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Local Reasoning about Parametric and Reconfigurable
Component-based Systems

Marius Bozga, Radu Iosif, and Joseph Sifakis

VERIMAG, CNRS, Université de Grenoble

We introduce a logical framework for the specification and verification of component-
based systems, in which finitely many component instances are active, but the bound
on their number is not known. Besides specifying and verifying parametric systems, we
consider the aspect of dynamic reconfiguration, in which components can migrate at
runtime on a physical map, whose shape and size may change. We describe such para-
metric and reconfigurable architectures using resource logics, close in spirit to Separa-
tion Logic, used to reason about dynamic pointer structures. These logics support the
principle of local reasoning, which is the key for writing modular specifications and
building scalable verification algorithms, that deal with large industrial-size systems.

1 Introduction

We consider distributed computing systems consisting of white-box components, whose
interfaces are sets of communication ports. A port controls an internal transition of the
component and interacts with zero or more ports belonging to other components. The
behavior of a component is a finite-state machine, whose transitions are labeled with
ports, that abstracts the behavior of a real-life hardware or software component. An
architecture describes all possible interactions in a system, however it gives no infor-
mation regarding the partial order in which they may execute. The global behavior of
the system is determined by the composition of the local behaviors of each compo-
nent, in the natural sense: an interaction represents a set of actions that are executed
simultaneously, whereas different interactions occur interleaved.

We aim at providing a framework for the modular specification and verification of
such component-based systems. The building blocks of this framework are:
1. partial architectures, defined by a domain (set of ports) and a set of interactions

between ports from the domain and external ports,
2. a composition operation on architectures,
3. a modular composition of behaviors, that mirrors the composition of architectures

and agrees with the global behavior described by interactions,
4. a separation logic of architectures, that supports the principle of local reasoning

and allows to describe the local updates induced by reconfiguration actions.
We describe architectures using a resource logic that views the active components of

the system as resources, which can be dynamically created and disposed of, and whose
interaction scheme can be changed at runtime. Typically, reasoning about resources re-
quires a notion of locality, which is captured by the separating connectives (conjunction
and implication) of Separation Logic. In a nutshell, the advantages of modeling systems
using Separation Logic are:



– elegant and concise definitions of parametric architectures with recursive patterns.
In particular, a recursive definition of an architecture provides support for verifica-
tion, in terms of hints for automatic generation of network invariants, used to prove
safety properties of the system (deadlock freedom, mutual exclusion).

– correctness proofs of reconfiguration sequences, based on the principle of local
reasoning: only a small region of the system where the update takes place, needs to
be considered by the proof, instead of the entire system.

In order to have practical applications, a system modeling and proof framework requires
a certain degree of automation. Altough complete automation is, in general, impossible
due to the inherent undecidability limits, defining decidable fragments of the logic and
studying their computational complexity constitute important ingredients for building
provers that can handle dynamically reconfigurable concurrent/distributed systems.

§7. Reconfigurability
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§5. Decidability
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Fig. 1. Roadmap

1.1 Roadmap

The organization and reading flow of this paper are depicted in Figure 1. A solid edge
between two sections A and B indicates that one needs to read A entirely before reading
B. A dashed edge between A and B indicates that some results of A are used by B but
reading of A is not necessary to understand B. Section 2 introduces the concept of archi-
tecture and defines the composition of architectures. Section 3 gives the formal syntax
and semantics of the Separation Logic of Interactions (SIL), used to describe architec-
tures and Section 5 deals with the decidability of two fragments of quantifier-free SIL.
In Section 4 we extend SIL with component identifiers and recursive predicates, in or-
der to describe parametric component-based systems, consisting of an arbitrary number
of replicated components (SLa). From here on, the reading flow splits in two separate
directions, namely Section 6 introduces component behaviors and tackles the verifica-
tion of safety properties (such as deadlock freedom, mutual exclusion, etc.) using the
method of network invariants, and Section 7 introduces a framework for specifying and
verifying dynamically reconfigurable systems, using a combination of two Separation
Logics: classical SL interpreted over graphs, for describing the physical map and SLa

for describing the virtual architecture.
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2 Architectures

Let Ports be a countably infinite alphabet of ports. An interaction is a finite set I P 2Ports

of ports. An architecture is a pair A “ xD, tI1, . . . , Ikuy, where dompAq def
“ D P 2Ports

is a finite set of ports, called the domain of A and interpAq “ tI1, . . . , Iku is a set of
interactions, such that Ii X D , H, for all i “ 1, . . . , k. An interaction I P I is said
to be closed if I Ď D and open, otherwise. Intuitively, only closed interactions are
executable in a given architecture, because the domain provides all the required ports.
An architecture is closed if it contains only closed interactions, and open, otherwise.
We write Arch for the set of architectures.

Example 1. Consider the architecturesA1 “ xtpu, ttp, quuy andA2 “ xtqu, ttp, quuy.
Intuitively, A1 offers the port p, which is the only port in its domain, and requires the
port q in order to perform the interaction tp, qu. On the other hand, A2 offers the port
q and requires p to perform the same interaction tp, qu. In this case A1 and A2 have a
match and their composition has domain tp, qu and the only interaction tp, qu, which
is closed and thus executable. �

We move on to the formal definition of the composition of architectures. Because
ports are viewed as resources distributed among architectures, we define composi-
tion only for architectures with disjoint domains. Allowing non-disjoint architectures
to compose would require using multisets as architecture domains1 and unnecessar-
ily complicate the upcoming definitions. Two architectures A1 “ xD1,I1y and A2 “

xD2,I2y are disjoint if and only if D1 X D2 “ H. For disjoint architectures, we define
the following composition:

A1 ZA2
def
“ xD1 Y D2, pI1 X I2q Y pI1 X 2D2q Y pI2 X 2D1qy

where Di
def
“ PortszDi is the complement of Di, for i “ 1, 2. The composition preserves

the interactions ofAi that are disjoint from the domain ofA3´i, for i “ 1, 2. However,
an interaction I ofAi that has a nonempty intersection with the domain ofA3´i is kept
in the composition if it matches an interaction ofAi, i.e. formally I P I1 X I2.

Recall that we require an interaction to be closed in order to be executable. Since the
domain of an architecture is enlarged by composition, certain interactions may become
closed, even if they do not match interactions from the other arty. To understand this
point, consider the following example.

Example 2. Let A1 “ xtpu, ttp, quuy and A2 “ xtqu, tq, ruy be architectures. Since
the domain of the composition is dompA1 Z A2q “ tp, qu, the interaction tp, qu of
A1 is closed in A1 ZA2. However, this interaction is not executable, because it is not
matched by any interaction from A2. This is because A2 provides the required port
q, but in a different interaction context tq, ru, that does not match tp, qu. The natural
choice is thus to remove the interaction tp, qu from interpA1 Z A2q. The remaining
interaction tq, ru is kept because it might become executable in a future composition
with an architectureA3, provided that r P dompA3q and tq, ru P interpA3q. �

1 Ports would be lost in composition, if domains are not disjoint and the domain of the compo-
sition is the union of domains.
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We show that composition is well-defined and has natural algebraic properties:

Proposition 1. Given disjoint architecturesA1 andA2, their compositionA1 ZA2 is
again an architecture. Moreover, the composition is commutative, associative and has
neutral element xH,Hy.

Proof : Let Ai “ xDi,Iiy, for all i “ 1, 2, 3. We have A1 ZA2 “ xD1 Y D2, pI1 X

I2q Y pI1 X 2D2q Y pI2 X 2D1qy. Let I P pI1 X I2q Y pI1 X 2D2q Y pI2 X 2D1q be an
interaction of A1 ZA2. To prove that A1 ZA2 is an architecture, we distinguish the
cases:

– if I P I1 X I2 then I X D1 ,H and I X D2 ,H, hence I X pD1 Y D2q ,H.
– if I P I1 X 2D2 then I X D1 ,H, hence I X pD1 Y D2q “ H.
– if I P I2 X 2D1 then I X D2 ,H, hence I X pD1 Y D2q “ H.

Commutativity ofZ follows from the symmetry of its definition. Associativity is proved
by computing:

pA1 ZA2q ZA3 “ xD1 Y D2, pI1 X I2q Y pI1 X 2D2q Y pI2 X 2D1qy Z xD3,I3y

“

xD1 Y D2 Y D3, pI1 X I2 X I3q Y pI1 X I3 X 2D2q Y pI2 X I3 X 2D1q Y

pI1 X I2 X 2D3q Y pI1 X 2D2 X 2D3q Y pI2 X 2D1 X 2D3q Y

pI3 X 2D1 X 2D2qy

“ xD1,I1y Z xD2 Y D3, pI2 X I3q Y pI2 X 2D3q Y pI3 X 2D2qy

“ A1 Z pA2 ZA3q

Finally,A1ZxH,Hy “ xD1, pI1XHqY pI1X 2PortsqY pHX 2D1qy “ xD1,I1y. [\

Sometimes it is convenient to define the closure of an architecture as the architecture
obtained by removing all open interactions. Formally, we define closure by means of a
transitive relation:

Definition 1. Given architectures Ai “ xDi,Iiy, for i “ 1, 2, we have A1 CA2 if and
only if the following hold:
1. D1 “ D2 and
2. I1 “ I2

ĎD1 .

Note that C becomes the identity relation on closed architectures, i.e. architecturesA “
xD,Iy with the property that I “ IĎD.

