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Abstract. A common problem when developing signal processing ap-
plications is to expose and exploit parallelism in order to improve both
throughput and latency. Many programming paradigms and models have
been introduced to serve this purpose, such as the Synchronous DataFlow
(SDF) Model of Computation (MoC). SDF is used especially to model
signal processing applications. However, the main difficulty when using
SDF is to choose an appropriate granularity of the application repre-
sentation, for example when translating imperative functions into SDF
actors. In this paper, we propose a method to model the parallelism of
perfectly nested for loops with any bounds and explicit parallelism, us-
ing SDF. This method makes it possible to easily adapt the granularity
of the expressed parallelism, thanks to the introduced concept of SDF
iterators. The usage of SDF iterators is then demonstrated on the Scale
Invariant Feature Transform (SIFT) image processing application.

Keywords: SDF · parallelism

1 Introduction

Signal processing applications are generally compute intensive and constrained in
terms of throughput and latency. For example, the throughput of video displays
is constrained in Frame Per Second (FPS). Parallelization of such applications
is the key to meet their throughput and latency requirements: when possible,
data are processed simultaneously by different Processing Elements (PEs).

Parallelization of for loops can be achieved automatically in the code through
OpenMP, or directly using threads. However, it is not possible to handle all the
cases with OpenMP, as distributed memory; moreover threads require to man-
ually add synchronizations and communications in the code. Thus, applications
are usually modeled, in order to, first, expose their parallelism, and secondly,
analyze this available parallelism and synthesize efficient schedules. A common
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model for signal processing applications is the Synchronous DataFlow (SDF) [10]
Model of Computation (MoC), in which applications, e.g. video encoders [16],
are modeled by SDF graphs. Vertices of SDF graphs encapsulate the processing
code while edges model the data transfers. SDF graphs express parallelism in two
ways: by the different paths in the graphs (task parallelism), and by the possible
executions of the same process on different chunks of data (data parallelism).
Only static applications where all communications are known in advance, and
fixed, can be modeled by SDF graphs. Thus, it is possible to derive static sched-
ules from SDF graphs. One can model single for loops by SDF graphs, as long
as the loop can be divided in sub-parts accessing chunks of data of equal size, to
respect the restriction of fixed amount of data communication. However, there
is no general technique to model multiple nested for loops in the SDF MoC,
especially when bounds of the inner loops are varying.

The contribution of this paper is the modeling, by SDF graphs, of multiple
perfectly nested loops with explicit parallelism and variable bounds in their inner
loops. In loops with explicit parallelism, all iterations are independent. Perfectly
nested loops perform computation only in the innermost loop. This contribution
is motivated by two facts. First, variable amounts of data can be modeled by
the Cyclo-Static DataFlow (CSDF) [2] MoC, an extension of SDF; but previous
experiments on modeling using the CSDF MoC have shown that this model is not
easy to understand for designers and does not always offer a competitive benefit.
This has been stated by the creators of the SDF-based language StreamIt [21],
in a review of their own work [20] (see section 5.2). Another option is to use
dynamic dataflow MoCs such as Kahn Process Networks (KPN) [8], but KPNs
are hard to analyse and are not statically schedulable. Hence, we focus on SDF
graphs instead. Second, we need to model nested loops in SDF graphs in order
to finely control the granularity of the application representation. Moreover, the
representation should be easily adaptable to the target architecture, especially
to its number of PEs, while staying independent from the architecture.

A direct application of this contribution is the modeling of a computer vision
feature detection application. Indeed, keypoints detection is performed on images
at different resolutions and different blur levels. Thus, nested loops iterate over
images of different sizes so the loops have variable bounds.

In this paper, we introduce the notion of SDF iterators modeling and op-
timize multiple nested loops with variable bounds. Iterators are demonstrated
on a Scale Invariant Feature Transform (SIFT) keypoints detection [13] applica-
tion, modeled by an SDF graph. Iterators help modeling and parallelizing SIFT
detection, although some nested loops process images of variable sizes. At the
same time, iterators help reducing the scheduling complexity since it is possible
to adapt the number of parallel executions with regard to the number of PEs.

