
HAL Id: hal-02267524
https://hal.science/hal-02267524v1

Submitted on 14 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reachability in Vector Addition Systems is
Primitive-Recursive in Fixed Dimension

Jérôme Leroux, Sylvain Schmitz

To cite this version:
Jérôme Leroux, Sylvain Schmitz. Reachability in Vector Addition Systems is Primitive-Recursive in
Fixed Dimension. LICS 2019, 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
Jun 2019, Vancouver, Canada. pp.1–13, �10.1109/LICS.2019.8785796�. �hal-02267524�

https://hal.science/hal-02267524v1
https://hal.archives-ouvertes.fr

ar
X

iv
:1

90
3.

08
57

5v
1

 [
cs

.L
O

]
 2

0
M

ar
 2

01
9

REACHABILITY IN VECTOR ADDITION SYSTEMS IS

PRIMITIVE-RECURSIVE IN FIXED DIMENSION

JÉRÔME LEROUX1 AND SYLVAIN SCHMITZ2,3

Abstract. The reachability problem in vector addition systems is a central
question, not only for the static verification of these systems, but also for many
inter-reducible decision problems occurring in various fields. The currently
best known upper bound on this problem is not primitive-recursive, even when
considering systems of fixed dimension. We provide significant refinements to
the classical decomposition algorithm of Mayr, Kosaraju, and Lambert and to
its termination proof, which yield an ACKERMANN upper bound in the general
case, and primitive-recursive upper bounds in fixed dimension. While this does
not match the currently best known TOWER lower bound for reachability, it is
optimal for related problems.

Keywords.Vector addition system, Petri net, reachability, fast-growing com-
plexity

1. Introduction

Vector addition systems with states (VASS) are basically finite state systems with
vectors of integers as transition weights, as depicted in Fig. 1. Their semantics,

qin

p

qout

q

a1=(0, 2, 0)

a3=(1, 0, 0)

a4=(1, 0,−2)

a2=(2, 2,−1)

a5=(1, 0,−2)

a6=(1,−1, 0)

a7=(1,−1,−2)

a9=(0, 0, 0)

a8=(−2,−1, 0)

Figure 1. A vector addition system with states.

starting from an initial vector of natural numbers, simply adds component-wise
the weights of the successive transitions, but the current values should remain non-
negative at all times on every coordinate. For instance, in the three-dimensional
system of Fig. 1,

qin(0, 0, 2)
a1−→ qin(0, 2, 2)

a1−→ qin(0, 4, 2)
a3−→ qout (1, 4, 2)

a6−→ qout (2, 3, 2)
a7−→ q(3, 2, 0) a8−→ q(1, 1, 0) a9−→ qout(1, 1, 0)

1 LaBRI, CNRS, Université de Bordeaux, France
2 LSV, ENS Paris-Saclay & CNRS, Université Paris-Saclay, France
3 IUF, France

1

http://arxiv.org/abs/1903.08575v1

2 J. LEROUX AND S. SCHMITZ

is a path witnessing that qout (1, 1, 0) can be reached from qin(0, 0, 2), but for in-

stance q(1, 1, 0) a8−→q(−1, 0, 0) is not a valid execution step due to the negative value
in the first coordinate.

Vector addition systems with states are equivalent to Petri nets, and well-suited
whenever one needs to model discrete resources, for instance threads in concurrent
computations, molecules in chemical reactions, organisms in biological processes,
etc. They are also a crucial ingredient in many algorithms. In particular, the
decidability of their reachability problem [21, 13, 14, 17] is the cornerstone of many
decidability results—see for instance [28, Sec. 5] for a large sample of problems
inter-reducible with VASS reachability in logic, formal languages, verification, etc.

In spite of its relevance to a wide range of problems, the complexity of the VASS
reachability problem is still not well understood. Indeed, it turns out that this
seemingly simple problem is both conceptually and computationally very complex.

On a conceptual level, the 1981 decidability proof by Mayr [21] was the culmination
of more than a decade of research in the topic and is considered as one of the
great achievements of theoretical computer science. Both Mayr’s decomposition
algorithm and its proof are however quite intricate. Kosaraju [13] and Lambert [14]
contributed several simplifications of Mayr [21]’s original arguments and Leroux
and Schmitz [18] recast the decomposition algorithm in a more abstract framework
based on well-quasi-order ideals, while Leroux [17] provides a very simple algorithm
with a short but non constructive proof, but none of these developments can be
called ‘easy’ and the problem seems inherently involved.

On a computational level, on the one hand, the best known lower bound—which
was from 1976 until very recently EXPSPACE-hardness [19]—is now TOWER-hardness [6].
This new lower bound puts the problem firmly in the realm of non-elementary
complexity. In this realm, complexity is measured using the ‘fast-growing’ com-
plexity classes (Fα)α from [27], which form a strict hierarchy indexed by ordinals.
The already mentioned TOWER = F3 corresponds to problems solvable in time
bounded by a tower of exponentials; each Fk for a finite k is primitive recursive,
and ACKERMANN = Fω corresponds to problems solvable with Ackermannian re-
sources (see Fig. 2). On the other hand, due to the intricacy of the decomposition
algorithm, it eluded analysis for a long time until a ‘cubic Ackermann’ upper bound
was obtained in [18] at level Fω3 , with a slightly improved Fω2 upper bound in [29].

ELEMENTARY

F3 =TOWER

⋃

kFk=PRIMITIVE-RECURSIVE

Fω
Fω2

Fω3

⋃

kFωk = MULTIPLY-RECURSIVE

Figure 2. Pinpointing Fω = ACKERMANN among the complexity
classes beyond ELEMENTARY [27].

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 3

This leaves a gigantic gap between the known lower and upper bounds. This is
however mitigated by the fact that the decomposition algorithm, on which the upper
bounds were obtained, provably has a non primitive-recursive complexity. This was
already observed by Müller [22], due to the algorithm’s reliance on Karp and Miller
trees [12]. Moreover, the full decomposition produced by the algorithm contains
more information than just the existence of a reachability witness (which exists if
and only if the full decomposition is not empty). For instance, Lambert [14] exploits
the full decomposition to derive a pumping lemma for labelled VASS languages,
Habermehl et al. [10] further show that one can compute a finite-state automaton
recognising the downward-closure of a labelled VASS language with respect to the
scattered subword ordering, and Czerwiński et al. [5] show how to exploit the de-
composition for deciding language boundedness properties. In particular, the result
of Habermehl et al. means that one can decide, given two labelled VASS, whether
an inclusion holds between the downward-closures of their languages, which is an
ACKERMANN-hard problem [32]. Thus any algorithm that returns such a full de-
composition must be non primitive-recursive.

Contributions. In this paper, we show that VASS reachability is in ACKERMANN =
Fω, and more precisely in Fd+4 when the dimension d of the system is fixed. This
improvement over the bound Fω2 (resp. Fω·(d+1) in fixed dimension) shown in [29]
is obtained by analysing a decomposition algorithm similar to those of Mayr [21],
Kosaraju [13], and Lambert [14]. In a nutshell, a decomposition algorithm defines
both

• a structure (resp. ‘regular constraint graphs’ for Mayr, ‘generalised VASSes’
for Kosaraju, and ‘marked graph-transition sequences’ for Lambert)—see
Sec. 3—and

• a condition on this structure that ensures there is an execution witnessing
reachability (resp. ‘consistent marking’, ‘property θ’, and ‘perfectness’)—
see Sec. 4.3.3.

The algorithms compute a decomposition by successive refinements of the struc-
ture until the condition is fulfilled, by which time the existence of an execution
becomes guaranteed—see Sec. 4.

We work in this paper with a decomposition algorithm quite similar to that of
Kosaraju [13], for which the reader will find good expositions for instance in [22,
25, 15]. We benefit however from two key insights (which in turn require significant
adaptations throughout the algorithm).

The first key insight is a new termination argument for the decomposition process,
based on the dimensions of the vector spaces spanned by the cycles of the structure
(see Sec. 3.2). On its own, this new termination argument would already be enough
to yield ACKERMANN upper bounds and primitive-recursive ones in fixed dimension.

The second key insight lies within the decomposition process itself, where we
show using techniques inspired by Rackoff [24] that we can eschew the computation
of Karp and Miller’s coverability trees, and therefore the worst-case Ackermannian
blow-up that arises from their use [3]—see Sec. 4.2.1. In itself, this new decom-
position algorithm would not bring the complexity below the previous bounds, but
combined with the first insight, it yields rather tight upper bounds, at level Fd+4

in fixed dimension d—see Sec. 5.

4 J. LEROUX AND S. SCHMITZ

In fact, the new upper bounds apply to other decision problems. As we discuss
in Sec. 6, Zetzsche’s ACKERMANN lower bound [32] can be refined to prove that the
inclusion problem between the downward-closures of two labelled VASS languages
is Fd-hard in fixed dimension d ≥ 3, thus close to matching the Fd+4 upper bound
one obtains by applying the results of Habermehl et al. [10] to our decomposition
algorithm.

We start in Sec. 2 by recalling basic definitions and notations on vector addi-
tion systems. The full proofs for the decomposition algorithm are presented in
Appendices A to C.

2. Background

Notations. Let Nω
def= N ⊎ {ω} extend the set of natural numbers with an infinite

element ω with n < ω for all n ∈ N. We also use the partial order ⊑ over Nω

defined by x ⊑ y if y ∈ {x, ω}.
Let d ∈ N be a dimension. The relations ≤ and ⊑ are extended component-wise

to vectors in Nd
ω. The components of a vector that are equal to ω intuitively denote

arbitrarily large values; we call a vector in Nd finite. Given a vector x ∈ Nd
ω and

a subset I ⊆ {1, . . . , d} of the components, we denote by x|I the vector obtained
from x by replacing components not in I by ω. Note that x ⊑ y implies x ≤ y

and that x ⊑ x|I for all x,y ∈ Nd
ω and I ⊆ {1, . . . , d}. For instance, for d = 3,

(3, 2, 1) ≤ (4, ω, 1) but (3, 2, 1) 6⊑ (4, ω, 1); if I = {2, 3}, then (3, 2, 1)|I = (ω, 2, 1)
and (4, ω, 1)|I = (ω, ω, 1), and then (ω, 2, 1) ⊑ (ω, ω, 1). We let 0 denote the zero
vector and ω the vector with ω(i) def= ω for all 1 ≤ i ≤ d. Observe that x ⊑ ω for
all x ∈ Nd

ω.
For a vector x ∈ Nd

ω, its norm ‖x‖ is defined over its finite components as
∑

1≤i≤d|x(i)<ω x(i) (a sum over an empty set is zero); for a vector x ∈ Zd, we let

as usual ‖x‖ def=
∑

1≤i≤d |x(i)|. For instance, ‖(3, ω, 1)‖ = 4 and ‖(−4, 2, 1)‖ = 7.

Vector Addition Systems. While we focus in this paper on reachability in vector
addition systems with a finite set of control states, we also rely on notations for the
simpler case of vector addition systems.

A vector addition system (VAS) [12] of dimension d ∈ N is a finite set A ⊆ Zd

of vectors called actions. The semantics of a VAS is defined over configurations

in Nd
ω. We associate to an action a ∈ A the binary relation a−→ over configurations

by x
a−→ y if y = x + a, where addition is performed component-wise with the

convention that ω + z = ω for every z ∈ Z. Given a finite word σ = a1 . . .ak ∈ A∗

of actions we also define the binary relation σ−→ over configurations by x
σ−→ y if

there exists a sequence c0, . . . , ck of configurations such that

x = c0
a1−→ c1 · · ·

ak−−→ ck = y .

The VAS reachability problem consists in deciding given two finite configurations

cin , cout in Nd and a VAS A whether there exists a word σ ∈ A∗ such that cin
σ−→

cout .

Vector Addition Systems with States. A vector addition system with states (VASS) [11]
of dimension d ∈ N is a triple G = (Q, qin , qout , T) where Q is a non-empty finite
set of states, qin ∈ Q is the input state, qout ∈ Q is the output state, and T is a
finite set of transitions in Q × Zd × Q; A def= {a | ∃p, q ∈ Q . (p,a, q) ∈ T } is the
associated set of actions.

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 5

Example 2.1. Figure 1 depicts the VASS Gex = (Qex, qin , qout , Tex) of dimension 3
where Qex = {qin , qout , p, q} and Tex = {t1, t2, t3, t4, t5, t6, t7, t8, t9} with

t1 = (qin , (0, 2, 0), qin) , t2 = (qin , (2, 2,−1), p) ,

t3 = (qin , (1, 0, 0), qout) , t4 = (qin , (1, 0,−2), qout) ,

t5 = (p, (1, 0,−2), qin) , t6 = (qout , (1,−1, 0), qout) ,

t7 = (qout , (1,−1,−2), q) , t8 = (q, (−2,−1, 0), q) ,

t9 = (q, (0, 0, 0), qout) . �

We focus on VASSes in this paper rather than VASes, because we exploit the
properties of their underlying directed graphs. A path π in a VASS G from a state p
to a state q labelled by a word a1 . . .ak of actions is a word of transitions of G
of the form (p1,a1, q1) . . . (pk,ak, qk) with p0 = p, qk = q, and qj = pj+1 for all
1 ≤ j < k. Such a path is complete if p = qin and q = qout are the input and output
states of G. A cycle on a state q is a path from q to q.

Example 2.2. For instance, in Ex. 2.1, the execution presented in the introduction
corresponds to the path πex = t1 t1 t3 t6 t7 t8 t9 labelled by σex = a1 a1 a3 a6 a7 a8 a9,
and is complete. �

We write p ≡G q if there exists a path from p to q and a path from q to p;
this defines an equivalence relation whose equivalence classes are called the strongly
connected components of G. In Ex. 2.1, the strongly connected components are
{qin , p} and {q, qout}. A VASS G = (Q, qin , qout , T) is said to be strongly connected
if Q is a strongly connected component of G.

The Parikh image of a path π is the function φ:T → N that maps each trans-
ition t ∈ T to its number of occurrences in π. The displacement of a path π labelled

by a word a1 . . .ak of actions is the vector ∆(π) def=
∑k

j=1 aj ; note that this is equal

to ∆(φ) def=
∑

t=(p,a,q)∈T φ(t) · a if φ is the Parikh image of π.

Example 2.3. For the example path πex from Ex. 2.2, φex = (2, 0, 1, 0, 0, 1, 1, 1, 1)
and ∆(πex) = (1, 1,−2). �

A state-configuration of a VASS G = (Q, qin , qout , T) is a pair (q,x) ∈ Q × Nd
ω

denoted by q(x) in the sequel. Given an action a we define the step relation a−→
G

over state-configurations by p(x) a−→
G
q(y) if (p,a, q) ∈ T and x

a−→ y. By extension,

given a word σ of actions σ = a1 . . .ak, p(x)
σ−→
G
q(y) if there exists a sequence

q0(c0), . . . , qk(ck) of state-configurations such that

p(x) = q0(c0)
a1−→
G

q1(c1) · · ·
ak−−→
G

qk(ck) = q(y) .

