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Abstract
Quantitative laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) element distribution maps combined
with traverse mode analyses have been acquired on various sulfides (pyrite, pyrrhotite, arsenopyrite) from three Canadian
Algoma-type BIF-hosted gold deposits (~ 4 Moz Au Meadowbank, ≥ 2.8 Moz Au Meliadine district, ~ 6 Moz Au
Musselwhite). These data, in conjunction with detailed petrographic and SEM-EDS observations, provide insight into the nature
and relative timing of gold events, the presence and implication of trace element zoning regarding crystallization processes, and
elemental associations that fingerprint gold events. Furthermore, the use of an innovative method of processing the LA-ICP-MS
data in map and traverse modes, whereby the results are fragmented into time-slice data, to generate various binary plots (Ag
versus Ni) provides a means to identify elemental associations (Te, Bi) not otherwise apparent. This integrated means of treating
geochemical data, along with petrography, allows multiple gold events and remobilization processes to be recognized and their
elemental associations determined. Themain gold event in each of these deposits is characterized by the coupling of anAs-Se-Te-
Ag element association coincident with intense stratabound sulfide-replacement of the Fe-rich host rock. Additionally, the data
reveal the presence of a later remobilization event, which upgraded the Au tenor, as either non-refractory or refractory type, along
fracture networks due to the ingress of subsequent base metal-bearing metamorphic fluids (mainly a Pb-Bi association).
Furthermore, the data reveal a stratigraphic influence, as reflected in the elemental associations and the elemental enrichments
observed and the nature of the sulfide phase hosting the gold mineralization (arsenopyrite versus pyrite).

Keywords Banded iron formation . Gold . Elemental association . Geochemistry

Introduction

Algoma-type banded iron formations (BIFs), which are chem-
ical sedimentary rocks comprised of alternating layers of iron-
rich minerals (oxides, carbonates, silicates) and chert, repre-
sent a significant host rock for gold mineralization in

Precambrian terranes (e.g., Homestake and Musselwhite
deposits; Frei et al. 2008; Oswald et al. 2015). The timing
and genesis of this style of gold mineralization (syngenetic
versus epigenetic models) have been the subject of consider-
able research and debate over the past few decades and con-
tinues in light of new discoveries (Kerswill 1993; Groves et al.
1998; Goldfarb et al. 2001, 2005; Dubé et al. 2015; Steadman
and Large 2016).

In the 1970s, some authors suggested a syngenetic model
for BIF-hosted gold deposits whereby gold from the ambient
water column, although derived from proximal high-
temperature vents, was concentrated in arsenian pyrite within
the host BIF during chemical sedimentation and/or early dia-
genesis (Fripp 1976; Kerswill 1993, 1996). However, evi-
dence supporting an epigenetic model included textures sug-
gestive of a replacement origin of the pre-existing BIF (sulfide
facies), which were closely associated with the mineralized
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and discordant quartz (-carbonate) vein systems (e.g., Phillips
et al. 1984; Phillips and Powell 2010; Poulsen et al. 2000;
Dubé and Gosselin 2007). More recent studies of the primary
geochemical signature of Algoma-type BIFs using rare earth
element (REE) and yttrium (Bolhar et al. 2005; Thurston et al.
2012; Gourcerol et al. 2015a, b, 2016a) have established that
gold mineralization hosted by BIF may occur irrespective of
their paleo-tectonic setting, that is, not related to proximal vent
sites. Thus, the current consensus is that gold mineralization is
epigenetic and related to the same metamorphic/hydrothermal
processes typically associated with orogenic gold systems
(Phillips et al. 1984; Phillips and Powell 2010; Poulsen et al.
2000; Goldfarb et al. 2001, 2005). In this model, therefore, the
BIF represents an efficient chemical trap given its high Fe
content and thus potential reactive capacity with the reduced,
metal- and H2S-rich fluids migrating through favorable struc-
tures (such as fold hinges, shear zones; e.g., Poulsen et al.
2000; Dubé and Gosselin 2007; Phillips and Powell 2010).
However, even in this preferred model, the primary source of
gold and the nature of the mineralizing fluids remain problem-
atic (Goldfarb et al. 2005; Phillips and Powell 2010; Large
et al. 2011; Goldfarb and Groves 2015).

In recent years, Large et al. (2007, 2009, 2011), based on de-
tailedLA-ICP-MS elementalmapping of sulfides and supporting
in situ analysis, have suggested that the mineralization in
sediment-hosted gold deposits (Sukhoi Log in Siberia; Bendigo
in Australia; Spanish Mountain in British Columbia, Canada;
NorthCarlin Trend,Nevada,USA) originated from themobiliza-
tion of primary Au enriched from early diagenetic, fine-grained,
and/or framboidal pyrite in carbonaceous sediments such as black
shales. The latter sulfides were considered to have originally pre-
cipitated in anoxic bottom waters of large basins (Scholz and
Neumann 2007) due to the mediating influence of sulfate-
reducing bacteria (Schieber 2002; Folk 2005; Large et al. 2014)
with concomitant enrichment of the sulfides in many trace ele-
ments including As, Mo, Ni, Pb, Zn, Te, V, and Se. Subsequent
deformation and metamorphism (generally greenschist facies)
and/or intrusive activity resulted in recrystallization of the host
sulfide and its subsequent conversion to coarse-grained pyrite
and/or pyrrhotite with the concomitant release of its contained
Au and other metals into the fluid phase. The transport and struc-
tural focusing of these metalliferous fluids are thus considered to
have formed a variety of quartz-carbonate-sulfide veins and dis-
seminated sediment-hosted gold deposits (Wagner et al. 2007;
Large et al. 2011; Cook et al. 2013; Bull and Large 2015). In this
context, an important question is whether gold mineralization in
BIF-hosted gold deposits originates from similar source rocks
(suchasblackshales)withanearlymetal enrichment indiagenetic
sulfide phases which was subsequently released into an ore-
forming fluid (Steadman et al. 2014; Gao et al. 2015).

In this study, we examine the textures and trace element
zoning of pyrite, pyrrhotite, and arsenopyrite, as determined
using laser ablation (LA) mapping methods (see below), from

three BIF-hosted gold deposits in the Archean of Canada in
order address the following: (1) identify element associations
that characterize the gold event(s); (2) evaluate the potential
sources of the metals; and (3) establish, where possible, the
features of the mineralizing fluid. The deposits studied include
(1) the ~ 4-Moz Au Meadowbank deposit; (2) the ≥ 2.8-Moz
Au Meliadine district; and (3) the ~ 6-Moz Au Musselwhite
deposit (Fig. 1). The procedures employed to address the
abovementioned fundamental questions include (1) assessing
the distribution of Au and various trace elements in gold-
hosting sulfides; (2) use element maps generated from the
LA-ICP-MS mapping to determine element paragenesis and
thus relative timing in addition to associations; and (3) com-
parison of the results from the studied areas with those for
other orogenic gold deposits, such as clastic sediment-hosted
gold deposits, in order to establish similarities or differences in
the gold reservoir and associated elements.

Geological setting of the selected BIFs

The Meadowbank deposit

Located in the Rae Domain of the Western Churchill Province
(Fig. 1, ESM 1), the Meadowbank deposit is hosted by the
Woodburn Lake greenstone belt (ca. 2.71 Ga) which consists
of tholeiitic and komatiitic metavolcanic rocks with calc-alka-
line, intermediate to felsic tuffs and flows, intercalated BIF,
and clastic metasedimentary rocks including quartzite and
conglomerates (Armitage et al. 1996; Sherlock et al. 2001a,
b, 2004; Hrabi et al. 2003; Pehrsson et al. 2004; Janvier et al.
2015). The metamorphic grade ranges from middle
greenschist to lower amphibolite facies (Pehrsson et al.
2004) and rocks were subjected to at least four deformation
events related to the Proterozoic Trans-Hudson orogeny
(Pehrsson et al. 2013; Janvier et al. 2015). Both the regional
and deposit scale geological maps and interpretation are well
documented in Pehrsson et al. (2013) and Janvier et al. (2015).

