
HAL Id: hal-02267453
https://hal.science/hal-02267453v1

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of Flat FIFO Systems
Alain Finkel, M. Praveen

To cite this version:
Alain Finkel, M. Praveen. Verification of Flat FIFO Systems. CONCUR 2019, Aug 2019, AMSTER-
DAM, Netherlands. �hal-02267453�

https://hal.science/hal-02267453v1
https://hal.archives-ouvertes.fr

Verification of Flat FIFO Systems

Alain Finkel

LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
UMI ReLaX

M. Praveen

Chennai Mathematical Institute, India
UMI ReLaX

Abstract

The decidability and complexity of reachability problems and model-checking for flat counter sys-
tems have been explored in detail. However, only few results are known for flat FIFO systems, only
in some particular cases (a single loop or a single bounded expression). We prove, by establishing
reductions between properties, and by reducing SAT to a subset of these properties that many veri-
fication problems like reachability, non-termination, unboundedness are Np-complete for flat FIFO
systems, generalizing similar existing results for flat counter systems. We construct a trace-flattable
counter system that is bisimilar to a given flat FIFO system, which allows to model-check the ori-
ginal flat FIFO system. Our results lay the theoretical foundations and open the way to build a
verification tool for (general) FIFO systems based on analysis of flat subsystems.

2012 ACM Subject Classification Theory of computation → Parallel computing models

Keywords and phrases Infinite state systems, FIFO, counters, flat systems, reachability, termina-
tion, complexity

Funding The work reported was carried out in the framework of ReLaX, UMI2000 (ENS Paris-
Saclay, CNRS, Univ. Bordeaux, CMI, IMSc). This work was also supported by the grant ANR-17-
CE40-0028 of the French National Research Agency ANR (project BRAVAS).
M. Praveen: Partially supported by a grant from the Infosys foundation.

1 Introduction

FIFO systems Asynchronous distributed processes communicating through First In First

Out (FIFO) channels are used since the seventies as models for protocols [40], distributed

and concurrent programming and more recently for web service choreography interface [14].

Since FIFO systems simulate counter machines, most reachability properties are undecidable

for FIFO systems: for example, the basic task of checking if the number of messages buffered

in a channel can grow unboundedly is undecidable [13].

There aren’t many interesting and useful FIFO subclasses with a decidable reachability

problem. Considering FIFO systems with a unique FIFO channel is not a useful restriction

since they may simulate Turing machines [13]. A few examples of decidable subclasses are

half-duplex systems [15] (but they are restricted to two machines since the natural exten-

sion to three machines leads to undecidability), existentially bounded deadlock free FIFO

systems [31] (but it is undecidable to check if a system is existentially bounded, even for

deadlock free FIFO systems), synchronisable FIFO systems (the property of synchronisab-

ility is undecidable [28] and moreover, it is not clear which properties of synchronisable

systems are decidable), flat FIFO systems [8, 9] and lossy FIFO systems [2] (but one loses

the perfect FIFO mechanism).

Flat systems A flat system [5, 27, 17, 7] is a system with a finite control structure such

that every control-state belongs to at most one loop. Equivalently, the language of the

control structure is included in a bounded language of the form w∗
1w

∗
2 ...w

∗
k where every wi

2 Verification of Flat FIFO Systems

is a non empty word. Analyzing flat systems essentially reduces to accelerating loops (i.e.,

to compute finite representations of the effect of iterating each loop arbitrarily many times)

and to connect these finite representations with one another. Flat systems are particularly

interesting since one may under-approximate any system by its flat subsystems.

For counter systems [22, 33], this strategy lead to some tools like FAST [4], LASH, TREX

[3], FLATA [12] which enumerate all flat subsystems till the reachability set is reached.

This strategy is not an algorithm since it may never terminate on some inputs. However

in practice, it terminates in many cases; e.g., in [4], 80% of the examples (including Petri

nets and multi-threaded Java programs) could be effectively verified. The complexity of

flat counter systems is well-known: reachability is Np-complete for variations of flat counter

systems [32, 11, 21], model-checking first-order formulae and linear µ-calculus formulae is

Pspace-complete while model-checking Büchi automata is Np-complete [20]; equivalence

between model-checking flat counter systems and Presburger arithmetic is established in

[19].

Flat FIFO systems We know almost nothing about flat FIFO systems, even the complexity

of reachability is not known. Boigelot et al. [8] used recognizable languages (QDD) for

representing FIFO channel contents and proved that the acceleration of one-counting loops (a

loop is one-counting if it sends messages to only one channel), from an initial QDD, produces

another computable QDD. Bouajjani and Habermehl [9] proved that the acceleration of any

loop can be finitely represented by combining a deterministic flat finite automaton and a

Presburger formula (CQDD) that are both computable. However, surprisingly, no upper

bound for the Boigelot et al.’s and for the Bouajjani et al.’s loop-acceleration algorithms are

known. Just the complexity of the inclusion problem for QDD, CQDD and SLRE (SLRE are

both QDD and CQDD) are partially known (respectively Pspace-complete, N2Exptime-

hard, CoNp-complete) [30]. But the complexity of the reachability problem for flat FIFO

systems was not known. Only the complexity of the control-state reachability problem

was known to be Np-complete for flat FIFO systems [25]. Moreover, other properties and

model-checking have not been studied for flat FIFO systems.

Contributions We solve the open problem of the complexity of the reachability problem

for flat FIFO systems by showing that it is Np-complete; we extend this result to other

usual verification properties and show that they are also Np-complete. Then we show that

a flat FIFO system can be simulated by a synchronized product of counter systems. This

synchronized product is flattable and its reachability set is semilinear.

2 Preliminaries

We write Z (resp. N) to denote the set of integers (resp. non-negative integers). A finite

alphabet is any finite set Σ. Its elements are referred to as letters; Σ∗ is the set of all finite

sequences of letters, referred to as words. We denote by w1w2 the word obtained by concat-

enating w1 and w2; and ǫ is the empty sequence, which is the unity for the concatenation

operation. We write Σ+ for Σ∗ \ {ǫ}. If w1 is a prefix of w2, we denote by w−1
1 w2 the word

obtained from w2 by dropping the prefix w1. If w1 is not a prefix of w2, then w−1
1 w2 is

undefined. A word z ∈ Σ∗ is primitive if z /∈ w∗ \ {w} for any w ∈ Σ∗. We denote by

Parikh(w) : Σ → N the function that maps each letter a ∈ Σ to the number of times a

occurs in w. We denote by wn the concatenation of n copies of w. The infinite word xω is

obtained by concatenating x infinitely many times.

Alain Finkel and M. Praveen 3

pq!a1 pr!c

pq!a2

pr!c

qp?b
pq!y

qp?b

pq!a1

pq!a2

qp?x

(a) Process P

pq?a1 rq?d

pq?a2

rq?d

qp!b
pq?y

qp!b

pq?a1

pq?a2

qp!x

(b) Process Q

pr?c

rq!d

(c) Process R

Figure 1 FIFO system of Example 2.2

FIFO Systems

◮ Definition 2.1 (FIFO systems). A FIFO system S is a tuple (Q,F,M,∆) where Q is a

finite set of control states, F is a finite set of FIFO channels, M is a finite message alphabet

and ∆ ⊆ (Q×Q) ∪ (Q × (F × {!, ?} ×M) ×Q) is a finite set of transitions.

We write a transition (q, (c, ?, a), q′) as q
c?a

−−→ q′; we similarly modify other transitions.

We call q the source state and q′ the target state. Transitions of the form q
c?a

−−→ q′

(resp. q
c!a

−−→ q′) denote retrieve actions (resp. send actions). Transitions of the form q −−→ q′

do not change the channel contents but only change the control state.

The channels in F hold strings in M∗. Given two channel valuations w1,w2 ∈ (M∗)F ,

we denote by w1 · w2 the valuation obtained by concatenating the contents in w1 and w2

channel-wise. For a letter a ∈ M and a channel c ∈ F , we denote by ac the channel

valuation that assigns a to c and ǫ to all other channels. The semantics of a FIFO system S

is given by a transition system TS whose set of states is Q×(M∗)F , also called configurations.

Every transition q
c?a

−−→ q′ of S and channel valuation w ∈ (M∗)F results in the transition

(q, ac · w)
c?a

−−→ (q′,w) in TS. Every transition q
c!a

−−→ q′ of S and channel valuation w ∈

(M∗)F results in the transition (q,w)
c!a

−−→ (q′,w · ac) in TS . Intuitively, the transition

q
c?a

−−→ q′ (resp. q
c!a

−−→ q′) retrieves the letter a from the front of the channel c (resp. sends

the letter a to the back of the channel c). A run of S is a (finite or infinite) sequence of

configurations (q0,w0)(q1,w1) · · · such that for every i ≥ 0, there is a transition ti such that

(qi,wi)
ti−−→ (qi+1,wi+1).

◮ Example 2.2. Figure 1 shows a (distributed) FIFO system (from [35]) with three processes

P,Q,R that communicate through four FIFO channels pq, qp, pr, rq. Processes are extended

finite automata where transitions are labeled by sending or receiving operations with FIFO

channels and, for example, channel pq is an unidirectional FIFO channel from process P

to process Q. From this distributed FIFO system, we get a FIFO system as given in

Definition 2.1 by product construction. The control states of the product FIFO system are

triples, containing control states of processes P,Q,R. The product FIFO system can go

from one control state to another if one of the processes goes from a control state to another

and the other two processes remain in their states. For example, the product system has

the transition (q1, q2, q3)
pq!a1

−−−→ (q′
1, q2, q3), if process P has the transition q1

pq!a1
−−−→ q′

1.

For analyzing the running time of algorithms, we assume the size of a system to be the

number of bits needed to specify a system (and source/target configurations if necessary)

using a reasonable encoding. Let us begin to present the reachability problems that we

tackle in this paper.