Notice that p(x) σ−→
G
q(y) if, and only if, there exists a path in G from p to q labelled

by σ such that x σ−→y. In Ex. 2.1, qin((0, 0, 2))
σex−−→
Gex

qout((1, 1, 0)). Finally, we write

p(x) ∗−→
G
q(y) if there exists σ ∈ A∗ such that p(x) σ−→

G
q(y).

Reachability. We focus in this paper on the following decision problem.

Problem: VASS reachability.

input: a VASS G = (Q, qin , qout , T) of dimension d and two finite configura-
tions cin , cout ∈ Nd

question: does qin(cin)
∗−→
G
qout (cout) hold?

6 J. LEROUX AND S. SCHMITZ

The previously mentioned VAS reachability problem reduces to VASS reachability:
given a VAS A and two finite configurations cin , cout , it suffices to consider the
VASS reachability problem with input ({q}, q, q, {q} ×A× {q}) and the same con-
figurations cin , cout . A converse reduction is possible by encoding the states, at the
expense of increasing the dimension by three [11].

3. Decomposition Structures

The version of the decomposition algorithm we present in Sec. 4 proceeds globally
as the ones of Mayr, Kosaraju, and Lambert, and we call the underlying structures
KLM sequences after them.

3.1. KLM Sequences. A KLM sequence ξ of dimension d is a sequence

ξ = (x0G0y0)a1(x1G1y1) . . .ak(xkGkyk) (1)

where x0,y0, . . . ,xk,yk are configurations, G0, . . . , Gk are VASSes of dimension d,
and a1, . . . ,ak are actions. KLM sequences are essentially the same as Kosaraju’s
‘generalised VASSes’ [13], except that we do not require G0, . . . , Gk to be strongly
connected.

The action language of a KLM sequence ξ is the set Lξ of words of actions of the
form σ0a1σ1 . . .akσk such that σj is the label of a complete path of Gj for every j,
and such that there exists a sequence m0,n0, . . . ,mk,nk of configurations in Nd

such that

m0
σ0−→ n0

a1−→ · · ·mk
σk−→ nk (2)

where mj ⊑ xj and nj ⊑ yj for every 0 ≤ j ≤ k.
Note that the reachability problem for a VASS G and two finite configurations

cin, cout ∈ Nd reduces to the non-emptiness of the action language of the KLM
sequence (cinGcout). In fact, in that case, the action language is the set of words

σ ∈ A∗ such that qin(cin)
σ−→
G
qout (cout).

Example 3.1. In Ex. 2.1, ξex = ((0, 0, 2)Gex(1, 1, 0)) is a KLM sequence with action
language

Lξex = {a2+3n
1 a3 a

1+4n
6 a7 a

1+2n
8 a9 | n ∈ N}

∪ {a2+3n
1 a3 a

4n
6 a7 a

1+2n
8 a9 a6 | n ∈ N} . �

3.2. Ranks and Sizes.

Vector Spaces. We associate to a transition t of a VASS G the vector space VG(t) ⊆
Qd spanned by the displacements of the cycles that contain t. The following lemma
shows that this vector space only depends on the strongly connected components
of G.

Lemma 3.2. Let t be a transition of a strongly connected VASS G. Then the vector
space VG(t) is equal to the vector space spanned by the displacements of the cycles
of G.

Proof. Let V be the vector space spanned be the displacements of the cycles of G.
Naturally, we have VG(t) ⊆ V. For the converse, let us consider a sequence
θ1, . . . , θk of cycles such that θj is a cycle on a state qj for every 1 ≤ j ≤ k, and such
that ∆(θ1), . . . ,∆(θk) span the vector space V . Since G is strongly connected, there
exists a path πj from qj−1 to qj for every j ∈ {1, . . . , k} with q0

def= qk. Moreover,

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 7

we can assume without loss of generality that t occurs in the cycle θ def= π1 . . . πk.
Let θ′j be the cycle obtained from θ by inserting θj in qj and formally defined

as θ′j
def= π1 . . . πjθjπj+1 . . . πk. Observe that ∆(θ) and ∆(θ′j) are both in VG(t)

since t occurs in the cycles θ and θ′j . As ∆(θj) = ∆(θ′j) − ∆(θ), it follows that
∆(θj) ∈ VG(t). We derive that the vector space spanned by ∆(θ1), . . . ,∆(θk) is
included in VG(t). Hence V ⊆ VG(t). �

As a corollary, if two transitions t and t′ are induced by the same strongly
connected component of a VASS G, then VG(t) = VG(t

′).

Ranks. The rank of a VASS G is the tuple rank(G) def= (rd, . . . , r0) ∈ Nd+1 where ri
is the number of transitions t ∈ T such that the dimension of VG(t) is equal to i.
The rank of a KLM sequence ξ defined as (x0G0y0)a1(x1G1y1) . . .ak(xkGkyk) is

the vector rank(ξ) def=
∑k

j=0 rank(Gj) where ranks are added component-wise.

Ranks are ordered lexicographically by the relation≤lex defined by (rd, . . . , r0) ≤lex

(sd, . . . , s0) if they are equal or if the minimal i such that ri 6= si satisfies ri < si.
Note that the linear order (Nd+1, <lex) is well-founded, with order type ωd+1. In
Kosaraju’s decomposition algorithm, the rank of a KLM sequence was defined as a
multiset of triples (nj,1, nj,2, nj,3) for all 0 ≤ j ≤ k, with nj,1 ≤ d, nj,2

def= |Tj |, and
nj,3 ≤ 2d, where the triples are ordered lexicographically and the multisets using
Dershowitz and Manna multiset ordering [7]. This ranking function ranged over an

order type in ωω3

, and actually below ωω·(d+1) [29].

Example 3.3. In Ex. 2.1,

VG(t3) = VG(t4) = {(0, 0, 0)},

VG(t1) = VG(t2) = VG(t5) = span((0, 2, 0), (3, 2,−3)) ,

VG(t6) = VG(t7) = VG(t8) = VG(t9) = span((−2,−1, 0), (1,−1,−2), (1,−1, 0)) .

Thus rank(Gex) = (4, 3, 0, 2) = rank(ξex). �

Sizes. The size of a VASS G = (Q, qin , qout , T) is

|G| def= |Q|+ |T |+
∑

t∈T

‖∆(t)‖ . (3)

The size of a KLM sequence ξ of the form (x0G0y0)a1 . . .ak(xkGkyk) is the natural
number

|ξ| def= 2(d+ 1)d+1
(

k +
k

∑

j=1

‖aj‖ +
k

∑

j=0

(‖xj‖ + |Gj |+ ‖yj‖)
)

. (4)

3.3. Characteristic System. The action language of a KLM sequence can be over-
approximated thanks to a system of linear equations called its characteristic system,
which we are about to define. Let us first associate to a VASS G = (Q, qin , qout , T)
a Kirchhoff system KG of linear equations such that φ ∈ NT is a model of KG if,
and only if, the following constraint holds

1qout − 1qin =
∑

t=(p,a,q)∈T

φ(t)(1q − 1p) , (5)

where 1q:Q → {0, 1} is the characteristic function of q ∈ Q defined by 1q(p)
def= 1

if p = q and 1q(p)
def= 0 otherwise. Let us observe that the Parikh image of a path

from qin to qout in G is a model of KG.

8 J. LEROUX AND S. SCHMITZ

A characteristic sequence of a KLM sequence of the form ξ = (x0G0,y0)a1 . . .

ak(xk, Gk,yk) where Tj is the set of transitions of Gj for each j is a sequence
h = (mj , φj ,nj)0≤j≤k of triples (mj , φj ,nj) ∈ Nd × NTj × Nd. We denote by ‖h‖

the value
∑k

j=0

(

‖mj‖ +
∑

t∈Tj
φj(t) + ‖nj‖

)

. We also denote by (mh
j , φ

h
j ,n

h
j)

the jth triple (mj , φj ,nj) occurring in h.
The characteristic system of ξ is the system Eξ of linear equations such that a

characteristic sequence h = (mj , φj ,nj)0≤j≤k is a model of Eξ if, and only if, the
following two conditions hold:

(1) mh
j ⊑ xj , φ

h
j |= KGj

, nh
j = mh

j +∆(φhj), and nh
j ⊑ yj for every 0 ≤ j ≤ k,

and
(2) nh

j−1
aj−→mh

j for every 1 ≤ j ≤ k.

A KLM sequence ξ is said to be satisfiable if its characteristic system Eξ is
satisfiable. It is said to be unsatisfiable otherwise.

Example 3.4. Let us consider ξex = ((0, 0, 2)Gex(1, 1, 0)) from Ex. 2.1. Its charac-
teristic system is

m = (0, 0, 2) ∧ n = (1, 1, 0)

∧ n(1) = m(1) + 2φ(t2) + φ(t3) + φ(t4) + φ(t5) + φ(t6) + φ(t7)− 2φ(t8)

∧ n(2) = m(2) + 2φ(t1) + 2φ(t2)− φ(t6)− φ(t7)− φ(t8)

∧ n(3) = m(3)− φ(t2)− 2φ(t4)− 2φ(t5)− 2φ(t7)

∧ −1 = −φ(t2)− φ(t3)− φ(t4) + φ(t5)

∧ 0 = φ(t2)− φ(t3)

∧ 0 = φ(t7)− φ(t9)

∧ 1 = φ(t3) + φ(t4)− φ(t7) + φ(t9) ,

where the last four equations correspond to KGex
. One can check that the tuple

((0, 0, 2), φex, (1, 1, 0)) is a model, where φex was defined in Ex. 2.3. �

Lemma 3.5. The action language of an unsatisfiable KLM sequence is empty.

Proof. Assume that Lξ contains a word σ, and let us prove that Eξ is satisfiable. As
σ ∈ Lξ, there exists a decomposition of σ into σ0a1σ1 . . .akσk such that σj is the
label of a complete path πj of Gj , and there exists a sequence m0,n0, . . . ,mk,nk

of vectors in Nd with mj ⊑ xj and nj ⊑ yj for every 0 ≤ j ≤ k, and such that

m0
σ0−→ n0

a1−→ · · · ak−−→mk
σk−→ nk .

Let φj be the Parikh image of πj ; then the characteristic sequence (mj , φj ,nj)0≤j≤k

is a model of Eξ. �

3.4. Homogeneous Characteristic System. In the sequel, variables whose val-
ues are bounded by the characteristic system will provide a way of decomposing
KLM sequences. Since Eξ is a system of linear equations, bounded variables are
characterised thanks to the homogeneous form E0

ξ of Eξ, called the homogeneous
characteristic system of ξ that we are about to define.

First, we define the homogeneous form K0
G of the Kirchhoff system KG as the

system of linear equation such that φ ∈ NT is a model of K0
G if, and only if, the

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 9

following constraint holds
∑

t=(p,a,q)∈T

φ(t)(1q − 1p) = 0 . (6)

The homogenerous characteristic system E0
ξ is such that a sequence (m0, φ0,n0), . . . ,

(mk, φk,nk) of triples (mj , φj ,nj) ∈ Nd × NTj × Nd is a model of E0
ξ if, and only

if, the following two conditions hold:

(1)
∧

i|xj(i) 6=ω mj(i) = 0, φj |= K0
Gj

, nj = mj +∆(φj), and
∧

i|yj(i) 6=ω nj(i) =

0 for every 0 ≤ j ≤ k, and
(2) nj−1 = mj for every 1 ≤ j ≤ k.

Example 3.6. Let us consider ξex = ((0, 0, 2)Gex(1, 1, 0)) from Ex. 2.1. Its homo-
geneous characteristic system is

m = (0, 0, 0) ∧ n = (0, 0, 0)

∧ n(1) = m(1) + 2φ(t2) + φ(t3) + φ(t4) + φ(t5) + φ(t6) + φ(t7)− 2φ(t8)

∧ n(2) = m(2) + 2φ(t1) + 2φ(t2)− φ(t6)− φ(t7)− φ(t8)

∧ n(3) = m(3)− φ(t2)− 2φ(t4)− 2φ(t5)− 2φ(t7)

∧ 0 = −φ(t2)− φ(t3)− φ(t4) + φ(t5)

∧ 0 = φ(t2)− φ(t3)

∧ 0 = φ(t7)− φ(t9)

∧ 0 = φ(t3) + φ(t4)− φ(t7) + φ(t9) ,

where the last four equations correspond to K0
Gex

. �

By using classical linear algebra results [e.g., 23, Thm. 1], in Appendix B we
prove the following characterisation of the bounded variables of Eξ.

Lemma 3.7. Assume that ξ = (x0G0y0)a1 . . . (xkGkyk) is satisfiable. Then for
every 0 ≤ j ≤ k we have:

• For every 1 ≤ i ≤ d, the set of values mh
j (i) where h is a model of Eξ is

unbounded if, and only if, there exists a model h0 of E0
ξ such that mh0

j (i) >
0.

• For every t ∈ Tj, the set of values φhj (t) where h is a model of Eξ is

unbounded if, and only if, there exists a model h0 of E
0
ξ such that φh0

j (t) > 0.

• For every 1 ≤ i ≤ d, the set of values nh
j (i) where h is a model of Eξ is

unbounded if, and only if, there exists a model h0 of E0
ξ such that nh0

j (i) >
0.

Moreover, the sum of the bounded values of Eξ is bounded by |ξ||ξ|−1.

4. The Decomposition Algorithm

Let us give an overview of the decomposition algorithm. Given an instance
(G, cin , cout) of the VASS reachability problem, the algorithm takes as input the
KLM sequence ξ0

def= (cinGcout). In an initialisation phase, the algorithm com-
putes a finite set clean(ξ0) of so-called clean KLM sequences (see Lem. 4.17) such
that Lξ0 =

⋃

ξ′
0
∈clean(ξ0)

Lξ′
0
. At each step of the algorithm, given a clean KLM

sequence ξ,

10 J. LEROUX AND S. SCHMITZ

• either ξ is normal, which is a condition that ensures that the action lan-
guage Lξ is non-empty (see Lem. 4.19),

• or we can perform a decomposition step as per Lem. 4.18, which produces
a finite (possibly empty) set dec(ξ) of clean KLM sequences such that
rank(ξ′) <lex rank(ξ) for all ξ′ ∈ dec(ξ) and Lξ =

⋃

ξ′∈dec(ξ) Lξ′ .

Both the initialisation and the decomposition steps are the results of elementary
steps presented in Sec. 4.1 and aiming to enforce various properties on KLM se-
quences.

By repeatedly applying decomposition steps, the decomposition algorithm ex-
plores a decomposition forest labelled with clean KLM sequences, where the roots
are labelled by the elements ξ′0 ∈ clean(ξ0), and where each node labelled by a
non-normal KLM sequence ξ has a child labelled ξ′ for each ξ′ ∈ dec(ξ). A de-
composition forest has finitely many roots, finite branching degree, and, because
the ranks decrease strictly along the branches and (Nd, <lex) is well-founded, it has
finite branches. A decomposition forest is thus finite by Kőnig’s Lemma, and the
algorithm terminates.