Numerous units of oxide-, silicate-, and locally sulfide-
facies BIF occur in the deposit area (ESM 1, 2A, B;
Gourcerol et al. 2015a; Sherlock et al. 2001a, b, 2004).
Despite chemical, mineralogical, and textural similarities, on-
ly the BCentral BIF^ contains economic Au concentrations
(Janvier et al. 2015). Based on previous work, one gold event
is recognized, as illustrated by the presence of fracture-fills
and/or as micro-inclusions in pyrite. This gold event is
constrained as prior to 1.85 Ga (i.e., the Trans-Hudson orog-
eny) mainly based on structural evidence such as occurrence
of transposed-boudinaged high grade gold-quartz veins trans-
posed into the composite S2 foliation (Janvier et al. 2015) and
is characterized by an elemental association of anomalous As,
Cu, Pb, Ni, Co, and Te as determined by solution ICP-MS
analysis (Armitage et al. 1996; Janvier et al. 2015).
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Sulfide paragenesis at the Meadowbank deposit

The Central BIF shows a complex sulfide paragenetic se-
quence based on examination of 33 polished thin sections of
selected samples. The mineralization is characterized by the
presence of three pyrite events (py1, py2, py3), formation of
metamorphic pyrrhotite, and the presence of minor chalcopy-
rite and arsenopyrite inclusions and/or disseminated grains in
magnetite bands or in metamorphic pyrrhotite. The earliest
pyrite (py1 and py1′; note that py1′ is considered as an early
pyrite (py1) incorporated in py2) consists of aggregates (<
100 μm) of sooty, fine-grained material with what we
interpreted to be a Bframboidal-like^ texture (Fig. 2a, b, d).
We note that this texture is not well preserved since it has been
replaced by later pyrite (py2) and that the texture may be
interpreted differently due to its subtle nature. However, most
relevant to the timing of py1 is that it tarnishes faster than py2
and is thus easily observed as being enclosed in py2 (Fig. 2a,
b), a relationship that would not be obvious on freshly
polished sections. Based on this observation, it is suggested
that py1 is the vestige of an early growth stage during

diagenesis, which is not uncommon in gold mineralized set-
tings in metasedimentary rocks (e.g., Large et al. 2007). This
pyrite is overgrown by coarser-grained (< 200 μm), subhedral
to euhedral pyrite (py2) that is characterized by a sieve-tex-
ture, due to the presence of abundant inclusions (Fig. 2d) ori-
ented along the foliation, and also pitting which is a reflection
of coupled dissolution-precipitation (CDP; Putnis 2002). The
py2 may contain fine-grained internal domains and be zoned,
which is interpreted as inclusions of py1 partially incorporated
within py2 (Fig. 2a, b), in which case these inclusions are
referred to as py1′, as previously mentioned. Finally, the latest
pyrite (py3) is euhedral to subhedral and inclusion-free
(Fig. 2b, e) compared to py1 and py2. This last stage of pyrite
may either be disseminated (Fig. 2e) or surrounding grains of
py2 (Fig. 2b). Coarse-grained (> 200 μm) metamorphic pyr-
rhotite appears to replace pre-existing magnetite bands and
thereby has incorporated py1 and py2, but it is overgrown
by py3 (Fig. 2e). In addition, locally fine-grained anhedral to
subhedral chalcopyrite and arsenopyrite are present as inclu-
sions or disseminations in the margins of pyrrhotite, which
suggests they are coeval in origin with this event (Fig. 2f).

Fig. 1 Simplified map showing the location of the Meadowbank andMeliadine areas in the Western Churchill Province and the Musselwhite deposit in
the Superior Province (Canada) (modified from carte-du-monde.net)
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Of particular relevance to the paragenesis and possible dia-
genetic origin of the earliest pyrite (py1) is its distribution at
the Meadowbank deposit area. Based on sample distribution,
we note py1 is only present in material from the mineralized
BIF within the upper part of the Meadowbank property where
the lowest metamorphic grade is present. In contrast, py1 is
not present in areas where the metamorphic grade is higher
(i.e., southern part; Gourcerol et al. 2015a). Thus, this obser-
vation provides additional support favoring a diagenetic rather
than hydrothermal origin for py1 (Scott et al. 2009).

Lastly, Janvier (2016) have independently arrived at the
same paragenesis and interpretation of the different pyrite
generations. Thus, while the latter does not validate our inter-
pretation of these complex textures, it does provide some cor-
roborating observational support.

The Meliadine gold district

The Meliadine gold district is hosted by the 2.6–2.7-Ga
Rankin Inlet greenstone belt (Wright 1967; Aspler and

Chiarenzelli 1996), which lies along the boundary between
the Central and the Northwestern Hearne domains of the
Churchill Province (Fig. 1 and ESM 3; Tella et al. 2007;
Davis et al. 2008). The Rankin Inlet greenstone belt consists
of polydeformed, massive and pillowed mafic flows, felsic
pyroclastic rocks and associated interflow sedimentary units,
and BIFs. These rock units have been metamorphosed from
lower greenschist to lower-middle amphibolite facies
(Carpenter 2004; Carpenter et al. 2005). Note that both the
regional and deposit scale geological maps are well
documented in Carpenter et al. (2005) and Lawley et al.
(2015a, b, c, 2017) and thus are not repeated here. Several
BIFs which host goldmineralization are recognized, including
the oxide-facies Pump and F-Zone BIFs (ESM 2C, D;
Gourcerol et al. 2016a). The gold mineralization consists of
replacement-style with auriferous quartz-ankerite veins with
sulfide alteration selvages. Lawley et al. (2015a, 2017) have
shown that gold mineralization is present as either micro-
inclusions and/or as fracture fills cutting the host arsenopyrite
(ESM 2E, F, G). Moreover, they also suggest that the Au was

Fig. 2 Reflected light
photomicrographs of sulfide
minerals from the Meadowbank
deposit. a–d Aggregates of fine-
grained, sooty py1 (pyrite 1), and
coarse-grained, sieve-textured
py2 hosted in metamorphic pyr-
rhotite with minor quartz. The
presence of inferred inclusions of
py1 in py2 is outlined with dashed
black lines. Also, note that in b
the latest stage pyrite (py3) sur-
rounds two grains of py2. e
Euhedral to subhedral grains of
py3 overprinting magnetite and
metamorphic pyrrhotite. f Fine-
grained, anhedral to subhedral
chalcopyrite at the margin of
metamorphic pyrrhotite. Ccp:
chalcopyrite; Mag: magnetite; Po:
pyrrhotite; Py: pyrite; Qz: quartz
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introduced at either 2.27 and/or 1.90 Ga, the latter time
representing possible upgrading of the earlier gold during
the Trans-Hudson Orogeny based on a new Re-Os arsenopy-
rite model age presented in their studies. An elemental asso-
ciation of anomalous As, Te, Bi, and Sb associated with the
mineralized BIFs was proposed by Lawley et al. (2015a, b, c,
2017) based on whole rock geochemical analyses coupled
with LA-ICP-MS element mapping of sulfides.

Sulfide paragenesis at the Meliadine gold district

A study of 40 polished thin sections which represent sampling
from two oxide-facies BIFs on the property (i.e., Pump and F-
Zone) reveals comparable paragenetic sequences. The sulfide
phases all occur within quartz-carbonate veins or as randomly
oriented grains within vein selvages (Lawley et al. 2015a). In
detail, two types of arsenopyrite are distinguished, referred to as
apy1 and apy2. Apy1 occurs as strongly fractured, coarse
euhedral grains that have a sieve texture (along main fabric)

and is considered to represent the primary hydrothermal event
(Fig. 3a–e). In contrast, apy2 is fine- to medium-grained, lacks
fractures, and is inclusion-free (Fig. 3f). The latter features sug-
gest apy2 represents a later stage growth. Anhedral to subhedral
and locally sieve-textured pyrrhotite, along with pyrite, chalco-
pyrite, galena, minor sphalerite, and native gold, are present
mainly in low-strain, micro-textural sites in apy1 and as frac-
ture-fillings. These phases appear to locally overgrow apy1;
hence, they are post-apy1 and pre-apy2 (Fig. 3a–e). A minor
sulfide-rich event may have occurred before precipitation of
apy1, as rare pyrrhotite and pyrite inclusions are present in apy1
(Carpenter2004).Elementalmappingofarsenopyrite (Carpenter
2004; Lawley et al. 2015c) confirms the above paragenetic inter-
pretation in the part of the area sampled.

The Musselwhite deposit

Located in the North Caribou terrane of the Superior Province
(Fig. 1, ESM4), theMusselwhite deposit is hostedby theNorth

Fig. 3 Reflected light
photomicrographs of sulfide
minerals from the Meliadine gold
district. a–e Strongly fractured,
coarse-grained, euhedral, sieve-
textured arsenopyrite crystals as-
sociated with anhedral to
subhedral grains and aggregates
of pyrrhotite, chalcopyrite, and
galena along late fractures and/or
as inclusions with gold. f
Inclusion-free, fined-grained
euhedral apy2 located along a fo-
liation in a quartz matrix. Apy:
arsenopyrite; Au: or; Ccp: chal-
copyrite; Gn: galena; Po: pyrrho-
tite; Qz: quartz
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Caribou greenstone belt, which is dominated bymafic to ultra-
mafic metavolcanic rocks of the 2973–< 2967-Ma
Opapimiskan-Markop assemblage and tholeiitic basalts and
minor felsic volcanic rocks of the 2980–2982 Ma South Rim
assemblage (Biczok et al. 2012; McNicoll et al. 2016). These
rocks were metamorphosed at lower greenschist to low-mid
amphibolite facies (Breaks et al. 2001) and deformed by three
events (Hall and Rigg 1986; Breaks et al. 2001). Note that
regional and deposit scale geological maps along with
relevant discussions are documented in Biczok et al. (2012)
and Oswald et al. (2015) and thus are not repeated here. Gold
mineralization is mainly confined to silicate facies BIFs
(ESM2H, I, J) within high-strain zones along and immediately
adjacent to the lower pressure areas such as steep limbs of the
folded iron formation (Biczok et al. 2012). Gold occursmainly
withinpyrrhotite-filledfractures incoarse-grained, subhedral to
euhedral almandine garnet porphyroblasts, and/or in pressure-
shadows developed along garnet crystals which formed during
theD2 event,which is the dominant deformation in the deposit.
Thus, the timing of mineralization is inferred to be contempo-
raneouswith garnet crystallization.The timingof themetamor-
phism related to thegoldevent is constrained fromSHRIMPU-
Pb dating of detrital zircon, which yielded ages of 2788 to
2703 Ma (Oswald et al. 2015; Biczok et al. 2012; Kelly and
Schneider 2015).