4 Verification of Flat FIFO Systems

q0 q1 q2 q3

q4 q5

q6ℓ1 ℓ2

(a) Flat FIFO system

q0 q1 q2 q3

p0 p1 p2
ℓ1 ℓ2

(b) Path schema denoted by p0(ℓ1)∗p1(l2)∗p2

Figure 2 Example flat FIFO system and path schema

◮ Problem (Reachability). Given: A FIFO system S and two configurations (q0,w0) and

(q,w). Question: Is there a run starting from (q0,w0) and ending at (q,w)?

◮ Problem (Control-state reachability). Given: A FIFO system S, a configuration (q0,w0)

and a control-state q. Question: Is there a channel valuation w such that (q,w) is reachable

from (q0,w0)?

It is folklore that reachability and control-state reachability are undecidable for machines

operating on FIFO channels.

Flat systems For a FIFO system S = (Q,F,M,∆), its system graph GS is a directed graph

whose set of vertices is Q. There is a directed edge from q to q′ if there is some transition

q
c?a

−−→ q′ or q
c!a

−−→ q′ for some channel c and some letter a, or there is a transition q −−→ q′.

We say that S is flat if in GS , every vertex is in at most one directed cycle. Figure 2(a)

shows a flat FIFO system.

We call a FIFO system S = (Q,F,M,∆) a path segment from state q0 to state qr if

Q = {q0, . . . , qr}, ∆ = {t1, . . . , tr} and for every i ∈ {1, . . . , r}, qi−1 is the source of ti
and qi is its target. We call a FIFO system S = (Q,F,M,∆) an elementary loop on q0 if

Q = {q0, . . . , qr}, ∆ = {t1, . . . , tr+1} and for each i ∈ {1, . . . , r + 1}, ti has source qi−1 and

target qi mod (r+1). We call t1 · · · tr+1 the label of the loop. A path schema is a flat FIFO

system comprising of a sequence p0ℓ1p1ℓ2p2 · · · lrpr, where p0, . . . , pr are path segments and

ℓ1, . . . , ℓr are elementary loops. There are states q0, q1, . . . , qr+1 such that p0 is a path

segment from q0 to q1 and for every i ∈ {1, . . . , r}, pi is a path segment from qi to qi+1 and

ℓi is an elementary loop on qi. Except qi, none of the other states in ℓi appear in other path

segments or elementary loops. To emphasize that ℓ1, . . . , ℓr are elementary loops, we denote

the path schema as p0(ℓ1)∗p1 · · · (ℓr)∗pr. We use the term elementary loop to distinguish

them from loops in general, which may have some states appearing more than once. All loops

in flat FIFO systems are elementary. Figure 2(b) shows a path schema, where wavy lines

indicate long path segments or elementary loops that may have many intermediate states

and transitions. This path schema is obtained from the flat FIFO system of Figure 2(a) by

removing the transitions from q1 to q3, q4 to q5 and q6 to q3.

◮ Remark 2.3 (Fig. 1). Each process P,Q,R is flat and the cartesian product of the three

automata is almost flat except on one state: there are two loops, one sending y in channel

pq and another one retrieving y from channel pq.

Notations and definitions For any sequence σ of transitions of a FIFO system and channel

c ∈ F , we denote by yσ
c (resp. xσ

c) the sequence of letters sent to (resp. retrieved from) the

channel c by σ. For a configuration (q,w), let w(c) denote the contents of channel c.

Equations on words We recall some classical results reasoning about words and prove of

one of them, to be used later. The well-known Levi’s Lemma says that the words u, v ∈ Σ∗

Alain Finkel and M. Praveen 5

that are solutions of the equation uv = vu satisfy u, v ∈ z∗ where z is a primitive word. The

solutions of the equation uv = vw satisfy u = xy,w = yx, v = (xy)nx, for some words x, y

and some integer n ≥ 0. The following lemma is used in [30] for exactly the same purpose

as here.

◮ Lemma 2.4. Consider three finite words x, y ∈ Σ+ and w ∈ Σ∗. The equation xω = wyω

holds iff there exists a primitive word z 6= ǫ and two words x′, x′′ such that x = x′x′′,

x′′x′ ∈ z∗, w ∈ x∗x′ and y ∈ z∗.

Proof. Suppose x,w, y satisfy the equation xω = w.yω . If w = ǫ, then the equation reduces

to xω = yω. Hence we deduce that x|y| = y|x|. In this case, we show (using Levi’s Lemma

and considering the three cases | x |=| y | or | x |<| y | or | y |<| x |) that the solutions are

the words x, y ∈ z∗ where z is a finite primitive word. Now suppose that w 6= ǫ, so choose

the smallest n ≥ 0 such that w = xnx′ with x = x′x′′. Hence, we obtain that (x′′x′)ω = yω,

and again we know that the solutions of this equation are x′′x′, y ∈ z∗ where z is a primitive

word.

For the converse, suppose x = x′x′′, x′′x′ = zj, w = xnx′ and y = zk. We have

xω = xnx′(x′′x′)ω = w(zj)ω = w(zk)ω = wyω. ◭

3 Complexity of Reachability Properties for Flat FIFO Systems

In this section, we give complexity bounds for the reachability problem for flat FIFO sys-

tems. We also establish the complexity of other related problems, viz. repeated control state

reachability, termination, boundedness, channel boundedness and letter channel bounded-

ness. We use the algorithm for repeated control state reachability as a subroutine for solving

termination and boundedness. For channel boundedness and letter channel boundedness, we

use another argument based on integer linear programming. Flat FIFO systems can sim-

ulate counter systems and reachability and related problems are known to be Np-hard for

flat counter systems. However, the lower bound proofs for flat counter systems use binary

encoding of counter updates, while the simulation of counter systems by FIFO systems use

unary encoding. Hence, we cannot deduce lower bounds for flat FIFO systems from the

lower bounds for flat counter systems. We prove the lower bounds for flat FIFO systems

directly.

In [25], Esparza, Ganty, and Majumdar studied the complexity of reachability for highly

undecidable models (multipushdown systems) but synchronized by bounded languages in the

context of bounded model-checking. In particular, they proved that control-state reachability

is Np-complete for flat FIFO systems (in fact for FIFO systems controlled by a bounded

language). The Np upper bound is based on a simulation of FIFO path schemas by pushdown

systems. Some constraints need to be imposed on the pushdown systems to ensure the

correctness of the simulation. The structure of path schemas enables these constraints to be

expressed as linear constraints on integer variables and this leads to the Np upper bound.

Surprisingly, the Np upper bound in [25] is given only for the control-state reachability

problem; the complexity of the reachability problem is not established in [25] while it is given

for all other considered models. However, there is a simple linear reduction from reachability

to control-state reachability for FIFO (and Last In First Out) systems [39]. Such reductions

are not known to exist for other models like counter systems and vector addition systems.

We begin by reducing reachability to control-state reachability (personal communication

from Grégoire Sutre [39]) for (general and flat) FIFO systems.

6 Verification of Flat FIFO Systems

◮ Proposition 3.1 ([39]). Reachability reduces (with a linear reduction) to control-state

reachability, for general FIFO systems and for flat FIFO systems.

Proof. Let A be a FIFO system, q a control-state and (q,w) a configuration of A. We

reduce reachability to control-state reachability. We construct the system BA,(q,w) from A

and (q,w) as follows. The system BA,(q,w) is obtained from A by adding a path to control

state q as follows, where # is a new symbol not in M and F = {1, . . . , p}. The transition

labeled 1?w(1)# is to be understood as a sequence of transitions whose effect is to retrieve

the string w(1)# from channel 1.

q qstop

1!# 1?w(1)# p!# p?w(p)#

The configuration (q,w) is reachable in A iff the control state qstop is reachable inBA,(q,w).

Note that if A is flat, then BA,(q,w) is also flat. ◭

◮ Remark 3.2. Control-state reachability is reducible to reachability for general FIFO sys-

tems. Suppose Σ = {a1, . . . , ad} and there are p channels. Using the same notations as in

the previous proof, from A and q, one constructs the system BA,q as follows: one adds, to

A, d× p self loops ℓi,j, each labeled by j?ai, for i ∈ {1, .., d} and j ∈ {1, . . . , p}, all from and

to the control-state q. We infer that q is reachable in A if and only if (by definition) there

exists w such that (q,w) is reachable in A if and only if (q, ǫ) is reachable in BA,q. Here,

(q, ǫ) denotes the configuration where q is the control state and all channels are empty. Note

that BA,q is not necessarily flat, even if A is flat.

It is proved in [25, Theorem 7] that control state reachability is in Np for flat FIFO

systems. Combining this with Proposition 3.1, we immediately deduce:

◮ Corollary 3.3. Reachability is in Np for flat FIFO systems.

Now we define problems concerned with infinite behaviors.

◮ Problem (Repeated reachability). Given: A FIFO system S, two configurations (q0,w0)

and (q,w). Question: Is there an infinite run from (q0,w0) such that (q,w) occurs infinitely

often along this run?

◮ Problem (Cyclicity). Given: A FIFO system S and a configuration (q,w). Question: Is

(q,w) reachable (by a non-empty run) from (q,w)?

◮ Problem (Repeated control-state reachability). Given: A FIFO system S, a configuration

(q0,w0) and a control-state q. Question: Is there an infinite run from (q0,w0) such that q

occurs infinitely often along this run?

We can easily obtain an Np upper bound for repeated reachability in flat FIFO systems.

A non-deterministic Turing machine first uses the previous algorithm for reachability (Co-

rollary 3.3) to verify that (q,w) is reachable from (q0,w0). Then the same algorithm is used

again to verify that (q,w) is reachable from (q,w) (i.e. cyclic).

◮ Corollary 3.4. Repeated reachability is in Np for flat FIFO systems.

Let us recall that the cyclicity property is Expspace-complete for Petri nets [10, 23]

while structural cyclicity (every configuration is cyclic) is in Ptime. Let us show that one

may decide the cyclicity property for flat FIFO systems in linear time.