Note that, in order to answer the VASS reachability problem, we only need to
explore a decomposition forest nondeterministically in search of a leaf labelled by
a normal KLM sequence. However, a full decomposition fdec(ξ0), which we define
as the set of all the normal KLM sequences in a decomposition forest for ξ0, is
computable, and such that

Lξ0 =
⋃

ξ′∈fdec(ξ0)

Lξ′ . (7)

Remark 4.1. Note that decomposition steps are not deterministic, meaning that
there might be several choices of sets dec(ξ) for each ξ. Thus there might be several
decomposition forests for a KLM sequence ξ0. This does not impact the correctness
of the algorithm; in fact, we know from [18] that all the full decompositions one
can obtain actually denote the same canonical ideal decomposition. �

4.1. Elementary Decomposition Steps. As will be further explained in Sec. 4.3,
clean KLM sequences are obtained in Lem. 4.17 by performing a decomposition
into strongly connected components (Sec. 4.1.1), followed by a saturation step
(Sec. 4.1.2), and keeping only the satisfiable KLM sequences according to their
characteristic systems, which were defined in Sec. 3.3. A decomposition step ac-
cording to Lem. 4.18 first unfolds unpumpable (Sec. 4.2.1) or bounded (Sec. 4.1.3)
sequences, and then cleans up the resulting sequences thanks to Lem. 4.17.

4.1.1. Strongly Connected KLM Sequences. A KLM sequence ξ = (x0G0y0)a1 . . .

ak(xkGkyk) is said to be strongly connected if the VASSes G0, . . . , Gk occurring
in ξ are strongly connected.

Lemma 4.2. For any KLM sequence ξ that is not strongly connected, we can
compute in time exp(|ξ|) a finite set Ξ of strongly connected KLM sequences such
that Lξ =

⋃

ξ′∈Ξ Lξ′ and such that rank(ξ′) <lex rank(ξ) and |ξ′| ≤ |ξ| for every ξ′ ∈
Ξ.

Proof. We just replace every triple (xGy) occurring in ξ where G = (Q, qin , qout , T)
is a non strongly connected VASS by all the possible sequences (xG0ω)a1 . . . (ωGny)

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 11

qin

p

qout

q

a1=(0, 2, 0)

a2=(2, 2,−1)

a5=(1, 0,−2)

a6=(1,−1, 0)

a7=(1,−1,−2)

a9=(0, 0, 0)

a8=(−2,−1, 0)

Figure 3. The strongly connected VASSes G1
ex (left) and G2

ex (right).

where n ≥ 1, Gj = (Qj , rj , sj , Tj) is such that Q0, . . . , Qn are distinct strongly con-

nected components of G, Tj
def= T ∩ (Qj × Zd × Qj) for every 0 ≤ j ≤ n, r0

def= qin ,

sn
def= qout , and (sj−1,aj , rj) is a transition in T for every 1 ≤ j ≤ n.
We obtain that way a finite set Ξ of strongly connected KLM sequences satisfying

the lemma. In particular, regarding sizes, observe that |(xG0ω)a1 . . . (ωGny)| =
2(d+ 1)d+1(‖x‖+ ‖y‖+ (n+

∑n

j=1 ‖aj‖+
∑n

j=0 |Gj |)) ≤ 2(d+1)d+1(‖x‖+ ‖y‖+

|G|). �

Example 4.3. Consider again the VASS Gex of Ex. 2.1 and the KLM sequence ξex =
((0, 0, 2)Gex(1, 1, 0)). The decomposition into strongly connected KLM sequences
yields a set {ξ1ex, ξ

2
ex} where

ξ1ex
def= ((0, 0, 2)G1

ex(ω, ω, ω))a3((ω, ω, ω)G
2
ex(1, 1, 0)) ,

ξ2ex
def= ((0, 0, 2)G1

ex(ω, ω, ω))a4((ω, ω, ω)G
2
ex(1, 1, 0)) ,

where G1
ex and G2

ex are displayed in Fig. 3. �

4.1.2. Saturated KLM Sequences. AKLM sequence ξ = (x0G0y0)a1 . . .ak(xkGkyk)
is said to be saturated if for every 0 ≤ j ≤ k and for every i ∈ {1, . . . , d} the follow-
ing two conditions hold:

(1) if xj(i) = ω, then the set of values mh
j (i) where h is a model of Eξ is

unbounded, and
(2) if yj(i) = ω, then the set of values nh

j (i) where h is a model of Eξ is
unbounded.

Saturation corresponds essentially to Kosaraju’s property θ1(b).

Lemma 4.4. From any strongly connected KLM sequence ξ, we can compute in
time exp(|ξ||ξ|) a finite set Ξ of saturated strongly connected KLM sequences such
that Lξ =

⋃

ξ′∈Ξ Lξ′ , and such that rank(ξ′) ≤lex rank(ξ) and |ξ′| ≤ |ξ||ξ| for every

ξ′ ∈ Ξ.

Proof. Thanks to Lem. 3.7, we can saturate a KLM sequence. In fact, we just have
to replace some ω components by all the possible bounded values ≤ |ξ||ξ|−1 given
by the characteristic system Eξ for the variables mj ,nj . �

Example 4.5. Consider the KLM sequences ξ1ex and ξ2ex from Ex. 4.3. Lemma 4.4
yields respectively

ξ3ex
def= ((0, 0, 2)G1

ex(0, ω, 2))a3((1, ω, 2)G
2
ex(1, 1, 0)) ,

ξ4ex
def= ((0, 0, 2)G1

ex(0, ω, 2))a4((0, ω, 0)G
2
ex(1, 1, 0)) . �

12 J. LEROUX AND S. SCHMITZ

4.1.3. Unbounded KLM Sequences. Consider a KLM sequence ξ of form (x0G0y0)a1

. . .ak(xkGkyk), where Tj denotes the set of transitions of Gj . Observe that, if a
transition t in Tj is such that the set of values φhj (t) where h ranges over the models
of the characteristic system Eξ of ξ is bounded by some value B, then the number
of times a word σ ∈ Lξ can use the transition t is bounded by B. It means that
the VASS Gj can be replaced by at most B copies of itself without the transition t,
joined using the action ∆(t) of t, while preserving the language Lξ.

Formally, in such a situation, we define T ′
j as the set of transitions t ∈ Tj such that

the set of values φhj (t) is unbounded. A KLM sequence ξ is said to be unbounded

if T ′
j = Tj for every 0 ≤ j ≤ k, and otherwise to be bounded. Unboundedness

corresponds essentially to Kosaraju’s property θ1(a), but here we also need to
show that the ranks decrease when performing this decomposition.

Lemma 4.6. Whether a KLM sequence ξ is unbounded is in NP. Moreover, if ξ is
strongly connected and bounded, we can compute in time exp(|ξ||ξ|) a finite set Ξ of
KLM sequences such that Lξ =

⋃

ξ′∈Ξ Lξ′ and such that rank(ξ′) <lex rank(ξ) and

|ξ′| ≤ |ξ||ξ| for every ξ′ ∈ Ξ.

Proof. Let T ′
j be the set of transitions t ∈ Tj such that the set φhj (t) where h is

a model of Eξ is unbounded. Let us introduce the VASS G′
j obtained from Gj by

replacing Tj by T ′
j. Let V j be the vector space spanned by the displacements of

the cycles of Gj , and let V ′
j be the vector space generated by the displacements of

the cycles of G′
j . Since T

′
j ⊆ Tj, naturally V ′

j ⊆ V j . We are going to prove that if
V ′

j = V j then T ′
j = Tj .

Claim 4.7. Assume that Eξ is satisfiable. For every j, if V ′
j = V j then T ′

j = Tj.

Proof of Claim 4.7. Let us consider j ∈ {0, . . . , k} such that V ′
j = V j and let us

prove that T ′
j = Tj. By summing up a finite number of solutions of E0

ξ (one for

each transition t ∈ T ′
j), Lem. 3.7 shows that there exists a solution h0 of E0

ξ such

that φh0

j (t) > 0 for every t ∈ T ′
j.

Let us consider a cycle of Gj that contains all the transitions of Tj ; such a
cycle exists since Gj is strongly connected. We denote by ψ the Parikh image
of that cycle. Notice that ∆(ψ) ∈ V j ; since V j = V ′

j , there exists a sequence
θ1, . . . , θs of cycles of G′

j , and a sequence λ1, . . . , λs of rational numbers such that

∆(ψ) =
∑s

r=1 λr∆(φr), where φr is the Parikh image of θr. Let p > 0 be a natural

number such that pλr ∈ Z for every r. Since φh0

j (t) > 0 for every t ∈ T ′
j , there

exists q ∈ N such that pλrφr ≤ qφh0

j for every r. It follows that φ′r
def= qφh0

j − pλrφr

maps every t ∈ Tj \ T ′
j to zero. Let φ′ be the mapping pψ +

∑s
r=1 φ

′
r . We deduce

that
∆(φ′) = ∆(qsφh0

j) = qsnh0

j − qsmh0

j (8)

since h0 is a model of E0
ξ .

It follows that the sequence h′
0 obtained from qsh0 by replacing the jth tuple

by (qsmh0

j , φ′, qsnh0

j) is a model of E0
ξ . Notice that φ

h′
0

j (t) = φ′(t) ≥ pψ(t) ≥ 1 for

every t ∈ Tj . Lem. 3.7 shows that Tj ⊆ T ′
j. Hence T

′
j = Tj . �

Let us return to the proof of Lem. 4.6. First observe that we can decide in
nondeterministic polynomial time whether Eξ is satisfiable. If it is not the case,
then Lξ is empty and we can return the empty set. Otherwise, Lem. 3.7 shows that

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 13

qin qout

q

q′
out

qout

q

a1=(0, 2, 0) a6=(1,−1, 0)

a7=(1,−1,−2)

a8=(−2,−1, 0)

a9=(0, 0, 0)

a6=(1,−1, 0) a6=(1,−1, 0)

a8=(−2,−1, 0)

Figure 4. The VASSes G3
ex (left), G4

ex (middle), and G5
ex (right).

qout q

a6=(1,−1, 0) a8=(−2,−1, 0)

Figure 5. The VASSes G6
ex (left) and G7

ex (right).

the sets T ′
1, . . . , T

′
j are computable in polynomial time. If T ′

j = Tj for every j, then ξ
is unbounded. Otherwise, ξ is bounded, and there exists j such that T ′

j is strictly
included in Tj. Lemma 3.7 shows that a word σ ∈ Lξ cannot use a transition in

Tj\T ′
j more than |ξ||ξ|−1 times. It follows that we can replace the triple xjGjyj

in ξ by a triple where the transitions in Tj \ T ′
j are taken at most |ξ||ξ|−1 times the

VASS G′
j . Hence |ξ′| ≤ |ξ||ξ|. Since Gj is strongly connected, Claim 4.7 shows that

the KLM sequences ξ′ obtained that way satisfy rank(ξ′) <lex rank(ξ). �

Example 4.8. Consider the KLM sequences ξ3ex and ξ4ex from Ex. 4.5. Lemma 4.6
yields respectively

ξ5ex
def= ((0, 0, 2)G3

ex(0, ω, 2))a3((1, ω, 2)G
4
ex(1, 1, 0)) ,

ξ6ex
def= ((0, 0, 2)G3

ex(0, ω, 2))a4((0, ω, 0)G
5
ex(1, 1, 0)) ,

where G3
ex, G

4
ex, and G

5
ex are displayed in Fig. 4. Applying Lem. 4.2 and Lem. 4.4

to ξ5ex yields

ξ7ex
def= ((0, 0, 2)G3

ex(0, ω, 2))a3((1, ω, 2)G
6
ex(ω, ω, 2))a7

((ω, ω, 0)G7
ex(ω, ω, 0))a9((ω, ω, 0)G

6
ex(1, 1, 0)) ,

where G6
ex and G7

ex are shown in Fig. 5. The KLM sequence ξ6ex is unsatisfiable,
thus by Lem. 3.5, it can be discarded. �

4.2. Rigid KLM Sequences. A component i is said to be fixed by a VASS G =
(Q, qin , qout , T) if there exists a function fi:Q → N such that fi(q) = fi(p) + a(i)
for every transition (p,a, q) ∈ T . Notice that we can compute in polynomial time
the set of fixed components of G, and given such a component i, we can compute
in polynomial time a function fi:Q → N such that fi(q) = fi(p) + a(i) for every
transition (p,a, q) ∈ T .

A KLM sequence xGy where G = (Q, qin , qout , T) is a VASS is said to be ri-
gid if for every component i that is fixed by G there exists a function gi:Q →
N such that gi(q) = gi(p) + a(i) for every transition (p,a, q) ∈ T , and such

14 J. LEROUX AND S. SCHMITZ

that gi(qin) ⊑ x(i) and gi(qout) ⊑ y(i). More generally, a KLM sequence ξ =
(x0G0y0)a1 . . .ak(xkGkyk) is said to be rigid if xjGjyj is rigid for every 0 ≤ j ≤ k.
Rigidity corresponds essentially to the rigid components introduced by Kosaraju.

Lemma 4.9. From any strongly connected KLM sequence ξ, we can decide in
time poly(|ξ|) whether ξ is not rigid. Moreover, in that case we can compute in
time poly(|ξ|) a KLM sequence ξ′ such that Lξ = Lξ′ , rank(ξ

′) <lex rank(ξ), and
|ξ′| ≤ |ξ|.

Proof. Let us assume that ξ is the KLM sequence xGy where G = (Q, qin , qout , T)
is strongly connected (the general case can be obtained the same way). We can
compute in polynomial time by a straightforward constant propagation algorithm
the set I of components that are fixed by G and for every i ∈ I a function fi:Q→ N

such that fi(q) = fi(p) + a(i) for every transition (p,a, q) ∈ T .

Claim 4.10. ξ is rigid if and only if the following three conditions hold for every i ∈
I and for every q ∈ Q:

(i) y(i)− fi(qout) = x(i)− fi(qin) if x(i),y(i) ∈ N,
(ii) x(i)− fi(qin) + fi(q) ≥ 0 if x(i) ∈ N, and
(iii) y(i)− fi(qout) + fi(q) ≥ 0 if y(i) ∈ N.

Proof of Claim 4.10. Assume first that ξ is rigid. In that case, for every i ∈ I

there exists a function gi:Q→ N such that gi(q) = gi(p) +a(i) for every transition
(p,a, q) ∈ T and such that gi(qin) ⊑ x(i) and gi(qout) ⊑ y(i). Since G is strongly
connected, it follows that there exists an integer zi ∈ Z such that gi(q) = zi + fi(q)
for every q ∈ Q. This equality in qin and qout provides zi = x(i)−fi(qin) if x(i) ∈ N

and zi = y(i) − fi(qout) if y(i) ∈ N. We deduce that conditions (i), (ii), and (iii)
hold.