Oswald et al. (2015) proposed an elemental association of
anomalous Ag, Cu, Se, and Te with Au in the BIFs based on
whole rock ICP-MS analysis. In addition, elemental mapping
of pyrite nodules (Gao et al. 2015) from a carbonaceous

argillite unit in the deposit vicinity revealed an elemental as-
sociation of Au, As, Mo, Ag, Sb, Te, W, Tl, Pb, and Bi.

Sulfide paragenesis at the Musselwhite deposit

The sulfide paragenetic sequence in the mine vicinity, based
on examination of 23 polished thin sections, is characterized
by several generations of pyrite and formation ofmetamorphic
pyrrhotite in addition to inclusions of minor chalcopyrite and
arsenopyrite (Fig. 4). Two types of pyrite are recognized: (1)
py1 is present as very fine-grained (< 25 μm), anhedral to
subhedral annealed grains in metamorphic pyrrhotite
(Fig. 4a, b), and (2) py2 is present as coarser-grained (>
100 μm), euhedral grains overprinting pyrrhotite (Fig. 4c,
d). Coarse- (> 100 μm) to fine-grained (< 100 μm) aggregates
of metamorphic pyrrhotite appear to replace pre-existing Fe-
rich material, such as magnetite or possibly also py1, and may
also form veinlets and/or filling fractures in coarse-grained,
almandine garnet porphyroblasts (Fig. 4c). The relationship
between annealed pyrite and pyrrhotite suggests that pyrrho-
tite formed in response to increasingmetamorphic grade along
with pyrite rather than metamorphic conversion of pyrite to
pyrrhotite (Tomkins 2010). This hypothesis is also consistent
with the findings of Oswald et al. (2015). Chalcopyrite grains
are locally present as inclusions in pyrrhotite, whereas rare
arsenopyrite is present as inclusions in pyrrhotite or as coarse
euhedral grains (> 100 μm) overprintingmetamorphic pyrrho-
tite or disseminated in the margins of garnets (Fig. 4b, d).

Fig. 4 Reflected light
photomicrographs of sulfide
minerals from the Musselwhite
deposit. a, b Anhedral to
subhedral, annealed grains of
pyrite and chalcopyrite that are
present as inclusions and/or along
late fractures in metamorphic
pyrrhotite. c Anhedral pyrrhotite
inclusions along fractures in
porphyroblasts of coarse-grained,
almandine garnet. d Subhedral
grains of metamorphic pyrrhotite
with minor inclusions of pyrite
that are overprinted by later stage,
subhedral, coarse-grained arseno-
pyrite with pyrrhotite inclusions.
Ccp: chalcopyrite; Grt: garnet;
Mag: magnetite; Po: pyrrhotite;
Py: pyrite; Qz: quartz

Miner Deposita



FOR A
PPROVAL

Oswald et al. (2015) suggested the arsenopyrite inclusions do
not correlate with Au tenor.

Analytical methods and data treatment

LA-ICP-MS sulfide trace element chemistry

The trace element content of sulfides was determined in the
Geochemical Fingerprinting Lab at Laurentian University
using a 193-nm wavelength Resonetics RESOlution M-50
ArF excimer laser ablation (LA) system coupled to a
Thermo X Series II quadrupole ICP-MS. A series of traverse
and map analyses modes were conducted on grains of pyrite,
pyrrhotite, and arsenopyrite in thick sections previously char-
acterized by reflected light microscopy and SEM-EDS
methods at Laurentian University, Sudbury, Canada. Beam
diameters for the LA analyses were typically chosen based
on grain sizes of the selected minerals and varied from 9 to
40 μm. Traverse and map scan rates were approximately 1/3
the beam diameter per second. The laser pulse rate was 7 and
6 Hz for traverses. In all cases, a fluence of ~ 5 J/cm2 was
used. Ablation took place in ultra-pure He flowing at a rate
of 650 ml/min, which was combined after the sample cell with
Ar (750 ml/min) and N2 (6 ml/min; for added sensitivity). The
RESOlution M-50 employs a Laurin Technic two-volume
sample cell with excellent washout characteristics (Müller
et al. 2009) and therefore provides good spatial resolution
for traverses and maps. For all analyses, 30 s of washout/
background was collected before each analysis and reference
materials were typically analyzed bracketing and between ev-
ery several unknowns. The elemental maps were acquired by
rastering the laser over the region of interest with successive
lines offset by the beam diameter. The ICP-MS was operated
with a forward power of 1450 Wand oxide production rate of
< 0.5% as determined from ThO+/Th+ while ablating NIST
612. Dwell times were 10 ms for each analyte except Au,
which was 30 ms. All data acquisition was done in time-
resolved mode in order to understand the spatial relationships
between elements and mineral growth.

Data quantification was carried out using the trace element
data reduction scheme of the Iolite software (Paton et al. 2011)
with NIST 610 and Fe acting as the external and internal
references, respectively. Secondary reference materials
BHVO2-G and Po725 (Sylvester et al. 2005) were also ana-
lyzed to verify the reasonable reproduction of known compo-
sitions. Considering the differences in ablation between sili-
cate glass (NIST 610) and sulfides, it is expected that melting
and fractionation limits the accuracy of the quantified data to
~ 20% (Wohlgemuth-Ueberwasser and Jochum 2015). The
limits of detection for integrated data were calculated accord-
ing to Longerich et al. (1996) and Howell et al. (2013) (for
analytes with no background counts) and were typically 0.01

to 1 ppm for trace elements depending primarily on beam
diameter and the analyte background signal.

A new approach to treating the raster (i.e., mapping) and
traverse data uses a time-slice technique, similar to that
employed by Neyedley et al. (2017); the latter data were also
produced and treated from the same laboratory at Laurentian
University. The time-slice (not averaged) data, which equate
to a single analysis collected each 0.35 s based on the analyt-
ical procedures used in this study (see above), is hence a proxy
for a spot analysis (see details in Gourcerol et al. 2016b).
These data are then used in the binary plots and profiles pre-
sented below which provides the means to assess the relation-
ship among large data sets, which in this case may involve
upwards of 35,000 data points of which each has numerous
elements detected. The data are subject to higher detection
limits than point analyses but were not quantified as it is the
elemental associations that are of interest in these plots. Maps
were originally stitched together using Iolite (e.g., Woodhead
et al. 2007) but were also subjected to bilinear interpolation
between adjacent lines and 3 × 3 mean pixel smoothing. This
improves the visualization of the data but can also reduce or
eliminate spikes resulting from the ablation of tiny inclusions
(e.g., Rittner and Müller 2012). The traverse data used for all
bivariate plots included herein were not smoothed in any way.

Determination of pyrite origin

Large et al. (2009) studied four sediment-hosted gold deposits
(i.e., Sukhoi Log, Bendigo, Spanish Mountain, North Carlin
Trend) and reported LA-ICP-MS data from early diagenetic
pyrite and their corresponding recrystallized metamorphic/
hydrothermal pyrite within orogenic and Carlin-type settings.
This work followed on more detailed studies of, for example,
Sukhoi Log (Large et al. 2007), where it was shown that
paragenetically early, framboid-textured pyrite is metal-rich
(including Au) and the later recrystallized equant pyrite is
metal depleted; this observation provided the basis for their
model presented in this and subsequent papers whereby trans-
formation of this early pyrite to the later pyrite liberates Au
which forms concentrations in orogenic style deposits (Large
et al. 2009). Using the analytical data presented in the latter
paper, we have defined empirically based discrimination
fields, which are presented here for the first time, based on
the observation that data for different textural varieties of py-
rite (early framboidal versus later metamorphic) from these
deposit settings are distributed differently in a binary Ag ver-
sus Ni plot (Fig. 5). Although this diagram is empirically
based, it is nevertheless used to make several inferences about
the analyzed pyrite in the present study: (1) distinguish the
origin of various pyrites (primary versus recrystallized pyrite);
(2) determine potential element sources and associations with-
in these sulfides; and (3) assess the geochemical nature of the
gold event(s). The intent herein is to use this diagram and test
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it in the context of current data set and going forward see how
other workers may apply it is similar studies in much that
same way as discriminant diagrams have been used for exam-
ple in igneous petrology (Rollinson 1993).

Results and interpretation

Due to the highly variable level of previous knowledge and
types of analyses available for samples from these deposits
(Janvier et al. 2015; Janvier 2016; Lawley et al. 2015c;
Oswald et al. 2015), LA-ICP-MSmapping was done on pyrite
for the Meadowbank deposit, whereas only LA-ICP-MS tra-
verse mode analyses were done for arsenopyrite from the
Meliadine gold district and on pyrrhotite and arsenopyrite
from the Musselwhite deposit.