3 Separation Logic of Interactions

We introduce a first logic to describe architectures, as defined in the previous section.
Let PVars “ tx, y, . . .u be a countably infinite set of variables, ranging over ports. For
each port p P Ports we consider a logical constant symbol with the same name and let
PSym be the set of such constants2. The Separation Logic of Interactions (SIL) is the

2 We use the same symbol for a port and its corresponding constant symbol, with the convention
that constant symbols are only used within logical formulae.
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set of formulae φ generated by the following syntax:

t :“ p P PSym | x P PVars port terms
b :“ t | b1 | b1 ¨ b2 boolean terms

φ :“ t1 “ t2 | emp | t ( b | t �́ b | t
D

�́ b | atomic propositions
xφ1y | φ1 ^ φ2 |  φ1 | φ1 ˚ φ2 | φ1 ´́̊ φ2 | DxPPVars . φ1 formulae

The derived connectives φ1 _ φ2 and φ1 Ñ φ2 are defined as usual and we write J (K)
for x “ x ( x “ x), where the choice of x P PVars is not important. The set of ports
that occur in a formula φ is denoted as Ppφq and is defined recursively on the structure
of φ, as usual.

To describe interactions, we use boolean terms built from port terms, connected
with conjunction (b1 ¨ b2) and negation (b). Boolean disjunction is defined as usual

b1`b2
def
“ b1 ¨ b2. Intuitivelly, p¨q (written simply pq) denotes interactions in which both

p and q occur, p`q interactions in which p or q occurs, whereas pq denotes interactions
in which p occurs, but not q, such as tp, ru. These boolean descriptors of interactions
are used within atomic propositions that describe architectures with singleton domain,
as illustrated by the following example.

Example 3. The atomic proposition p ( qr describes those architectures A with do-
main dompAq “ tpu, whose interactions I P interpAq contain both q and r. More-
over, by definition of architectures, p belongs to every interaction, if any. For instance
xtpu,Hy, xtpu, ttp, q, ruuy and xtpu, ttp, q, ru, tp, q, r, suuy are all models of p ( qr.
Note that some interactions might contain ports other than p, q and r.

On the other hand, the atomic proposition p �́ rpq` sq specifies those architectures
whose domain is tpu and each interaction is either tp, q, ru or tp, r, su, but not both:
xtpu,Hy, xtpu, tp, q, ruy and xtpu, tp, r, suy. Since p belongs to every interaction, these
must be minimal boolean models of the propositional formula prpq` sq.

Finally, the atomic proposition p
D

�́ qr specifies those architectures whose domain
is tpu and whose interaction set contains at least one minimal model of pqr, for instance
xtpu, ttp, qu, tp, q, ruuy but not xtpu, ttp, quuy. �

Formally, a boolean term is interpreted over a valuation ν : PVars Ñ Ports and set
of ports I Ď Ports, by the relation I $ν b, defined recursively on the structure of b:

I $ν p ðñ p P I
I $ν x ðñ νpxq P I
I $ν b1 ðñ I 0ν b1
I $ν b1b2 ðñ I $ν b1 and I $ν b2

We write I $µ
ν b if and only if I $ν b and I1 0ν b for all I1 ( I, i.e. I is a minimal model

of b, in the propositional sense. For a port term t P PVars Y PSym and a valuation
ν : PVars Ñ Ports, we write νptq for νptq if t P PVars and t, if t P PSym.

The semantics of SIL formulae is defined in terms of valuations ν : PVars Ñ
Ports and architectures A “ xD,Iy, by a satisfaction relation xD,Iy |ùν φ defined
recursively on the structure of φ as follows:
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xD,Iy |ùν emp ðñ D “ H and I “ H

xD,Iy |ùν t ( b ðñ D “ tνptqu and for all interactions I P I, we have I $ν t ¨ b

xD,Iy |ùν t �́ b ðñ D “ tνptqu and for all interactions I P I, we have I $µ
ν t ¨ b

xD,Iy |ùν t
D

�́ b ðñ D “ tνptqu and for some interaction I P I, we have I $µ
ν t ¨ b

xD,Iy |ùν xφ1y ðñ there existsA1 such thatA1 C xD,Iy andA1 |ùν φ1

xD,Iy |ùν φ1 ^ φ2 ðñ xD,Iy |ùν φ1 and xD,Iy |ùν φ2

xD,Iy |ùν  φ1 ðñ xD,Iy 6|ùν φ1

xD,Iy |ùν φ1 ˚ φ2 ðñ there exist disjoint architecturesAi, such that

xD,Iy “ A1 ZA2 andAi |ùν φi, for all i “ 1, 2.

xD,Iy |ùν φ1 ´́̊ φ2 ðñ for each architectureA1 disjoint from xD,Iy such that

A1 |ùν φ1, we haveA1 Z xD,Iy |ùν φ2.

xD,Iy |ù Dx . φ1 ðñ xD,Iy |ùνrxÐps φ1, for some port p P Ports

Note that it is possible to define the existential counterpart of p( b, as the derived
formula p

D

( b def
“ p ( p ^  pp ( bq. Since p ( p defines those architectures with

domain tpu, the meaning of p
D

( b is the set of architectures with domain tpu and
interaction set containing at least one (not necessarily minimal) boolean model of b.

As a remark, the x.y connective is the existential modality with respect to the clo-
sure relation C between architectures. Sometimes, this connective can be used instead of
p �́ b to describe closed interactions. Consider for instance the formula xp( q ˚ q

D

( py
whose only model is the architecture xtp, qu, ttp, quuy, equivalently defined by the for-

mulae p �́ q ˚ q
D

�́ p, p �́ q ˚ q
D

( p or p ( q ˚ q
D

�́ p. However, the existential
modality becomes more interesting in combination with recursive predicates (intro-
duced next in §4), as one can use it to define closed interactions of unbounded size
(Example 5).
Remark Using negation, one can also define the universal modality as rφs def

“  x φy,
with the meaning ”every open extension of the current architecture must be a model of
φ”. However, we are currently not aware of any interesting property that may use the
universal modality. �

4 Component-based Architectures

The main purpose of using Separation Logic is the modeling of component-based sys-
tems consisting of finitely unbounded numbers of replicated components interacting
according to a recursive pattern. We capture this aspects by the following extension of
the SIL logic introduced previously in §3:

– the components are identified by the elements of an infinite countable set Id, ranged
over by index variables IVars “ ti, j, k, . . .u.
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– the ports are associated to components via functions of type Id Ñ Ports, ranged
over by the function symbols PFun “ tp, q, . . .u. Intuitively, the term ppiq repre-
sents the p ports of the i-th component. We formally require that ppiq “ qp jq if and
only if i “ j and p and q are exactly the same function symbol.

– recursive interaction patterns are defined by means of predicate symbols Ppi1, . . . , inq,
ranging over relations of type Idn, where n is the arity of P, denoted #pPq. We in-
terpret these predicate symbols as the least solution of a system of inductive defini-
tions, whose rules are written using a subset of the logic, defined next.

The syntax of this extended logic, called SLa in the rest of the paper, is given below:

t :“ p P PSym | x P PVars | ppiq, p P PFun, i P IVars port terms

φ :“ t1 “ t2 | emp | t ( b | t �́ b | t
D

�́ b | Ppi1, . . . , i#pPqq atomic propositions
xφ1y | φ1 ^ φ2 |  φ1 | φ1 ˚ φ2 | φ1 ´́̊ φ2 | DxPPVars . φ1 | DiPIVars . φ1 formulae

The definition of boolean terms b is the same as for SIL, thus omitted.
A rule is a pair written as Ppi1, . . . , i#pPqq Ð ρ, where Ppi1, . . . , i#pPqq is a predicate

atoms and ρ, called the body of the rule, is a SLa formula generated by the syntax:

ρ :“ i “ j | i , j | emp | Ppi1, . . . , i#pPqq | ppiq( b | ppiq
D

( b | ppiq �́ b | ppiq
D

�́ b | ρ1˚ρ2 | xρ1y

Since this fragment of SLa has no explicit negation, we consider ppiq
D

( b to be an
atomic proposition, rather than a derived formula.

Using SLa, a component-based system is described by the following methodology:
1. write a single predicate for each component type, which describes the local inter-

actions of that component with its neighbourhood,
2. compose one or more component predicates in a recursive pattern, that is usually

described by a single predicate.
This way of specifying architectures resembles the way in which programmers design
recursive data structures (lists, trees and variations thereof), by specifying first the lo-
cal links between a memory cell and its neighbours, before encapsulating this local
specification into a recursively defined pattern. The following example provides some
intuition, before moving on with the presentation of the formal details.

Example 4. Consider the parametric system from Figure 2, consisting of a Semaphore
and a number of replicated Tasks. Each task interacts with the semaphore either by
synchronizing its tpakeq port with the pproberenq port of the semaphore, or by syn-
chronizing its lpeaveq port with the vperhogenq port of the semaphore. To describe this
system in SLa, we define predicates for each of the two component types, describing
their local interactions:

Semaphorepiq Ð D j . ppiq �́ tp jq ˚ vpiq �́ lp jq
Taskpi, jq Ð tpiq

D

( pp jq ˚ lpiq
D

( vp jq
Syspi, j, kq Ð i “ k ˚ Semaphorep jq

Ð D` . Taskpi, jq ˚ Sysp`, j, kq

Intuitively, each component type (Semaphore, Task) is given the self-reference i as ar-
gument. Semaphore choses nondeterministically a Task to interact with, whereas Task
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tpkq

... ...

lpkqlp jq

Semaphorei Taski Taskk

ppiq vpiq tp jq

Fig. 2. Semaphore and Tasks

is given a reference j to the Semaphore it interacts with. Note that the composition
between the atomic formulae ppiq �́ tp jq and tp jq

D

( ppiq results in a closed interaction
involving only ppiq and tp jq (similar for vpiq and lp jq).