Conversely, assume that these conditions hold and let us prove that ξ is rigid.
Let i ∈ I and let us prove that there exists a function gi:Q→ N such that gi(q) =
gi(p) + a(i) for every transition (p,a, q) ∈ T and such that gi(qin) ⊑ x(i) and
gi(qout) ⊑ y(i). If x(i) = ω and y(i) = ω, notice that gi

def= fi fullfills the required
conditions. If x(i) ∈ N, then condition (i) shows that we define gi:Q → N by
gi(q)

def= x(i)−fi(qin)+fi(q). Notice that for every transition (p,a, q) ∈ T , we have
gi(q) = gi(p) + a(i). Observe that gi(qin) = x(i). Let us show that gi(qout) ⊑ y(i).
If y(i) = ω, the relation is immediate. Otherwise, by condition (i), we get gi(qout) =
y(i). We have proved that gi fullfills the required conditions. Symmetrically, we
obtain the case y(i) ∈ N and x(i) ∈ Nω. We have shown that ξ is rigid. �

By Claim 4.10, we can decide in polynomial time whether ξ is rigid. Moreover,
if ξ is not rigid, we can compute in polynomial time both i ∈ I and q ∈ Q such that
one of the three conditions (i), (ii), and (iii) does not hold. If condition (i) does not
hold, then ξ cannot be satisfiable, and in particular Lξ = ∅. Thus we can consider
for ξ′ the KLM sequence obtained from ξ by removing all the transitions and all
the states except qin and qout .

Otherwise, if condition (i) holds, then either (ii) or (iii) does not hold. Since (i)
holds, it follows that q 6∈ {qin , qout}. Let us show that Lξ = Lξ′ where ξ

′ def= xG′y

and G′ def= (Q′, qin , qout , T
′), Q′ def= Q\{q}, T ′ def= T ∩ (Q′ × Zd × Q′). To prove this

inclusion, let us consider any σ ∈ Lξ. There exists two configurations m and n and

a word σ = a1 . . .ak of actions such that qin(m)
σ
−→
G

qout(n). Thus there exists a

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 15

sequence q0(c0), . . . , qk(ck) of state-configurations such that

qin(m) = q0(c0)
a1−→
G

· · ·
ak−−→
G

qk(ck) = qout (n) . (9)

Observe that if x(i) ∈ N, then c0(i) = x(i) and by induction we get x(i)− fi(qin)+
fi(qj) = cj(i) ≥ 0 for every 0 ≤ j ≤ k. Symmetrically, if y(i) ∈ N, then y(i) −
fi(qout) + fi(qj) = cj(i) ≥ 0 for every 0 ≤ j ≤ k. Thus q 6∈ {q0, . . . , qk} and in
particular σ ∈ Lξ′ . �

4.2.1. Pumpable KLM Sequences. Given a VASS G and two configurations x,y, the
forward and backward accelerations are the vectors FaccG(x) and BaccG(y) in Nd

ω

defined respectively for every i ∈ {1, . . . , d} as follows:

FaccG(x)(i)
def=

ω if ∃x′ ≥ x with x′(i) > x(i) s.t.

qin(x)
∗
−→
G
qin(x

′)

x(i) otherwise

BaccG(y)(i)
def=

ω if ∃y′ ≥ y with y′(i) > y(i) s.t.

qout(y
′)

∗
−→
G
qout(y)

y(i) otherwise

Observe that FaccG(x)(i) = x(i) and BaccG(y)(i) = y(i) for every compon-
ent i fixed by G. A triple (xGy) is said to be pumpable if FaccG(x)(i) = ω

and BaccG(y)(i) = ω for every component i not fixed by G. More generally, a
KLM sequence ξ = (x0G0y0)a1(x1G1y1) . . .ak(xkGkyk) is said to be pumpable if
(xjGjyj) is pumpable for every 0 ≤ j ≤ k, and otherwise to be unpumpable.

Remark 4.11. Pumpability, rigidity, and saturation together correspond essentially
to Kosaraju’s property θ2. In fact, we show in Appendix C.2 that if a KLM sequence
xGy is pumpable, rigid, and saturated, then there exists a function f :Q→ Nd

ω such
that f(q) = f(p) + a for every (p,a, q) ∈ T , and such that f(qin) = FaccG(x) and
f(qout) = BaccG(y). �

Example 4.12. The KLM sequence ξ7ex from Ex. 4.8 is unpumpable: indeed, in
the triple ((ω, ω, 0)G6

ex(1, 1, 0)), the components 1 and 2 are not fixed, but we find
BaccG6

ex
((1, 1, 0))(1) = BaccG6

ex
((1, 1, 0))(2) = 1. �

Deciding Pumpability. Observe that FaccG(x) and BaccG(y) are computable by
performing 2d calls to an oracle for the coverability problem [see, e.g., 16, Lem. 3.3].
By the results of Rackoff [24], we can therefore decide in exponential space whether
a KLM sequence ξ is pumpable.

Unfolding. When a KLM sequence ξ is unpumpable, there is a triple (xGy) and
a component i not fixed by G such that FaccG(x)(i) < ω or BaccG(y)(i) < ω.
Assume that we are in the former case. If ξ is strongly connected, then there exists
a finite B ∈ N such that FaccG(x)(i) = B, and the idea is then to unfold G by
tracking the value of the ith component in the control state. Classically, such a
bound B is computed by constructing a Karp and Miller coverability tree, but this
has a worst-case Ackermannian complexity [3]. Thus the decomposition algorithms
of Mayr, Kosaraju, and Lambert might use an Ackermannian time in their very
first decomposition step.

16 J. LEROUX AND S. SCHMITZ

Here, we refine this decomposition step using insights from Rackoff’s results
in [24]. We show that, if there is a component i not fixed byG such that FaccG(x)(i) <
ω, then there exists a component i′ not fixed by G and such that a double exponen-
tial B suffices. Formally, let NB

def= {0, . . . , B − 1, ω}. Consider any i ∈ {1, . . . , d},
r ∈ NB, and x(i) ∈ NB; the forward (i, B, r)-unfolding of a KLM triple xGy is the
KLM triple xG′y where G′ def= (Q×NB, (qin ,x(i)), (qout , r), T

′) and T ′ is the set of
transitions ((p,m),a, (q, n)) where (p,a, q) ∈ T and m,n ∈ NB satisfy n = m+a(i)
or (n = ω ∧m + a(i) ≥ B), and such that m = ω implies q 6= qin . (The backward
(i, B, r)-unfolding is defined symmetrically.) We show the following in Appendix A.

Lemma 4.13. Let ξ = xGy be a KLM sequence and let I be the set of components
i ∈ {1, . . . , d} that are not fixed by G and such that FaccG(x)(i) < ω. If I is not
empty, then there exists i ∈ I such that Lξ =

⋃

r∈NB
Lξr where ξr is the forward

(i, B, r)-unfolding of ξ and B def= (‖x‖ + 2|G|)1+dd

.

Of course, we also require that unfolding xGy decreases the rank. The condition
that m = ω must imply q 6= qin in the unfolding is central for the proof of the
following lemma.

Lemma 4.14. Let ξ = xGy be a strongly connected KLM sequence and let i be
a component not fixed by G and such that x(i) ∈ NB for some B ∈ N. Then the
(i, B, r)-unfolding ξ′ of ξ satisfies rank(ξ′) <lex rank(ξ) for all r ∈ NB.

Proof. Assume thatG = (Q, qin , qout , T) and let ξ′ = xG′y be the (i, B, r)-unfolding
of G where G′ = (Q×NB, (qin ,x(i)), (qout , r), T

′). Let V be the vector space gener-
ated by the displacements of the cycles of G. As G is strongly connected, Lem. 3.2
shows that VG(t) = V for every transition t in T .

Observe that since i is not fixed by G, it means that there exists a vector v ∈ V

such that v(i) 6= 0. In particular the dimension of V is larger than or equal to one.
Let us observe that every cycle of G′ labelled by a word σ corresponds (by

projecting on the first component of its control states) to a cycle of G also labelled
by σ. It follows that the displacement of every cycle of G′ is in V , therefore
VG′(t′) ⊆ V for every transition t′ in T ′. Let us consider such a transition t′ =
((p,m),a, (q, n)) from T ′, such that (p,a, q) ∈ T andm,n ∈ NB. For the transitions
t′ ∈ T ′ such thatm = ω, then n = ω and q 6= qin , thus there are at most |T |−1 such
transitions. For the other transitions in T ′, i.e., such that m 6= ω, let us prove that
VG′(t′) is strictly included in V . If there is no cycle using t′, then V G′(t′) = {0}
and we are done. Otherwise, notice that this cycle keep tracks in G′ of the precise
displacement on the component i since there is no way to move from a state in
Q× {ω} to a state in Q× {0, . . . , B − 1}. It follows that the displacement of such
a cycle is zero on component i. Hence the vector v we singled out earlier is not
in VG′(t′) and we have proven that VG′(t′) is strictly included in V .

This shows that rank(G′) <lex rank(G). �

Together, the previous two lemmas allow to show the following.

Lemma 4.15. Whether a KLM sequence ξ is pumpable is in EXPSPACE. Moreover,

if ξ is strongly connected and unpumpable, we can compute in time exp(|ξ|2+dd

) a
finite set Ξ of KLM sequences such that Lξ =

⋃

ξ′∈Ξ Lξ′ and such that rank(ξ′) <lex

rank(ξ) and |ξ′| ≤ |ξ|2+dd

for every ξ′ ∈ Ξ.

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 17

0 1

ω

0 1

ω

0 1

ω

a6=(1,−1, 0) a6=(1,−1, 0) a6=(1,−1, 0)

Figure 6. The VASSes G8
ex (left), G9

ex (middle), and G10
ex (right).

Proof. We have already argued that pumpability is decidable in exponential space.
Assume that ξ is strongly connected and unpumpable. Then there is a triple xGy

in ξ and a component i not fixed by G such that FaccG(x)(i) < ω or BaccG(y)(i) <

ω. Let us consider the former case and define B def= (‖x‖ + 2|G|)1+dd

.
Lemma 4.13 shows that Lξ =

⋃

r∈NB
Lξr where ξr is the KLM sequence obtained

from ξ by replacing the KLM triple xGy by its (i′, B, r)-unfolding for a suitable i′.

Lemma 4.14 shows that rank(ξr) <lex rank(ξ). Finally, B < |ξ|1+dd

and thus

|ξr| ≤ (1 +B)|ξ| ≤ |ξ|2+dd

. �

Example 4.16. Consider again Ex. 4.12 and in particular component 1. Then B = 1
suffices, and we can unfold along the first component, yielding three new KLM
triples

ξ8ex
def= ((0, 0, 2)G3

ex(0, ω, 2))a3((1, ω, 2)G
6
ex(ω, ω, 2))a7

((ω, ω, 0)G7
ex(ω, ω, 0))a9((ω, ω, 0)G

8
ex(1, 1, 0)) ,

ξ9ex
def= ((0, 0, 2)G3

ex(0, ω, 2))a3((1, ω, 2)G
6
ex(ω, ω, 2))a7

((ω, ω, 0)G7
ex(ω, ω, 0))a9((ω, ω, 0)G

9
ex(1, 1, 0)) ,

ξ10ex
def= ((0, 0, 2)G3

ex(0, ω, 2))a3((1, ω, 2)G
6
ex(ω, ω, 2))a7

((ω, ω, 0)G7
ex(ω, ω, 0))a9((ω, ω, 0)G

10
ex(1, 1, 0)) ,

where G8
ex, G

9
ex, and G

10
ex are shown in Fig. 6. When applying lemmata 4.2 and 4.4,

ξ8ex and ξ9ex are respectively decomposed into

ξ11ex
def= ((0, 0, 2)G3

ex(0, ω, 2))a3((1, ω, 2)G
6
ex(ω, ω, 2))a7

((ω, ω, 0)G7
ex(0, 2, 0))a9((0, 2, 0)G

11
ex(0, 2, 0))a6

((1, 1, 0)G11
ex(1, 1, 0)) ,

ξ12ex
def= ((0, 0, 2)G3

ex(0, ω, 2))a3((1, ω, 2)G
6
ex(ω, ω, 2))a7

((ω, ω, 0)G7
ex(1, 1, 0))a9((1, 1, 0)G

11
ex(1, 1, 0)) ,

where G11
ex = ({q}, {q}, {q}, ∅) is the trivial VASS with no transitions, while G10

ex is
discarded. �

4.3. Normal KLM Sequences. A KLM sequence is said to be clean if it is
satisfiable (see Sec. 3.3), strongly connected (see Sec. 4.1.1), and saturated (see
Sec. 4.1.2). It is normal if it is clean, rigid (see Sec. 4.2), pumpable (see Sec. 4.2.1),
and unbounded (see Sec. 4.1.3).

4.3.1. Cleaning Lemma. We can transform any KLM sequence into a finite set of
clean KLM sequences thanks to the following lemma.

18 J. LEROUX AND S. SCHMITZ

ξ3ex ξ4ex

ξ7ex

ξ11ex ξ12ex

Figure 7. A decomposition forest for ξex.

Lemma 4.17 (Cleaning). From any KLM sequence ξ, we can compute in time
exp(g(|ξ|)) a finite set clean(ξ) of clean KLM sequences such that Lξ =

⋃

ξ′∈clean(ξ) Lξ′

and such that rank(ξ′) ≤lex rank(ξ) and |ξ′| ≤ g(|ξ|) for every ξ′ ∈ clean(ξ), where
g(x) def= xx.

Proof. By Lem. 4.2, we can compute a finite set Ξ of strongly connected KLM
sequences such that Lξ =

⋃

ξ′∈Ξ Lξ′ and such that rank(ξ′) ≤lex rank(ξ) and |ξ′| ≤

|ξ| for every ξ′ ∈ Ξ. By applying Lem. 4.4 to each KLM sequence in Ξ, we compute
in exponential time a finite set Ξ′ of saturated strongly connected KLM sequences
such that

⋃

ξ′∈Ξ Lξ′ =
⋃

ξ′′∈Ξ′ Lξ′′ and such that rank(ξ′′) ≤lex rank(ξ) and |ξ′′| ≤

|ξ||ξ| for every ξ′′ ∈ Ξ′. By Lem. 3.5, we can safely remove the unsatisfiable KLM
sequences from Ξ′—which can be performed in nondeterministic time polynomial
in

∑

ξ′′∈Ξ′′ |ξ′′| since each Eξ′′ is of size polynomial in |ξ′′|— and we obtain a set

clean(ξ) satisfying the lemma. �

4.3.2. Decomposition Lemma. In order to decompose a KLM sequence into a finite
set of normal KLM sequences, the decomposition algorithm applies as many times
as possible the decomposition step defined by the following lemma.

Lemma 4.18 (Decomposition). Let ξ be a clean KLM sequence. If ξ is not normal,
we can compute in time exp(h(|ξ|)) a finite set dec(ξ) of clean KLM sequences such
that Lξ =

⋃

ξ′∈dec(ξ) Lξ′ and such that rank(ξ′) <lex rank(ξ) and |ξ′| ≤ h(|ξ|) for

every ξ′ ∈ dec(ξ), where h(x) def= xx
1+x

.