The Meadowbank deposit

LA-ICP-MS trace element chemistry

LA-ICP-MS element distributionmappingwas performed on an
aggregateofmainlypy1andpy2with lesser py3within sulfidized
oxide-faciesBIF in theCentralBIF (Fig. 6).The texture of py1, as
previously discussed above, is interpreted to reflect an early, pos-
siblydiageneticoriginandisovergrownbycoarser-grained,sieve-
textured py2 (Fig. 6a). Finally, py3which is free of a sieve texture
and thus a different pyrite generationmay equate to the latest type
of pyrite (py3) in theMeadowbank deposit. The elemental maps
display a zonation which reflects variation in metal availability
during the growth of these different pyrites (py1, py2, py3). The
following features are noted in regards to thesemaps: (1) the core
of py1 is relatively enriched in Mo compared to py2, with lesser
Co,Ni,andWandonlyveryminor to traceamountsofSb,Pb,Ag,
Bi, andAu; (2) py2 has twodistinct domains enriched in eitherW
or Tl, but the cores of both show elevated Co and Ni. These do-
mainsarenotablydepleted inBi,Au,Mo,andCu.Wenote that the

py2chemical signaturedepartsmarkedly fromthatofpy1; (3)py3
(at theinterfaceofpy2domains)showsthemostenrichment inCo,
Ni, Pb, Ag, Bi, and lesser Sb. That this domain is completely
different chemically to that of py2 implies that it is not part of
py2and instead formsadistinct phase separating the twodomains
of py2, hence it is a later stage pyrite which is assigned py3; and
lastly, (4) there is a notable enrichment ofMo, Au, Sb, and lesser
Cu on the margins of py2 which may therefore represent another
distinct metal enrichment event.

In order to better understand elemental distribution, we use
the individual time-slice data from the maps and the results are
shown in selected binary plots in Fig. 7. It is apparent in the
latter plots that the data fall into two fields, albeit with a con-
tinuum, which essentially reflects either relative enrichment or
depletion of Ni. Based on where the data fall in the proposed
fields of these diagrams (Fig. 7), it appears that the three dis-
tinct textural types of pyrite may on this basis correspond to
early diagenetic and later metamorphic/hydrothermal types.
The latter is seen therefore to support the interpretation of
the above petrographic observations.

Further examination of the elemental distribution in these py-
rites suggests possible relative element enrichment/depletion
which relates to specific processes. Thus, it appears that py1
correspondschemically toanearlystageofpyritegrowthdefined
by the elemental associations, albeit at low levels for some of
these, of Co, Ni, Pb, Ag, Bi, Mo, W, and Sb. Whether this is in
fact a remnant diagenetic feature can be debated, but the maps
clearly indicate this domain is chemically distinct from py2 and
py3. These elements were subsequently remobilized during the
conversion of the early py1 to py2, a later metamorphic/
hydrothermal orogenic-type, via a coupled dissolution-
precipitation processes (Putnis 2002) based on petrographic ob-
servations. The latest stage, py3, appears to crosscut py2 in the
elemental maps and thus must be a later stage event.

Figure 7 demonstrates that the dataset gathered from these
three pyrite types illustrates an early diagenetic (py1) and meta-
morphic processes (py2 and py3). The various binary plots

Fig. 5 Binary plot of Ag versus
Ni (ppm) for pyrite from four
different sediment-hosted gold
deposits using data presented in
Large et al. (2009) on Sukhoi
Log, Bendigo, SpanishMountain,
and the North Carlin Trend. The
distribution of the trace elements
in these pyrites provides the basis
for distinguishing early diagenetic
(red field), versus metamorphic/
hydrothermal orogenic (blue
field) and Carlin-type (green
filed) pyrite via decoupling/
precipitation processes
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(Fig. 7) clearly highlight elemental enrichments and, in the case
of Bi and Sb, allow a clear subdivision into two groups that
probably relate to py1 and py3 (Fig. 7d, j). Thus, the gold enrich-
ment, which surrounds py2, is considered to reflect introduction
by latemetamorphic/hydrothermal processes basedon thedistri-
bution of the Au data in Fig. 7a, as the most enriched part of the
binary plot overlaps with the beginning of the metamorphic py-
rite field.The latter is also seen tobe characterized byanelevated
associationofBi,As,Se,Sb, andTe (AsandTeelementmapsare
not included in Fig. 6 due to their relatively low concentrations).
Of note is the spread of the latter data in the binary plots, which
contrastswith themore concentrated values for bothW (Fig. 7e)
andMo (Fig. 7f)with the highest values centered near the higher
Co andNi values. Specifically, regardingAu in themapped area,
the following is also noted: (1) Au does not appear to have orig-
inated fromtheearlypy1and (2) the locallyhighcontentofAu in
py1 (i.e., likely nanoparticles) may reflect late precipitation of
gold in porous areas of py1. Moreover, considering the

distribution of selected elements throughout the early py1 (Co,
Pb, Ni, W, Mo) and the similar behavior of As-Se-Te to Au
(Figs. 6 and 7), only one gold event is suggested in this sample
based on Fig. 7l. It is also noted that highestW values are in py2
compared to py1, which agrees with the metamorphic fluid cir-
culationmodel suggestedbyPitcairnet al. (2010)andLargeet al.
(2012) whereby this W enrichment relates to metamorphic re-
crystallization of W-bearing phases, such as detrital rutile to
metamorphic titanite, which liberatesW (Cave et al. 2015).

An aggregate of three subhedral to euhedral py2 grains
along a chert band in silicate facies BIF was also mapped to
further characterize the nature of py2 (Fig. 8). Distinct metal
enrichments were identified: (1) two of the grains display
isolated Ni-As-Se enrichment in their cores, hence during
the early growth stage of these grains, which are surrounded
by distinctive Co(-As)-rich and Ni-Se-rich outer growth
zones; (2) one of the pyrite grains displays a Co-As(-Se) and
Ni-As-Se enrichment during initial formation suggesting the

Fig. 6 Elemental maps generated with LA-ICP-MS which show the dis-
tribution of selected trace elements in different pyrites (py1, py2, py3
aggregate) from sulfidized part of oxide-facies BIF (Meadowbank depos-
it). a Reflected light photomicrograph of the mapped pyrite crystals (py1,
py2, and py3) that occur in a matrix of metamorphic pyrrhotite. b–l
Different element maps plotted as concentrations scaled between the data

median +/− 3 standard deviations. This plotting was used tomaximize the
contrast for most of data while maintaining a linear scale and, therefore,
the maximum concentrations of the scale are not the true maximums
present in the sample. Note that white dashed lines on element maps
outline the distribution of py1 and py2 and black dashed line the py3

Miner Deposita

gourcerol
Note
check space between of and Bi

gourcerol
Commentaire sur le texte 
Au content

gourcerol
Commentaire sur le texte 
why italic???



FOR A
PPROVAL

presence of two distinct grains, as well as a distinct Co-Ni-As-
Se outer growth zone. Finally, all the pyrite grains are over-
grown by a thin layer enriched in Mo, Sb, Te, Bi, and Ag.
Despite values close to the detection limit, the elemental maps
suggest the presence of Au as inclusions (Fig. 8l).

Theresultsof the time-slicedomaindataarepresented inbinary
element plots in Fig. 9 overlain by the different inferred fields as
noted in the previous diagram for pyrite (Fig. 7). For the present
pyrite sample, we note that there is a similar distribution of data in
theAgversusNiplots (Figs.7and9)despite thenotableabsenceof
textural evidence for thesepyriteshaving features suggestiveof an
early diagenetic stage of growth (py1). This latter feature provides
evidence for an orogenic metamorphic/hydrothermal affinity of
py2, formed in part from the coupled dissolution/precipitation of

earlier diagenetic pyrite either in oxide or silicate facies BIF. The
distributionofthetraceelements(Fig.8)indicatesvariableelement
associations, as follows: (1) Co, As, Ni, and variable Se reflect
formation of core zones, as seen in the pyrite maps; (2) Ag, Mo,
Sb, Te, Bi, Pb, and variable Se reflect a later stage overgrowth on
the py2 aggregate; and (3) the presence ofminor inclusions of aU
phase randomly distributed through the host pyrites. The distribu-
tionofAureflects twodistinct traceelementassociations: (1)Co(±
Se,Bi, Pb, Te) alongwith lowAg contents,whichwas not clearly
seen in theelementalmapsofFig.8due to the lowAucontent, and
(2) highAg (± Sb, Te, Se, Bi, Pb) whichmay reflect inclusions in
py2basedonthemaps(cf.whitearrowsonFig.9).Consideringthe
plot ofMo-Sb-Te-Bi-Pb versus Co-As (Fig. 9k), which correlates
with, respectively, themetal-rich rim and core areas of pyrite, two

Fig. 7 Selected binary element plots (ppm) illustrating the distribution of
trace elements among different pyrites (py1, py2, py3 aggregate) from the
sulfidized part of oxide-facies BIF (Fig. 7). a–k Binary element plots of
Ag versus Ni grouped by selected trace elements which show the distri-
bution in the pyrite fields defined (cf. Fig. 6) using data in Large et al.