◮ Lemma 3.5. In a flat FIFO system, a configuration (q,w) is reachable from (q,w) iff

there is an elementary loop labeled by σ, such that (q,w)
σ

−−→ (q,w).

Alain Finkel and M. Praveen 7

Proof. The implication from right to left (⇐) is clear. For the converse, suppose that

(q,w) is reachable from (q,w). Flatness implies that q belongs to a (necessarily unique

and elementary) loop, say a loop labeled by σ. As (q,w) is reachable from (q,w), there

exists a sequence of transitions γ such that (q,w)
γ

−−→ (q,w). Now, still from flatness, γ

is necessarily a power of σ, say γ = σk, k ≥ 1. Hence we have: (q,w)
σk

−−→ (q,w). Let

us write (q,w)
σ

−−→ (q,w1)
σ

−−→ (q,w2)
σ

−−→ · · ·
σ

−−→ (q,wk) = (q,w). The effect of σ on

the channel contents must preserve their initial length, so we have | xσ
c |=| yσ

c | for every

channel c. Since σ is fireable from (q,w) and reaches (q,w1), let us show that w1 = w. If

xσ
c = ǫ then xσ

c = yσ
c = ǫ and w1 = w. So, let us suppose that xσ

c 6= ǫ (this also implies

yσ
c 6= ǫ). From (q,w)

σk

−−→ (q,w), we know that the sequence σk is infinitely iterable and we

have (1) ((xσ
c)k)ω = wc((yσ

c)k)ω and since k ≥ 1, xσ
c 6= ǫ and yσ

c 6= ǫ, equality (1) implies

that (xσ
c)ω = w(yσ

c)ω . In the rest of this proof, we skip the superscript σ and the subscript

c for simplicity. We now write xω = wyω.

Lemma 2.4 implies that there exists a primitive word z 6= ǫ and two words x′, x′′ such

that x = x′x′′, x′′x′ ∈ z∗, w ∈ x∗x′ and y ∈ z∗. Let us write y = zd. Since x′′x′ ∈ z∗ and

since x′′x′ has the same length as y, we deduce that x′′x′ = zd = y. From w ∈ x∗x′, we

obtain that w ∈ (x′x′′)∗x′ = x′(x′′x′)∗, hence w ∈ x′(zd)∗. Hence, we have:

y = x′′x′ = zd, x = x′x′′ and w = x′zds for some s ≥ 0 (2)

Since (q,w)
σ

−−→ (q,w1), the firing equation w1 = x−1wy is satisfied. By replacing x,w

by their values in (2) in the firing equation, we obtain:

w1 = x−1wy = x−1x′zdszd = x′′−1zdzds = x′′−1x′′x′zds = x′zds = w.

Hence (q,w)
σ

−−→ (q,w). ◭

To decide whether (q,w)
∗

−−→ (q,w), one tests whether (q,w)
σ

−−→ (q,w) for some ele-

mentary loop σ in the flat FIFO system. Since the FIFO system is flat, q can be in at most

one loop, so only one loop need to be tested. This gives a linear time algorithm for deciding

cyclicity.

◮ Corollary 3.6. Testing cyclicity can be done in linear time for flat FIFO systems.

We are now going to show an NP upper bound for repeated control state reachability.

Let a loop be labeled with σ. Recall that for each channel c, we denote by xσ
c (resp. yσ

c)

the projection of σ to letters retrieved from (resp. sent to) the channel c. Let us write σc

for the projection of σ on channel c.

◮ Remark 3.7. The loop labeled by σ is infinitely iterable from (q,w) iff σc is infinitely

iterable from (q,w(c)), for every channel c. If σ is infinitely iterable from (q,w) then each

projection σc is also infinitely iterable from (q,w(c)). Conversely, suppose σc is infinitely

iterable from (q,w(c)), for every channel c. For all c 6= c′, the actions of σc and σc′ are on

different channels and hence independent of each other. Since σ is a shuffle of {σc | c ∈ F},

we deduce that σ is infinitely iterable from (q,w).

We now give a characterization for a loop to be infinitely iterable.

◮ Lemma 3.8. Suppose an elementary loop is on a control state q and is labeled by σ. It

is infinitely iterable starting from the configuration (q,w) iff for every channel c, xσ
c = ǫ

or the following three conditions are true: σ is fireable at least once from (q,w), (xσ
c)ω =

w(c) · (yσ
c)ω and |xσ

c | ≤ |yσ
c |.

8 Verification of Flat FIFO Systems

Proof. Let ℓ be an elementary loop on a control state q and labeled by σ. If σ is infinitely

iterable starting from the configuration (q,w) then for every channel c, one has |xc| ≤ |yc|.

Otherwise, |xc| > |yc| (the number of letters retrieved is more than the number of letters

sent in each iteration), so the size of the channel content reduces with each iteration, so

there is a bound on the number of possible iterations. Since σ is infinitely iterable from

(q,w), the inequation (xσ
c)n ≤ w(c) · (yσ

c)n must hold for all n ≥ 0 (here, ≤ denotes the

prefix relation). If xc 6= ǫ, we may go at the limit and we obtain (xσ
c)ω ≤ w(c) · (yσ

c)ω.

Finally, σ is fireable at least once from (q,w) since it is fireable infinitely from (q,w).

Now conversely, suppose that for every channel c, xσ
c = ǫ or the following three conditions

are true: σ is fireable at least once from (q,w), (xσ
c)ω = w(c) · (yσ

c)ω and |xσ
c | ≤ |yσ

c |.

For the rest of this proof, we fix a channel c and write xσ
c , y

σ
c ,w(c) as x, y, w to simplify

the notation.

If x = ǫ then σ is infinitely iterable because it doesn’t retrieve anything. So assume that

x 6= ǫ. We have xω = wyω from the hypothesis. We infer from Lemma 2.4 that there is a

primitive word z 6= ǫ and words x′, x′′ such that x = x′x′′, x′′x′ ∈ z∗, w ∈ x∗x′ and y ∈ z∗.

Suppose x′′x′ = zj and y = zk. Since |y| ≥ |x| = |x′′x′|, we have k ≥ j. Let us prove

the following monotonicity property: for all n ≥ 0, σ is fireable from any channel content

wzn and the resulting channel content is wzn+(k−j) (this will imply that for all m ≥ 1,

w
σm

−−→ wzm×(k−j), hence that σ is infinitely iterable). We prove the monotonicity property

by induction on n.

For the base case n = 0, we need to prove that w
σ

−−→ wzk−j . By hypothesis, σ is fireable

at least once from w, hence w
σ

−−→ w′ for some w′. We have w′ = x−1wy = x−1xrx′zk

for some r ∈ N. Since k ≥ j, we have w′ = x−1xrx′zjzk−j = x−1xrx′(x′′x′)zk−j =

x−1xr(x′x′′)x′zk−j = x−1xr+1x′zk−j = xrx′zk−j = wzk−j .

For the induction step, we have to show that σ is fireable from channel content wzn+1

and the resulting channel content is wzn+1+(k−j). From induction hypothesis, we know

that σ is fireable from channel content wzn. Since y = zk, the channel content after fir-

ing a prefix σ1 of σ is x−1
1 wznzsz1, where x1 is some prefix of x, s ∈ N and z1 is some

prefix of z. By induction on |σ1|, we can verify that σ1 can be fired from wzn+1 and res-

ults in x−1
1 wzn+1zsz1. Hence, σ can be fired from wzn+1 and results in x−1wzn+1y =

x−1xrx′zn+1zk = x−1xrx′zjzn+1+k−j = x−1xrx′x′′x′zn+1+k−j = x−1xr+1x′zn+1+k−j =

wzn+1+k−j . This completes the induction step and hence proves the monotonicity property.

Hence σ is infinitely iterable. ◭

The proof of Lemma 3.8 provides a complete characterization of the contents of a FIFO

channel when a loop is infinitely iterable. One may observe that the channel acts like a

counter (of the number of occurrences of z).

◮ Corollary 3.9. With the previous notations, the set of words in channel c that occur

in control-state q is the regular periodic language w(c) · [zk−j
c]∗, when the elementary loop

containing q is iterated arbitrarily many times.

◮ Remark 3.10. One may find other similar results on infinitely iterable loops in many papers

[26, 34, 8, 9, 30]. Our Lemma 3.8 is the same as [30, Proposition 5.1] except that it (easily)

extends it to systems with multiple channels and also provides the converse. Lemma 3.8

simplifies and improves Proposition 5.4. in [9] that used the equivalent but more complex

notion of inc-repeating sequence. Also, the results in [9] don’t give the simple representation

of the regular periodic language.

◮ Proposition 3.11. The repeated control state reachability problem is in Np for flat FIFO

systems.

Alain Finkel and M. Praveen 9

Proof. We describe an Np algorithm. Suppose S is the given flat FIFO system and the

control state q is to be reached repeatedly. Suppose q is in a loop labeled with σ. The

algorithm first verifies that for every channel c, |xσ
c | ≤ |yσ

c | — if this condition is violated, the

answer is no. From Lemma 3.8, it is enough to verify that we can reach a configuration (q,w)

such that σ can be fired at least once from (q,w) and for every channel c for which xσ
c 6= ǫ,

we have (xσ
c)ω = w(c) · (yσ

c)ω. Since the case of xσ
c = ǫ can be handled easily, we assume

in the rest of this proof that xσ
c 6= ǫ for every c. For verifying that (xσ

c)ω = w(c) · (yσ
c)ω,

the algorithm depends on Lemma 2.4: the algorithm guesses x′
c, x

′′
c , zc ∈ M∗ such that

xσ
c = x′

cx
′′
c and x′′

cx
′
c, y

σ
c ∈ z∗

c . We have |x′
c|, |x′′

c | ≤ |xσ
c | and |zc| ≤ |yσ

c | so the guessed

strings are of size bounded by the size of the input. It remains to verify that we can reach

a configuration (q,w) such that for every channel c, w(c) ∈ (xσ
c)∗x′

c and σ can be fired at

least once from (q,w). For accomplishing these two tasks, we add a channel c′ for every

channel c in the FIFO system S. The following gadgets are appended to the control state q,

assuming that there are p channels and # is a special letter not in the channel alphabet M .