Proof. Lemmata 4.6, 4.9 and 4.15 show that we can compute in double exponential
time a finite set Ξ of KLM sequences such that Lξ =

⋃

ξ′∈Ξ Lξ′ and such that

rank(ξ′) <lex rank(ξ) and |ξ′| ≤ |ξ||ξ| for every ξ′ ∈ Ξ by observing that 2 + dd ≤
|ξ|. For each KLM sequence ξ′ ∈ Ξ, by applying Lem. 4.17 we compute in time
exponential in g(|ξ′|) a finite set clean(ξ′) of clean KLM sequences such that Lξ′ =
⋃

ξ′′∈clean(ξ′) Lξ′′ and such that rank(ξ′′) ≤lex rank(ξ′) and |ξ′′| ≤ g(|ξ′|) for each

ξ′′ ∈ clean(ξ′). We deduce the statement by letting dec(ξ) def=
⋃

ξ′∈Ξ clean(ξ′). �

4.3.3. Bounded Witness Lemma. Thanks to the following lemma, we can stop the
decomposition once we obtain a normal KLM sequence. The proof given in Ap-
pendix C follows the same lines as Kosaraju’s, with the added twist that we extract
a bound on the length of minimal words in Lξ.

Lemma 4.19 (Bounded Witness). From any normal KLM sequence ξ, we can
compute in space O(ℓ(|ξ|)) a word σ ∈ Lξ such that |σ| ≤ ℓ(|ξ|) where ℓ(x) def= x3x.

Example 4.20. Let us consider examples 4.3 to 4.16. We have clean(ξex) = {ξ3ex, ξ
4
ex},

which are both bounded, and then dec(ξ3ex) = {ξ7ex} and dec(ξ4ex) = ∅. Then, ξ7ex

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 19

is unpumpable and dec(ξ7ex) = {ξ11ex , ξ
12
ex} = fdec(ξex), since those last two KLM

sequences are normal. The corresponding decomposition forest in depicted in Fig. 7.
Observe that the union provided in Ex. 3.1 for Lξex corresponds exactly to the union
of Lξ12ex

and Lξ11ex
. �

5. Complexity Upper Bounds

In this section, we derive upper bounds on the lengths of the branches in a de-
composition forest of a KLM sequence ξ0, from which we can in turn provide upper
bounds on the size of normal KLM sequences, the length of small witnesses, the
running time of the decomposition algorithm, and the size of the full decomposition.
The idea is to exploit the ranking function defined in Sec. 3.2 in order to bound
how many decomposition steps can be performed along a branch of a decomposition
forest. We rely for this on a so-called ‘length function theorem’ from [26] to bound
the length of descending sequences of ordinals. Finally, we classify the running time
complexity using the ‘fast-growing’ complexity classes defined in [28]. A general
introduction to these techniques can be found in [29].

5.1. Controlled Sequences of Ranks. For the purposes of this section, it is more
convenient to recast the ranking function rank() on KLM sequences from Sec. 3.2
in terms of ordinals. If rank(ξ) = (rd, . . . , r0), then we associate to ξ the ordinal
rank in ωd+1 defined by

αξ
def= ωd · rd + ωd−1 · rd−1 + · · ·+ ω0 · r0 . (10)

This is just a reformulation, because rank(ξ) <lex rank(ξ′) if and only if αξ < αξ′ .
Along a branch ξ′0, ξ1, ξ2, . . . of a decomposition forest for a KLM sequence ξ0, we
see therefore a descending sequence of ordinal ranks

αξ′
0
> αξ1 > αξ2 > · · · (11)

Though all descending sequences of ordinals are finite, we cannot bound their
lengths in general; e.g., K+1 > K > K−1 > · · · > 0 and ω > K > K−1 > · · · > 0
are descending sequences of length K+2 for all K in N. Nevertheless, a descending
sequence of ordinal ranks like (11), found along a branch of a decomposition forest,
is not arbitrary, because the successive KLM sequences are either ξ′0 ∈ clean(ξ0) or
the result of some decomposition step, hence one cannot use an arbitrary K as in
these examples.

5.1.1. Controlled Sequences of Ordinals. The previous intuition is captured by the
notion of controlled sequences. In general, for an ordinal α < ωω (like the ordinal
ranks defined by (10)), let us write α in Cantor normal form as α = ωn · cn + · · ·+
ω0 · c0 with c0, . . . , cn and n in N, and define its size as Nα def= max{n,max0≤i≤n ci}.
Thus, for the ordinal rank αξ defined in (10) for a KLM sequence ξ with rank(ξ) =
(rd, . . . , r0),

Nαξ = max{d, max
0≤i≤d

ri} . (12)

Let n0 be a natural number in N and h:N → N a monotone inflationary function,
i.e., x ≤ h(x) and x ≤ y implies h(x) ≤ h(y). A sequence α0, α1, . . . of ordinals
below ωω is (n0, h)-controlled if, for all j in N,

Nαj ≤ hj(n0) , (13)

20 J. LEROUX AND S. SCHMITZ

i.e., the size of the jth ordinal αj is bounded by the jth iterate of h applied to n0; in
particular, Nα0 ≤ n0 for the first element of the sequence. Because for each n ∈ N,
there are only finitely many ordinals below ωω of size at most n, the length of
controlled descending sequences is bounded [see, e.g., 26]. One can actually give
a precise bound on this length in terms of subrecursive functions, whose definition
we are about to recall.

5.1.2. Subrecursive Functions. Algorithms shown to terminate via an ordinal rank-
ing function can have a very high worst-case complexity. In order to express such
large bounds, a convenient tool is found in subrecursive hierarchies, which employ
recursion over ordinal indices to define faster and faster growing functions. We
define here two such hierarchies.

Fundamental Sequences. A fundamental sequence for a limit ordinal λ is a strictly
ascending sequence (λ(x))x<ω of ordinals λ(x) < λ with supremum λ. We use the
standard assignment of fundamental sequences to limit ordinals λ < ε0, where ε0
denotes the least solution of x = ωx. For the purposes of this paper, it actually
suffices to consider the case λ ≤ ωω, defined inductively by

ωω(x) def= ωx+1 , (β + ωk+1)(x) def= β + ωk · (x+ 1) ,

where β+ωk+1 is in Cantor normal form. This particular assignment satisfies, e.g.,
0 < λ(x) < λ(y) for all x < y. For instance, ω(x) = x + 1 and (ω3 + ω3 + ω)(x) =
ω3 + ω3 + x+ 1.

Hardy and Cichoń Hierarchies. In the context of controlled sequences, the hierarch-
ies of Hardy and Cichoń turn out to be especially well-suited [4]. Let h:N → N be
a function. For each such h, the Hardy hierarchy (hα)α≤ωω and the Cichoń hier-
archy (hα)α≤ωω relative to h are two families of functions hα, hα:N → N defined by
induction over α by

h0(x) def= x , h0(x)
def= 0 ,

hα+1(x) def= hα(h(x)) , hα+1(x)
def= 1 + hα(h(x)) ,

hλ(x) def= hλ(x)(x) , hλ(x)
def= hλ(x)(x) .

The Hardy functions are well-suited for expressing a large number of iterations of
the provided function h. For instance, hk for some finite k is simply the kth iterate
of h. This intuition carries over: hα is a ‘transfinite’ iteration of the function h, using
a kind of diagonalisation in the fundamental sequences to handle limit ordinals. For
instance, if we use the successor function H(x) = x+1 as our function h, we see that
a first diagonalisation yields Hω(x) = Hx+1(x) = 2x+1. The next diagonalisation
occurs at Hω·2(x) = Hω+x+1(x) = Hω(2x+1) = 4x+3. Fast-forwarding a bit, we

get for instance a function of exponential growth Hω2

(x) = 2x+1(x + 1) − 1, and

later a non-elementary function Hω3

akin to a tower of exponentials, and a non
primitive-recursive function Hωω

of Ackermannian growth.
In the following, we will use the fact that, if h is monotone inflationary, then so

is hα: if x ≤ y, then x ≤ hα(x) ≤ hα(y). Regarding the Cichoń functions, if h is
monotone inflationary, then by induction on α,

hα(x) ≥ hα(x) + x . (14)

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 21

But the main interest of Cichoń functions is that they capture how many iterations
are performed by Hardy functions [4]:

hhα(x)(x) = hα(x) . (15)

5.1.3. Length Function Theorem. We can now state a ‘length function theorem’ for
controlled descending sequences of ordinals.

Theorem 5.1 ([26, Thm. 3.3]). Let n0 ≥ d + 1. The maximal length of (n0, h)-
controlled descending sequences of ordinals in ωd+1 is hωd+1(n0).

Let us apply Thm. 5.1 to the descending sequences of ordinal ranks from (11)
found along a branch of a decomposition forest of ξ0. Observe that by (4) and (12),
Nαξ ≤ |ξ| for any KLM sequence ξ. Thus, by monotonicity, a sequence like (11)
is (g(|ξ0|), h)-controlled, where g was defined in Lem. 4.17 and h in Lem. 4.18. By
Thm. 5.1 and because g(|ξ0|) ≥ d+1, the branches of a decomposition forest for ξ0
are of length at most

L def= hωd+1(g(|ξ0|)) . (16)

In turn, by (14) and (16),

L ≤ hω
d+1

(g(|ξ0|)) , (17)

and if ξ is any KLM sequence labelling a node of a decomposition forest for ξ0, then
by (15) and (16),

|ξ| ≤ hL(g(|ξ0|)) = hω
d+1

(g(|ξ0|)) . (18)

Consider now a VASS G of dimension d and two finite configurations cin and
cout . Then according to (3) and (4),

|cinGcout | = 2(d+ 1)d+1(|G|+ ‖cin‖ + ‖cout‖) . (19)

Thus, by combining (18) with Lem. 4.19, we obtain the following small witness
property.

Property 5.2 (Small Witness). Let G = (Q, qin , qout , T) be a VASS of dimension d,
cin and cout be two finite configurations in Nd, and n def= 2(d+ 1)d+1(|G|+ ‖cin‖ +

‖cout‖). If qin(cin)
σ−→
G
qout(cout) for some σ, then there exists a word σ′ ∈ A∗ such

that qin(cin)
σ′

−→
G
qout(cout) and

|σ′| ≤ ℓ
(

hω
d+1

(g(n))
)

,

where g, h, and ℓ are defined in lemmata 4.17 to 4.19.

5.2. Fast-Growing Complexity. We wish now to exploit the upper bounds from (16–
18) and Pty. 5.2 to provide complexity upper bounds for the decomposition al-
gorithm and the reachability problem. We will employ for this the fast-growing
complexity classes defined in [28]. This is an ordinal-indexed hierarchy of complex-
ity classes (Fα)α<ε0 , that uses the Hardy functions (Hα)α relative to H(x) def= x+1
as a standard against which we can measure high complexities.

22 J. LEROUX AND S. SCHMITZ

5.2.1. Fast-Growing Complexity Classes. Let us first define

Fα
def=

⋃

β<ωα

FDTIME
(

Hβ(n)
)

(20)

as the class of functions computed by deterministic Turing machines in time O(Hβ(n))
for some β < ωα. This captures for instance the class of Kalmar elementary func-
tions as F3 and the class of primitive-recursive functions as Fω [20, 30]. Then we
let

Fα
def=

⋃

p∈Fα

DTIME
(

Hωα

(p(n))
)

(21)

denote the class of decision problems solved by deterministic Turing machines in
time O

(

Hωα

(p(n))
)

for some function p ∈ Fα. The intuition behind this quanti-

fication over p is that, just like e.g. EXP =
⋃

p∈poly DTIME
(

2p(n)
)

quantifies over
polynomial functions to provide enough ‘wiggle room’ to account for polynomial
reductions, Fα is closed under Fα reductions [28, Thms. 4.7 and 4.8].

For instance, TOWER
def= F3 defines the class of problems that can be solved

using computational resources bounded by a tower of exponentials of elementary
height in the size of the input,

⋃

k∈N
Fk is the class of primitive-recursive decision

problems, and ACKERMANN
def= Fω is the class of problems that can be solved us-

ing computational resources bounded by the Ackermann function applied to some
primitive-recursive function of the input size—here it does not matter for α > 2
whether we are considering deterministic, nondeterministic, alternating, time, or
space bounds [28, Sec. 4.2.1]. See Fig. 2 for a depiction.

5.2.2. Complexity Upper Bounds. Let us first observe that, by Lem. 4.18, the
branching degree |dec(ξ)| of a node labelled by ξ in a decomposition forest for ξ0
is exponential in h(|ξ|), thus elementary in |ξ|. Furthermore, by Lem. 4.17, the
number |clean(ξ0)| of initial clean KLM sequences is exponential in g(|ξ0|), thus
elementary in |ξ0|. Thus, by (18), the size of the entire forest—i.e., the number of
decomposition steps performed by the decomposition algorithm—is also elementary

in hω
d+1

(g(|ξ0|)). Finally, still by Lem. 4.18, each decomposition step on a KLM se-
quence ξ can be performed in time elementary in |ξ|, hence the entire decomposition

forest can be computed in time elementary in hω
d+1

(g(|ξ0|)).

Lemma 5.3. Given a KLM sequence ξ0 of dimension d, we can compute fdec(ξ0)

in time e(hω
d+1

(g(|ξ0|))) for some fixed elementary function e and where g and h
are defined in lemmata 4.17 and 4.18.

Consider an instance of the VASS reachability problem, namely a VASS G of
dimension d and two finite configurations cin and cout , and let ξ0

def= (cinGcout).

Then fdec(ξ0) = ∅ if and only qin(cin)
∗−→
G
qout (cout), where by (19), |ξ0| is elementary

in the size of the instance. Let us examine the bound e(hω
d+1

(g(|ξ0|))) from Lem. 5.3
and express it in the form of (21). The innermost g function composed with the
blow-up incurred by (19) is a fixed elementary function in F<3, thus is captured
by the quantification over p ∈ F<α for all α ≥ 3. The inner h function is also fixed

and in F<3, and [27, Thm. 4.2] allows to over-approximate hω
d+1

in terms of Hωd+4

.
Finally, the outermost function e is also fixed and in F<3, and [27, Lem. 4.6] shows
how to ‘shift’ it into the innermost position.

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 23

Theorem 5.4 (Upper Bound). VASS reachability is in ACKERMANN, and in Fd+4

if the dimension d is fixed.

5.2.3. Combinatorial Algorithm. An alternative proof of Thm. 5.4 could also exploit

the following combinatorial algorithm. By Pty. 5.2, if qin(cin)
σ−→
G

qout (cout) for

some σ, then there is a small witness σ′ of length at most ℓ(hω
d+1

(g(n))). It suffices
therefore to compute this upper bound—which can be performed in time elementary
in the bound [27, Thm. 5.1]—, and to enumerate the paths in G of length up to
that bound until we find a witness or exhaust the search space.