(2009). l Plot ofΣ(Co+Pb+Ni+W+Mo) versusΣ(As+Se+Te) grouped by
Au content. Note that the detection limit for Ag is at about 0.4 ppm.
Groups A and B refer to element remobilization during the conversion
of py1 to py2 via dissolution-precipitation processes which resulted in
formation of the metamorphic/hydrothermal orogenic-type py2
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distinct elemental associations with Au are clearly seen, thus
confirming the presence of twodistinct gold events in this sample.

Finally, a grain representing the latest stage of the pyrite para-
genesis (py3), in this case present along a chert band in the oxide-
facies BIF, was mapped (Fig. 10). The grain shows variable and
isolated enrichment in Co, Ni, Pb, and Bi (Fig. 10), as was previ-
ouslynotedfor this stageofpyrite inFig.6.Due to thesmall sizeof
the grainmapped, there ismuch less time-slice domain data avail-
able tobeplottedcomparedto theprevious twosampleswith these
results summarized in Fig. 11. The latter figure shows elemental
distributions andassociations that suggest this pyrite has chemical
affinities with the field defined for metamorphic/hydrothermal
orogenic-type pyrite. In addition,wenote that this pyrite is largely

metal-poor (Au <0.3 ppm) despite the local presence of galena
inclusions as suggested by sporadically high Pb values
(Fig. 11c). In addition, in contrast to py2, py3 does not appear to
have been formed from coupled dissolution-precipitation of an
earlier diagenetic pyrite based on the trend of data in Fig. 11.

Implications for gold mineralization
at the Meadowbank deposit

Based on integrating petrographic observations with elemen-
tal mapping and element associations, we show that pyrite
from the Meadowbank deposit, either in oxide or silicate fa-
cies BIF, is associated with gold mineralization. Two distinct

Fig. 8 Elemental maps generated with LA-ICP-MS which show the dis-
tribution of selected trace elements in py2 aggregate in silicate facies BIF
from the Meadowbank deposit. a Reflected light photomicrograph of the

mapped py2 grains disseminated in chert bands. b–l Element maps plot-
ted as concentrations scaled between the data median +/− 3 standard
deviations. The white arrows represent inclusions

Miner Deposita

gourcerol
Barrer 

gourcerol
Commentaire sur le texte 
the data trend shown on Fig 11



FOR A
PPROVAL

gold events are demonstrated: (1) event one is a late-stage
growth of pyrite around aggregates of py2 and shows a Se-
Bi-Te-As-Sb-Mo elemental association (Fig. 7). This event
was not recognized earlier by Janvier et al. (2015) and appears
to be the most important for gold introduction and (2) event 2
which is represented by gold inclusions in py2 along with an
Ag-Pb-Se-Bi-Te-As-Sb element association (Fig. 8). This
event was previously recognized by Janvier et al. (2015) and
considered as forming prior to 1.85 Ga (Fig. 12). Furthermore,
in both of these gold events, the observed Au enrichment does
not originate from an early diagenetic, possibly framboidal
type pyrite in the BIFs but instead formed from the
overprinting of this pyrite related to dissolution/precipitation
(py1) due to an increase in the through-put of metamorphic/
hydrothermal fluid which was likely Au-bearing.

The Meliadine gold district

LA-ICP-MS trace element chemistry

Arsenopyrite grains from the Pump and F-Zone deposits
(Gourcerol et al. 2016a) were analyzed by LA-ICP-MS in
traverse mode (Fig. 13 and ESM 5) with the time slide domain
data for all these traverses plotted together in Fig. 14. In addi-
tion, one traverse was done across the interface of pyrrhotite
included in arsenopyrite (ESM 6).

The samples are cut by several late-stage micro-fractures
that show significant enrichment in various metals and indi-
cate two distinct fracture sets: (1) one set is associated with
Ag, Bi, and Pb enrichment combined with variable content of
Ni, Zn, Co, Sb, andMo; and (2) a second set is associated with

Fig. 9 Selected binary element plots (ppm) which illustrate the distribu-
tion of trace elements among py2 aggregates in silicate facies BIF (Fig. 9).
a–j Binary element plots of Ag versus Ni grouped by selected trace

elements which show distribution in the previously defined pyrite fields
(cf. Fig. 6). k Plot of Σ(Mo+Sb+Te+Bi+Pb) versus Σ (Co+As) grouped
by Au content. Note that the detection limit for Ag is at about 0.4 ppm
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enrichment in Se and Te with variable Ni and Zn. The element
profiles also show that inferred arsenopyrite cores, although
devoid of fractures and inclusions, are relatively enriched in
Ni, Te, Se, Sb, and Mo. The latter is well illustrated for exam-
ple byMo values which are < 100 ppm inMEL-004 (Fig. 13c)
and < 5 ppm in MEL-018 (ESM 5C, D).

Examining the Au contents and patterns of the traverses, it
appears that the core of the arsenopyrite shows aweak, uniform
concentration of Au but of different values (0.2 to 0.8 ppm in
MEL-004 and < 10 ppm in MEL-018) that is interpreted as
Binvisible gold^ either as solid solution (e.g., Reich et al.
2005) or nanoparticles (e.g., Fougerouse et al. 2016).
Moreover, the two fracture sets display Au enrichment relative
to the core either as invisible gold (Fig. 13 and ESM 5; Au <
30 ppm) or as visible gold (ESM5;Au = 38 to 156 ppm)which
suggests one gold event associated with subsequent remobili-
zation. The variable enrichment of early Au is easily seen in
plots of the time slide domain data where Au contents can be
correlatedwith variable number of elements (Co-Ni-Te orMo)
which are used to signify an early stage of sulfide growth.Thus,
the data suggest the following: (1) an early gold event coinci-
dentwith initial arsenopyrite growth and (2) the remobilization
of Au from the arsenopyrite cores which accompanied later
circulation of fluids. It is noted thatSb andMo indicate relative-
ly similar patterns despite their variable contents, which locally
appear to be antithetic to Au content (Fig. 13 and ESM 5).

The traverse across the interface of the arsenopyrite-
pyrrhotite reveals some interesting observations (ESM 6).
Firstly, there is a marked drop in the contents of the metals
shown in the pyrrhotite versus arsenopyrite, except for Ni,
which is, as expected, enriched compared to levels in both
this and other arsenopyrite analyzed. Secondly, the values of
most elements in this arsenopyrite are similar to those in
others, but in all cases, there are marked depletion zones
for all the elements at the contact with pyrrhotite. The latter
feature is interpreted to indicate that the pyrrhotite is a later
feature and there has been removal of elements in the arse-
nopyrite related to the ingress of the fluid responsible for the
deposition of the chalcopyrite. The elemental associations in
the various arsenopyrite grains provide insight into the
timing of gold mineralization. Assuming that the Ni-Te-Se-
Sb-Mo element association and related enrichments repre-
sent the arsenopyrite core whereas Pb-Bi-Zn enrichment rep-
resents a later fracture controlled event, it appears that only
one event introduced Au into the system (Fig. 14a). This
observation suggests the material lining these late fractures
represents remobilization of invisible Au from the arsenopy-
rite lattice and precipitation of visible gold in the late frac-
tures (Fig. 14a), which would account for the relationship of
high Au content with elevated Pb-Bi-Zn. In addition, based
on element profiles (Fig. 13 and ESM 5) and selected dia-
grams (Fig. 14b, c), it appears that the fracture sets show

Fig. 10 Element maps generated with LA-ICP-MS which show the dis-
tribution of selected trace elements in py3 from oxide-facies BIF from the
Meadowbank deposit. a Reflected light photomicrograph of the mapped

pyrite grains (py3) present in a chert band. Note that a black dashed line
highlights the contour of the py3. b–f Element maps plotted as concen-
trations scaled between the data median +/− 3 standard deviations
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multiple element associations and variable Au content: (1)
enrichment of Te-Se along fractures associated with invisible
gold in the sample (Fig. 14); (2) enrichment of Co along with
Pb-Bi-Zn-Ag in fractures associated with invisible Au
(Fig. 14b); (3) association of Pb-Bi-Zn-Ag with invisible Au
(Fig. 14b, c); and (4) Pb-Bi-Zn-Ag associated with visible Au
(Fig. 14b, c). These variable elemental associations suggest a
model that involved a prolonged hydrothermal history with

mobilization of earlier gold, as proposed by Lawley et al.
(2015c).

Lastly, the results of elemental LA-ICP-MS mapping by
Lawley et al. (2015c) on late-stage overgrowths of arseno-
pyrite devoid of inclusions and fractures showed this stage
tends to have a Ni-Co-Te association and does not show
any Au-Se-Sb enrichment compared to the first arsenopy-
rite grain. Although not clearly observed in our element

Fig. 11 Selected binary element plots (ppm) illustrating the distribution
of trace elements from py3 (Fig. 11). a–i Binary element plots of Ag
versus Ni grouped by selected trace elements, which show the distribution

in the previously defined pyrite fields (cf. Fig. 6). Note that the detection
limit for Ag is at about 0.4 ppm

Fig. 12 Binary element plot
(ppm) of Ag versus Pb using a
compilation of individual time-
slices of data from the py2 trace
element maps of samples from the
silicate and oxide-facies BIF
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profiles, our compiled dataset (Fig. 14d) is consistent with
this observation.