We denote by σ′ the sequence of transitions obtained from σ by replacing every channel c

by c′. A transition labeled with c?xσ
c ; c′!xσ

c is to be understood as a sequence of transitions

whose effect is to retrieve xσ
c from channel c and send xσ

c to channel c′.

q q′ qf

1!#

1?xσ
1 ; 1′!xσ

1

1?x′
1; 1′!x′

1
1?# 2!#

2?xσ
2 ; 2′!xσ

2

2?x′
2; 2′!x′

2
2?# p!#

p?xσ
p ; p′!xσ

p

p?x′
p; p′!x′

p
p?# σ′

Finally our algorithm runs the Np algorithm to check that the control state qf is reach-

able. We claim that the control state q can be visited infinitely often iff our algorithm accepts.

Suppose q can be visited infinitely often. So the loop containing q can be iterated infinitely

often. Hence from Lemma 3.8, we infer that S can reach a configuration (q,w) such that

σ can be fired at least once and for every channel c, |xσ
c | ≤ |yσ

c | and (xσ
c)ω = w(c) · (yσ

c)ω.

From Lemma 2.4, there exist x′
c, x

′′
c , zc ∈ M∗ such that xσ

c = x′
cx

′′
c , w(c) ∈ (xσ

c)∗x′
c and

x′′
cx

′
c, y

σ
c ∈ z∗

c . Our algorithm can guess exactly these words x′
c, x

′′
c , zc. It is easy to verify that

from the configuration (q,w), the configuration (q′,w′) can be reached, where w′(c′) = w(c)

for every c. Since σ can be fired from (q,w), σ′ can be fired from (q′,w′) to reach qf . So

our algorithm accepts.

Conversely, suppose our algorithm accepts. Hence the control state qf is reachable.

By construction, we can verify that the run reaching the control state qf has to visit a

configuration (q,w) such that for every channel c, w(c) ∈ (xσ
c)∗x′

c and σ can be fired

at least once from (q,w). Our algorithm also verifies that |xσ
c | ≤ |yσ

c |, xσ
c = x′

cx
′′
c and

x′′
cx

′
c, y

σ
c ∈ z∗

c . Hence, from Lemma 2.4 and Lemma 3.8, we infer that the loop containing q

can be iterated infinitely often starting from the configuration (q,w). Hence, there is a run

that visits q infinitely often. ◭

Let us now introduce the non-termination and the unboundedness problems.

◮ Problem (Non-termination). Given: A FIFO system S and an initial configuration (q0,w0).

Question: Is there an infinite run from (q0,w0)?

◮ Problem (Unboundedness). Given: A FIFO system S and an initial configuration (q0,w0).

Question: Is the set of configurations reachable from (q0,w0) infinite?

◮ Corollary 3.12. For flat FIFO systems, the non-termination and unboundedness problems

are in Np.

10 Verification of Flat FIFO Systems

Proof. First we deal with non-termination. A flat system is non-terminating iff there is an

infinite run r. As there are only a finite number of control-states, the run will visit at least

one control state (say q) infinitely often. Hence to solve non-termination, we can guess a

control state q and use the Np algorithm of Proposition 3.11 to check that q can be visited

infinitely often. This gives an Np upper bound for non-termination.

Next we deal with unboundedness. The effect of a loop ℓ labeled with σ is a vector of

integers vℓ ∈ Z
F such that vℓ(c) = |xσ

c | − |yσ
c | for every c ∈ F . If ℓ is an infinitely iterable

loop, then vℓ ≥ 0, where ≥ is component-wise comparison and 0 is the vector with all

components equal to 0. If none of the loops in a flat FIFO system are infinitely iterable,

then only finitely many configurations can be reached. Hence, an unbounded flat FIFO

system has at least one loop ℓ that is infinitely iterable, hence vℓ ≥ 0. If every infinitely

iterable loop ℓ has vℓ = 0, then none of the infinitely iterable loops will increase the length

of any channel content. Hence, there is a bound on the length of the channel contents in

any reachable configuration, so only finitely many configurations can be reached. Hence, in

an unbounded flat FIFO system, there is at least one infinitely iterable loop ℓ with vℓ 6= 0.

Conversely, suppose a flat FIFO system has an infinitely iterable loop ℓ with vℓ 6= 0.

Since ℓ is infinitely iterable, vℓ ≥ 0. Hence there is some channel c such that vℓ(c) ≥ 1. So

every iteration of the loop ℓ will increase the length of the content of channel c by at least 1.

Hence, infinitely many iterations of the loop ℓ will result in infinitely many configurations.

So a system S is unbounded iff there exists an infinitely iterable loop ℓ such that vℓ ≥ 0 and

vℓ 6= 0. Hence to decide unboundedness, we guess a control state q, verify that it belongs

to a loop whose effect is non-negative on all channels and strictly positive on at least one

channel and use the algorithm of Proposition 3.11 to check that q can be visited infinitely

often. This gives an Np upper bound for unboundedness. ◭

For a word w and a letter a, |w|a denotes the number of occurrences of a in w. For a

FIFO system, we say that a letter a is unbounded in channel c if for every number B, there

exists a reachable configuration (q,w) with |w(c)|a ≥ B. A channel c is unbounded if at

least one letter a is unbounded in c.

◮ Problem (Channel-unboundedness). Given: A FIFO system S, an initial configuration

(q0,w0) and a channel c. Question: Is the channel c unbounded from (q0,w0)?

◮ Problem (Letter-channel-unboundedness). Given: A FIFO system S, an initial configura-

tion (q0,w0), a channel c and a letter a. Question: Is the letter a unbounded in channel c

from (q0,w0)?

Now we give an Np upper bound for letter channel unboundedness in flat FIFO systems.

We use the following two results in our proof.

◮ Theorem 3.13 ([25, Theorem 3, Theorem 7]). Let S = p0(ℓ1)∗p1 · · · (ℓr)∗pr be a FIFO path

schema. We can compute in polynomial time an existential Presburger formula φ(x1, . . . , xr)

satisfying the following property: there is a run of S in which the loop ℓi is iterated exactly

ni times for every i ∈ {1, . . . , r} iff φ(n1, . . . , nr) is true.

For vectors k,x and matrix A, the expression k·x denotes the dot product and the expression

Ax denotes the matrix product.

◮ Lemma 3.14 ([37, Lemma 3]). Suppose A is an integer matrix and k,b are integer vectors

satisfying the following property: for every B ∈ N, there exists a vector x of rational numbers

such that Ax ≥ b and k · x ≥ B. If there is an integer vector x such that Ax ≥ b, then for

every B ∈ N, there exists an integer vector x such that Ax ≥ b and k · x ≥ B.

Alain Finkel and M. Praveen 11

◮ Proposition 3.15. Given a flat FIFO system, a letter a and channel c, the problem of

checking whether a is unbounded in c is in Np.

Proof. The letter a is unbounded in c iff there exists a control state q such that for every

number B, there is a reachable configuration with control state q and at least B occurrences

of a in channel c (this follows from definitions since there are only finitely many control

states). A non-deterministic polynomial time Turing machine begins by guessing a control

state q. If there are r loops in the path schema ending at q, the Turing machine computes an

existential Presburger formula φ(x1, . . . , xr) satisfying the following property: φ(n1, . . . , nr)

is true iff there is a run ending at q in which loop i is iterated ni times for every i ∈ {1, . . . , r}.

Such a formula can be computed in polynomial time (Theorem 3.13). Let ki be the number

of occurrences of the letter a sent to channel c by one iteration of the ith loop (ki would be

negative if a is retrieved instead). If loop i is iterated ni times for every i in a run, then

at the end of the run there are k1n1 + · · · + krnr occurrences of the letter a in channel

c. To check that a is unbounded in channel c, we have to verify that there are tuples

〈n1, . . . , nr〉 such that φ(n1, . . . , nr) is true and k1n1 + · · · + krnr is arbitrarily large. This

is easier to do if there are no disjunctions in the formula φ(x1, . . . , xr). If there are any

sub-formulas with disjunctions, the Turing machine non-deterministically chooses one of the

disjuncts and drops the other one. This is continued till all disjuncts are discarded. This

results in a conjunction of linear inequalities, say Ax ≥ b, where x is the tuple of variables

〈x1, . . . , xr〉. The machine then tries to maximize k1x1 + · · · + krxr over rationals subject

to the constraints Ax ≥ b. This can be done in polynomial time, since linear programming

is in polynomial time. If the value k1x1 + · · · + krxr is unbounded above over rationals

subject to the constraints Ax ≥ b, then the machine invokes the Np algorithm to check if

the constraints Ax ≥ b has a feasible solution over integers. If it does, then k1x1 + · · ·+krxr

is also unbounded above over integers (Lemma 3.14). Hence, in this case, a is unbounded

in channel c. ◭

The above result also gives an Np upper bound for channel-unboundedness. We just

guess a letter a and check that it is unbounded in the given channel.

We adapt the proof of Np-hardness for the control state reachability problem from [25]

to prove Np hardness for reachability, repeated control state reachability, unboundedness

and non-termination.

◮ Theorem 3.16. For flat FIFO systems, reachability, repeated control-state reachability,

non-termination, unboundedness, channel-unboundedness and letter-channel-unboundedness

are NP-hard.

Proof. We reduce from 3SAT. Given a 3-CNF formula clause1 ∧ · · · ∧ clausem over variables

x1, . . . , xn, we construct a flat FIFO system with 2n+m channels {xi, x̂i | i ∈ [1, n]} ∪ {ci |

i ∈ [1,m]}. There are two letters 0, 1 in the message alphabet. The channel xi is used

to keep a guess of the truth assignment to the variable xi. The channel x̂i is a “control

channel” used to ensure that only one guess is made. The channel ci is used to verify that

clausei is satisfied. The flat FIFO system consists of the gadgets shown in Fig. 3. The

gadget for variable xi adds either 0 (in the left loop) or 1 (in the right loop) to channel xi.