6. Application: Downward Language Inclusion

The ACKERMANN = Fω upper bound provided by Thm. 5.4 for the VASS reachability
problem is still quite far from the currently best known lower bound, which is
TOWER = F3 hardness [6]. As mentioned in the introduction, this upper bound is
nevertheless rather tight as far as the decomposition algorithm is concerned. In this
section, we illustrate the usefulness of our new upper bound for another decision
problem.

Labelled VASSes. A labelled VASS (G,Σ, λ) is a VASS G = (Q, qin , qout , T) of
dimension d together with a finite alphabet Σ and labelling function λ:T → Σ∪{ε},
which is lifted homomorphically to a function T ∗ → Σ∗. We overload the notations

for step relations by writing p(x) w−→
G

q(y) if there exists a path π ∈ T ∗ from p

to q labelled by σ such that p(x) σ−→
G
q(y) and λ(π) = w ∈ Σ∗. Given two finite

configurations cin and cout in Nd, its labelled language is

Lλ(cin , G, cout)
def= {w ∈ Σ∗ | qin(cin)

w−→
G

qout (cout)} .

Downward-Closures. For two finite words u and v in Σ∗, we say that u embeds into v,
denoted u ≤∗ v, if u = a1 · · · ak and v = v0a1v1a2 · · · akvk for some a1, . . . , ak ∈ Σ
and v0, . . . , vk ∈ Σ∗. In other words, u embeds into v if we can obtain u from v

by ‘dropping’ some letters from v; for instance, bca ≤∗ aabacba. For a language
L ⊆ Σ∗, its downward-closure is ↓L def= {u ∈ Σ∗ | ∃v ∈ L . u ≤∗ v}. A consequence
of Higman’s Lemma also known as Haine’s Theorem is that, for any L ⊆ Σ∗, ↓L is
a regular language.

Example 6.1. Let us consider again the VASS Gex from Ex. 2.1, along with the
alphabet Σ def= {aj | 1 ≤ j ≤ 9} and the labelling function defined by λ(tj)

def= aj
for all 1 ≤ j ≤ 9. Then ↓Lλ((0, 0, 2), Gex, (1, 1, 0)) is the language denoted by the
regular expression

a∗1(a3 + ε)a∗6(a7 + ε)a∗8(a9 + ε)(a6 + ε) . �

Downward Language Inclusion. We are interested in this section in the following
decision problem.

Problem: VASS downward language inclusion.
input: Two labelled VASSes (G,Σ, λ) and (G′,Σ, λ′) and four finite configur-

ations cin and cout of G and c′
in

and c′
out

of G′.
question: Is ↓Lλ(cin , G, cout) ⊆ ↓Lλ′(c′

in
, G′, c′out)?

Now, by Haine’s Theorem, ↓Lλ(cin , G, cout) is regular for any labelled VASS.
However, that does not necessarily mean that one can actually compute a finite
automaton A such that L(A) = ↓Lλ(cin , G, cout) from the labelled VASS and

24 J. LEROUX AND S. SCHMITZ

configurations. Nevertheless, Habermehl, Meyer, and Wimmel [10, Prop. 1] show
that, given a full decomposition fdec(ξ0) of the KLM sequence ξ0 = (cinGcout), one
can construct such a finite automaton in logarithmic space1—as a hint, the reader
might see some resemblance between the regular expression of Ex. 6.1 and the full
decomposition fdec(ξex) = {ξ11ex , ξ

12
ex} from Ex. 4.16. Since the inclusion problem

for two regular languages represented by finite automata is in PSPACE, Lem. 5.3
entails the following.

Corollary 6.2 (of [10, Prop. 1]). The VASS downward language inclusion problem
is in ACKERMANN, and in Fd+4 if the dimension of the labelled VASSes is fixed to d.

Lower Bounds. The computational and the descriptional complexity of computing
downward-closures of languages is rather well studied [e.g., 31]. In the case of la-
belled VASS languages, Atig et al. [1, Thm. 10] show that there exists a family of la-
belled VASSes such that any finite automaton A such that L(A) = ↓Lλ(cin , G, cout)
requires a number of states Ackermannian in the size of G. A stronger result
was shown by Zetzsche [32, Cor. 17], which bars any alternative algorithm for the
VASS downward language inclusion problem from performing significantly better
than Cor. 6.2.

Theorem 6.3 ([32, Cor. 17]). The VASS downward language inclusion problem is
ACKERMANN-hard, and Fd-hard if the dimension of the labelled VASSes is fixed
to d ≥ 3.

Proof. The lower bound in the general case is stated in [32, Cor. 17]. Regarding
the case in fixed dimension d ≥ 1, [32, Thm. 15] shows how to derive Fd-hardness
provided we can ‘weakly implement’ the Ackermann function Ad(x) with a VASS
of dimension d and size polynomial in d, where Ad(x) is defined inductively by
A1(x)

def= 2x and Ad+1(x)
def= Ax

d(1). The existence of such weak implementations is
well-known; see for instance [29, Sec. 4.2.2]. �

7. Concluding Remarks

We have proven that a refinement of the decomposition algorithms of Mayr [21],
Kosaraju [13], and Lambert [14] runs in Ackermannian time, and in primitive-
recursive time for VASSes of fixed dimension. In turn, this provides respect-
ively ACKERMANN and Fd+4 upper bounds for both the VASS reachability and
the VASS downward language inclusion problems. While the former only needs to
find some normal KLM sequence in a decomposition forest and is only known to
be TOWER-hard [6], the latter essentially requires to construct a full decomposition
and was already known to be ACKERMANN-hard [32], and therefore ACKERMANN-
complete by our results. Thus it is unclear at the moment whether a better al-
gorithm for VASS reachability might exist.

Another line for future research is the complexity of VASS reachability in fixed
dimension. With a binary encoding, the problem is NP-complete in dimension
one [9] and PSPACE-complete in dimension two [2]; with a unary encoding, both are
NL-complete [8]. In dimension three and above, our Fd+4 bound is currently the
best known upper bound, but we expect that this could be refined further.

1The result of Habermehl et al. is stated in terms of a full decomposition constructed by
Lambert’s algorithm, but the adaptation to our full decomposition is mostly straightforward.

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 25

Acknowledgements

The authors thank the LICS 2019 reviewers for their thorough reviews. Work
partially funded by ANR-17-CE40-0028 BraVAS. The second author is also par-
tially funded by ANR-14-CE28-0005 prodaq.

References

[1] M. F. Atig, R. Meyer, S. Muskalla, and P. Saivasan. On the upward/downward closures of

Petri nets. In Proc. MFCS’17, volume 83 of Leibniz Int. Proc. Inf., pages 49:1–49:14. LZI,
2017. doi:10.4230/LIPIcs.MFCS.2017.49.

[2] M. Blondin, A. Finkel, S. Göller, C. Haase, and P. McKenzie. Reachability in two-dimensional
vector addition systems with states is PSPACE-complete. In Proc. LICS’15, pages 32–43. IEEE
Press, 2015. doi:10.1109/LICS.2015.14.

[3] E. Cardoza, R. J. Lipton, and A. R. Meyer. Exponential space complete problems for Petri
nets and commutative semigroups: Preliminary report. In Proc. STOC’76, pages 50–54.
ACM, 1976. doi:10.1145/800113.803630.

[4] E. A. Cichoń and E. Tahhan Bittar. Ordinal recursive bounds for Higman’s Theorem. Theor.

Comput. Sci., 201(1–2):63–84, 1998. doi:10.1016/S0304-3975(97)00009-1 .
[5] W. Czerwiński, P. Hofman, and G. Zetzsche. Unboundedness problems for languages of

vector addition systems. In Proc. ICALP’18, volume 107 of LIPIcs, pages 119:1–119:15. LZI,
2018. doi:10.4230/LIPIcs.ICALP.2018.119.

[6] W. Czerwiński, S. Lasota, R. Lazić, J. Leroux, and F. Mazowiecki. The reachability problem
for Petri nets is not elementary. In Proc. STOC 2019. ACM, 2019. arXiv:1809.07115 [cs.LO],
to appear.

[7] N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Comm. ACM,
22(8):465–476, 1979. doi:10.1145/359138.359142.

[8] M. Englert, R. Lazić, and P. Totzke. Reachability in two-dimensional unary vector addi-
tion systems with states is NL-complete. In Proc. LICS’16, pages 477–484. ACM, 2016.
doi:10.1145/2933575.2933577.

[9] C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachability in succinct and parametric
one-counter automata. In Proc. CONCUR’09, volume 5710 of Lect. Notes in Comput. Sci.,
pages 369–383. Springer, 2009. doi:10.1007/978-3-642-04081-8 25.

[10] P. Habermehl, R. Meyer, and H. Wimmel. The downward-closure of Petri net languages. In
Proc. ICALP’10, volume 6199 of Lect. Notes in Comput. Sci., pages 466–477. Springer, 2010.
doi:10.1007/978-3-642-14162-1 39.

[11] J. E. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector addi-
tion systems. Theor. Comput. Sci., 8:135–159, 1979. doi:10.1016/0304-3975(79)90041-0 .

[12] R. M. Karp and R. E. Miller. Parallel program schemata. J. Comput. Syst. Sci., 3(2):147–195,
1969. doi:10.1016/S0022-0000(69)80011-5.

[13] S. R. Kosaraju. Decidability of reachability in vector addition systems. In Proc. STOC’82,
pages 267–281. ACM, 1982. doi:10.1145/800070.802201.

[14] J.-L. Lambert. A structure to decide reachability in Petri nets. Theor. Comput. Sci., 99(1):
79–104, 1992. doi:10.1016/0304-3975(92)90173-D .

[15] S. Lasota. VASS reachability in three steps. Preprint, 2018. arXiv:1812.11966 [cs.LO].
[16] J. Leroux. The general vector addition system reachability problem by Pres-

burger inductive invariants. Logic. Meth. in Comput. Sci., 6(3:22):1–25, 2010.
doi:10.2168/LMCS-6(3:22)2010.

[17] J. Leroux. Vector addition systems reachability problem (A simpler solution). In Turing-100,
volume 10 of EPiC Series in Computing, pages 214–228. EasyChair, 2012.

[18] J. Leroux and S. Schmitz. Demystifying reachability in vector addition systems. In Proc.

LICS’15, pages 56–67. IEEE Press, 2015. doi:10.1109/LICS.2015.16.
[19] R. Lipton. The reachability problem requires exponential space. Technical Report 62, Yale

University, 1976.

[20] M. Löb and S. Wainer. Hierarchies of number-theoretic functions. I. Arch. Math. Logic, 13
(1–2):39–51, 1970. doi:10.1007/BF01967649.

[21] E. W. Mayr. An algorithm for the general Petri net reachability problem. In Proc. STOC’81,
pages 238–246. ACM, 1981. doi:10.1145/800076.802477.

http://bravas.labri.fr/
http://projects.lsv.fr/prodaq
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.49
http://dx.doi.org/10.1109/LICS.2015.14
http://dx.doi.org/10.1145/800113.803630
http://dx.doi.org/10.1016/S0304-3975(97)00009-1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.119
https://arxiv.org/abs/1809.07115
http://dx.doi.org/10.1145/359138.359142
http://dx.doi.org/10.1145/2933575.2933577
http://dx.doi.org/10.1007/978-3-642-04081-8_25
http://dx.doi.org/10.1007/978-3-642-14162-1_39
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.1016/S0022-0000(69)80011-5
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.1016/0304-3975(92)90173-D
https://arxiv.org/abs/1812.11966
http://dx.doi.org/10.2168/LMCS-6(3:22)2010
http://dx.doi.org/10.1109/LICS.2015.16
http://dx.doi.org/10.1007/BF01967649
http://dx.doi.org/10.1145/800076.802477

26 J. LEROUX AND S. SCHMITZ

[22] H. Müller. The reachability problem for VAS. In Advances in Petri Nets 1984, volume 188 of
Lect. Notes in Comput. Sci., pages 376–391. Springer, 1985. doi:10.1007/3-540-15204-0 21.

[23] L. Pottier. Minimal solutions of linear Diophantine systems: Bounds and algorithms. In
Proc. RTA’91, volume 488 of Lect. Notes in Comput. Sci., pages 162–173. Springer, 1991.
doi:10.1007/3-540-53904-2 94.

[24] C. Rackoff. The covering and boundedness problems for vector addition systems. Theor.

Comput. Sci., 6(2):223–231, 1978. doi:10.1016/0304-3975(78)90036-1 .
[25] C. Reutenauer. The mathematics of Petri nets. Masson and Prentice, 1990.
[26] S. Schmitz. Complexity bounds for ordinal-based termination. In Proc. RP’14, volume 8762 of

Lect. Notes in Comput. Sci., pages 1–19. Springer, 2014. doi:10.1007/978-3-319-11439-2 1.
[27] S. Schmitz. Complexity hierarchies beyond ELEMENTARY. ACM Trans. Comput. Theory, 8

(1):1–36, 2016. doi:10.1145/2858784.
[28] S. Schmitz. Automata column: The complexity of reachability in vector addition systems.

ACM SIGLOG News, 3(1):3–21, 2016. doi:10.1145/2893582.2893585 .
[29] S. Schmitz. Algorithmic Complexity of Well-Quasi-Orders. Habilita-

tion thesis, École Normale Supérieure Paris-Saclay, Nov. 2017. URL
http://tel.archives-ouvertes.fr/tel-01663266.

[30] S. S. Wainer. Ordinal recursion, and a refinement of the extended Grzegorczyk hierarchy.
J. Symb. Log., 37(2):281–292, 1972. doi:10.2307/2272973.

[31] G. Zetzsche. An approach to computing downward closures. In Proc. IC-

ALP’15, volume 9135 of Lect. Notes in Comput. Sci., pages 440–451. Springer, 2015.
doi:10.1007/978-3-662-47666-6 35.

[32] G. Zetzsche. The complexity of downward closure comparisons. In Proc. IC-

ALP’16, volume 55 of Leibniz Int. Proc. Inf., pages 123:1–123:14. LZI, 2016.
doi:10.4230/LIPIcs.ICALP.2016.123 .

Appendix A. Pumpability

In this section we provide the details of the proof of Lem. 4.15.

A.1. Rackoff Extraction. We start by proving the following result inspired by
Rackoff [24].

Lemma A.1. Let us assume that

q0(c0)
a1−→
G

q1(c1) · · ·
ak−−→
G

qk(ck) .

Let C ≥ |G| and assume that for every i ∈ {1, . . . , d} there exists j ∈ {0, . . . , k}
such that

cj(i) ≥ C1+dd

.

In that case there exists a configuration c ∈ Nd
ω such that c(i) ≥ C − |G| for every

i ∈ {1, . . . , d}, and a word σ such that |σ| < C(d+1)d+1

and q0(c0)
σ−→
G
qk(c).

The previous lemma is a direct consequence of the following statement.

Lemma A.2. Let us assume that

q0(c0)
a1−→
G

q1(c1) · · ·
ak−−→
G

qk(ck) .