Finally, Syspi, j, kq is a recursive pattern whose arguments are understood as fol-
lows: i and k are the indices of the first and last Task in the system, whereas j is the
reference to the unique Semaphore, specified by the base rule Syspi, j, kq Ð i “
k ˚ Semaphorep jq. The unfolding of the recursive rule Syspi, j, kq Ð D` . Taskpi, jq ˚
Sysp`, j, kq creates arbitrarily many replicas of the component type Task. �

The definition of the semantics for SLa requires an interpretation of the predicate
symbols, which is a function X : Pred Ñ

Ť8

α“1 2IdαˆArch associating each predicate
symbol P P Pred a set of pairs xpk1, . . . , k#pPqq,Ay, where k1, . . . , k#pPq P Id are compo-
nent indices and A is an architecture. Moreover, because there are two types of quan-
tified variables in SLa, we consider valuations ν : PVars Y IVars Ñ Ports Y Id, such
that νpxq P Ports if x P PVars and νpxq P Id if x P IVars. The semantics of SLa is given
by a satisfaction relation |ùXν , whose definition is analogous to the one of |ùν for SIL,
except for the interpretation of predicate symbols, which is the following:

A |ùXν Ppi1, . . . , i#pPqq ðñ xpνpi1q, . . . , νpi#pPqqq,Ay P XpPq

A set of rules of this form is called a system of definitions. From now on, we shall as-
sume a given system of definitions Φ, that contains one or more rules for each predicate
symbol used in a SLa formula. Then a system of definitions Φ defines the following
function XΦ on interpretations:

XΦpXq
def
“ λP . txpk1, . . . , k#pPqq,Ay | A |ù

X

νri1Ðk1s...ri#pPqÐk#pPqs
ρ, Ppi1, . . . , i#pPqq Ð ρ P Φu

The set of interpretations, partially ordered by pointwise set inclusion, forms a complete
lattice. Moreover, XΦ is monotone and continuous for each system Φ, thus it has a least
fixed point, denoted as µXΦ. In the following, we assume that the interpretation of each
predicate symbol P, that occurs in a SLa formula is the set µXΦpPq and write |ùΦ

ν for
|ùXν , whenever X “ µXΦ.

We conclude this section with an example of a centralized controller-slaves archi-
tecture in which the interactions occur between an unbounded number of participants.

Example 5. The controller-slaves architecture in Figure 3 consists of a single interac-
tion between the controller component and each of the slave components.
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qp jnq

Controller

ppiq

Slave1 Slave2 Slaven

qp j1q qp j2q

Fig. 3. Controller and Slaves

We describe such architectures using the following system of definitions:

Controllerpi, jq Ð ppiq( qp jq
Slavepi, jq Ð qpiq( pp jq

SysRecpi, j, kq Ð i “ k ˚ Slavepk, jq ˚ Controllerp j, kq
Ð D` . Slavepi, jq ˚ SysRecp`, j, kq

Syspq Ð DiD jDk . xSysRecpi, j, kqy

A Controller component takes the self-reference identifier i as argument and specifies
only interactions involving its p port the q of a designated Slave component j. On
the other hand, each Slave component i has only interactions involving the Controller,
whose identifier is j. The SysRec rules create one Controller and an arbitrary number
n ě 1 of Slave components, whereas Sys uses the existential closure modality to ensure
that the (unique, if any) interaction between the controller and the slaves is closed.

To understand why the models of Syspq are architectures with a single interaction,
let us consider the following formula, describing the interactions between a controller
and two slaves, obtained by applying the recursive rule for SysRec and the base rule
once each:

SysRecpi, j, kq ñ D` . Slavepi, jq ˚ SysRecp`, j, kq
ñ D` . Slavepi, jq ˚ ` “ k ˚ Slavepk, jq ˚ Controllerp j, kq
ñ Slavepi, jq ˚ Slavepk, jq ˚ Controllerp j, kq
ñ qpiq( pp jq ˚ qpkq( pp jq ˚ pp jq( qpkq

Let A be a model of the above formula. Denoting pp jq “ p, qpiq “ q and qpkq “ r,
we have dompAq “ tp, q, ru and interpAq contains at most one interaction I such that
p, q, r P I. Thus any model of the formula Syspq obtained by the above unfolding of the
rules contains at most the closed interaction tp, q, ru. �

5 Decidable Fragments of SIL

In order to automate checking the verification conditions expressed in SIL, or its ex-
tension SLa, we study the decidability and computational complexity of the following
decision problems:

– satisfiability: given a formula φ, is there an architecture A and a valuation ν such
thatA |ùν φ ?
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– entailment: given formulae φ and ψ, for any architecture A and valuation ν, does
A |ùν φ implyA |ù ψ ?

Even though, in general, these problems are undecidable for SIL, in the presence of
quantifiers, we identify two nontrivial quantifier-free fragments for which the problem
is decidable. These fragments of SIL, denoted as SIL` and SIL˚, are defined by the
syntax below, starting with the φ and ψ nonterminals, respectively:

φ :“ emp | p( b | p �́ b | p
D

( b | p
D

�́ b | xφ1y | φ1 ^ φ2 | φ1 _ φ2 | φ1 ˚ φ2 | φ1 ´́̊ φ2 (SIL`)

ψ :“ emp | p( b | p �́ b | p
D

�́ b | ψ1 ^ ψ2 |  ψ1 | ψ1 ˚ ψ2 (SIL˚)

Note that, because SIL` does not have negation, we must consider the satisfiability and
entailment problems separately. On the other hand, studying the satisfiability problem is
sufficient for SIL˚, because of the negation connective allowing the encode entailment
between ψ1 and ψ2 and the unsatisfiability of ψ1^ ψ2. The lack of negation is also the
reason why we adopt the formula p

D

( b as an atomic proposition of SIL`. Moreover,
since there are no port variables in SIL` or SIL˚, we omit the valuation subscript and
writeA |ù φ instead ofA |ùν φ, whenever φ is a formula of SIL` or SIL˚.

The proofs of decidability for SIL` and SIL˚ follow essentially the same steps.
First, we define an equivalence relation between architectures that is compatible (at
least) with the (de)composition operation. Second, we define the equivalence classes of
the relation using simple SIL formulae belonging to a small number of patterns, called
test formulae and show that the equivalence relation is the same as the equivalence
on a finite set of test formulae. Consequently, each formula in the given fragment of
SIL is equivalent to a boolean combination of test formulae. Moreover, by considering
each test formula as a propositional variable, one can transform the input formula into
an equivalent QBF formula (modulo the interpretation of the propositional variables).
The latter transformation yields the decidability result and a characterization of the
complexity classes of the decision problems considered.

5.1 Decidability of SIL`

We start by defining an equivalence relation on architectures. For any set of ports P Ď
Ports and a set of interactions I Ď 2Ports, we define the following sets of interactions:

IXP def
“ tI | I P I, I X P ,Hu IĎP def

“ tI | I P I, I Ď Pu
I*P def

“ IzIĎP I[ P def
“ tI X P | I P Iu

Definition 2. Given architectures Ai “ xDi,Iiy, for i “ 1, 2 and a finite set of ports
P P 2Ports, such that D1YD2 Ď P, we haveA1 „P A2 if and only if the following hold:
1. D1 “ D2,
2. I1

ĎP
“ I2

ĎP,
3. I1

*P
[ P “ I2

*P
[ P.

Note that the relation „P is defined only between architectures with domain included
in P. It is easy to check that „P is an equivalence relation, in this case. From now on,
we shall silently assume that dompA1q Y dompA2q Ď P, wheneverA1 „P A2 holds.
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The next lemma shows that „P is compatible with the decomposition of architec-
tures:

Lemma 1. LetA “ xD,Iy andA1 “ xD1,I1y be architectures and P P 2Ports be a set
of ports such that A „P A

1. Then, for any two architectures Ai “ xDi,Iiy, such that
A “ A1 ZA2, there exist architecturesA1i “ xD

1
i ,I

1
iy, for i “ 1, 2 such that:

1. Ai „P A
1
i , for each i “ 1, 2 and

2. A1 “ A11 ZA
1
2.

Proof : FromA “ A1 ZA2 we infer that:

D1 Y D2 “ D and D1 X D2 “ H (:)

I “ pI1 X I2q Y pI1 X 2D2q Y pI2 X 2D1q (;)

Let D1i
def
“ Di and I1i

def
“ I1

XDi Y Xi, where Xi
def
“ IizI

XDi , for i “ 1, 2. We prove first that
A1 „P A

1
1, the proof for A2 „P A

1
2 being identical. Note that D11 “ D1 Ď P, by the

definition of D11 and (:). The two remaining points of Definition 2 are proved below:
(2) We compute:

I11
ĎP
“ pI1

XD1 Y X1q
ĎP
“ pI1

XD1q
ĎP
Y X1

ĎP

“ pI1
ĎP
q
XD1 Y X1

ĎP, since D1 Ď P
“ pIĎPq

XD1 Y X1
ĎP, sinceA „P A

1

“ pIXD1q
ĎP
Y X1

ĎP, since D1 Ď P
“ pIXD1 Y pI1zI

XD1qq
ĎP
“ pIXD1 Y I1q

ĎP
“ I1

ĎP, since IXD1 Ď I1.

