1,v

» Stt11pχ
1
v,1q ˆ ¨ ¨ ¨ Stt1

r1
pχ1v,rq,

then d
rm1,v “ pt11 ě ¨ ¨ ¨ ě t1r1q is necessary lower than dm,v and as it is

trivially greater, then it’s the same that is pt11, ¨ ¨ ¨ , t
1
r1q “ pt1, ¨ ¨ ¨ , trq.

Remark. Of course it should be possible to formulate a statement replac-
ing characters by irreducible cuspidal representations by stressing the
partition pt1 ě ¨ ¨ ¨ ě trq, cf. corollary 1.3 of the introduction.
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