The paper is organized as follows. SDF graphs are presented in section 2,
as well as the SIFT application that will illustrate different examples along the
paper. Then the parallelization of single loops with SDF graphs is recalled in
section 3. The main contribution, SDF iterators for multiple perfectly nested
loops with explicit parallelism and with variable bounds, is detailed in section 4.
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Results of an evaluation of iterators on SDF are presented in section 5. Related
work, in section 6, is followed by a conclusion.

2 Context

Section 2.1 recalls briefly the semantics of SDF graphs, while section 2.2 presents
an overview of the SIFT application that is later modeled by SDF graphs.

2.1 SDF graphs

SDF graphs are directed multi-graphs composed of vertices, called actors, and
edges, called buffers. Actors represent processing operations, while buffers rep-
resent the data communication between the different actors. The abstract unit
of data is called token. Each buffer b is annotated with rates: a production rate
prod(b) ∈ N∗ at the source of b, and a consumption rate cons(b) ∈ N∗ at the
target of b. Production and consumption rates may not be equal: this is how
data parallelism is expressed in SDF graphs. For example if an actor a1 sends 6
tokens to an actor a2 through buffer b, whereas a2 expects 3 tokens at the other
end of the buffer b, it means that a2 will be executed twice: once on the first 3
tokens and another time on the last 3 tokens on b.

The minimal number of executions of each actor in order to leave all buffers
as the same state as initially, is called a repetition vector and is derived from
the buffers production and consumption rates. The repetition vector does not
always exist, for example when rates in graph loops are not consistent and lead
to a buffer overflow or underflow.

2.2 SIFT keypoints detection application

Scale Invariant Feature Transform (SIFT) computes keypoints by comparing
points in the original image with the same points in blurred images obtained
from the original one, and at different resolutions. Figure 1a details the main
steps: first the original image is upscaled once, and downscaled several times to
build the images at various resolutions. Each resolution is called an octave. Then,
the image at each octave is blurred several times. A blur level corresponds to a
layer. All images are stored in a 4-dimensional (4-D) array; the dimensions are, in
order: octave, layer, height, width. Difference of Gaussians (DoG), gradient, and
rotational metrics are computed from this 4-D array. Each metric computation
produces an array of the same size, except the DoG which produces one less
layer. At last, keypoints detection is performed on these three 4-D arrays. Then,
the extraction step refines the computed keypoints.

Two main problems arise when modeling SIFT detection by an SDF graph.
First, the number of keypoints to detect is unknown since it depends on the image
content. Second, the images to process stored in the 4-D array have different sizes
depending on their octave, whereas the SDF MoC imposes data transfers of fixed
size. The problem on number of keypoints is easily fixed by setting a maximum.
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Octaves computation

Layers computation

DoG* Rot&Grd*

Keypoints extraction*

Keypoints detection

Input image, at different resolutions

Each initial image of one octave, saved to different Gaussian blur levels

DoG: Difference of Gaussian
(for each octave, between two successive layers i.e. blurred images)

Rot/Grd: Rotational/Gradient
(for each octave and each layer)

Performed on all octaves and layers
(the number of keypoints is not predictable)

Main result: the keypoint descriptor of each keypoint

(a) SIFT workflow: green steps* are modeled by iterators in a SDF graph.
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(b) Layers and octaves in SIFT with four different region of equal processing amount.

Fig. 1: SIFT image processing application: main steps 1a and data storage 1b.

For the second problem, the naive way to model different octaves is to create
a specific actor for each image size, which is not convenient because the model
cannot be adapted to different numbers of octaves. Another difficulty is that the
computation on the smallest image resolution, i.e. the last octave, is faster than
the computation of the first octave by several orders of magnitude. Indeed, for
an image of 640×800 pixel, the image is upscaled once and downscaled five times
by a factor 2 on each dimension; thus the ratio of the number of pixels in the
first octave over the last is 46 = 4096. If several Processing Elements (PEs) are
available, an important question is how to parallelize the computation equally
among them. Figure 1b illustrates this problem with three layers, three octaves,
and four available PEs. One option is to assign each layer to a PE, but then
a PE is not used. The opposite option is to assign each octave to a PE, but
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then a PE is not used, and computations are unbalanced. An example of equal
distribution of the computation on the four PEs is shown in the boxes of the
four colors red, blue, green and yellow (each with a specific pattern). Each color
encloses one quarter of the computation. It is clear on that example that boxes
do not match the image bounds.