(3) We prove that I11
*P
[P “ pI1XD1q

*P
[PYX1

*P[P “ I1
*P
[P. “Ď” We distinguish

the following cases:
– if I “ J Y U 1 P I1 such that J Ď P, J X D1 , H, U 1 , H and U 1 X P “ H.

Clearly every interaction I P pI1XD1q
*P is of this form. Since A „P A

1, we have
pIXDq

*P
[ P “ pI1XD

q
*P
[ P and thus there exists U , H such that U X P “ H

and J Y U P I. Moreover, since J X D1 , H, we have that J Y U P IXD1 and
JYU P I1 follows, by (;). Since U ,H and UXP “ H, we obtain JYU P I1

*P

and thus J P I1
*P
[ P.

– else I “ J Y U 1 P X1 “ I1zI
XD1 then J P I1

*P
[ P is immediate.

“Ě” Let I “ J Y U P I1, such that U , H and U X P “ H. Then I X D1 , H and
since D1 Ď P, we have J X D1 ,H. We distinguish the following cases:

– if J Y U P I, because A „P A
1, we have I*P [ P “ I1*P

[ P, thus there exists
U 1 ,H such that U 1 X P “ H and J YU 1 P I1. Moreover, since J X D1 ,H, we
have J Y U 1 P I1XD1 Ď I11 and J P I11

*P
[ P.

– else J Y U < I then J Y U P I1zI
XD1 “ X1 Ď I

1
1 and J P I11

*P
[ P.

Finally, we prove thatA1 “ A11 ZA
1
2. We start by proving the following facts:

Fact 1 X1 X X2 “ H

11



Proof :
X1 X X2 “ pI1zI

XD1q X pI2zI
XD2q

“ pI1 X I2qzpI
XD1 Y IXD2q

“ pI1 X I2qzI
XpD1YD2q

“ pI1 X I2qzI

“ H, the last step follows from (;) [\

Fact 2 For all I P Xi, we have I X D1 ,H and I X D2 ,H, for i “ 1, 2.

Proof : We prove the case i “ 1, the proof of the other case being identical. Let I P X1.
Then I P I1, thus I X D1 , H, by the assumption that A1 is an architecture. Suppose
I X D2 “ H. By (;), we have I P I, thus I X pD1 Y D2q , H. Since I X D2 “ H, we
have I X D1 ,H, thus I P IXD1 , which contradicts with I P X1 “ I1zI

XD1 . [\

We have:
I1 “ pI1

XD1 X I1
XD2q Y pI1 X 2D2q Y pI1 X 2D1q

and compute, successively:

I11 X 2D2 “ pI1
XD1 Y X1q X 2D2

“ I1
XD1 X 2D2 , by Fact 2

“ I1 X 2D2 , since @I P I1 . I X pD1 Y D2q ,H

I12 X 2D1 “ I1 X 2D1 , by a symmetric argument
I11 X I

1
2 “ pI

1XD1 Y X1q X pI
1XD2 Y X2q

“ pI1
XD1 X I1

XD2q Y pI1
XD1 X X2q Y pI

1XD2 X X1q, by Fact 1
“ I1

XD1 X I1
XD2

The last step follows from I1XD1 XX2 Ď I
1XD2 and I1XD2 XX1 Ď I

1XD1 , which is proved
below. Let I P I1XD1 XX2 (the other case is symmetric). If I P X2, we have IXD2 ,H,
by Fact 2. Then I P I1XD2 . This concludes the proof the Lemma. [\

Conversely, the next lemma shows that „P is compatible with the composition of
architectures:

Lemma 2. Let A “ xD,Iy and A1 “ xD1,I1y be architectures and P P 2Ports be a
set of ports such that A „P A

1. Then, for any architecture A1 “ xD1,I1y such that
D1 X D “ H and D1 Ď P there exists an architectureA11 “ xD

1
1,I

1
1y such that:

1. A1 „P A
1
1 and

2. A1 ZA „P A
1
1 ZA

1.

Proof : Let D11
def
“ D1 and I11

def
“ I1

ĎP
Y X1 Y Y1, where:

X1
def
“ tJ Y U 1 | U 1 ,H,U 1 X P “ H, J P pI1 X Iq

*P
[ P, J Y U 1 P I1u

Y1
def
“ tJ Y tαu | J P pI1zIq

*P
[ P,@U 1 . U 1 ,H^ U 1 X P “ Hñ J Y U 1 < X1u

12



and α P Ports is a fresh port, not occurring in eitherA,A1 orA1.

We prove that A1 „P A
1
1. Note that D11 “ D1 by definition. The two remaining points

of Definition 2 are proved below:
(2) We have I11

ĎP
“ I1

ĎP
Y X1

ĎP Y Y1
ĎP “ I1

ĎP, because X1
ĎP “ Y1

ĎP “ H, by
definition.
(3) By definition of I11, we have I11

*P
“ X1YY1. We have to prove that X1[PYY1[P “

I1
*P
[P. “Ď” Let I “ JYU 1, where J Ď P and U 1 ,H, U 1XP “ H, be an interaction.

We distinguish the following cases:
– if J Y U 1 P X1

*P then J P pI1 X Iq
*P
[ P and J P I1

*P
[ P follows.

– else J Y U 1 P Y1
*P then J P pI1zIq

*P
[ P and J P I1

*P
[ P follows.

“Ě” Let I “ J YU P I1
*P be an interaction, such that J Ď P, U ,H and U X P “ H.

We distinguish the following cases:
– if J Y U P I then J Y U P I1 X I. Moreover, because A „P A

1, we have
IĎP “ I1

ĎP, thus there exists U 1 , H such that U 1 X P “ H and J Y U 1 P I1 and
thus JYU 1 P X1, by the definition of X1. Consequently, we have J P X1[P in this
case.

– else J Y U < I, then J Y U P pI1zIq
*P and J P pI1zIq

*P
[ P. We distinguish two

cases:
‚ if there exists U 1 ,H such that U 1XP “ H and JYU 1 P X1, then J P X1[P.
‚ else JYU 1 < X1, for all U 1 ,H such that U 1XP “ H, then JYtαu P Y1 and

J P Y1 [ P.
Finally, we prove thatA1ZA „P A

1
1ZA

1. Note that D1YD Ď P and D1YD “ D11YD1,
by the definition of D11 and the fact thatA „P A

1. We are left with proving the following
two points of Definition 2:
(2) We have I1

ĎP
“ I11

ĎP, sinceA1 „P A
1
1 and IĎP “ I1

ĎP, sinceA „P A
1. Thus we

obtain the following equalities:

pI1 X Iq
ĎP
“ pI11 X I

1q
ĎP

pI1 X 2Dq
ĎP
“ pI11 X 2Dq

ĎP

pIX 2D1q
ĎP
“ pI1 X 2D1q

ĎP

(3) We prove the following points:
– pI1 X Iq

*P
[ P “ pI11 X I

1q
*P
[ P: “Ď” Let I “ J Y U P I1 X I, where U , H

and U X P “ H be an interaction. Since A „P A
1, we have I*P [ P “ I1*P

[ P
and thus there exists U 1 ,H such that U 1XP “ H and JYU 1 P I1. Consequently,
J Y U 1 P X1 Ď I

1
1 and we obtain J Y U 1 P I11 X I

1, thus J P pI11 X I
1q
*P
[ P

follows. “Ě” Let I “ J Y U 1 P I11 X I
1, where U 1 , H and U 1 X P “ H be an

interaction. Since JYU 1 P I11 then JYU 1 P X1YY1 and since JYU 1 P I1 it must
be that J Y U 1 P X1. By the definition of X1, we obtain J P pI1 X Iq

*P
[ P.

– pI1 X 2Dq
*P
[ P “ pI11 X 2Dq

*P
[ P: Because A1 „P A

1
1, we have I1

*P
[ P “

I11
*P
[ P and the result follows.

– pIX 2D1q
*P
[P “ pI1 X 2D1q

*P
[P: BecauseA „P A

1, we have I*P[P “ I1*P
[P

and the result follows. [\
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Finally, we show that „P is also compatible with the closure relation on architec-
tures:

Lemma 3. LetA “ xD,Iy andA1 “ xD1,I1y be architectures and P P 2Ports be a set
of ports such thatA „P A

1 and letA1 “ xD1,I1y be an architecture such thatA1CA.
ThenA1 CA

1 as well.

Proof : Because A1 CA we have D1 “ D and I1 “ I
ĎD. Moreover, since A „P A

1,
we have D “ D1 and IĎP “ I1

ĎP. Since D Ď P, we obtain IĎD “ I1
ĎD
“ I1, hence

A1 CA
1. [\

The following theorem shows that „P coincides with the equivalence of architec-
tures with respect to SIL` formulae. The proof of the theorem requires that every model
of a SIL` formula has only visible ports in its domain, which is proved below:

Lemma 4. For each formula φ of SIL`and each architecture A “ xD,Iy such that
A |ù φ, we have D Ď Ppφq.

Proof : By induction on the structure of φ:
– emp: in this case D “ H.

– p( b, p �́ b, p
D

( b and p
D

�́ b: in this case D “ tpu.
– xφ1y: in this case there exists an architecture A1 “ xD1,I1y such that A C A1

and A1 |ù φ1. Then D “ D1 and D1 Ď Ppφ1q, by the induction hypothesis. We
conclude noticing that Ppxφ1yq “ Ppφ1q.

– φ1 ^ φ2: since A |ù φ1, by the induction hypothesis we have D Ď Ppφ1q Ď

Ppφ1 ^ φ2q.
– φ1_φ2: ifA |ù φ1, by the induction hypothesis we have D Ď Ppφ1q Ď Ppφ1 _ φ2q.