Only one letter can be added since each iteration of each loop needs to retrieve the letter 0

from channel x̂i and there is at most one occurrence of 0 in channel x̂i. At the end of this

gadget, channel xi will have either 0 or 1 and channel x̂i will be empty. We will sequentially

compose the gadgets for all variables. Starting from the initial control state of the gadget

for variable x1, we reach the final control state of the gadget for variable xn and the contents

of the channels x1, . . . , xn determine a truth valuation.

12 Verification of Flat FIFO Systems

x̂i!0

xi!0

x̂i?0

x̂i!1

xi!1

x̂i?0

x̂i!1

x̂i?1

(a) Gadget for variable xi

c1!0

x1?1

x1!1

c1?0

c1!1

x2?0

x1!0

c1?0

c1!1

x3?1

x3?1

c1?0

c1!1

c1?1

(b) Gadget for clause c1 = x1 ∨¬x2 ∨x3

xi?0 xi?1

(c) Gadget for cleaning up variable xi

Figure 3 Gadgets used in the proof of Lemma 3.16

The gadget for the example clause c1 = x1 ∨ ¬x2 ∨ x3 (gadgets for other clauses follow

similar pattern) is shown in Fig. 3. The gadget checks that channel x1 has 1 (in the first

loop) or that channel x2 has 0 (in the second loop) or that channel 3 has 1 (in the third

loop). At most one of these loops can be iterated at most once, since each iteration of each

loop needs to retrieve the letter 0 from channel c1 and there is at most once occurrence of

0 in channel c1. We append the clause gadgets to the end of the variable gadgets one after

the other. All clauses are satisfied by the truth valuation determined by the contents of

channels x1, . . . , xn iff we can reach the last control state of the last clause.

The gadget for cleaning up variable xi is shown on the bottom in Fig. 3. We append

the cleanup gadgets to the end of the clause gadgets one after the other. The last control

state of the cleanup gadget for variable xn can be reached iff the given 3-CNF formula is

satisfiable.

The given 3-CNF formula is satisfiable iff the last control state of the cleanup gadget

for variable xn can be reached with all channels being empty. Hence, this constitutes a

reduction to the reachability problem. Note that in the flat FIFO system constructed above,

all channels are bounded and none of the control states can be visited infinitely often. We

add a self loop to the last control state of the cleanup gadget for variable xn that adds

letter 1 to channel x1. If this loop can be reached, then it can be iterated infinitely often

to add unboundedly many occurrences of the letter 1 to channel x1. Now, the given 3-CNF

formula is satisfiable iff the constructed flat FIFO system is unbounded iff channel x1 is

unbounded iff letter 1 is unbounded in channel x1 iff there is a non-terminating run iff

the last control state of the cleanup gadget for variable xn can be reached infinitely often.

Hence reachability, unboundedness, channel unboundedness, letter channel unboundedness,

non-termination and repeated control state reachability are all Np-hard. ◭

Hence we deduce the main result of this Section.

◮ Theorem 3.17 (Most properties are NP-complete). For flat FIFO systems, reachability,

repeated reachability, repeated control-state reachability, termination, boundedness, channel-

boundedness and letter-channel-boundedness are NP-complete. Cyclicity can be decided in

linear time.

Alain Finkel and M. Praveen 13

4 Construction of an Equivalent Counter System

Suppose we want to model check flat FIFO systems against logics in which atomic formulas

are of the form #a
c ≥ k, which means there are at least k occurrences of the letter a in

channel c.

There is no easy way of designing an algorithm for this model checking problem based on

the construction in [25], even though we solved reachability and related problems in previous

sections using that construction. That construction is based on simulating FIFO systems

using automata that have multiple reading heads on an input tape. The channel contents

of the FIFO system are represented in the automaton as the sequence of letters on the tape

between two reading heads. There is no way in the automaton to access the tape contents

between two heads, and hence no way to check the number of occurrences of a specific letter

in a channel. CQDDs introduced in [9] represent the entire set of reachable states and they

are also not suitable for model checking.

To overcome this problem, we introduce here a counter system to simulate flat FIFO

systems. This has the additional advantage of being amenable to analysis using existing

tools on counter machines. Counter systems are finite state automata augmented with

counters that can store natural numbers. Let K be a finite set of counters and let guards

over K be the set G(K) of positive Boolean combinations1 of constraints of the form C = 0

and C > 0, where C ∈ K.

◮ Definition 4.1 (Counter systems). A counter system S is a tuple 〈Q,K,∆〉 where Q is a

finite set of control states and ∆ ⊆ Q×G(K) × {−1, 0, 1}K ×Q is a finite set of transitions.

We may add one or two labeling functions to the tuple 〈Q,K,∆〉 to denote labeled counter

systems. The semantics of a counter system is a transition system with set of states Q×N
K ,

called configurations of the counter system. A counter valuation ν ∈ N
K satisfies a guard

C = 0 (resp. C > 0) if ν(C) = 0 (resp. ν(C) > 0), written as ν |= C = 0 (resp. ν |= C > 0).

The satisfaction relation is extended to Boolean combinations in the standard way. For every

transition δ = q
u

−−→
g

q′ in the counter system, we have transitions (q, ν1)
δ

−−→ (q′, ν2) in the

associated transition system for every ν1 such that ν1 |= g and ν2 = ν1 + u (addition of

vectors is done component-wise). We write a transition (q, C2 = 0, 〈1, 0〉, q′) as q
C

++

1−−−−→
C2=0

q′,

denoting addition of 1 to C1 by C++
1 . We denote by −−→ the union ∪δ∈∆

δ
−−→. A run of the

counter system is a finite or infinite sequence (q0, ν0) −−→ (q1, ν1) −−→ · · · of configurations,

where each pair of consecutive configurations is in the transition relation.

We assume for convenience that the message alphabet M of a FIFO system is the dis-

joint union of M1, . . . ,Mp, where Mc is the alphabet for channel c. In the following, let

S = (Q,F,M,∆) be a flat FIFO system, where the set of channels F = {1, . . . , p} and the

set of transitions ∆ = {t1, . . . , tr}.

The counting abstraction system

The idea behind the counting abstraction system is to ignore the order of letters stored

in the channels and use counters to remember only the number of occurrences of each letter.

If a transition t sends letter a, the corresponding transition in the counting abstraction sys-

tem increments the counter (a, t). If a transition t retrieves a letter a, the retrieved letter

1 In the literature, counter systems can have more complicated guards, such as Presburger constraints.
For our purposes, this restricted version suffices.

14 Verification of Flat FIFO Systems

would have been produced by some earlier transition t′; the corresponding transition in the

counting abstraction system will decrement the counter (a, t′). The counting abstraction

system doesn’t exactly simulate the flat FIFO system. For example, if the transition labeled

(a, t1)−− in Fig. 4(b) is executed, we know that there is at least one occurrence of the letter

a in the channel, since the counter (a, t1) is greater than zero at the beginning of the trans-

ition. However, it is not clear that the letter a is at the front of the channel; there might be

an occurrence of the letter b at the front. This condition can’t be tested using the counting

abstraction system. We use other counter systems to maintain the order of letters.

Formally, the counting abstraction system corresponding to S is a labeled counter system

Scount = (Q,K,∆count, ψ, T), where (Q,K,∆count) is a counter system and ψ, T are labeling

functions. The set of counters K is in bijection with M × ∆ and a counter will be denoted

ca,t or shortly (a, t), for a ∈ M and t ∈ ∆. The set ∆count of transitions of Scount and the

labeling functions ψ : ∆count → (M × ∆) ∪ {τ} and T : ∆count → ∆ are defined as follows:

for every transition t ∈ ∆, one adds the following transitions in ∆count :

If t sends a message, t = q1
c!a

−−→ q2, then the transition tcount = q1
(a,t)++

−−−−−→ q2 is added

to ∆count ; we define ψ(tcount) = τ and T (tcount) = t.

If t = q1 −−→ q2 doesn’t change any channel content, then the transition tcount = q1 −−→ q2

is added to ∆count ; we define ψ(tcount) = τ and T (tcount) = t.

If t receives a message, t = q1
c?a

−−→ q2, then the set of transitions At is added to ∆count

with At = {δa,t′ = q1
(a,t′)−−

−−−−−→
(a,t′)>0

q2 | t′ sends a to channel c}. We define ψ(δa,t′) = (a, t′)

and T (δa,t′) = t, for all δa,t′ ∈ At.

The function ψ above will be used for synchronization with other counter systems later

and T will be used to match the traces of this counter system with those of the original

flat FIFO system. In figures, we do not show the labels given by ψ and T . They can be

easily determined. For a transition δa,t′ ∈ ∆count, it decrements the counter (a, t′) and

ψ(δa,t′) = (a, t′). Transitions that don’t decrement any counter are mapped to τ by ψ.

◮ Example 4.2. Figure 4(a) shows a flat FIFO system and Fig. 4(b) shows its counting

abstraction system.

The order system

The order system for channel c is a labeled counter system Sc
order = (Q,K,∆c

order, ψ
c),

where (Q,K,∆c
order) is a counter system and ψc is a labeling function. The set of control

states Q and the set of counters K are the same as in the counting abstraction system. The

set ∆c
order of transitions of Sc

order and the labeling function ψc : ∆c
order → (M × ∆) ∪ {τ} are

defined as follows: for every t ∈ ∆, one adds the following transitions in ∆c
order:

If t = q1
c!a

−−→ q2, one adds to ∆c
order the transition t′ = q1 → q2 and ψc(t′) = (a, t).

If t = q1
x

−−→ q2 where x doesn’t contain a sending operation (of a letter) to channel c,

one adds to ∆c
order the transition t′ = q1 → q2 and ψc(t′) = τ .

While adding the transitions above, if t happens to be the first transition after and outside

a loop in S, we add a guard to the transition t′ that we have given in the above two cases.