The iterators introduced in section 4 can handle this computation partition-
ing while staying in the SDF model. Iterators are used to model and parallelize
the green steps in the workflow in 1a, in our case according to the number of
available PEs, and without duplicating any actor for each octave. Before describ-
ing the iterators in details, modeling and parallelization of single loops by SDF
graphs is recalled in section 3.

3 Modeling of single loops with explicit parallelism

This section discusses the modeling of single for loops using SDF graphs. for
loops are a basic control structure of any imperative language. The code in
listing 1 illustrates a simple for loop. It iterates over an input array, processes
each element and stores the result in an output array; both arrays having the
same size N, it represents a map operation. The parallelism is explicit: there is no
dependency between the iterations of the loop, and process is a pure function.

for (int i = 0; i < N; ++i) {

output[i] = process(input[i]);}

Listing 1: Simple one dimensional (1-D) for loop, with explicit parallelism.

Figure 2a depicts the modeling by a SDF graph of a map operation with a
controllable degree of parallelism. p is the degree of expressed data parallelism:
the Map actor is executed p times, on chunks of data of size N

p . If p = N , all
data parallelism is expressed, however, it is not always useful to express all the
parallelism, especially if the amount of PEs is way smaller than N . The code of
the actor Map is almost the same as in listing 1; the only difference lies in the
loop index bound that is now N/p instead of N. p must be a divisor of N .

Map

N
p

N
p

N

(a) Map in SDF.

Split

N N + p
N

Upscale

N
p

+ 1 2×N
p

(b) 1-D Upscale in SDF.

Fig. 2: Map and Upscale at a coarse-grain level.
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In image processing, a common operation is to perform an upscale, increasing
the resolution of the image with interpolation. This operation is more generic
than map since the output array has not the same size as the input, and since
several elements of the input array are accessed simultaneously to perform the
interpolation. A code example is shown in listing 2 for the 1-D case.

for (int i = 0; i < N; ++i) {

output[2*i] = input[i];

if (i < N-1) {

output[2*i+1] = interpolation(input[i], input[i+1]);

} else {

output[2*i+1] = input[i];}}

Listing 2: Simple 1-D upscale, by interpolation on the element and its successor.

The modeling of an upscale is similar to a map, but it requires extra data
to apply the interpolation on the borders of the chunks of the original array.
The last element of a chunk is a copy of the first element of the next chunk.
These extra data can be added by a copy actor preceding the upscale actor. The
SDF modeling of an upscale operation is depicted in fig. 2b, where the actor
performing the interpolation is called Upscale, and the copy actor is called Split.
Split is executed only once, while Upscale is executed p times. The code of the
Upscale actor, in listing 3, is simpler than the original one, in listing 2, since the
border case needs no more to be handled thanks to the copy performed by Split.

for (int i = 0; i < N/p; ++i) {

output[2*i] = input[i];

output[2*i+1] = interpolation(input[i], input[i+1]);}

Listing 3: Upscale SDF actor code.

The upscale modeling pattern presented in fig. 2b is used to model the com-
putation of the upscale of the input image in the first step of SIFT, as shown in
fig. 1a. An image has two dimensions but the data parallelism is expressed only
on the height of the image, divided by the number of PEs. The same pattern
is also used for the second step of SIFT: the layers computation. However, the
algorithm to compute the different layers consists of two successive 1-D Gaussian
blurs on lines of the image, each blur performing a transposition. The Gaussian
blur applies a 1-D stencil with two neighbors. As data parallelism is expressed
through the height of the image in any case, data must be reordered between the
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two transpositions; this is creating an application bottleneck since this reorder-
ing is fully sequential. We now generalize the SDF modeling patterns seen in this
section for single for loops to perfectly nested loops with explicit parallelism.