Implications for gold mineralization the Meliadine
gold district

The earlier results of LA-ICP-MS elemental mapping of arse-
nopyrite (Carpenter 2004; Lawley et al. 2015c) suggested gold
mineralization at the Meliadine deposit in the Churchill
Province was related to its early introduction during the
Archean growth of coarse-grained apy1 and was subsequently
remobilized during subsequent deformation/metamorphism
(Wagner et al. 2007) and pressure-solution processes accompa-
nying the Trans-Hudson Orogeny (i.e., 1.86–1.85 Ga). Thus,
concentration of Au in later stage recrystallized apy2 and along
fractures may relate to the effect of the Trans-Hudson Orogeny.
These conclusions are compatible with the findings presented
here which identified two mineralizing processes, one contem-
poraneous with initial sulfide growth and a second related to a
later fluid event which infiltrated the arsenopyrite along two
fracture sets. Furthermore, our data identify an elemental asso-
ciation of As-Ag-Bi-Pb-Se-Te with the early gold event in the
mineralized BIF, whereas Bi-Mo-Te are associated with the
later gold mineralization (Fig. 14e, f). The latter does not nec-
essarily imply the introduction of newAu, but the present study
also does not permit us to discount such an interpretation and
further work would be required to address this interpretation.

The Musselwhite deposit

LA-ICP-MS trace element chemistry

Subhedral to euhedral pyrrhotite grains disseminated in chert
bands or lining fractures in euhedral garnets (Fig. 15) display
fairly similar textural features and gold-related elemental associ-
ations based on line traverses for 10 grains. Two of these line

traverses in pyrrhotite are shown in Fig. 15 and the following
comments pertain to both these traverses and the other not
shown. In general, the cores of pyrrhotite show low base and
precious metal contents which have been modified along late
fractures, as illustrated by dashed black lines on the element
profiles, and/or due to the presence of micro-inclusions. Based
on petrographic and geochemical studies, it appears that only
one set of the fractures observed contains significant base metal
enrichment and this includes Zn, Pb, Bi, andAs, variable Cu, Te,
Sb, and Ag, along with Au. The local presence of micro-
inclusions is also recorded in some of the elemental profiles
(Fig. 15f, g) which show erratic enrichment of Cu, Zn, Se, and
Ag, variable Te andAs, and enrichment of Au. In both cases, this
Au enrichment is presumed to be present as micro-grains given
they are not observed optically or with the SEM.Considering the
Cu-Ag-Te-Se element association with the Au-rich inclusions
and elevated Pb-Bi in late Au-rich fractures, a compilation of
individual time-slice data from 10 line traverses of pyrrhotite
grains suggests there was only a single gold event (Fig. 16).
The distribution of data in the latter diagram suggests Au may
have been initially bound in a pre-existing sulfide phase such as
pyrite, subsequently replaced bymetamorphic pyrrhotite (as sug-
gested in the paragenesis sequence above) and later remobilized
into fractures by base-metal-bearing fluids (Pb, Bi; Fig. 16).

A single line traverse done on an arsenopyrite grain detected
significant contents of Au (below detection limit (b.d.l.) to
11,000 ppm), which may illustrate a later stage sulfide event
given that arsenopyrite is seen to locally overprint the pyrrhotite
(Fig. 17). The subhedral to euhedral arsenopyrite has a possible
core zone relatively enriched in metals, such as Zn, Ni, Sc, Sb,
Se, and Te (Figs. 17 and 18), which is cut by several micro-
fractures that are also enriched in base and precious metals such
as Zn, Pb, Bi, Te, Se, Ag, and Au with variable Sb. The latter
element association reflects a single set of fractures (Fig. 17), but
it shows a significant Au-rich inclusion along with Ag, Te, and
variable Cu, Zn, Bi, and Pb enrichments. The time-slice data for

Fig. 13 Trace element profiles generated with LA-ICP-MS for a traverse
done on an arsenopyrite grain from the Pump deposit (Meliadine gold
district). a, b Un-annotated and annotated reflected light photomicro-
graph of the analyzed arsenopyrite grain. The black solid line represents
the traverse whereas the dashed black lines, numbered from 1 to 6, rep-
resent micro-fractures identified by petrographic observation. c Selected
trace element profiles (ppm) for the traverse shown in b. Note the

following features highlighted in the figures: (1) the dashed black lines
refer to the micro-fractures; (2) the gray fields highlight areas of signifi-
cant elemental enrichments; (3) the black arrows (for Sb andMo profiles)
indicate significant depletions; and (4) the red dashed line in the Au
profile refers to the higher detection limit (as each data has their own
detection limit). It is noted that all element concentrations except Au are
on a logarithmic scale. Apy: arsenopyrite; Po: pyrrhotite
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the single line traverse suggests the presence of Ag-rich tellurides
closely associated with the fracture set, as illustrated by a Zn-Pb-
Bi element association (Fig. 18a, b). In addition, Ag-Au-rich
tellurides occur mainly as inclusions in arsenopyrite (Fig. 18a–
c) alongwith the highest Au andAg concentrations (Fig. 18c, d).

Implications for gold mineralization the Musselwhite
deposit

The LA-ICP-MS trace element data and petrographic observa-
tions indicate metamorphic pyrrhotite is associated with gold
mineralization and has a Cu-Ag-Te-Se-(As) element associa-
tion, as was also noted by Oswald et al. (2015). This event

appears to reflect the main gold event in this deposit.
However, our additional data also reveal remobilization of the
early gold which is clearly seen by the elevated Au associated
with fractures cutting pyrrhotite. In addition, the enrichment of
Au in paragenetically later arsenopyrite (i.e., to 1000 ppm Au)
indicates the presence of an additional gold event which was
not reported by previous workers. Thus, gold mineralization
associated with the first gold event occurs on fractures in pyr-
rhotite and is related to a remobilization by a fluid which also
carries Pb and Bi. In addition, we also note the presence of a
second, albeit lesser in significance, gold event recorded in later
arsenopyrite which also has a different geochemical signature
than the first one, this being an Ag-Te element association.

Fig. 14 Selected binary plots (in ppm) illustrating the distribution of Au
and Te in various element associations from the compilation of traverse
analyses done on arsenopyrite grains from the Meliadine gold district. a
Binary plot of Σ(Ni+Te+Se+Sb+Mo) versus Σ(Pb+Bi+Zn) grouped by
Au content. b Binary plot of Co versus Σ(Pb+Bi+Zn+Ag). Note that the

areas enriched in Au are depleted in Co and near fractures. c Binary plot
ofΣ(Pb+Bi+Zn) versus Ag grouped by Au content. d Binary plot of Se+
Sb versus Σ(Ni+Co+Te) grouped by Au content. e Binary plot of Bi
versus Mo grouped by Te content. f Binary plot of Bi versus Mo
grouped by Au content
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Discussion

In this study, three Canadian BIF-hosted gold deposits
(Meadowbank, Meliadine, and Musselwhite) were selected
for detailed in situ LA-ICP-MS elemental mapping and tra-
verses analyses of sulfide phases (pyrite, arsenopyrite, pyrrho-
tite) in order to assess potential sources for mineralizing fluids,

define elemental associations, identify the relative timing of
metal and sulfide enrichment event(s), and to constrain the
gold enrichment processes.

The complexity in element associations documented here
for nominally similar BIF-hosted gold deposits is a function of
(1) element coupling and decoupling; (2) elemental paragen-
esis; and (3) the nature of reactivation or overprinting events
in orogenic deposits (e.g., Kontak, 2015). The complexity in
mineral geochemistry in hydrothermal ore systems is further-
more consistent with the longevity of the gold-related miner-
alizing systems (e.g., Kontak 2015). As summarized below,
the stratigraphic associations within the mineralized green-
stone belt and the gold source are additional parameters af-
fecting the chemical signal recorded within the studied
sulfides.

LA-ICP-MS method and implications for identifying
gold events and their chemical signature

Trace element distribution maps, as well as traverse analyses,
reported herein were determined using the LA-ICP-MS meth-
od on carefully selected and petrographically characterized
pyrite, arsenopyrite, and pyrrhotite. The method provides

Fig. 15 Trace element profiles generated with LA-ICP-MS for two tra-
verses done on disseminated pyrrhotite grains from the Musselwhite de-
posit. a–c Reflected light photomicrograph of the analyzed pyrrhotite. d,
e Annotated reflected light photomicrograph of the analyzed pyrrhotite
along with local chalcopyrite inclusion. The black solid line represents the
traverse whereas the dashed black lines, numbered from 1 to 2, represent
micro-fractures as seen in petrographic study. f, g Selected trace element

profiles (concentrations in ppm) for the traverse shown in d and e. Note
the following features highlighted in the figures: (1) the closely spaced
dashed black lines refer to micro-fractures observed in the previous im-
age, the more spaced dashed black lines refer to possible inclusions; (2)
the gray fields highlight areas of significant elemental enrichment; and (3)
the red dashed line in Au profile refers to the higher detection limit. Ccp:
chalcopyrite; Grt: garnet; Po: pyrrhotite; Py: pyrite; Qz: quartz
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Fig. 16 Binary plot (in ppm) of Σ(Cu+Ag+Te+Se), representing Au-
related element association in the pyrrhotite core, versusΣ(Pb+Bi), which
represents an Au element association in the pyrrhotite fractures, using a
compilation of individual time-slices of data from the pyrrhotite trace
element traverse of 10 pyrrhotite samples
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meaningful information as to the distribution of major, minor,
and trace elements in sulfides which can be related to their
growth history using the maps or profiles generated. In addi-
tion, the integration of this information with plots generated
using the time-slice domains protocol provides the means to

evaluate the data in terms of multi-dimensional chemical
associations.