The caseA |ù φ2 is symmetric.
– φ1˚φ2: in this case there existsAi “ xDi,Iiy such thatA “ A1ZA2 andAi |ù φi,

for both i “ 1, 2. By the induction hypothesis, Di Ď Ppφiq Ď Ppφ1 ˚ φ2q, for both
i “ 1, 2, thus D “ D1 Y D2 Ď Ppφ1 ˚ φ2q.

– φ1 ´́̊ φ2: let A1 “ xD1,I1y be any architecture such that D1 X D “ H and
A1 |ù φ1. SinceA |ù φ1 ´́̊ φ2, we obtainA1 ZA |ù φ2. Again, by the induction
hypothesis, D1 Y D Ď Ppφ2q, hence D Ď Ppφ1 ´́̊ φ2q follows immediately. [\

Theorem 1. Let A “ xD,Iy and A1 “ xD1,I1y be architectures and P P 2Ports be a
set of ports such that A „P A

1. Then, for any formula φ of SIL`, such that Ppφq Ď P,
we haveA |ù φ if and only ifA1 |ù φ.

Proof : By induction on the structure of φ:

– emp: ifA |ù emp then D “ H and I “ H. SinceA „P A
1, we obtain D1 “ D “

H, thus I1 “ H must be the case, otherwise every interaction I P I1 would have a
non-empty intersection with D1. Consequently,A1 |ù emp.

14



– p ( b: if A |ù p ( b, then D “ tpu and, since A „P A
1, we obtain D1 “ D “

tpu. Let I P I1 be an interaction. If I Ď P then I P I1ĎP
“ IĎP, becauseA „P A

1.
Then I $ p ¨ b, becauseA |ù p( b. Else, I * P and I P I1*P. BecauseA „P A

1,
we obtain I X P “ J X P, for some interaction J P I. Moreover, J $ p ¨ b because
A |ù p( b and, since Ppp( bq Ď P, it must be the case that I $ p ¨ b as well.

– p �́ b: if A |ù p ( b, then D “ tpu and, since A „P A
1, we obtain D1 “

D “ tpu. Let I P I1 be an interaction. The proof in the case I Ď P is given at
the point above, so we consider that I * P. Because A „P A

1, there exists an
interaction J P I*P such that I X P “ J X P. Moreover, since A |ù p �́ b, we
have that J $µ p ¨ b. Then J Ď Ppp �́ bq Ď P, which contradicts the fact that
J P I*P. Consequently, the only case possible is I Ď P, in which case I $µ p ¨ b,
thusA1 |ù p �́ b.

– p
D

( b: if A |ù p
D

( b, then D “ tpu and, since A „P A
1, we obtain D1 “ D “

tpu. Moreover, there exists an interaction I P I such that I $ p ¨ b. If I Ď P then
I P IĎP “ I1

ĎP, thus A1 |ù p
D

( b. Else, I * P, hence I P I*P. Since A „P A
1,

there exists an interaction J P I1*P such that J X P “ I X P. But then J $ p ¨ b,
thusA1 |ù p

D

( b.

– p
D

�́ b: if A |ù p
D

�́ b, then D “ tpu and, since A „P A
1, we obtain D1 “ D “

tpu. Moreover, there exists an interaction I P I such that I $µ p ¨ b. Then I Ď P

and I P IĎP follows. SinceA „P A
1, we have I P I1ĎP and thusA1 |ù p

D

�́ b.

– xφ1y: because A |ù xφ1y, there exists A1 such that A C A1 and A1 |ù φ1. By
Lemma 3, we haveA1 CA1, thusA1 |ù xφ1y.

– φ1^φ2: sinceA „P A
1 and Ppφiq Ď Ppφ1 ^ φ2q Ď P, by the induction hypothesis,

we obtainA1 |ù φi, for both i “ 1, 2, thusA1 |ù φ1 ^ φ2.

– φ1_ φ2: assume thatA |ù φ1, the caseA |ù φ2 being symmetric. By the induction
hypothesis, since Ppφ1q Ď Ppφ1 _ φ2q Ď P, we obtain A1 |ù φ1, thus A1 |ù
φ1 _ φ2.

– φ1 ˚ φ2: because A |ù φ1 ˚ φ2, there exists disjoint architectures A1 and A2 such
that A “ A1 Z A2 and Ai |ù φi, for both i “ 1, 2. Since A „P A

1, by Lemma
1, there exist architectures A11 and A12, such that A1 “ A11 ZA

1
2 and Ai „P A

1
i ,

for both i “ 1, 2. Since Ppφiq Ď Ppφ1 ˚ φ2q Ď P, by the induction hypothesis, we
obtainA1i |ù φi, for both i “ 1, 2, and consequentlyA1 |ù φ1 ˚ φ2.

– φ1 ´́̊ φ2: LetA11 “ xD
1
1,I

1
1y be any architecture such thatA1 |ù φ1 and D11XD1 “

H. Because φ is in SIL`, by Lemma 4, we obtain D11 Ď Ppφ1q Ď Ppφ1 ´́̊ φ2q Ď P.
By Lemma 2, there exists an architectureA1 such thatA11 „P A1 andA1ZA „P

A11 ZA
1. By the induction hypothesis, we have A1 |ù φ1 and, since A |ù φ1 ´́̊
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φ2, we obtain A1 Z A |ù φ2. Again, by the induction hypothesis, we obtain that
A11 ZA

1 |ù φ2, thusA1 |ù φ1 ´́̊ φ2. [\

The rest of this section is concerned with the translation of any SIL` formula into
an equivalent boolean combination of SIL formulae that are instances of a restricted set
of patterns, called test formulae. As a remark, the test formulae are not SIL` formulae,
as they contain quantification, negation and equality atoms. However, these constructs
occur in a strictly controlled context and will not be used outside test formulae.

Definition 3. Given a set P Ď PSym of port symbols, p P P and b a boolean term over
the vocabulary P, the following are called test formulae:

hasppq def
“ p( p ´́̊ K

p D
ãÑ˝ b def

“ Dx .
Ź

qPP x , q^ p
D

( x ¨ b ˚ J

p D
ãÑ� b def

“ p
D

�́ b ˚ J

Let TestFormpPq be the set of test formulae φ such that Ppφq Ď P. Given architectures
A1 andA2, we writeA1 »P A2 forA1 |ù φ ðñ A2 |ù φ, for any φ P TestFormpPq.

Intuitively, the test formulae hasppq are true in an architecture A whenever p P
dompAq. The test formulae p D

ãÑ˝ b (resp. p D
ãÑ� b) are true in A whenever interpAq

contains an interaction I such that I $ b and I is a non-minimal (resp. minimal) model
of b. The following lemma states these properties formally:

Lemma 5. Given an architecture A “ xD,Iy, a set of port symbols P Ď PSym and
port symbol p P PSym and a boolean term b over the vocabulary PSym, the following
hold:
1. A |ù hasppq ðñ p P D,
2. A |ù p D

ãÑ˝ b ðñ there exists I P I such that I $ b and I 0µ b,
3. A |ù p D

ãÑ� b ðñ there exists I P I such that I $µ b.

Proof : (1) “ñ” If A |ù hasppq then for no disjoint architecture A1 such that A1 |ù

p ( p, the composition A1 Z A is defined. Since dompA1q “ tpu, the only reason
for A1 and A not being disjoint is p P dompAq. “ð” p P dompAq means that any
architectureA1 such that dompA1q “ tpu cannot compose withA, thusA |ù hasppq.
(2) For all valuations ν : Var Ñ Ports, we have A |ùν p D

ãÑ˝ b ðñ A |ù p
D

(
x ¨b ˚J, for some port νpxq that is distinct from all q P P. Since I $ν x ¨b, by induction
on the structure of b, one shows that I $ b. Moreover, I 0µ b, because Iztνpxqu ( I and
Iztνpxqu $ b.
(3) Immediate, by the semantics of p D

ãÑ� b. [\

Clearly, »P is an equivalence relation between architectures. Below we show that
»P is at least as fine as „P:

Lemma 6. Given a set of ports P P 2Ports and two architectures Ai “ xDi,Iiy, such
that Di Ď P, for each i “ 1, 2, we haveA1 „P A2 ifA1 »P A2.
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Proof : Assume that A1 |ù φ ðñ A2 |ù φ for each φ P TestFormpPq and prove the
three points of Definition 2:

(1) Suppose, for a contradiction, that D1 * D2 and let p P D1zD2 be a port. Then,
by Lemma 5 (1), we have A1 |ù hasppq and A2 6|ù hasppq, which contradicts that
A1 »P A2, since p P D1 Ď P and, consquently, hasppq P TestFormpPq. Then D1 Ď D2
and the proof for the other direction is symmetric.

(2) Suppose, for a contradiction, that I1
ĎP * I2

ĎP and let I P I1
ĎP
zI2

ĎP be an interac-
tion. Because I P I1

ĎP, we have I X D1 , H and I Ď P. Let p P I X D1 be a port and
let tq1, . . . , qku

def
“ Iztpu. Then p, q1, . . . , qk P P, consequently Ppp D

ãÑ� q1 . . . qkq Ď P
and thus p D

ãÑ� q1 . . . qk P TestFormpPq. Then, by Lemma 5 (3), we have A1 |ù

p D
ãÑ� q1 . . . qk and A2 6|ù q1 . . . qk

D
ãÑ� b, which contradicts with A1 »P A2. Then

I1
ĎP
Ď I2

ĎP. The proof for the other direction is symmetric.