4 Modeling of nested loops with explicit parallelism

In this section, perfectly nested loops with explicit parallelism are considered. An
example is given in listing 4, with three nested loops. The index bounds of the
inner loops may depend on the outer loop indexes, as abstracted by the functions
f1 and f2, which can be any mathematical function. The parallelization of nested
loops of the same form than in listing 4 is described in section 4.1, and their
modeling by SDF graphs with iterators is discussed in section 4.2.

for (int i = 0; i < N1; ++i) {

for (int j = 0; j < f1(i); ++j) {

for (int k = 0; k < f2(i, j); ++k) {

output[i][j][k] = process(input[i][j][k]);}}}

Listing 4: Three nested for loops, with explicit parallelism.

4.1 Iteration space splitting

An important property of the SDF MoC is that the rates of data exchanges are
fixed. Thus, the only solution to model by SDF graphs loops as in listing 4 is
to split the whole iteration space into chunks of equal sizes. These chunks do
not always match the loop bounds as depicted in fig. 1b. In listing 4, the whole

iteration space size Sit is
∑N1

i=0

(∑f1(i)
j=0 f2(i, j)

)
. In this example, the iteration

space size equals the total size of the array to process, it is a map operation.
The most straight forward way to cut the whole iteration space into chunks

of equal size is to simulate the execution of the loop. A variable iter storing the
total number of performed iterations is incremented instead of calling the process
function. Each time the iter variable reaches a multiple of chunk size, the loop
indexes are recorded and will be used as start/stop indexes for the real execution
of the loops. This algorithm is written in listing 5, with chunk size being equal
to any divisor of Sit. The role of a SDF iterator is to send the recorded indexes
to split the real execution of the loops.

Note that this simulation can be done offline: the start/stop indexes only
need to be saved in order to be used during the real execution of the loop (where
the process is performed). Besides, this simulation can be easily adapted to any
number d of nested loops: the structure is the same as the original nested loops.
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int iter = 0;

for (int i = 0; i < N1; ++i) {

for (int j = 0; j < f1(i); ++j) {

for (int k = 0; k < f2(i, j); ++k) {

if (iter++ % chunk_size == 0) {

record(i,j,k); }}}}

Listing 5: Iteration space simulator for three perfectly nested for loops with
explicit parallelism. The recorded indexes will be stored in the SDF iterator.

4.2 SDF iterators

An SDF iterator actor provides the start and stop indexes for each execution of
the process actor modeling the nested loops. Thus, if the nested loops iteration
space Sit is divided into p chunks, the iterator is executed once and the processing
actor is executed p times. The code for the processing actor is similar to its
original version in listing 4, the only difference concerns the indexes that are
set by the iterator output. The modeling of the perfectly nested loops in SDF
graphs is depicted in fig. 3. Sit elements are sent to the Process actor, which is
processing them by chunks of size Sitp . For each execution of Process, the iterator
produces 2×d indexes: one start index and one stop for each loop of the d nested
loops. These indexes correspond to the one recorded during the loop simulation
presented in listing 5, considering that the stop indexes of one execution of the
process are the start indexes of its next execution. Hence, the p executions of
Process can be performed in parallel. Note that the map and upscale patterns
described in fig. 2b can also be applied to this general case of nested loops.

Array

Sit

p× 2× d

Process

2 × d

Sit

p

Sit

p

Results

Sit

Iterator

Fig. 3: Modeling of iterators in SDF.

Finally, iterators empower the designer to control data parallelism in SDF
graphs for any perfectly nested loops with explicit parallelism. Iterators induce
two drawbacks which can be overcome. The first drawback occurs when tagging
an actor a, parallelized with an iterator, with a measured execution time Ca.
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Indeed, the execution time is then not only dependant on the actor code, but also
on the chunk size. This drawback is easily overcome using symbolic expressions of

the execution time: Ca(p) = Ca(1)
p ; that is, when a is parallelized over p chunks,

the execution time of each execution of a is equal to its sequential execution
time divided by the number of chunks. The second drawback is the restriction to
nested loops with explicit parallelism. However, this restriction can be removed
in some cases thanks to prior source-to-source code transformations.