Suppose t is the first transition after and outside a loop, and the loop is labeled by σ. We

add the following guard to the transition t′.

∑

t′′ occurs in σ
a∈M

(a, t′′) = 0

Alain Finkel and M. Praveen 15

q1

q2

q3

q4

t1 !a t2 !b

t5

t3 !a t4 ?a

(a) Flat FIFO system

q1

q2

q3

q4

(a, t1)++
(b, t2)++

(a, t3)++ (a, t1)−−

(a, t3)−−

(b) Counting abstraction system

q1

q2

q3

q4

(a, t1) (b, t2)

(a, t1) + (b, t2) = 0

τ
(a, t3) τ

(c) Order system

(q1, q1)

(q2, q1)

(q3, q1)

(q4, q1)

(q3, q2)

(q4, q3)

(q3, q4)(q3, q3)

(a, t1)++ (b, t2)++

τ

(a, t3)++ (a, t1)−−

(a, t1) + (b, t2) = 0

(a, t3)−−

τ

(a, t3)++

(d) Synchronized counter system

Figure 4 An example flat FIFO system and the equivalent counter system.

This constraint ensures that all the letters produced by iterations of σ are retrieved before

letters produced by later transitions.

Figure 4(c) shows the order system corresponding to the flat FIFO system of Fig. 4(a).

The synchronized counter system

We will synchronize the counting abstraction system Scount with the order systems

(Sc
order)c by rendez-vous on transition labels.

Suppose that the system Sc
order is in state q2 as shown in Fig. 4(c) and the system Scount

is in state q4, as shown in Fig. 4(b). The system Sc
order is in state q2 and the only transition

going out from q2 is labeled by (b, t2), denoting the fact that the next letter to be retrieved

from the channel is b. The system Scount can’t execute the transition labeled with (a, t1)−−

in this configuration, since its ψ-label is (a, t1) and hence it can’t synchronize with the system

Sc
order, whose next transition is labeled with (b, t2). The guard (a, t1) + (b, t2) = 0 in the

bottom transition in Fig. 4(c) ensures that all occurrences of letters produced by iterations

of the first loop are retrieved before those produced by the second loop.

In the following, the label of a transition refers to the image of that transition under the

function ψ (if the transition is in the counting abstraction system) or the function ψc (if the

transition is in the order system for channel c).

The synchronized counter system Ssync = Scount || S1
order || ... || Sc

order || ... || Sp

order is

the synchronized (by rendez-vous) product of the counting abstraction system Scount and

the order systems Sc
order for all channels c ∈ {1, . . . , p}. All counter systems share the

same set of counters K and have disjoint copies of the set of control states Q, so the global

control states of the synchronized counter system are tuples in Qp+1. Transitions labeled

16 Verification of Flat FIFO Systems

with τ need not synchronize with others. Each transition labeled (by the function ψ or ψc

as explained above) with an element of M × ∆ should synchronize with exactly one other

transition that is similarly labeled. We extend the labeling function T of Scount to Ssync as

follows: if a transition t of Scount participates in a transition ts of Ssync, then T (ts) = T (t).

If no transition from Scount participates in ts, then T (ts) = τ and we call ts a silent transition.

Since we have assumed that the channel alphabets for different channels are mutually

disjoint, synchronizations can only happen between the counting abstraction system and one

of the order systems. For a global control state q ∈ Qp+1, q(0) denotes the local state of the

counting abstraction system and q(c) denotes the local state of the order system for channel

c. The synchronized counter system maintains the channel contents of the flat FIFO system

as explained next.

A weak bisimulation between the FIFO system and the synchronized system

We now explain that every reachable configuration (q, ν) of Ssync corresponds to a unique

configuration h(q, ν) of the original FIFO system S. The corresponding configuration of

S is h(q, ν) = (q(0), h1(v1), h2(v2), ...hp(vp)), where the words vc ∈ ∆∗ and morphisms

hc : ∆∗ → M∗ are as follows. Fix a channel c. Let vc ∈ ∆∗ be a word labelling a path in S

from q(c) to q(0) such that Parikh(vc)(t) = ν ((a, t)) for every transition t ∈ ∆ that sends

some letter to channel c (and a is the letter that is sent by t). Now, define hc(t) = a if t

sends some letter to channel c (and a is the letter sent) and hc(t) = ǫ otherwise. The word

hc(vc) is unique since S is flat and so the set of traces of S, interpreted as a language over

the alphabet ∆, is included in a bounded language. Intuitively, the path vc gives the order

of letters in channel c and the counters give the number of occurrences of each letter. Let

us denote by Rh,sync the relation {(h((q, ν)), (q, ν)) | (q, ν) is reachable in Ssync}.

◮ Example 4.3. Figure 4(d) shows the reachable states of the synchronized counter system

for the flat FIFO system in Fig. 4(a). Initially, both the counting abstraction system and

the order system are in state q1, so the global state is (q1, q1). Then the counting abstraction

system may execute the transition labeled (a, t1)++ and go to state q2 while the order system

stays in state q1, resulting in the global state (q2, q1). Consider the global state q = (q3, q2)

and counter valuation ν with ν((a, t1)) = 2, ν((b, t2)) = 3 and ν((a, t3)) = 1. Then, for the

only channel c = 1, vc = t2(t1t2)2t5t3 and hc(vc) = b(ab)2a.

Let us recall that a relation R between the reachable configurations of the FIFO sys-

tem S and the synchronized counter system Ssync is a weak bisimulation if every pair

((q,w), (q, ν)) ∈ R satisfies the following conditions: (1) for every transition (q,w)
t

−−→

(q′,w′) in S, there is a sequence σ of transitions in Ssync such that T (σ) ∈ τ∗tτ∗, (q, ν)
σ

−−→

(q′, ν′) and ((q′,w′), (q′, ν′)) ∈ R, (2) for every transition (q, ν)
ts−−→ (q′, ν′) in Ssync with

T (ts) = τ , ((q,w), (q′, ν′)) ∈ R and (3) for every transition (q, ν)
ts−−→ (q′, ν′) in Ssync with

T (ts) = t 6= τ , (q,w)
t

−−→ (q′,w′) is a transition in S and ((q′,w′), (q′, ν′)) ∈ R.

◮ Proposition 4.4. The relation Rh,sync is a weak bisimulation.

Proof. By routine induction on the length of the run of Ssync reaching the configuration

(q, ν). Let h((q, ν)) = (q(0), h1(v1), . . . , hp(vp)). If the next synchronized transition in Ssync

sends a letter to channel c, the corresponding counter will increment and the local state of

Scount will advance by one state. This will result in the word vc to be suffixed by another edge,

reflecting the addition of a new letter to channel c and maintaining the weak bisimulation. If

the next synchronized transition in Ssync retrieves a letter from channel c, the corresponding

Alain Finkel and M. Praveen 17

counter will decrement and the local state of Sc
order will advance by one state. This will

remove the first letter from the word vc and weak bisimulation is again maintained. ◭

A bisimulation between the FIFO system and the modified synchronized system

We proved weak bisimulation above instead of bisimulation, due to the presence of silent

transitions in the order systems participating in Ssync. We can modify the order systems

as follows to get a bisimulation. For every channel c and every transition q1 −−→ q2 labeled

τ in Sc
order, remove the transition and merge the two states q1, q2 into one state. If exactly

one of the two states q1, q2 was an anchor state, retain the name of the anchor state as the

name of the merged state. Otherwise, retain q2 as the name of the merged state. Repeat

this process until there are no more transitions labeled τ . Note that we have only removed

transitions that do not correspond to any transition of S sending letters to channel c. Such

transitions are assigned ǫ by the morphism hc defined in the paragraph preceding Ex. 4.3.

Hence, the deletion of τ -labeled transitions do not affect the correspondence between the

configurations of S and Ssync. If there are no sending transitions between two anchor states,

the above deletion procedure may result in two anchor states getting merged, destroying the

flatness of the order system. Next we describe a way to tackle this.

Suppose a transition t′ in the order system modified as above corresponds to a transition

t in the original flat FIFO system S. Suppose this transition t of S is in a loop ℓ, which is

labeled by the sequence of transitions σ. For every transition t1 in S outside ℓ but reachable

from states in ℓ, we make the following modification. If the order system has a transition t′1
corresponding to t1, we add the following guard to t′1.

∑

t′′ occurs in σ
a∈M

(a, t′′) = 0

These guards ensure that all letters sent by transitions in ℓ are retrieved before retrieving

letters sent by later transitions. In addition, the guards ensure that the modified order

system is flattable. Suppose the loop ℓ in S corresponds to loop ℓ′ in Sc
order. If a transition

occurring after and outside the loop ℓ′ is fired in Sc
order, loop ℓ′ can’t be entered again. The

reason is that any transition t′′ in the loop ℓ′ tries to decrement some counter (a, t′′), but

it can’t be decremented since it has value 0, as checked in the guard newly added to every

transition occurring after ℓ′.

The modified order systems don’t have τ -labeled transitions anymore, hence the modified

synchronized counter system S′
sync doesn’t have silent transitions. Now a proof similar

to that of Proposition 4.4 can be used to show bisimulation between S and the modified

synchronized counter system S′
sync.

Let R′
h,sync be the relation {(h((q, ν)), (q, ν)) | (q, ν) is reachable in S′

sync}.

◮ Proposition 4.5. The relation R′
h,sync is a bisimulation.