Let C ≥ |G| be such that for every i ∈ {1, . . . , d} there exists j ∈ {0, . . . , k} such
that

cj(i) ≥ C1+nn

where n def= |{i | c0(i) ∈ N}|. Then, there exists a configuration c and a word σ such

that q0(c0)
σ−→
G
qk(c), c(i) ≥ C − |G| for every i, and

|σ| < C(n+1)n+1

.

http://dx.doi.org/10.1007/3-540-15204-0_21
http://dx.doi.org/10.1007/3-540-53904-2_94
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1007/978-3-319-11439-2_1
http://dx.doi.org/10.1145/2858784
http://dx.doi.org/10.1145/2893582.2893585
http://tel.archives-ouvertes.fr/tel-01663266
http://dx.doi.org/10.2307/2272973
http://dx.doi.org/10.1007/978-3-662-47666-6_35
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.123

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 27

Proof. Let T be the set of transitions of G. Notice that if T is empty, the lemma
is immediate. So, we can assume that T 6= ∅, and in particular that |G| ≥ 2.

We prove the lemma by induction on n. Naturally, for the base case n = 0, then
c0 = ω and the proof is immediate by selecting for σ the label of a simple path
from q0 to qk; notice that |σ| < |Q| ≤ C. For the induction step, let us assume
that the lemma holds as soon as the cardinal of H def= {i ∈ {1, . . . , d} | c0(i) 6= ω} is
strictly bounded by n ≥ 1, and let us consider an instance of the lemma such that
|H | = n. We have by assumption

q0(c0)
a1−→
G

q1(c1) · · ·
ak−−→
G

qk(ck) . (22)

Assume that for every i ∈ {1, . . . , d} there exists j ∈ {0, . . . , k} such that cj(i) ≥
C1+nn

.

Notice that for every i ∈ H , there exists a minimal ki ∈ {0, . . . , k} such that

cki
(i) ≥ C1+nn

. Let k̂ def= min{ki | i ∈ H}. Observe that for every j ∈ {0, . . . , k̂−1}
and for every i ∈ H , by minimality of ki we deduce that cj(i) < C1+nn

. It follows

that the cardinal of the set {qj(cj) | 0 ≤ j < k̂} is bounded by |Q| · (C1+nn

)n ≤

C1+n+nn+1

. By removing cycles that occur on the execution from q0 to q
k̂
, we can

assume without loss of generality that k̂ ≤ C1+n+nn+1

.

Let I def= {i ∈ H | ki > k̂}. Observe that n̂ def= |I| satisfies n̂ < n. Let us define
xj

def= cj |I . Then

q
k̂
(x

k̂
)

a
k̂+1

−−−→
G

q
k̂+1(xk̂+1) · · ·

ak−−→
G

qk(xk) . (23)

Moreover, for every i ∈ {1, . . . , d} there exists j ∈ {k̂, . . . , k} such that xj(i) ≥

C1+n̂n̂

. In fact, if i 6∈ I then x
k̂
(i) = ω ≥ C1+n̂n̂

, and if i ∈ I, and since ki > k̂,

there exists j ∈ {k̂ + 1, . . . , k} such that xj(i) ≥ C1+nn

≥ C1+n̂n̂

. By induction

hypothesis, there exists a configuration ĉ and a word σ̂ such that q
k̂
(x

k̂
) σ̂−→

G
qk(ĉ),

ĉ(i) ≥ C − |G| for every i, and |σ̂| < C(n̂+1)n̂+1

≤ Cnn

.

Let σ def= a1 . . .ak̂
σ̂. Observe that |σ| < C1+n+nn+1

+ Cnn

. Let us prove that

C1+n+nn+1

+ Cnn

≤ C(n+1)n+1

. Since C ≥ 2, it is sufficient to prove that (1 + n+
nn+1) + nn ≤ (n + 1)n+1. If n = 1 the inequality is trivial. Otherwise, the first
two elements of the binomial decomposition of (n + 1)n+1 provide (n + 1)n+1 ≥
nn+1 + (n+ 1)nn. Moreover (n+ 1)nn ≥ nn + nn+1 ≥ nn + 2n ≥ nn + n+ 1. We
have proven the inequality.

Let Zω
def= Z ⊎ {ω}, and let us introduce for every prefix u of σ̂ the vector

zu in Zd
ω defined by zu

def= c
k̂
+ ∆(u). Observe that zu|I = x

k̂
+ ∆(u). Since

q
k̂
(x

k̂
) σ̂−→

G
qk(ĉ), there exists a configuration qu(ẑu) such that q

k̂
(x

k̂
) u−→

G
qu(ẑu). In

particular ẑu = x
k̂
+ ∆(u), and we have proven that zu|I = ẑu. It follows that

zu(i) ≥ 0 for every i ∈ I. Notice that for every i 6∈ H , we have zu(i) = ω ≥ 0.
Moreover, for every i ∈ H\I, we have zu(i) = c

k̂
(i)+∆(u)(i) ≥ C1+nn

− |G| · |u| ≥

C1+nn

− |G| · Cnn

= Cnn

· (C − |G|) ≥ C − |G|. Hence zu(i) ≥ C − |G|. We have

proven that zu ∈ Nd
ω. In particular, it follows that q

k̂
(c

k̂
) σ̂−→

G
qk(c) where c = zσ̂.

Notice that we have c(i) ≥ C−|G| for every i. In fact, if i ∈ H\I then c(i) = zσ̂(i),

if i ∈ I then c(i) = ĉ(i), and if i 6∈ H then c(i) = ω. Finally, as q0(c0)
σ0−→ q

k̂
(c

k̂
)

we deduce that q0(c0)
σ−→
G
qk(c) and we have proven the induction. �

28 J. LEROUX AND S. SCHMITZ

A.2. Unfoldings. Recall that NB
def= {0, . . . , B−1, ω} for any B ∈ N, and that if i ∈

{1, . . . , d}, r ∈ NB, and x(i) ∈ NB, then the forward (i, B, r)-unfolding of a KLM
triple xGy is the KLM triple xG′y where G′ def= (Q × NB , (qin ,x(i)), (qout , r), T

′)
and T ′ is the set of transitions ((p,m),a, (q, n)) where (p,a, q) ∈ T and m,n ∈ NB

satisfy n = m + a(i) or (n = ω ∧ m + a(i) ≥ B), and such that m = ω implies
q 6= qin . The backward (i, B, r)-unfolding is defined symmetrically.

Lemma 4.13. Let ξ = xGy be a KLM sequence and let I be the set of components
i ∈ {1, . . . , d} that are not fixed by G and such that FaccG(x)(i) < ω. If I is not
empty, then there exists i ∈ I such that Lξ =

⋃

r∈NB
Lξr where ξr is the forward

(i, B, r)-unfolding of ξ and B def= (‖x‖ + 2|G|)1+dd

.

Proof. The inclusion of the right hand side to the left hand side is immediate. Let
us prove the other inclusion.

Let σ def= a1 . . .ak be a word in Lξ. Then there exists a sequence q0(m0), . . . , qk(mk)
of state-configurations such that q0 = qin , qk = qout , m0,mk ∈ Nd, m0 ⊑ x,
mk ⊑ y, and such that

q0(m0)
a1−→
G

q1(m1) · · ·
ak−−→
G

qk(mk) .

Without loss of generality, by restricting the set of states of G to {q0, . . . , qk}, we
can assume that every state of G is visited. Let us prove that for every component i
fixed by G such that FaccG(x)(i) 6= ω, there exists a function fi:Q→ N such that
f(qin) = FaccG(x)(i) and such that fi(q) = fi(p) + a(i) for every (p,a, q) ∈ T .
Since i is fixed by G, there exists a function fi:Q→ Z such that fi(q) = fi(p)+a(i)
for every (p,a, q) ∈ T . As FaccG(x)(i) ∈ N, by translating fi we can assume that
fi(qin) = FaccG(x)(i). Notice that m0 ⊑ x ⊑ FaccG(x). It follows that m0(i) =

FaccG(x)(i) and in particular that fi(q0) = m0(i). Because qj−1(mj−1)
aj−→
G
qj(mj),

we deduce by induction on j that fi(qj) = mj(i) for every 0 ≤ j ≤ k. As Q =
{q0, . . . , qk}, we deduce that fi(q) ∈ N for every q ∈ Q.

Observe that, if there exists i ∈ I such that for every j ∈ {0, . . . , k} we have
mj(i) < B, then σ ∈ Lξr where r def= mk(i). Thus, we can assume that for
every i ∈ I, there exists j ∈ {0, . . . , k} such that mj(i) ≥ B. Let k′ be the minimal
natural number such that, for every i ∈ I, there exists j ∈ {0, . . . , k′} such that
mj(i) ≥ B. Since m0(i) < B for every i ∈ I, it follows that k′ ≥ 1. By minimality
of k′, there exists i ∈ I such that for every j ∈ {0, . . . , k′ − 1} we have mj(i) < B.
Observe that if qin 6∈ {qk′ , . . . , qk}, we deduce that σ ∈ Lξω . So, it just remains to
prove that qin 6∈ {qk′ , . . . , qk}.

Assume by contradiction that qin ∈ {qk′ , . . . , qk}. Since m0 ⊑ x ⊑ FaccG(x)
and I ⊆ {i | FaccG(x)(i) ∈ N}, it follows that m0|I = FaccG(x)|I . Let cj

def= mj |I
for every 0 ≤ j ≤ k. Notice that we have

qin(FaccG(x)|I) = q0(c0)
a1−→
G

q1(c1) · · ·
ak′−−→
G

qk′(ck′) . (24)

For every i ∈ {1, . . . , d}, there exists j ∈ {0, . . . , k′} such that cj(i) ≥ C1+dd

, where

C def= ‖x‖ + 2|G|. In fact, if i 6∈ I then c0(i) = ω, and if i ∈ I then there exists
j ∈ {0, . . . , k′} such that mj(i) ≥ B; From cj(i) = mj(i) we are done. Lemma A.1

shows that there exists a configuration x̄ and a word u′ such that q0(c0)
u′

−→
G
qk′ (x̄)

and such that x̄(i) ≥ C − |G| for every 1 ≤ i ≤ d.

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 29

Since qin ∈ {qk′ , . . . , qk}, we deduce that there exists a path in G from qk′ to qin .
We can consider a simple path of that form. Let u′′ be the label of that path.
Because |u′′| < |Q|, we know that for every prefix v of u′′ we have ∆(v)(i) > −|G|.

It follows that x̄ + ∆(v) ≥ 0. We have proven that qk′ (x̄) u′′

−−→
G

qin (z) where z

satisfies z(i) > C − 2|G| for every 1 ≤ i ≤ d. As q0(c0) = qin(x|I), we also know

that qin(FaccG(x)|I)
u−→
G
qin(z) where u = u′u′′. Since z(i) > x(i) = FaccG(x)(i)

for every i ∈ I, we deduce that ∆(u)(i) > 0 for every i ∈ I.

Finally, let us prove that there exists a configuration x′ ≥ FaccG(x) such that

qin(FaccG(x))
u−→
G
qin(x

′), and such that x′(i) > FaccG(x)(i) for every i ∈ I. Let v
be a prefix of u and let us first prove that FaccG(x)(i) + ∆(v)(i) ≥ 0 for every

1 ≤ i ≤ d. Note that if i ∈ I, then because qin(FaccG(x)|I)
u−→
G
qin(z), we get

the property. If FaccG(x)(i) = ω then FaccG(x)(i) + ∆(v)(i) ≥ 0 is immediate.
Therefore we can assume that FaccG(x)(i) 6= ω and i 6∈ I. In that case i is fixed
by G. We have seen in that case that there exists a function fi:Q → N such that
fi(qin) = FaccG(x)(i) and fi(q) = fi(p) + a(i) for every (p,a, q) ∈ T . We deduce
that FaccG(x)(i)+∆(u)(i) = fi(q) ≥ 0 where q is any state reachable from qin by a

path labelled by v. It follows that qin(FaccG(x))
u−→
G
qin(x

′) for x′ def= FaccG(x)+∆(u).
Notice that for every i 6∈ I this shows that x′(i) = FaccG(x), and that for every
i ∈ I and because ∆(u)(i) > 0, we have x′(i) > FaccG(x)(i).

By monotony, notice that there exist a word σ and a configuration x′′ ≥ x such

that qin(x)
σ−→
G
qin(x

′′) and such that x′′(i) > x(i) for every i such that x(i) ∈ N

and FaccG(x)(i) = ω. It follows that, for every n ∈ N large enough, there exists

a configuration xn ≥ x such that qin(x)
σnu−−→
G

qin(xn). Notice that for n large
enough, we have xn ≥ x. Moreover, we have xn(i) > x(i) for every i ∈ I. Hence
FaccG(x)(i) = ω for every i ∈ I and we get a contradiction. �

Appendix B. Unbounded Equations

We recall some elements of linear algebra adapted from [23].

Lemma B.1 (corollary of [23, Thm. 1]). Let (ai,j)1≤i≤m

1≤j≤n

be a sequence of integers

and let c ∈ Zm and let us define two sets X and X0 by

X def=

{

x ∈ Nn
∣

∣

∣

m
∧

i=1

n
∑

j=1

ai,jx(j) = c(i)

}

, X0
def=

{

x ∈ Nn
∣

∣

∣

m
∧

i=1

n
∑

j=1

ai,jx(j) = 0

}

.

Then every vector in X can be decomposed as the sum of a vector x in X and a
finite sum of vectors x0 in X0 such that:

‖x‖ ≤ ‖c‖ · (2 + max
1≤i≤m

n
∑

j=1

|ai,j |)
m , ‖x0‖ ≤ (2 + max

1≤i≤m

n
∑

j=1

|ai,j |)
m .

Proof. Observe that if c(i) < 0 for some 1 ≤ i ≤ m, by replacing c(i) by −c(i)
and ai,j by −ai,j for every 1 ≤ j ≤ n, we do not modify the sets X and X0. So,
without loss of generality, we can assume that c ∈ Nm.

We call P the set of pairs (u,v) ∈ Nn×Nm such that
∧m

i=1

∑n

j=1 ai,jv(j) = u(i).

We denote by P0 the set of minimal (for ≤) non-zero pairs in P . In [23, Theorem 1]

30 J. LEROUX AND S. SCHMITZ

it is shown that every pair in P is a finite sum of pairs in P0, and moreover, every
pair (u,v) in P0 satisfies ‖u‖ + ‖v‖ ≤ C where

C def= (1 + max
1≤i≤m

(

n
∑

j=1

|ai,j |+ 1))m .

Let x′ ∈ X. Since (c,x′) is in P , it can be decomposed as a finite sum of
pairs in P0. On the one hand, notice that the pairs (u,v) with u = 0 provides
us with vectors v ∈ X0 satisfying ‖v‖ ≤ C. On the other hand, notice that the
decomposition of (v,x) cannot contains more that ‖c‖ pairs (u,v) with u 6= 0.
Notice that such a pair satisfies ‖v‖ ≤ C − 1. It follows that those pairs sum up
to a pair (c,x) in P such that ‖x‖ ≤ ‖c‖ · (C − 1). As (c,x) ∈ P , it follows that
x ∈ X. This concludes the proof. �

Corollary B.2. Every model h of Eξ can be decomposed as the sum of a model h′

of Eξ and a finite sum of models h0 of E0
ξ such that

‖h′‖ ≤ |ξ||ξ|−1 , ‖h0‖ ≤ |ξ||ξ|−3 .