5 Evaluation

SDF iterators are now used to model the SIFT keypoints detection application.
In SIFT detection, images from different resolutions and blur levels are processed
and this implies to iterate over a 4-D array with four perfectly nested loops.
The two innermost loops iterating over the height and width of images have
exponential bounds depending on the top loop index. The top loop iterates over
the octaves and the second loop iterates over the layers. If octaves are indexed
by the variable i, the image height (respectively, width) to be processed is the
biggest resolution height (resp. width) divided by 2i. SDF iterators are used to
model such loops, expressing a degree of parallelism p ∈ {1, 2, 4, 5, 10, 20} (this
set contains the common divisors of the sizes of all the 4-D arrays).

The SIFT detection code is a slightly modified version of the ezSIFT3 imple-
mentation. The SDF model of SIFT is built under the PREESM [17] framework,
which also performs static scheduling and generates the static parallelized code.
Another parallel version of SIFT has been implemented using OpenMP, mainly
with parallel for pragma above the loops iterating over the height of the im-
ages. The keypoint detection step requires a critical section to add the detected
keypoints into a shared list.

The execution times of the PREESM version and the OpenMP version of
SIFT have been reported in table 1. All experiments used an Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20GHz processor and the GCC compiler version 5.4.0.
Both PREESM and OpenMP execution times are similar, the best speedup (in
bold) is achieved alternatively by PREESM and OpenMP.

#Cores #Tasks PREESM Time (Speedup) OpenMP Time (Speedup)

1 190 669 (0.96x) 645 (ref.)
2 293 412 (1.56x) 406 (1.59x)
4 355 277 (2.33x) 281 (2.29x)
5 386 263 (2.45x) 255 (2.53x)
10 541 171 (3.77x) 182 (3.54x)

Table 1: Number of scheduled tasks, execution times in ms, and speedup for
different number of cores. Execution time is an average on 200 runs.

3 See code on: https://sourceforge.net/projects/ezsift/

https://sourceforge.net/projects/ezsift/
https://sourceforge.net/projects/ezsift/
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The number of scheduled tasks when unfolding the SDF graph of SIFT is
also reported in table 1. This number is the sum of the repetition vector, i.e. the
sum of the minimal number of executions of each actor. As PREESM supports
parameterized SDF graphs [5], first introduced in [1], the expressed degree of
parallelism p is set according to the number of cores. The number of tasks is not
multiplied by a factor equal to the number of cores since not all steps of SIFT
are parallelized through iterators, as shown in fig. 1a.

This evaluation shows that it is possible to model and parallelize an appli-
cation having perfectly nested for loops with variable index bounds thanks to
SDF iterators. We achieve competitive performances against OpenMP, that we
could even improve by adding delays in the SDF graph (delays create pipelin-
ing). Finally, we are able to control the expressed degree of parallelism, although
restricted to be a divisor of the size of the considered iteration space.

6 Related work

The modeling of nested for loops in SDF graphs thanks to iterators is related to
two main aspects: specialized dataflow languages, especially for image processing
applications where at least two dimensions are considered, and dataflow graph
clustering, since iterators impact on the degree of data parallelism.

6.1 On specialized dataflow languages

The most relevant dataflow MoC for image processing is the Multidimensional
Synchronous DataFlow (MDSDF) MoC [14], expressing data parallelism across
several dimensions. However this MoC does not solve the problem of variable
image sizes such as in the SIFT octaves: it needs one specialized actor per size.
Moreover, only a few tools [9], such as ArrayOL [3], support the MDSDF MoC.