(3) Suppose, for a contradiction, that I1
*P
[P * I2

*P
[P and let I P pI1

*P
[PqzpI2

*P
[

Pq be an interaction. Then there exists an interaction J P I1
*P such that JzP , H,

I “ J X P. Since A1 is an architecture, J X D1 , H and let p P D1 X J be a
port. Because D1 Ď P, we have p P P and thus p P D1 X I. Let tq1, . . . , qku

def
“

Iztpu and tr1, . . . , rmu
def
“ Pztp, q1, . . . , qku. By Lemma 5 (2), we have A1 |ù p D

ãÑ˝

q1 . . . qkr1 . . . rm. Suppose, for a contradiction, thatA2 |ù p D
ãÑ˝ q1 . . . qkr1 . . . rm. Then,

by Lemma 5 (2), there exists an interaction J P I2
*P such that J X P “ I X P, which

contradicts with I < I2
*P
[ P. [\

The expressive completeness result of this section is stated below:

Corollary 1. Each formula φ of SIL` is equivalent to a finite boolean combination of
test formulae from TestFormpPpφqq.

Proof : LetA be a models of φ and define the formula:

ΦpAq
def
“

ľ

φPTestFormpPpφqq
A|ùφ

φ^
ľ

φPTestFormpPpφqq
A6|ùφ

 φ

Since TestFormpPpφqq is finite, there are finitely many such formulae. In the following,
we prove the equivalence ϕ ”

Ž

A|ùϕΦpAq. “ñ” LetA |ù ϕ be an architecture. Then
clearlyA |ù ΦpAq by the definition of ΦpAq, as a conjunction of formulae ψ, such that
A |ù ψ. “ð” Let A |ù ΦpA1q, for some A1 |ù ϕ. Then A »Ppϕq A

1, by the definition
of ΦpAq. By Lemma 6, we obtain A „Ppϕq A

1 and, since A1 |ù ϕ, by Theorem 1, we
haveA |ù ϕ. [\

Translation of SIL`into QBF Our decision procedure for SIL` is based on an equivalence-
preserving translation in QBF, which enables the use of off-the-shelf QSAT solvers to
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decide the satisfiability and entailment problem for SIL`. Moreover, since any QBF for-
mula is a succint encoding of a propositional formula, we obtain a finite representation
of the set of models of a SIL` formula, that will become useful in designing a verifi-
cation method for the safety properties of a system described by recursive predicates
(§6).

From now until the end of this section, let P “ tp1, . . . , pku be a set of visible ports
and denote by B the following set of boolean variables, parameterized by P:

– hpiq stands for the test formulae hasppiq, for all 1 ď i ď k,
– opi1, . . . , i`q, for all 1 ď i1 ă . . . ă i` ď k, stands for the following boolean

combination of test formulae:
Ž

1ďhď` hasppihq ^ pih
D
ãÑ˝ pi1 . . . pi` .

– cpi1, . . . , i`q, for all 1 ď i1 ă . . . ă i` ď k, stands for the following boolean
combination of test formulae:

Ž

1ďhď` hasppihq ^ pih
D
ãÑ� pi1 ¨ ¨ ¨ pi` .

Clearly there are 2Opkq boolean variables in B. In the following, we use the shorthands
B1

def
“ tb1 | b P Bu, B2 def

“ tb2 | b P Bu and DB . φ (resp. DB1 and DB2) for the formula
obtained from φ by existentially quantifying every boolean variable from B (resp. B1

and B2). We write ı (resp. ) for the strictly increasing sequence i1 ă . . . ă i` (resp.
j1 ă . . . ă j`). Since there are at most 2k such sequences, we obtain that ||B|| “
||B1|| “ ||B2|| “ 2Opkq.

Before giving the translation of an arbitrary formula of SIL` into QBF, we need to
introduce a number of shorthands. First, the boolean formula below characterizes those
boolean valuations of B that define valid architectures:

ApBq
def
“

ľ

1ďıďk

popıq _ cpıqq Ñ
ł

1ďhď`

hpihq

More precisely, if β : B Ñ tK,Ju is a boolean valuation, such that β |ù ApBq, the
architectures corresponding to β are the members of the set Apβq, defined below:

Definition 4. For any architecture A “ xD,Iy and any boolean valuation β : B Ñ
tK,Ju, we haveA P Apβq if and only if the following hold:

– D “ tpi | βphpiqq “ Ju,
– IĎP “ ttpi1 , . . . , pi`u | βpcpi1, . . . , i`qq “ Ju,
– I*P [ P “ ttpi1 , . . . , pi`u | βpopi1, . . . , i`qq “ Ju.

It is not hard to prove that the set of boolean valuations tβ : BÑ tK,Ju | A P Apβqu is
closed under intersection and has a minimal element, denoted by βA in the following.

The formula #pB, B1q below states that the architectures defined by the boolean sets
B and B1 have disjoint domains:

#pB, B1q def
“

ľ

1ďiďk

 ph1piq ^ h2piqq

Lemma 7. For any valuations β : B Ñ tK,Ju and β1 : B1 Ñ tK,Ju, such that
β Y β1 |ù #pB, B1q and any architectures xD,Iy P Apβq and xD1,I1y P Apβ1q, we have
DX D1 “ H.
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Proof : Since A P Apβq, we have D “ tp | βphp jqq “ Ju and D1 “ tp | βph1p jqq “
Ju, by a similar argument for Apβ1q. Suppose, for a contradiction, that there exists a
port p j P DX D1. Then βphp jqq “ β1ph1p jqq “ J, contradicting βY β1 |ù #pB, B1q. [\

The formula
Ţ

pB, B1, B2q below states that, whenever B1 and B2 define disjoint ar-
chitecturesA1 andA2, B defines their compositionA1 ZA2:

Ţ

pB, B1, B2q
def
“

Ź

1ďiďkphpiq Ø ph1piq _ h2piqqq

^
Ź

1ďıďkpc
1pıq ^ c2pıq Ñ cpıqq

^
Ź

1ďıďkpc
1pıq ^

Ź

1ďhď` h
2pihq Ñ cpıqq

^
Ź

1ďıďkpc
2pıq ^

Ź

1ďhď` h
1pihq Ñ cpıqq

^
Ź

1ďıďkpo
1pıq ^

Ź

1ďhď` h
2pihq Ñ opıqq

^
Ź

1ďıďkpo
2pıq ^

Ź

1ďhď` h
1pihq Ñ opıqq

^
Ź

1ďıďkp c
1pıq ^  c2pıq Ñ  cpıqq

^
Ź

1ďıďkpc
1pıq ^  c2pıq ^

Ž

1ďhď` h
2pihq Ñ  cpıqq

^
Ź

1ďıďkpc
2pıq ^  c1pıq ^

Ž

1ďhď` h
1pihq Ñ  cpıqq

^
Ź

1ďıďkp o
1pıq ^  o2pıq Ñ  opıqq

^
Ź

1ďıďkpo
1pıq ^  o2pıq ^

Ž

1ďhď` h
2pihq Ñ  opıqq

^
Ź

1ďıďkpo
2pıq ^  o1pıq ^

Ž

1ďhď` h
1pihq Ñ  opıqq

Note that nothing can be stated about opıq when o1pıq and o2pıq both hold, because
these boolean variables denote interactions that coincide on their visible part, whereas
opıq holds only when those interactions coincide also on their invisible parts.

Lemma 8. For any valuations β1 : B1 Ñ tK,Ju and β2 : B2 Ñ tK,Ju, such that
β1 Y β2 |ù #pB1, B2q, the following hold:
1. for any architecturesA1 P Apβ1q andA2 P Apβ2q, there exists a valuation β : BÑ
tK,Ju such that βY β1 Y β2 |ù

Ţ

pB, B1, B2q andA1 ZA2 P Apβq,
2. for any valuation β : B Ñ tK,Ju such that β Y β1 Y β2 |ù

Ţ

pB, B1, B2q and any
A P Apβq there existA1 P Apβ1q andA2 P Apβ2q, such thatA “ A1 ZA2.

Proof : (1) LetA1 “ xD1,I1y,A2 “ xD2,I2y andA1ZA2 def
“ xD,Iy. Let β “ βA1ZA2 .

Clearly, we haveA1 ZA2 P Apβq. It remains to show that βY β1 Y β2 |ù
Ţ

pB, B1, B2q,
by proving that each of the implications from the definition of

Ţ

pB, B1, B2q is valid. We
prove the most interesting cases below and leave the rest to the reader:

–
Ź

1ďiďkphpiq Ø ph1piq _ h2piqqq: Because A1 P Apβ1q, we have D1 “ tpi |

β1ph1piqq “ Ju and, because A2 P Apβ2q, we have D2 “ tpi | β
2ph2piqq “

Ju. Because D1 Y D2 “ tpi | βphpiqq “ Ju, by the definition of β, we have
βY β1 Y β2 |ù hpiq Ø ph1piq _ h2piqq, for each 1 ď i ď k.

–
Ź

1ďıďkpc
1pıq^c2pıq Ñ cpıqq: BecauseA1 P Apβ1q, we have I1ĎP

“ tppi1, . . . , i`q |
β1pc1pi1, . . . , i`qq “ Ju and, because A2 P Apβ2q, we have I2ĎP

“ tppi1, . . . , i`q |
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β2pc2pi1, . . . , i`qq “ Ju. Assume that, for some 1 ď i1, . . . , i` ď k, we have β1 |ù
c1pi1, . . . , i`q and β2 |ù c2pi1, . . . , i`q. Then tpi1 , . . . , pi`u P pI

1 X I2q
ĎP and β |ù

cpi1, . . . , i`q follows, by the definition of β.