Trace-flattening

The counting abstraction system Scount is not flat in general. E.g., there are two trans-

itions from q4 to q3 in Fig. 4(b). Those two states are in more than one loop, violating

the condition of flatness. However, suppose a run is visiting states q3, q4 of the counting

abstraction system and states q3, q4 of the order system as shown in Fig. 5 (parts of the

systems that are no longer reachable are greyed out). Now the transition labeled (a, t1)−−

can’t be used and the run is as shown in Fig. 5(d), which is a flat counter system. In general,

suppose ℓ0, ℓ1, . . . , ℓr are the loops in S. There is a flat counter system Sflat whose set of

runs is the set of runs ρ of the synchronized transition system which satisfy the following

18 Verification of Flat FIFO Systems

q1

q2

q3

q4

t1 !a t2 !b

t5

t3 !a t4 ?a

(a) Flat FIFO system

q1

q2

q3

q4

(a, t3)++ (a, t1)−−

(a, t3)−−

(b) Counting abstraction system (grey part no
longer reachable)

q1

q2

q3

q4

(a, t3) τ

(c) Order system (grey part
no longer reachable)

(q4, q3)

(q3, q4)(q3, q3)

(a, t3)−−

τ

(a, t3)++

(d) Part of synchronized counter system
still reachable

Figure 5 Flattening

property: in ρ, all local states of the counting abstraction system are in some loop ℓi and

for every channel c, all local states of the order system Sc
order are in some loop ℓc. This is

the intuition for the next result.

Let traces(Ssync) be the set of all runs of Ssync. Let S′ be another counter system with

set of states Q′ and the same set of counters as Ssync and let f : Q′ → Q be a function. We

say that S′ is a f -flattening of Ssync [18, Definition 6] if S′ is flat and for every transition

q
u

−−→
g

q′ of S′, f(q)
u

−−→
g

f(q′) is a transition in Ssync. Further, S′ is a f -trace-flattening of

Ssync [18, Definition 8] if S′ is a f -flattening of Ssync and traces(Ssync) = f(traces(S′)).

◮ Proposition 4.6. The synchronized counter system Ssync is trace-flattable.

Proof. Starting from a global state q of Ssync, we claim that we can build a flat counter

system that is a trace-flattening of Ssync. Let n0 be the number of loops in S reachable from

q(0). For each channel c, let nc be the number of loops in S reachable from q(c). We prove

the claim by induction on the vector 〈n0, n1, . . . , np〉. The order on vectors is component-

wise comparison — 〈n0, n1, . . . , np〉 < 〈n′
0, n

′
1, . . . , n

′
p〉 if ni ≤ n′

i for all i ∈ {0, . . . , p} and

nj < n′
j for some j ∈ {0, . . . , p}.

For the base case, 〈n0, n1, . . . , np〉 = 0. From such a global state, the counting abstraction

system and order systems for all the channels have unique paths to follow and hence there

is a unique run of Ssync. This unique run can be easily simulated by a flat counter system,

proving the base case.

For the induction step, suppose ℓ0 is the first loop in S reachable from q(0) and for

every channel c, suppose ℓc is the first loop in S reachable from q(c), with ℓ′
c being the

corresponding loop in Sc
order. There is a flat counter system Sflat described in the paragraph

preceding this lemma, which can simulate runs of the synchronized counter system as long

as the counting abstraction system doesn’t exit the loop ℓ0 and for every channel c, the

order system Sc
order doesn’t exit the loop ℓ′

c. If the counting abstraction system exits the

loop ℓ0 (or the order system Sc
order exits the loop ℓ′

c for some channel c), then the vector

〈n0 − 1, n1, . . . , np〉 (or the vector 〈n0, n1, . . . , nc − 1, . . . , np〉) is strictly smaller than the

Alain Finkel and M. Praveen 19

vector 〈n0, n1, . . . , np〉 2. The induction hypothesis shows that there is a flat counter system

S′
flat that can cover the remaining possible runs. We sequentially compose Sflat and S′

flat by

identifying the initial state of S′
flat with the state of Sflat in which the counting abstraction

system exits the loop ℓ0 (or the order system Sc
order exits the loop ℓ′

c). There are finitely

many possibilities of the counting abstraction system or one of the order systems exiting

a loop; for each of these possibilities, the induction hypothesis gives a flat counter system

S′
flat. We sequentially compose Sflat with all such flat counter systems S′

flat. The result is a

trace-flattening of the synchronized counter system. ◭

Let Sflat be a trace-flattening of Ssync. In general, the size of Sflat is exponential in

the size of Ssync, which is exponential in the size of S. In theory, problems on flat FIFO

systems can be solved by using tools on counter systems (bisimulation preserves CTL* and

trace-flattening preserves LTL [18, Theorem1]); hence we deduce:

◮ Theorem 4.7. LTL and CTL* are decidable for flat FIFO systems.

It remains to be seen if tools can be optimized to make verifying FIFO systems work in

practice.

5 Conclusion and Perspectives

We answered the complexity of the main reachability problems for flat FIFO systems which

are Np-complete as for flat counter systems. We also show how to translate a flat FIFO

system into a trace-flattable counter system. This opens the way to model-check general

FIFO systems by enumerating their flat subsystems. For example, if we construct the product

of the three processes shown in Fig. 1, the resulting FIFO system is not flat. It does become

flat if we remove the self loop labeled pq?y. The resulting flat subsystem is unbounded, so it

implies that the original system is also unbounded. Hence, even if the given FIFO system is

not flat, some questions can often be answered by analyzing flat subsystems. This strategy

has worked well for counter systems and offers hope for FIFO systems.

References

1 Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly analysis of systems
with unbounded, lossy FIFO channels. In CAV, volume 1427 of Lecture Notes in Computer

Science, pages 305–318. Springer, 1998.
2 Parosh Aziz Abdulla, Aurore Collomb-Annichini, Ahmed Bouajjani, and Bengt Jonsson. Us-

ing forward reachability analysis for verification of lossy channel systems. Formal Methods in

System Design, 25(1):39–65, 2004.
3 Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu. Trex: A tool for reachability

analysis of complex systems. In Gérard Berry, Hubert Comon, and Alain Finkel, editors,
Computer Aided Verification, pages 368–372, Berlin, Heidelberg, 2001. Springer Berlin Heidel-
berg.

4 Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Laure Petrucci. FAST: Fast Acceleration
of Symbolic Transition systems. In Warren A. Hunt, Jr and Fabio Somenzi, editors, Proceed-

ings of the 15th International Conference on Computer Aided Verification (CAV’03), volume
2725 of Lecture Notes in Computer Science, pages 118–121, Boulder, Colorado, USA, July
2003. Springer. URL: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/FAST-cav03.ps.

2 This step fails in non-flat FIFO systems; if a loop is exited in a non-flat FIFO system, it may be possible
to reach the loop again, so the vector doesn’t necessarily decrease.

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/FAST-cav03.ps

20 Verification of Flat FIFO Systems

5 Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Philippe Schnoebelen.
Flat acceleration in symbolic model checking. In Doron A. Peled and Yih-
Kuen Tsay, editors, Proceedings of the 3rd International Symposium on Auto-

mated Technology for Verification and Analysis (ATVA’05), volume 3707 of Lec-

ture Notes in Computer Science, pages 474–488, Taipei, Taiwan, October 2005.
Springer. URL: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BFLS05-atva.pdf,
doi:10.1007/11562948_35.

6 Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie. Reach-
ability in two-dimensional vector addition systems with states is PSPACE-complete. In Pro-

ceedings of the 30th Annual ACM/IEEE Symposium on Logic In Computer Science (LICS’15),
pages 32–43, Kyoto, Japan, July 2015. IEEE Press. URL: http://arxiv.org/abs/1412.4259,
doi:10.1109/LICS.2015.14.

7 Bernard Boigelot. Domain-specific regular acceleration. STTT, 14(2):193–206, 2012. URL:
https://doi.org/10.1007/s10009-011-0206-x, doi:10.1007/s10009-011-0206-x.

8 Bernard Boigelot, Patrice Godefroid, Bernard Willems, and Pierre Wolper. The power
of QDDs (extended abstract). In Pascal Van Hentenryck, editor, Static Analysis, 4th

International Symposium, SAS ’97, Paris, France, September 8-10, 1997, Proceedings,
volume 1302 of Lecture Notes in Computer Science, pages 172–186. Springer, 1997. URL:
https://doi.org/10.1007/BFb0032741, doi:10.1007/BFb0032741.

9 Ahmed Bouajjani and Peter Habermehl. Symbolic reachability analysis of fifo-
channel systems with nonregular sets of configurations. Theor. Comput. Sci.,
221(1-2):211–250, 1999. URL: http://dx.doi.org/10.1016/S0304-3975(99)00033-X,
doi:10.1016/S0304-3975(99)00033-X.

10 Zakaria Bouziane and Alain Finkel. Cyclic Petri net reachability sets are semi-linear effect-
ively constructible. In Faron Moller, editor, Proceedings of the 2nd International Workshop on

Verification of Infinite State Systems (INFINITY’97), volume 9 of Electronic Notes in Theor-

etical Computer Science, pages 15–24, Bologna, Italy, July 1997. Elsevier Science Publishers.
URL: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BF-infinity97.pdf.

11 Marius Bozga, Radu Iosif, and Filip Konecný. Safety problems are np-complete
for flat integer programs with octagonal loops. CoRR, abs/1307.5321, 2013. URL:
http://arxiv.org/abs/1307.5321, arXiv:1307.5321.

12 Marius Bozga, Radu Iosif, Filip Konecný, and Tomás Vojnar. Tool demonstration of the
FLATA counter automata toolset. In Andrei Voronkov, Laura Kovács, and Nikolaj Bjørner,
editors, Second International Workshop on Invariant Generation, WING 2009, York, UK,

March 29, 2009 and Third International Workshop on Invariant Generation, WING 2010,

Edinburgh, UK, July 21, 2010, volume 1 of EPiC Series in Computing, page 75. EasyChair,
2010. URL: http://www.easychair.org/publications/paper/51875.

13 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines.
J. ACM, 30(2):323–342, 1983. URL: http://doi.acm.org/10.1145/322374.322380,
doi:10.1145/322374.322380.

14 Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavat-
taro. Choreography and orchestration conformance for system design. In Paolo Cian-
carini and Herbert Wiklicky, editors, Coordination Models and Languages, 8th Interna-

tional Conference, COORDINATION 2006, Bologna, Italy, June 14-16, 2006, Proceedings,
volume 4038 of Lecture Notes in Computer Science, pages 63–81. Springer, 2006. URL:
https://doi.org/10.1007/11767954_5, doi:10.1007/11767954_5.