The major advantage of LA-ICP-MS mapping and time-
resolved traverses is that the data generated provides the
means to recognize element associations as well as their

Fig. 18 Selected binary plots (ppm) showing the distribution of Au and
Te from the arsenopyrite data. Note that the data are also grouped by color
according to their Au and Te contents. a Binary plot for Au versus Ag

with Te content color coded. b Binary plot of Σ(Zn+Bi+Pb) versus Ag
with Te color coded. c Binary plot of Σ(Zn+Bi+Pb) versus Ag with Au
colored coded. d Binary plot of Ag versus Se with Au color coded

Fig. 17 LA-ICP-MS trace element profiles for a traverse done on an
arsenopyrite grain from the Musselwhite deposit. a Reflected light
photomicrograph of pyrrhotite, arsenopyrite, and chalcopyrite
inclusions along fractures in garnet grain disseminated in chert. b Close
up of an arsenopyrite grain. The black solid line represents the traverse
whereas the dashed black lines, numbered from 1 to 3, represent micro-
fractures. c Selected trace element profiles (ppm) for the traverse shown in

b. Note the following features highlighted in the figures: (1) the closely
spaced dashed black lines refer to micro-fractures observed in the previ-
ous image, the more spaced dashed black line refers to possible sphalerite
inclusion; (2) the gray fields highlight areas of significant elemental en-
richment; and (3) the red dashed line in the Au profile refers to the higher
detection limit. It is noted that all element concentrations are on a loga-
rithmic scale. Apy: arsenopyrite; Grt: garnet; Po: pyrrhotite; Qz: quartz
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spatial distribution (e.g., within fractures, as inclusions) as the
laser beam scans a sample. The latter methods thus eliminate
the minimizing effect that results from the averaging of ele-
ment concentrations obtained using conventional analysis of
either whole rock or mineral separate samples prepared for
solution-based ICP-MS analysis (e.g., Janvier et al. 2015;
Oswald et al. 2015). Moreover, this study shows that quanti-
tative traverses, when combined with careful petrographic ob-
servations, provide data comparable to element distribution
maps in a shorter timeframe, and importantly, at less cost
(e.g., elemental mapping of arsenopyrite grains in Lawley
et al. (2015c) versus line traverses of arsenopyrite grains here-
in (Note: although not discussed here, one of the limiting
factors of LA-ICP-MS mapping is the cost, which is lab de-
pendent). However, an observable limitation relates to the size
of the laser beam (i.e., in this and other studies, it is > 9 μm)
such that it is not possible to analyze very small sulfide grains.
A consequence of the latter is that during rastering and tra-
versing there is an averaging of data over small (relative to the
beam diameter) inclusions and/or fractures.

Notwithstanding, a systematic compilation of time-slice
datasets from LA-ICP-MS analyses (mainly from maps and
traverses) provides a significant means to assess the number of
gold events and their respective elemental signature which is
not easily or always discernable from examining the distribu-
tion element maps and traverses (Figs. 12, 14, and 18). For
instance, with the time-slice method of data treatment, several
plots might be used to discriminate sulfide origins, such as the
proposed Ag versus Ni plots in this study. In the latter plot, the
empirically based discriminant fields constrain the possible
processes of pyrite formation via coupling/decoupling pro-
cesses (i.e., diagenetic versus metamorphic/hydrothermal
types and dissolution/precipitation) and establishes the origin
of the metals during the different types of pyrite growth (such
as dissolution/precipitation). We suggest that this latter plot,
combined with detailed petrographic study, should be applied
routinely in future studies when pyrite from sedimentary de-
posits is analyzed, but it has to be used carefully as the Ag and
Ni concentrations of pyrite may vary significantly with bulk
chemistry of the host rocks (mafic versus felsic).

Comparison of elemental associations
and implications for source reservoirs of gold

Twodistinct gold events are present at theMeadowbankdeposit,
as represented by either invisible gold ormicro-inclusions in the
samepyrite generation (py2). Themain goldmineralizing event,
which is represented by the refractory gold, displays a Se-Bi-Te-
As-Sb elemental associationwhereas the second event related to
micro-inclusions has anAg-Pb-Se-Bi-Te-As-Sb element associ-
ation.The second stagepyrite (py2) is considered tooriginatevia
adissolution/precipitationprocess (e.g.,Putnis2002;Putnis et al.
2007;Putnis andPutnis 2010),which affected an earlier pyrite of

suggested diagenetic framboidal origin (py1). Fluids whichme-
diated formation of the later pyrite (py2) are considered to be
orogenic, that is of metamorphic/hydrothermal origin, and thus
in this context can possibly be related paragenetically to the in-
ferred formation of late-stage pyrite observed in other sediment-
hostedgolddeposit settings, suchasatSukhoiLog,Bendigo,and
Spanish Mountain (Large et al. 2007, 2009, 2011). Analyses of
the cores zones of pyrites (early stage pyrite growth) from these
latter localities showed they are enriched in avariety of elements,
which includeMo, Pb, Ni, Co, andW.Despite evidence of early
diagenetic py1, conversion into gold-hosting py2 at
Meadowbank, the budget of Au and other accompanying ele-
ments (Se, Te, As, and some part of the Ag, Sb) appear to reflect
the presence of an externalmetamorphic/hydrothermal fluid that
was responsible for enriching these elements coevally with/or
duringthe late-stagegrowthofpy2.Thisobservation is important
as it implies that the sulfidation (replacement) of pre-existing
stratabound magnetite bands at this BIF-hosted gold deposit
was independent fromdevelopment of py1and thatAuandother
related elements did not originate from their remobilization from
anearlier insitupyritephase.Furthermore, thepresenceofmicro-
inclusions, which was recognized by Janvier et al. (2015), may
represent subsequent remobilization via fracture networks of an
earlier refractory gold event from metamorphic pyrite. That the
latter event has a Se-Bi-Te-As-Sb elemental association (e.g.,
Wagner et al. 2007) suggests therefore that this remobilization
involved a Pb-, Ag-, and Bi-rich fluid.

A major gold event along with an additional later remobi-
lization and upgrading process is recorded by arsenopyrite in
the Meliadine gold district (i.e., the F-Zone and Pump de-
posits). The main and early gold event, which is refractory
in nature, has an As-Ag-Se-Te element association, as record-
ed in the hydrothermal arsenopyrite. The subsequent remobi-
lization and upgrading of Au are represented by the presence
of either micro-inclusions or as invisible gold along fracture
networks or crosscutting veins (Wagner et al. 2007). These
metamorphic fluids have been characterized by having a Pb-
Bi-Se-Te signature.

Two distinct gold events at the Musselwhite deposit are
associated with metamorphic pyrrhotite or late-stage arseno-
pyrite. The first gold event, which has a Cu-Ag-Se-Te (As)
element association, is represented by the presence of invisible
gold and also as micro-inclusions in pyrrhotite and is the main
gold event in the deposit. This observation suggests that Au
was first introduced in an earlier pre-existing Fe sulfide phase
(py1) which is now present as micro-inclusions (i.e., remnant
pyrite) in metamorphic pyrrhotite. Moreover, based on the
presence of base metal-enriched fracture networks in pyrrho-
tite, it is inferred that gold was remobilized into fracture sets
by a later metal-rich metamorphic fluid (Cu-, Zn-, Bi-, and Pb-
bearing fluid). Finally, a second gold event, which is present in
the paragenetically later arsenopyrite, exhibits an Ag-Te ele-
ment association, which suggests that arsenopyrite is related
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to a relatively late gold mineralization event. This latter con-
clusion contrasts with the conclusions of Oswald et al. (2015)
who suggested that arsenopyrite did not correlate with Au
grades, although we note that the latter may in fact in part
relate to the abundance of arsenopyrite in samples analyzed.