–
Ź

1ďıďkpc
1pıq ^

Ź

1ďhď` h
2pihq Ñ cpıqq: Because A1 P Apβ1q, we have I1ĎP

“

tppi1, . . . , i`q | β1pc1pi1, . . . , i`qq “ Ju and, because A2 P Apβ2q, we have D2 “
tpi | β

2ph2piqq “ Ju. Assume that, for some 1 ď i1, . . . , i` ď k, we have β1 |ù
c1pi1, . . . , i`q and β2 6|ù h2pi1, . . . , i`q. Then, tpi1 , . . . , pi`u P I

1ĎP and tpi1 , . . . , pi`uX

D2 “ H, i.e. tpi1 , . . . , pi`u P

´

I1 X 2D2
¯

ĎP

By the definition of β, we have
β |ù cpi1, . . . , i`q.

–
Ź

1ďıďkpo
1pıq ^  o2pıq ^

Ž

1ďhď` h
2pihq Ñ  opıqq: Because A1 P Apβ1q, we

have I1*P
[ P “ tppi1, . . . , i`q | β1po1pi1, . . . , i`qq “ Ju and, because A2 P

Apβ2q, we have D2 “ tpi | β
2ph2piqq “ Ju and I2*P

[ P “ tppi1, . . . , i`q |
β2po2pi1, . . . , i`qq “ Ju. Assume that, for some 1 ď i1, . . . , i` ď k, we have
β1 Y β2 |ù o1pi1, . . . , i`q ^  o2pi1, . . . , i`q ^

Ž

1ďhď` h
2pihq. Then, by the defini-

tion of β, we have β 6|ù opi1, . . . , i`q, because tpi1 , . . . , pi`u < pI
1 X I2q

*P
[ P Y

´

I1 X 2D2
¯*P

[ PY
´

I2 X 2D1
¯*P

[ P, which is an easy check.

(2) Let A “ xD,Iy be a given architecture and A1 “ xD1,I1y, A2 “ xD2,I2y, be
architectures defined as follows:

D1 def
“ tpi | β

1ph1piqq “ Ju
D2 def
“ tpi | β

2ph2piqq “ Ju
I1

def
“ tti1, . . . , i`u | β1pc1pi1, . . . , i`qq “ Ju Y X1

I2
def
“ tti1, . . . , i`u | β2pc2pi1, . . . , i`qq “ Ju Y X2

where X1 and X2 are defined below, for two distinct ports α1, α2 P Portsz
Ť

I:
– for all 1 ď i1, . . . , i` ď k, such that β1po1pi1, . . . , i`qq “ J, if ti1, . . . , i`u Y Y P I,

for some Y Ď PortszP, we have ti1, . . . , i`u Y Y P I1, else ti1, . . . , i`u Y tα1u P I1

and, moreover, nothing else is in I1.
– for all 1 ď i1, . . . , i` ď k, such that β2po2pi1, . . . , i`qq “ J, if ti1, . . . , i`u Y Y P I,

for some Y Ď PortszP, we have ti1, . . . , i`uY Y P I2, else ti1, . . . , i`uY tα2u P I2

and, moreover, nothing else is in I2.
It is easy to check that I1*P

[P “ tti1, . . . , i`u | β1po1pi1, . . . , i`qq “ Ju and I2*P
[P “

tti1, . . . , i`u | β2po2pi1, . . . , i`qq “ Ju. Consequently, A1 P Apβ1q and A2 P Apβ2q is
again an easy check. We are left with proving thatA “ A1 ZA2. First, we compute:

D “ tpi | βphpiqq “ Ju , becauseA P Apβq
“ tpi | β

1ph1piqq “ J _ β2ph2piqq “ Ju , because βY β1 Y β2 |ù hpiq Ø ph1piq _ h2piqq
“ tpi | β

1ph1piqq “ Ju Y tpi | β
2ph2piqq “ Ju

“ D1 Y D2 , by the definitions of D1 and D2

To show that I “ pI1XI2qY pI1X 2D2qY pI2X 2D1q, we prove the following points:
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– IĎP “ pI1 X I2q
ĎP
Y

´

I1 X 2D2
¯

ĎP

Y

´

I2 X 2D1
¯

ĎP

: Because β Y β1 Y β2 |ù
Ţ

pB, B1, B2q, we obtain, by a simple rewriting of the
Ţ

pB, B1, B2q formula:

βYβ1Yβ2 |ù
ľ

1ďıďk

˜˜

pc1pıq ^ c2pıqq _

˜

c1pıq ^
ľ

1ďhď`

 h2pihq

¸

_

˜

c2pıq ^
ľ

1ďhď`

 h1pihq

¸¸

Ø cpıq

¸

BecauseA P Apβq, we have IĎP “ tti1, . . . , i`u | βpcpi1, . . . , i`qq “ Ju. Moreover,
because A1 P Apβ1q, we have D1 “ tpi | β

1ph1piqq “ Ju and I1ĎP
“ tti1, . . . , i`u |

β1pc1pi1, . . . , i`qq “ Ju and, becauseA2 P Apβ2q, we have D2 “ tpi | β
2ph2piqq “

Ju and I2ĎP
“ tti1, . . . , i`u | β2pc2pi1, . . . , i`qq “ Ju, which implies the required

equality.

– I*P “ pI1 X I2q
*P
Y

´

I1 X 2D2
¯*P

Y

´

I2 X 2D1
¯*P

: “Ď” Let I P I*P be an inter-
action. BecauseA P Apβq, there exists Y Ď PortszP such that I “ ti1, . . . , i`uY Y ,
where βpopi1, . . . , i`qq “ J. SinceA is an architecture, it must be that ti1, . . . , i`uX
D ,H. Since D “ D1YD2, by the previous point, we distinguish the cases below:
‚ if ti1, . . . , i`uXD1 ,H and ti1, . . . , i`uXD2 ,H then, because βYβ1Yβ2 |ù
Ţ

pB, B1, B2q we obtain:

β1 Y β2 |ù po1pi1, . . . , i`q _ o2pi1, . . . , i`qq^
p o1pi1, . . . , i`q _ o2pi1, . . . , i`qq^
p o2pi1, . . . , i`q _ o1pi1, . . . , i`qq

thus β1po1pi1, . . . , i`qq “ β2po2pi1, . . . , i`qq “ J. By the definition of I1 and I2,
we obtain I P I1 X I2.

‚ else, if ti1, . . . , i`uXD1 ,H and ti1, . . . , i`uXD2 “ H then, because βY β1Y
β2 |ù

Ţ

pB, B1, B2q we obtain:

β1 Y β2 |ù po1pi1, . . . , i`q _ o2pi1, . . . , i`qq ^ p o2pi1, . . . , i`q _ o1pi1, . . . , i`qq

thus β1po1pi1, . . . , i`qq “ J and, by the definition of I1, we have I P I1 X 2D2 .
‚ otherwise, if ti1, . . . , i`u X D1 “ H and ti1, . . . , i`u X D2 , H then, by a

symmetric argument, we obtain I P I2 X 2D1 .
“Ě” Let I be an interaction such that IXP “ ti1, . . . , i`u and IzP “ Y . We consider
the following cases:
‚ if I P pI1 X I2q*P then Y , tα1u and Y , tα2u, thus I “ ti1, . . . , i`u Y Y P I,

by the definition of I1 and I2.

‚ else, if I P
´

I1 X 2D2
¯*P

then, because βY β1 Y β2 |ù
Ţ

pB, B1, B2q, we obtain
βpopi1, . . . , i`qq “ J, thus ti1, . . . , i`u P IĎP [ P. Moreover, by the definition
of I1, we have that Y , tα1u, thus I “ ti1, . . . , i`u Y Y P I.

‚ the last case I P
´

I2 X 2D1
¯*P

is symmetric to the previous. [\

Before giving the effective translation of SIL` formulae to QBF, we define the
formula CpB, B1q, stating that B defines an architecture which is the closure of an archi-
tecture defined by B1:
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CpB, B1q
def
“

ľ

1ď jďk

php jq Ø h1p jqq ^
ľ

1ďıďk

p opıq ^ pcpıq Ø c1pıqqq

Lemma 9. For any valuations β : B Ñ tK,Ju, such that β Y β1 |ù CpB, B1q and
β1 : B1 Ñ tK,Ju and any architectures such that A P Apβq and A1 P Apβ1q, we have
A CA1.