15 Gérard Cécé and Alain Finkel. Verification of programs with half-duplex
communication. Information and Computation, 202(2):166–190, November
2005. URL: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CF-icomp05.pdf,
doi:10.1016/j.ic.2005.05.006.

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BFLS05-atva.pdf
http://dx.doi.org/10.1007/11562948_35
http://arxiv.org/abs/1412.4259
http://dx.doi.org/10.1109/LICS.2015.14
https://doi.org/10.1007/s10009-011-0206-x
http://dx.doi.org/10.1007/s10009-011-0206-x
https://doi.org/10.1007/BFb0032741
http://dx.doi.org/10.1007/BFb0032741
http://dx.doi.org/10.1016/S0304-3975(99)00033-X
http://dx.doi.org/10.1016/S0304-3975(99)00033-X
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BF-infinity97.pdf
http://arxiv.org/abs/1307.5321
http://arxiv.org/abs/1307.5321
http://www.easychair.org/publications/paper/51875
http://doi.acm.org/10.1145/322374.322380
http://dx.doi.org/10.1145/322374.322380
https://doi.org/10.1007/11767954_5
http://dx.doi.org/10.1007/11767954_5
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CF-icomp05.pdf
http://dx.doi.org/10.1016/j.ic.2005.05.006

Alain Finkel and M. Praveen 21

16 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The reachability problem for petri nets is not elementary (extended abstract). CoRR,
abs/1809.07115, 2018. URL: http://arxiv.org/abs/1809.07115, arXiv:1809.07115.

17 Normann Decker, Peter Habermehl, Martin Leucker, Arnaud Sangnier, and Daniel Thoma.
Model-checking counting temporal logics on flat structures. In 28th International Conference

on Concurrency Theory, CONCUR 2017, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017.

18 S. Demri, A. Finkel, V. Goranko, and G. van Drimmelen. Towards a model-checker for counter
systems. In Susanne Graf and Wenhui Zhang, editors, Automated Technology for Verification

and Analysis, pages 493–507, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

19 Stéphane Demri, Amit Dhar, and Arnaud Sangnier. Equivalence between model-checking
flat counter systems and presburger arithmetic. Theoretical Computer Science, 2017. Special
issue of RP’14, to appear.

20 Stéphane Demri, Amit Kumar Dhar, and Arnaud Sangnier. On the complexity of veri-
fying regular properties on flat counter systems. In Fedor V. Fomin, Rūsin, š Freivalds,
Marta Kwiatkowska, and David Peleg, editors, Proceedings of the 40th International

Colloquium on Automata, Languages and Programming (ICALP’13) – Part II, volume
7966 of Lecture Notes in Computer Science, pages 162–173, Riga, Latvia, July 2013.
Springer. URL: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DDS-icalp13.pdf,
doi:10.1007/978-3-642-39212-2_17.

21 Stéphane Demri, Amit Kumar Dhar, and Arnaud Sangnier. Taming past
LTL and flat counter systems. Inf. Comput., 242:306–339, 2015. URL:
https://doi.org/10.1016/j.ic.2015.03.007, doi:10.1016/j.ic.2015.03.007.

22 Stéphane Demri, Alain Finkel, Valentin Goranko, and Govert van
Drimmelen. Model-checking CTL* over flat Presburger counter sys-
tems. Journal of Applied Non-Classical Logics, 20(4):313–344, 2010.
URL: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DFGD-jancl10.pdf,
doi:10.3166/jancl.20.313-344.

23 Frank Drewes and Jérôme Leroux. Structurally cyclic petri nets. Logical Methods

in Computer Science, 11(4), 2015. URL: https://doi.org/10.2168/LMCS-11(4:15)2015,
doi:10.2168/LMCS-11(4:15)2015.

24 Matthias Englert, Ranko Lazic, and Patrick Totzke. Reachability in two-dimensional unary
vector addition systems with states is nl-complete. In Martin Grohe, Eric Koskinen, and
Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic

in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 477–484. ACM,
2016. URL: https://doi.org/10.1145/2933575.2933577, doi:10.1145/2933575.2933577.

25 Javier Esparza, Pierre Ganty, and Rupak Majumdar. A perfect model for bounded verifica-
tion. In Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer

Science, LICS ’12, pages 285–294, Washington, DC, USA, 2012. IEEE Computer Society.
URL: https://doi.org/10.1109/LICS.2012.39, doi:10.1109/LICS.2012.39.

26 Alain Finkel. Structuration des systèmes de transitions: applications au contrôle du parallél-

isme par files fifo, Thèse d’Etat. PhD thesis, Université Paris-Sud, Orsay, 1986.

27 Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part II:
Complete WSTS. Logical Methods in Computer Science, 8(3:28), September
2012. URL: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/FG-lmcs12.pdf,
doi:10.2168/LMCS-8(3:28)2012.

28 Alain Finkel and Étienne Lozes. Synchronizability of communicating finite state ma-
chines is not decidable. In Ioannis Chatzigiannakis, Piotr Indyk, Anca Muscholl,
and Fabian Kuhn, editors, Proceedings of the 44th International Colloquium on Auto-

mata, Languages and Programming (ICALP’17), volume 80 of Leibniz International

Proceedings in Informatics, pages 122:1–122:14, Warsaw, Poland, July 2017. Leibniz-

http://arxiv.org/abs/1809.07115
http://arxiv.org/abs/1809.07115
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DDS-icalp13.pdf
http://dx.doi.org/10.1007/978-3-642-39212-2_17
https://doi.org/10.1016/j.ic.2015.03.007
http://dx.doi.org/10.1016/j.ic.2015.03.007
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DFGD-jancl10.pdf
http://dx.doi.org/10.3166/jancl.20.313-344
https://doi.org/10.2168/LMCS-11(4:15)2015
http://dx.doi.org/10.2168/LMCS-11(4:15)2015
https://doi.org/10.1145/2933575.2933577
http://dx.doi.org/10.1145/2933575.2933577
https://doi.org/10.1109/LICS.2012.39
http://dx.doi.org/10.1109/LICS.2012.39
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/FG-lmcs12.pdf
http://dx.doi.org/10.2168/LMCS-8(3:28)2012

22 Verification of Flat FIFO Systems

Zentrum für Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2017/7402,
doi:10.4230/LIPIcs.ICALP.2017.122.

29 Alain Finkel, S. Purushothaman Iyer, and Grégoire Sutre. Well-abstracted transition systems.
In Catuscia Palamidessi, editor, Proceedings of the 11th International Conference on Concur-

rency Theory (CONCUR 2000), volume 1877 of Lecture Notes in Computer Science, pages
566–580, Pennsylvania State University, Pennsylvania, USA, August 2000. Springer. URL:
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PS/rr-lsv-2000-6.rr.ps.

30 Alain Finkel, S. Purushothaman Iyer, and Grégoire Sutre. Well-abstracted transition systems:
Application to FIFO automata. Information and Computation, 181(1):1–31, February 2003.
URL: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/FPS-ICOMP.ps.

31 Blaise Genest, Dietrich Kuske, and Anca Muscholl. On communicating auto-
mata with bounded channels. Fundam. Inform., 80(1-3):147–167, 2007. URL:
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09.

32 Christoph Haase. On the complexity of model checking counter automata. PhD thesis, Uni-
versity of Oxford, UK, 2012.

33 Radu Iosif and Arnaud Sangnier. How hard is it to verify flat affine counter systems with
the finite monoid property? In Cyrille Artho, Axel Legay, and Doron Peled, editors, Auto-

mated Technology for Verification and Analysis - 14th International Symposium, ATVA 2016,

Chiba, Japan, October 17-20, 2016, Proceedings, volume 9938 of Lecture Notes in Com-

puter Science, pages 89–105, 2016. URL: https://doi.org/10.1007/978-3-319-46520-3_6,
doi:10.1007/978-3-319-46520-3_6.

34 Thierry Jéron and Claude Jard. Testing for unboundedness of FIFO channels. Theor. Com-

put. Sci., 113(1):93–117, 1993. URL: http://dx.doi.org/10.1016/0304-3975(93)90212-C,
doi:10.1016/0304-3975(93)90212-C.

35 Julien Lange and Nobuko Yoshida. Verifying asynchronous interactions via communicating
session automata. CoRR, abs/1901.09606, 2019. URL: http://arxiv.org/abs/1901.09606,
arXiv:1901.09606.

36 Jérôme Leroux. Personal communication.
37 Christos H. Papadimitriou. On the complexity of integer programming. J.

ACM, 28(4):765–768, October 1981. URL: http://doi.acm.org/10.1145/322276.322287,
doi:10.1145/322276.322287.

38 Sylvain Schmitz. Complexity hierarchies beyond elementary. TOCT, 8(1):3:1–3:36, 2016.
URL: https://doi.org/10.1145/2858784, doi:10.1145/2858784.

39 Gregoire Sutre. Personal communication, 2018.
40 Gregor von Bochmann. Communication protocols and error recovery procedures. Operating

Systems Review, 9(3):45–50, 1975.

http://drops.dagstuhl.de/opus/volltexte/2017/7402
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.122
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PS/ rr-lsv-2000-6.rr.ps
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/FPS-ICOMP.ps
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
https://doi.org/10.1007/978-3-319-46520-3_6
http://dx.doi.org/10.1007/978-3-319-46520-3_6
http://dx.doi.org/10.1016/0304-3975(93)90212-C
http://dx.doi.org/10.1016/0304-3975(93)90212-C
http://arxiv.org/abs/1901.09606
http://arxiv.org/abs/1901.09606
http://doi.acm.org/10.1145/322276.322287
http://dx.doi.org/10.1145/322276.322287
https://doi.org/10.1145/2858784
http://dx.doi.org/10.1145/2858784

	Introduction
	Preliminaries
	Complexity of Reachability Properties for Flat FIFO Systems
	Construction of an Equivalent Counter System
	Conclusion and Perspectives