The Brook stream language [12] supports a subset of MDSDF graphs, ex-
pressed directly as C++ code. Brook only handles kernels with affine bounds, and
thus cannot be used for variable image sizes inducing exponential bounds. More
generally, the same problem arises for all models relying on polyhedral analy-
sis [6], as the Polyhedral Process Network (PPN) [22], a parameterized extension
of it [26], or the OpenStream extension of OpenMP [4]: they are dedicated to
loops with affine bounds only. Extensive analyses and graph and code transfor-
mations allow to model any kind of loops in PPNs [15] but then do not offer
control of the degree of parallelism. Dynamic dataflow languages, such as the one
supported by Orcc [23], offer more flexibility on the application representation,
however it is not possible to derive static schedules from such languages when
their semantics are fully exploited.

6.2 On the clustering of dataflow graphs

Clustering is usually performed on graphs expressing more parallelism than avail-
able on the target architecture; clustering simplifies scheduling without increas-
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ing the application run time [19]. The standard way to reach a coarse representa-
tion is to limit the unfolding of the SDF graph into a precedence task graph. The
unfolding is limited by merging different actors, or several executions of the same
actor. This operation artificially reduces the repetition vector size, or decreases
the values held by the repetition vector. This method has been employed for SDF
graphs under real-time constraints [25], and also under data-driven scheduling of
Partial Expansion Graphs (PEG) [24]. The StreamIT benchmark has also been
successfully transformed into coarse SDF graphs for the RAW architecture [7],
by an unfolding technique using actor fusion and fission.

Another method is to completely unfold the SDF graph, and only then, to
apply clustering algorithms; however, this significantly increases the scheduling
complexity. Clustering algorithms exist for precedence graphs, including compiler
intermediate representations [11]. Hierarchical SDF graphs have also been used
to model nested loops [18], one per hierarchy, but they require an analysis of the
iteration space. Both methods do not offer control on the degree of parallelism.

Finally, all the aforementioned clustering methods rely on algorithms that
analyze the graph and create a coarse or hierarchical version of it, while the
proposed iterators only require to replace the for loop index bounds by the
iterator output. Only one iterator per iteration space is needed.

7 Conclusion

This paper has demonstrated that it is possible to model a subclass of nested
loops with variable index bounds by an SDF graph, and to control the degree of
expressed parallelism. Thus, we can add to the observations of the StreamIt cre-
ators that the CSDF model is not only complicated to use, but is also not always
compulsory: the SIFT application has been parallelized efficiently thanks to the
SDF model and iterators. A future extension of this work is to automatically
generate iterator code from a code analysis.
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Addendum

This addendum is not part of the original accepted paper: it has been added by
A. Honorat and has not been reviewed. It focus on two points:

– standard usage of SDF iterators: when it is useful;
– actor code transformation with start and stop indexes of loops.

Also, one related work has been published at the same time of this paper.
Leben et al. applied polyhedral techniques to multi-dimensional streams4 , not
using dataflow models. I disagree with their statement in the introduction of
their paper: “Multi-dimensional streams can be represented in such models [Syn-
chronous DataFlow (SDF)], albeit at the cost of abstraction, which makes this
less natural for the programmer and restricts potential transformations in the
compiler.”. Regarding the first assumption, it depends on the qualification of
the programmer: if the programmer is used to the LabVIEW software for exam-
ple, the SDF model will be perfectly natural for him/her. Regarding the second
assumption, it is actually the opposite since we demonstrate in this paper that
we can model loops with non affine bounds.

When SDF iterators are needed?

Even when modeling perfectly nested loop with explicit parallelism, SDF iter-
ators are not always needed. It is required to use SDF iterators only when the
loop indexes are used in the processing part. For example, loop indexes enable to
knowing the image bounds in the 4-D arrays of the SIFT application, and thus
the processing is able to call specific code on borders of the image. The indexes
are needed in SIFT also to access to the whole array (see the next subsection
for an example). The implementation of SIFT, modeled with SDF iterators, is
available on https://github.com/preesm/preesm-apps, in the SIFT folder.