The three BIF-hosted gold deposits studied, though located
in different cratons, exhibit similar gold mineralizing process-
es: (1) an early introduction of Au with an Au-As-Se-Te-Ag
association and (2) a later stage remobilization event whereby
Au is deposited along fracture networks by metamorphic
fluids that have a (Ag)-Pb-Bi signature. This observation has
been noted for pyrite, pyrrhotite, and arsenopyrite. Moreover,
the early gold event in each of the three deposits appears to
have been introduced by an external fluid rather than locally
sourced in for example a diagenetic sulfide such as framboidal
pyrite. The similarity of element associations for this early
gold event among the different deposits also confirms an epi-
genetic origin for gold in these deposits and may suggest a
common source from which these elements were leached and
subsequently channeled via structural conduits (such as faults,
shear zones) into higher crustal levels. Of particular relevance,
here is the analogous BIF-hosted Homestake gold deposit
which shows a similar Au–trace element association (Au-
Ag-As-Te-Se; Caddey et al. 1991; Morelli et al. 2010;
Steadman and Large 2016).

Regarding the probable source of the constituent elements,
Pitcairn et al. (2006) pointed out that Au, Ag, As, and Se are
found in significantly lower concentrations in stratigraphically
equivalent metasedimentary rocks of higher metamorphic
rank compared to their unmetamorphosed equivalents. Thus,
similar weakly to unmetamorphosed similar sedimentary
rocks might also have been source for the main gold mineral-
ization in the Algoma-type BIFs. However, we also note that
there are many potential source reservoirs for gold in
orogenic-type deposits, including mafic volcanic rocks in
some settings, and constraining their origin is challenging
due to the equivocal nature of the fluid chemistry (McCuaig
and Kerrich 1994, 1998; Ridley and Diamond 2000; Groves
et al. 2003; Goldfarb et al. 2001, 2005; Pitcairn et al. 2006;
Goldfarb and Groves 2015). Based on our limited number of
analyses, the results of this study do not, however, advocate
extraction of Au and other metals from gold-rich diagenetic
pyrite, as has been argued for several sediment-hosted orogen-
ic gold deposit settings by Large et al. (2007, 2009, 2011). Our
reasoning is that elemental mapping of inferred framboidal
pyrite in the Central BIF from the Meadowbank deposit indi-
cates a lack of significant Au content. We do note however
that such a conclusion is tenuous based on both interpretation
of the texture preserved in the sample and the limited amount
of such material analyzed; further work is needed to better
resolve this issue. Having said this, we also note that there is
a lack of any Au association with the specific suite of elements
(Co, Ni, Pb, Zn, W, Mo) that are generally noted to be highly

concentrated in diagenetic pyrite (Fig. 6). Furthermore, a sim-
ilar argument is made based on data for the Meliadine gold
district andMusselwhite deposit where in fact there is a lack of
evidence for an early diagenetic type pyrite which may have
been enriched in Au. Finally, the second gold event reported
here for the Musselwhite deposit does not share either geo-
chemical or mineralogical similarities with the other deposits
studied in that this gold event is characterized by an Au-Ag-Te
association. As explained previously, this later event may re-
flect the ingress of a new, external fluid carrying Au-Ag-Te-
which suggests a different fluid source than the first event and
a different gold enrichment process. This mineralizing event
seems, however, to represent a minor part of the Musselwhite
deposit relative to first gold event.

Influence of the regional stratigraphy

Although the three deposit studies share some similarities re-
garding their potential fluid sources and timing of the main
gold event, significant differences also exist as to which sul-
fides are auriferous: pyrite in Meadowbank, arsenopyrite in
Meliadine, and pyrrhotite in Musselwhite. This difference in
the repository for gold may be influenced by the stratigraphy
with which Au-bearing fluids reacted along their flow path.
For instance, formation of arsenopyrite requires As (e.g.,
Kretschmar and Scott 1976), which may in some cases be
sourced from local sedimentary wallrocks (Kontak and
Smith 1993; Bierlein and Crowe 2000; Thomas et al. 2011).
The fact that there is a higher proportion of metasedimentary
rocks in the Meliadine gold district compared to both the
Meadowbank and Musselwhite deposit areas is consistent
with this interpretation. Furthermore, the influence of stratig-
raphy is also reflected by the elemental budget in the sulfides.
For instance, pyrrhotite associated with gold mineralization at
the Musselwhite deposit is highly enriched in Ni (to
8100 ppm), Co (to 1000 ppm), and Pd (to 190 ppm) relative
to pyrrhotite from the Meliadine gold district (Ni < 430 ppm;
Co < 120 ppm; Pd < 0.5 ppm). If it is assumed that pyrrhotite
at these different settings had the same capacity to sequester
(partition) the aforementioned elements, then it might be in-
ferred that their varying elemental enrichment lies in the dif-
ferent elemental budgets of the fluids. This reasoning may
suggest therefore that the mineralizing fluids at the former
deposit equilibrated to some extent with an ultramafic-mafic
component in the stratigraphy and was relatively enriched in
these metals (Ni, Co, Pd) through the breakdown of sulfide of
presumably magmatic origin. Coincidently, the latter potential
source rocks are in fact prominent at Musselwhite but not at
Meliadine. Again, the geology of the settings is consistent
with this interpretation (Biczok et al. 2012; Oswald et al.
2015). We also suggest here that as the database for sulfides
in such settings increases, via more extensive elemental map-
ping and analyses as presented herein, it may become more
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apparent as to what the role and influence of the underlying
stratigraphy is in ore systems. This does not, however, dimin-
ish the important differences noted here for the three deposits
studied.

Influence of late deformation and metamorphism

Theinfluenceofpost-oreprocessessuchasdeformationandmeta-
morphism is an important issue in gold deposits with respect to
whether new gold is introduced or pre-existingAu is remobilized
internally (e.g.,Wagner et al. 2007).At twoof thedeposits studied
(Meliadine and Musselwhite), there is evidence that later stage
eventshavepartiallyremobilizedAuoriginallyconcentratedwith-
in the lattice of the host sulfide (arsenopyrite and pre-existing
pyrrhotite), as indicated by the Au-base metal association along
fracture networks. This process resulted in re-concentrating Au
either as visible native goldor an invisible component (i.e., refrac-
tory) of sulfide grains. However, based on our observations, the
majorityofgoldinall threedepositswasprimarilydepositedbythe
first event and subsequent remobilization and upgrading events
wereminor or not significant to the overall Au budget.

Such remobilization and upgrading of gold is a well-known
phenomenon and has been studied in several gold mineralized
deposit types, including gold-rich VHMS (e.g., Wagner et al.
2007), sediment-hosted gold (e.g., Large et al. 2007, 2009),
and orogenic gold (Tomkins et al. 2004). In these studies, the
authors refer to a closed-system metamorphic event with Au
internally redistributed. In contrast, for the Meliadine and
Musselwhite deposits, the element associations of the metal-
bearing fluids, which are Pb-Bi-Zn and Pb-Bi-Cu-Zn, respec-
tively, suggest that a similar pathway or reservoir is reflected
in the fluid chemistry. Contrary to element associations with
Au, such as Ag and As, the base metals do not exhibit varia-
tions related to metamorphic grade (Pitcairn et al. 2006) and
may therefore represent weak sub-greenschist to amphibolite
facies conditions. Furthermore, as pointed out by Lawley et al.
(2015c), Au remobilization is not developed or enriched to the
same extent as the original gold mineralizing event at the
Meliadine gold district; hence, the original nature of the pri-
mary event is retained.

Conclusions

Quantitative LA-ICP-MS element distribution analyses inte-
grated with petrographic and SEM studies on pyrite, arseno-
pyrite, and pyrrhotite from three Canadian Algoma-type BIF-
hosted gold deposits revealed the presence of multiple gold
event(s)/remobilization processes as well as the respective el-
ement associations for each of event at these deposits. This
study confirms the epigenetic origin of the main gold event in
the BIF-hosted gold deposits and supports a model whereby
metamorphic/hydrothermal processes related to broad

orogenic events were responsible for the devolatilization of a
common source reservoir. The latter process resulted in the
source rock liberating Au-bearing fluids along with a specific
element suite (As-Se-Te-Ag) which were subsequently
channeled into Algoma-type BIF strata at higher crustal levels
via major crustal faults and/or shear zones. Due to their high
iron content, BIF acts as favorable chemical traps whereby it
reacts with the Au-bearing fluid and through its sulfidation of
pre-existing Fe-rich material leads to gold mineralization.
Moreover, these new data reveal that stratigraphy contributes
to the fluid chemistry and influences the nature of the sulfide
phases hosting gold (arsenopyrite versus pyrite).

Beyond the metallogenic aspect, this paper also presents a
novel method (i.e., the time-slice domain data) for presenting
data acquired from LA-ICP-MS element mapping. Data ac-
quired from the element distribution maps, as well as traverses
and to a lesser extent spot mode analyses, provide the basis for
evaluating the spatial distribution of major, minor, and trace
elements and allows detection of element associations through
the various stages of sulfide growth, textural development,
and paragenesis (early versus late). Compilation of individual
time-slice datasets thus provides a significant means to assess
the number of gold events and their respective elemental
signatures, which are not otherwise easily discernable
through the isolated study of the elemental distribution
maps. Moreover, traverse analyses integrated with detailed
petrographic study provide observations similar to maps in a
shorter time frame. Finally, the innovative use of Ag versus Ni
plots, which are empirically based, combined with data from
Large et al. (2009) provides discriminatory fields which are
then applied to pyrite from sedimentary-hosted gold deposits
such as BIF constraining the origin of the elements present.
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