Proof. Just apply Lem. B.1 where (ai,j)i,j corresponds to the coefficients occurring
in the characteristic system of ξ in front of variables, and c corresponds to the
constant terms. Observe that 2 + max1≤i≤m

∑n

j=1 |ai,j | ≤ |ξ|, m ≤ |ξ| − 3, and

‖c‖ ≤ |ξ|2. �

Lemma 3.7. Assume that ξ = (x0G0y0)a1 . . . (xkGkyk) is satisfiable. Then for
every 0 ≤ j ≤ k we have:

• For every 1 ≤ i ≤ d, the set of values mh
j (i) where h is a model of Eξ is

unbounded if, and only if, there exists a model h0 of E0
ξ such that mh0

j (i) >
0.

• For every t ∈ Tj, the set of values φhj (t) where h is a model of Eξ is

unbounded if, and only if, there exists a model h0 of E
0
ξ such that φh0

j (t) > 0.

• For every 1 ≤ i ≤ d, the set of values nh
j (i) where h is a model of Eξ is

unbounded if, and only if, there exists a model h0 of E0
ξ such that nh0

j (i) >
0.

Moreover, the sum of the bounded values of Eξ is bounded by |ξ||ξ|−1.

Proof. This is a direct consequence of Cor. B.2 by observing that if h is a model
of Eξ and h0 is a model of E0

ξ then h+ nh0 is a model of Eξ for every n ∈ N. �

Appendix C. Normal KLM Sequences

In this section, we prove Lem. 4.19. Throughout this appendix, we assume
that ξ denotes a normal KLM sequence of the form (x0G0x1)a1 . . . (xk, Gk,yk),
where Gj = (Qj , qin,j , qout,j , Tj) for each 0 ≤ j ≤ k.

C.1. Models of Normal KLM Sequences.

Claim C.1. There exists a model h of Eξ such that φhj (t) > 0 for every t ∈ Tj,

and such that ‖h‖ ≤ 2|ξ||ξ|−1.

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 31

Proof. As ξ is satisfiable, there exists a model h of Eξ. By decomposing h thanks

to Cor. B.2, we can assume that ‖h‖ ≤ |ξ||ξ|−1. Moreover, since ξ is unbounded,
Cor. B.2 shows that for every 0 ≤ j ≤ k and for every t ∈ Tj, there exists a model

h0 of E0
ξ such that ‖h0‖ ≤ |ξ||ξ|−3 and such that φh0

j (t) > 0. By adding to h, at

most
∑k

j=0 |Tj| models of E0
ξ , we get a model of Eξ satisfying the claim. �

Claim C.2. There exists a model h0 of E0
ξ such that for every 0 ≤ j ≤ k, for every

1 ≤ i ≤ d, and for every t ∈ Tj,

• if xj(i) = ω then mh0

j (i) > 0,

• if yj(i) = ω then nh0

j (i) > 0, and

• φh0

j (t) > 0,

and moreover,

‖h0‖ ≤ |ξ||ξ|−2 .

Proof. Since ξ is saturated, Cor. B.2 shows that for every i ∈ {1, . . . , d} and j ∈
{0, . . . , k}:

• if xj(i) = ω then there exists a model h0 of E0
ξ such that ‖h0‖ ≤ |ξ||ξ|−3

and such that mh0

j (i) > 0, and

• if yj(i) = ω then there exists a model h0 of E0
ξ such that ‖h0‖ ≤ |ξ||ξ|−3

and such that nh0

j (i) > 0.

Moreover, since ξ is unbounded, Cor. B.2 shows that for every j ∈ {0, . . . , k} and
for every t ∈ Tj there exists a model h0 of E0

ξ such that ‖h0‖ ≤ |ξ||ξ|−3 and such

that φh0

j (t) > 0.

It follows that by summing up at most 2d(k + 1) +
∑

0≤j≤k |Tj | models of E0
ξ ,

we get a model h0 of E0
ξ satisfying the claim. �

C.2. Flow Functions.

Claim C.3. For all 0 ≤ j ≤ k, there exists a function Fj :Qj → Nd
ω such that

Fj(q) = Fj(p) + a for every transition (p,a, q) ∈ T , and such that Fj(qin,j) =
FaccGj

(xj) and Fj(qout,j) = BaccGj
(yj).

Proof. It suffices to prove the claim for some KLM triple xGy which is pumpable,
rigid, and saturated. Let us prove that for every i ∈ {1, . . . , d}, there exists a
function fi:Q→ Nω such that fi(q) = fi(p)+a(i) for every transition (p,a, q) ∈ T

and such that fi(qin) = FaccG(x)(i) and fi(qout) = BaccG(y)(i). Let i ∈ {1, . . . , d}.
Observe that if i is not fixed by G, then FaccG(x)(i) = ω = BaccG(y)(i), and we
can let fi be the constant function mapping to ω. Otherwise, if i is not fixed, then
FaccG(x)(i) = x(i) and BaccG(y)(i) = y(i). Since xGy is saturated, we deduce
that x(i) ∈ N ⇐⇒ y(i) ∈ N. Note that, if x(i) = ω = y(i), then we can let fi
be the constant function mapping to ω. So, we can assume that x(i),y(i) ∈ N.
Since xGy is rigid, we deduce that there exists a function gi:Q → N such that
gi(q) = gi(p) + a(i) for every transition (p,a, q) ∈ T , and such that gi(qin) ⊑ x(i)
and gi(qout) ⊑ y(i). As x(i),y(i) ∈ N, we deduce that gi(qin) = x(i) and gi(qout) =
y(i). It follows that we can let fi

def= gi in that case. �

32 J. LEROUX AND S. SCHMITZ

C.3. Pumping in Normal KLM Sequences. Let us introduce the acceleration
operator ∇ that maps a pair of configurations (x,x′) such that x ≤ x′ into the
configuration x∇x′ defined for every 1 ≤ i ≤ d by:

(x∇x′)(i) def=

{

ω if x(i) < x′(i)

x(i) otherwise

Claim C.4. There exists a sequence (uj , vj)0≤j≤k of pairs of words such that

|uj|, |vj | < |ξ|(d+1)d+1

, and a sequence (x′
j ,y

′
j)0≤j≤k of pairs of configurations

x′
j ≥ xj and y′

j ≥ yj such that for every 0 ≤ j ≤ k:

• qin,j(xj)
uj−−→
Gj

qin,j(x
′
j) and FaccGj

(xj) = xj∇x′
j,

• qout ,j(y
′
j)

vj−−→
Gj

qout,j(yj) and BaccGj
(yj) = yj∇y′

j.

Proof. Consider some triple xGy def= xjGjyj for some 0 ≤ j ≤ k; since ξ is normal,
this triple is pumpable. We just provide a proof for u and x′ since v and y′ can
be obtained by symmetry. Let I be the set of components i ∈ {1, . . . , d} such that
x(i) ∈ N and FaccG(x)(i) = ω. Fix some i ∈ I. Notice that there exists a cycle θi
on qin labelled by a word σi, and a configuration xi ≥ x such that x

σi−→ xi and
xi(i) > x(i).

Let us prove that for every n ∈ N, there exists a configuration c ≥ (n, . . . , n)

such that qin(x|I)
∗−→
G
qin (c). Notice that qin(x|I)

σi−→
G

qin(xi|I). From x|I ≤ xi|I ,
we deduce that there exists a configuration ci ∈ Nd such that xi|I = x|I + ci. As

x|I(i) < xi|I(i), we get ci(i) > 0. By monotony, notice that we have qin(x|I)
∗−→
G

qin(c) where c def= x|I +
∑

i∈I nci. Notice that c ≥ (n, . . . , n).

By selecting n large enough, and letting C def= |ξ|, Lem. A.1 shows that there

exists another configuration c and a word u such that qin(x|I)
u−→
G
qin (c) and such

that c(i) ≥ C − |G| for every i, and such that |u| < C(d+1)d+1

.

Let us prove that there exists a configuration x′ such that qin (x)
u−→
G
qin(x

′). Let
v be a prefix of u and let us prove that x(i) + ∆(u)(i) ≥ 0 for every i. If i ∈ I,
the previous paragraph provides the bound. If x(i) = ω, the proof is immediate.
If i 6∈ I and x(i) 6= ω, then the function Fj introduced in Claim C.3 shows that
x(i) + ∆(u)(i) = Fj(q)(i) ≥ 0 where q is the state reached after reading v from
qin,j. Hence, we have proven the existence of x′. Notice that x′(i) = x(i) if i 6∈ I

and x′(i) ≥ C − |G| > x(i) for every i ∈ I. We have proven the claim. �

C.4. Proof of Lemma 4.19.

Lemma 4.19 (Bounded Witness). From any normal KLM sequence ξ, we can
compute in space O(ℓ(|ξ|)) a word σ ∈ Lξ such that |σ| ≤ ℓ(|ξ|) where ℓ(x) def= x3x.

Proof. We use the models h and h0 of Eξ and E0
ξ defined in claims C.1 and C.2,

and the sequence (uj , vj)0≤j≤k and (x′
j ,y

′
j)0≤j≤k defined in Claim C.4.

Now, let ψuj
be the Parikh image of a cycle in Gj on qin,j labelled by uj, and

let ψvj be the Parikh image of a cycle in Gj on qout,j labelled by vj . We define

φj
def= rφh0

j − (ψuj
+ ψvj) where r def= 2|ξ|1+(d+1)d+1

. Observe that φj(t) > 0 for

every t ∈ Tj. Moreover, as φj satisfies the homogeneous Kirchhoff system K0
Gj

and Gj is strongly connected, Euler’s Lemma shows that there exists a cycle on qin,j

labelled by some word wj with a Parikh image equals to φj . Notice that |wj | =

VAS REACHABILITY IS PRIMITIVE-RECURSIVE IN FIXED DIMENSION 33

∑

t∈Tj
φj(t) ≤ r|ξ||ξ|−3. Let s def= r|ξ||ξ|−2, thus such that |ξ||wj | ≤ s. In particular

∆(wj) = ∆(φj) = r∆(φh0

j) − (∆(uj) + ∆(vj)). From ∆(φh0

j) = nh0

j − mh0

j we
deduce

n0
j = m0

j +∆(wj) (25)

where m0
j

def= rmh0

j +∆(uj) and n0
j

def= rnh0

j −∆(vj).

Let Ij be the set of components fixed by Gj . Let us prove that m
0
j ,n

0
j ∈ Nd and

m0
j (i),n

0
j(i) > 0 for every i 6∈ Ij . Observe that if i ∈ Ij then ∆(uj)(i) = 0 since uj is

the label of a cycle and in particular m0
j(i) = rmh0

j (i) ≥ 0. If i 6∈ Ij and xj(i) ∈ N,

because FaccGj
(xj)(i) = ω we known that ∆(uj)(i) > 0. If i 6∈ Ij and xj(i) = ω,

then mh0

j (i) > 0 and in particular m0
j(i) ≥ r + ∆(uj)(i) ≥ r + ∆(uj)(i) ≥ 1 by

definition of r and since |uj | < |ξ|(d+1)d+1

. We have proven that m0
j ≥ 0 and

m0
j (i) > 0 for every i 6∈ Ij . Symmetrically, we see that n0

j ∈ Nd and n0
j (i) > 0 for

every i 6∈ Ij .

Notice that xj = mh
j + ωmh0

j . Since uj is fireable from xj and |ξ||uj | ≤ r, we

deduce that uj is fireable from mh
j + rmh0

j , thus

qin,j(m
h
j + rmh0

j) uj−−→
Gj

qin,j(m
h
j +m0

j) . (26)

By monotony, this means that

qin,j(m
h
j + srmh0

j) us
j−−→

Gj
qin,j(m

h
j + sm0

j) , (27)

and by symmetry, we also have

qout,j(n
h
j + sn0

j)
vs
j−−→

Gj
qout,j(n

h
j + srnh0

j) . (28)

Moreover, since |ξ||wj | ≤ s and m0
j(i),n

0
j(i) > 0 for every i 6∈ Ij , we deduce

qin,j(m
h
j + sm0

j)
ws

j−−→ qin,j(m
h
j + sn0

j) . (29)

Observe that φhj satisfies the Kirchhoff system KGj
and φhj (t) > 0 for every t ∈

Tj. As Gj is strongly connected, Euler’s Lemma shows that φhj is the Parikh image
of a path from qin,j to qout,j labelled by a word σj . The function Fj introduced in
Claim C.3 shows that we have:

qin,j(FaccGj
(xj))

σj

−−→
Gj

qout,j(BaccGj
(yj))

Notice that FaccGj
(xj) = mvech

j + ωn0
j and BaccGj

(yj) = nh
j + ωn0

j . Since |σj | ≤
∑

t∈Tj
φhj (t) ≤ ‖h‖ ≤ 2|ξ|2+|ξ|. It follows that |ξ||σj | ≤ s. We deduce:

qin,j(m
h
j + sn0

j)
σj−−→
Gj

qout,j(n
h
j + sn0

j) . (30)

Thus, for every 0 ≤ j ≤ k,

qin,j(m
h
j + srmh0

j) us
jw

s
jσjv

s
j−−−−−−→

Gj
qout ,j(n

h
j + srnh0

j) . (31)

This entails that σ def= (us0w
s
0σ0v

s
0)a1 . . . (u

s
kw

s
kσkv

s
k) is in Lξ. Notice that |σ| ≤

k + (k + 1) · s · (2|ξ|(d+1)d+1

+ 2|ξ||ξ|−1 + r|ξ||ξ|−3) ≤ 7|ξ|2(d+1)d+1+2|ξ|−1. Observe
that 2(d+ 1)d+1 ≤ |ξ| and 7 ≤ |ξ|. Hence |σ| ≤ |ξ|3|ξ|. �

	1. Introduction
	2. Background
	3. Decomposition Structures
	3.1. KLM Sequences
	3.2. Ranks and Sizes
	3.3. Characteristic System
	3.4. Homogeneous Characteristic System

	4. The Decomposition Algorithm
	4.1. Elementary Decomposition Steps
	4.2. Rigid KLM Sequences
	4.3. Normal KLM Sequences

	5. Complexity Upper Bounds
	5.1. Controlled Sequences of Ranks
	5.2. Fast-Growing Complexity

	6. Application: Downward Language Inclusion
	7. Concluding Remarks
	Acknowledgements
	References
	Appendix A. Pumpability
	A.1. Rackoff Extraction
	A.2. Unfoldings

	Appendix B. Unbounded Equations
	Appendix C. Normal KLM Sequences
	C.1. Models of Normal KLM Sequences
	C.2. Flow Functions
	C.3. Pumping in Normal KLM Sequences
	C.4. Proof of lem:normalnonempty