On the contrary, SDF iterators are not strictly required for map/reduce op-
erations, even on multidimensional data, since map/reduce operations do not
need to be aware of the current position in the input array. Indeed, in this case,
only the size of the iteration space is needed. However, iterator may still be used,
for example in order to handle padding data if the size of the iteration space is
not a multiple of the number of processors. The map operation in the SDF MoC
is depicted in fig. 2a in the paper, while the reduce operation is depicted below
in fig. 4. The reduce operation requires to create logc N reduce actors in the
corresponding SDF graph in order to control the parallelism level; each reduce
actor consumes N

C elements and produces 1. The repetition vector of these re-

duce actors is (in the same order as in the graph): [NC , N
C2 ,

N
C3 , ..., 1]. It requires

that the total number of elements N is a power of the chunk size C.

4 Polyhedral Compilation for Multi-dimensional Stream Processing, Jakob Leben et
al., ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3,
Article 27. Publication date: July 2019.

https://github.com/preesm/preesm-apps
https://dl.acm.org/citation.cfm?id=3330999
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Fig. 4: Reduce of N elements in SDF, with chunk size C > 1.

About the restriction to perfectly nested loops with explicit parallelism, note
as well that the bounds of the loops cannot depend on the input data. If loops
are not perfectly nested, it is still possible to use SDF iterators; however, then
the computation times of the actor firings may be unbalanced.

How the processing code must be modified?

Let’s consider the code in listing 6, that has to be modeled in an SDF graph and
parallelized. This piece of code contains two nested non-affine loops, iterating
over a 2-D array stored in a row-major fashion (outer loop dimension first).
The array contains 14 elements in total and will be split in two chunks, to be
parallelized on two PEs.

float* array = float[1+2*2+3*3]; // = 14

// fill array with file data

for (int i = 0; i < 3; i ++) {

int bound = (i+1)*(i+1);

for (int j = 0; j < bound; j ++) {

processing1cell(array, i, j);

}

}

Listing 6: Non affine 2-D for loop, with explicit parallelism.

When adding the iterator in the SDF graph, the code of the actor to par-
allelize has to be adapted to its new inputs: the start and stop indexes of the
loops. The modified code is presented in listing 7. In the inner loops, the bounds
cannot be used directly: they are used only if the upper loop is also using its
start (respectively stop) index.

Note that, in this example, not the full array is considered for the processing.
The array is split in two chunks, and thus the SDF processing actor is fired twice
by the SDF application execution framework, PREESM in our case. PREESM
will feed each chunk with the correct data. The order of firings follows the order
of the data: the second firing gets the second chunk (elements 7 to 13). It is also

https://preesm.github.io/
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float* array = ; //provided by input

for (int i = start_i; i < stop_i; i ++) {

int begin_j = (i == start_i) ? start_j : 0;

int end_j = (i+1 == stop_i) ? stop_j : (i+1)*(i+1);

for (int j = begin_j; j < end_j; j ++) {

processing1cell(array, i, j);

}

}

Listing 7: Non affine 2-D for loop SDF actor code.

possible to use the full array, without extra memory consumption. This situation
occurs in SIFT where the detection and extraction of the keypoints depends on
pixels at different octaves, and thus depends on data spread everywhere in the
4-D array. To do so, a so-called Broadcast actor is added to the SDF graph, and
provides multiple virtual copies of the 4-D input array: there are as much copies
as there are firings of the processing actor. These copies are virtual since they
refer to the same physical memory, by using the memory scripts introduced by
Karol Desnos et al. 5. A graph extract corresponding to this solution is depicted
in fig. 5. In this solution, the Process actor is still fired p times, and still processes
only Sit

p elements of the array, however it sees the whole array.

Array

Sit

Broadc.

Sit
p × Sit

p× 2× d

Process

2 × d

Sit

Sit

p

Results

Sit

Iterator

Fig. 5: Modeling of iterators in SDF with broadcast actor.

5 On Memory Reuse Between Inputs and Outputs of Dataflow Actors, Karol Desnos
et al., ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article
30, Publication date: February 2016.

https://hal.archives-ouvertes.fr/hal-01284333/file/acm-tecs15.pdf
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