Proof : LetA “ xD,Iy andA1 “ xD1,I1y. Because βY β1 |ù CpB, B1q,A P Apβq and
A1 P Apβ1q, we have D “ tpi | βphpiqq “ Ju “ tpi | β

1ph1p jqq “ Ju “ D1. Moreover,
IĎP “ tti1, . . . , i`u | βpcpi1, . . . , i`qq “ Ju “ tti1, . . . , i`u | β1pc1pi1, . . . , i`qq “ Ju “
I1
ĎP and I*P “ H, thus I “ I1ĎP. [\

Let us fix the set of visible port symbols P “ tp1, . . . , pku Ď PSym for the rest
of this section. We view the port symbols in P as propositional variables and write
DP [@P] for Dp1 . . . Dpk [@p1 . . .@pk]. Given a nonempty strictly increasing sequence
ı “ i1 ă . . . ă i` P t1, . . . , ku and a boolean term b over P, we define the propositional
formulae below:

πpıq
def
“

Ź

jPti1,...,i`u p j ^
Ź

j<ti1,...,i`u p j

θppiq
def
“ pi θpb1 ¨ b2q

def
“ θpb1q ^ θpb2q θpb1q

def
“  θpb1q

The translation of a SIL` formula in QBF is defined recursively on its structure:

trpemp, Bq def
“

Ź

1ďiďk hpiq

trppi ( b, Bq def
“ hpiq ^

Ź

1ď j,iďk hp jq ^
Ź

1ďıďk @P . rπpıq ^ popıq _ cpıqqs Ñ θpbq

trppi �́ b, Bq def
“ hpiq ^

Ź

1ď j,iďk hp jq ^
Ź

1ďıďk opıq ^

@P . rpπpıq ^ cpıqq Ñ θpbqs ^
Ź

(ı πp q Ñ  θpbq

trppi
D

( b, Bq def
“ hpiq ^

Ź

1ď j,iďk hp jq ^
Ž

1ďıďk DP . πpıq ^ θpbq ^ popıq _ cpıqq

trppi
D

�́ b, Bq def
“ hpiq ^

Ź

1ď j,iďk hp jq ^
Ž

1ďıďk DP . πpıq ^ θpbq ^ cpıq ^ @P .
Ź

(ı πp q Ñ  θpbq

trpxφ1y, Bq
def
“ DB1 .ApB1q ^ CpB, B1q ^ trpφ1, B

1q

trpφ1 ^ φ2, Bq
def
“ trpφ1, Bq ^ trpφ2, Bq

trpφ1 _ φ2, Bq
def
“ trpφ1, Bq _ trpφ2, Bq

trpφ1 ˚ φ2, Bq
def
“ DB1DB2 .ApB1q ^ApB2q ^ #pB1, B2q ^

Ţ

pB, B1, B2q ^ trpφ1, B
1q ^ trpφ2, B

2q

trpφ1 ´́̊ φ2, Bq
def
“ @B1 .ApB1q ^ #pB, B1q ^ trpφ1, B

1q Ñ DB2 .ApB2q ^
Ţ

pB2, B, B1q ^ trpφ2, B
2q

Note that, for any SIL` formula φ, trpφ, Bq is a QBF formula with free variables in
B. The following result proves the equivalence between SIL` formulae and their QBF
translations.

22



Theorem 2. Given a SIL` formula φ, such that Ppφq Ď P, for any architecture A “

xD,Iy, we haveA |ù φ if and only if βA |ù trpφ, Bq.

Proof : We prove first the following fact:

Fact 3 Given an architecture A and boolean valuations β, β1 : B Ñ tK,Ju, if A P

Apβq X Apβ1q then β “ β1.

Proof : Necessarily β and β1 agree on any propositional variable from B. [\

The proof goes by induction on the structure of φ. We consider the cases below:

– emp:A |ù emp ðñ D “ H ðñ βA |ù
Ź

1ďiďk hpiq.

– pi ( b: “ñ” If A |ù pi ( b then D “ tpiu and I $ b, for all I P I and
βA |ù trppi ( b, Bq is an easy check. “ð” Since βA |ù hpiq ^

Ź

1ď j,iďk hp jq,
we have D “ tpiu. Let I P I be an arbitrary interaction of A. We distinguish two
cases:
‚ if I P IĎP then let tpi1 , . . . , pi`u

def
“ I. We obtain that βApcpi1, . . . , i`qq “ J,

thus βA |ù @P . πpi1, . . . , i`q Ñ θpbq, leading to I $ b.
‚ else I P I*P and let tpi1 , . . . , pi`u

def
“ IXP. We obtain βpopi1, . . . , i`qq “ J, thus

β |ù @P . πpi1, . . . , i`q Ñ θpbq, leading to I $ b.
Consequently, we haveA |ù pi ( b.

– pi �́ b: “ñ” This direction is similar to the above point. “ð” Similar to the
above point, we obtain D “ tpiu. Let I P I be an arbitrary interaction of A and
tpi1 , . . . , pi`u

def
“ I X P. Since βA |ù

Ź

1ďıďk opi1, . . . , i`q then I < I*P, so the only
possibility is I P IĎP and thus I “ tpi1 , . . . , pi`u. Then βApcpi1, . . . , i`qq “ J, thus
β |ù @P . πpi1, . . . , i`q Ñ θpbq, leading to I $ b. Moreover, for any interaction
J “ tp j1 , . . . , p jmu ( I, we have β |ù @P . πp j1, . . . , jmq Ñ  θpbq, from which we
conclude that J 0 b and, consequently I $µ b. Then, we haveA |ù pi �́ b.

– pi
D

( b: “ñ” βA |ù trppi
D

( b, Bq is an easy check. “ð” Similar to the above
point, we obtain D “ tpiu. Let I “ tpi1 , . . . , pi`u be the interaction for which
βA |ù opi1, . . . , i`q _ cpi1, . . . , i`q holds and conclude, since I $ b follows from
βA |ù DP . πpi1, . . . , i`q ^ θpbq.

– pi
D

�́ b: “ñ” Similar to the above point. “ð” Similar to the above point, we obtain
D “ tpiu and an interaction I “ tpi1 , . . . , pi`u such that I $ b. Moreover, for any
interaction J “ tp j1 , . . . , p jmu ( I we have βA |ù πp j1, . . . , jmq Ñ  θpbq, leading
to J 0 b, thus we obtain I $µ b.

– xφ1y: “ñ”A |ù xφ1y only ifA1 |ù φ1, for some architectureA1 such thatACA1.
By Lemma 9, we obtain βA Y βA1 |ù CpB, B1q, thus βA |ù trpxφ1y, Bq. “ð”
If βA |ù trpxφ1y, Bq then there exists a valuation β1 : B1 Ñ tK,Ju such that
β1 |ù ApB1q, βA Y β1 |ù CpB, B1q and β1 |ù trpφ1, B

1q. Since β1 |ù ApB1q there
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exists an architecture A1 P Apβ1q and, by Lemma 9, we obtain A CA1. Moreover,
by the induction hypothesis, we haveA1 |ù φ1, thusA |ù xφ1y.

– φ1^φ2: “ñ” IfA |ù φ1^φ2, by the induction hypothesis, we have βA |ù trpφi, Bq,
for i “ 1, 2, thus βA |ù trpφ1 ^ φ2, Bq. “ð” If βA |ù trpφ1 ^ φ2, Bq, by the
induction hypothesis, we obtainA |ù φi, for i “ 1, 2, henceA |ù φ1 ^ φ2.

– φ1_φ2: similar to the above point, by direct application of the induction hypothesis.

– φ1 ˚φ2: “ñ” IfA |ù φ1 ˚φ2 then there existAi “ xDi,Iiy such thatA1ZA2 “ A

and Ai |ù φi, for i “ 1, 2. By the induction hypothesis, βAi |ù trpφi, Biq, for
i “ 1, 2. Since D1XD2 “ H, we have βA1YβA2 |ù #pB1, B2q and, by Lemma 8 (1)
there exists a boolean valuation β : BÑ tK,Ju such that βYβ1Yβ2 |ù

Ţ

pB, B1, B2q

and A “ A1 Z A2 P Apβq. Moreover, β |ù trpφ1 ˚ φ2, Bq. Since A P ApβAq,
by Fact 3, we conclude. “ð” If βA |ù trpφ1 ˚ φ2, Bq, there exists valuations βi :
Bi Ñ tK,Ju such that β1 Y β2 |ù ApB1q ^ApB2q ^ #pB1, B2q ^

Ţ

pB, B1, B2q and
βi |ù trpφ1, Biq, for i “ 1, 2. By Lemma 8 (2) there exist architecturesAi P Apβiq,
such that A “ A1 ZA2. Since Ai P ApβAiq, by Fact 3, we obtain βi “ βAi , for
i “ 1, 2. By the inductive hypothesis, we obtain Ai |ù φi, for i “ 1, 2. Since, by
Lemma 7,A1 andA2 are disjoint, we obtainA |ù φ1 ˚ φ2.

– φ1 ´́̊ φ2: “ñ” Let β1 : B1 Ñ tK,Ju be any valuation such that βA Y β1 |ù

ApB1q ^ #pB, B1q ^ trpφ1, B1q. By the induction hypothesis, there exists an archi-
tectureA1 P Apβ1q and, moreover, since βA Y β1 |ù #pB, B1q, by Lemma 7,A and
A1 are disjoint. Since A |ù φ1 ´́̊ φ2, we have A Z A1 |ù φ2. By the inductive
hypothesis, we have βAZA1 |ù trpφ2, B

2q. Moreover, by Lemma 8 (1), there exists
a valuation β2 : B2 Ñ tK,Ju such that β2 Y βA Y β1 |ù

Ţ

pB2, B, B1q and, by
Fact 3, β2 and βAZA1 are the same. Since the choice of β1 was arbitrary, we obtain
βA |ù trpφ1 ´́̊ φ2, Bq. “ð” Let A1 be any architecture disjoint from A, such that
A1 |ù φ1. By the induction hypothesis, βA1 |ù trpφ1, B1q. Moreover, by Lemma
7, we have βA Y βA1 |ù #pB, B1q, thus, since βA |ù trpφ1 ´́̊ φ2, Bq, there exists a
valuation β2 : B2 Ñ tK,Ju such that βA Y βA1 Y β2 |ù ApB2q ^

Ţ

pB2, B, B1q ^

trpφ2, B
2q. Then, by Lemma 8 (2), there exists an architecture A2 P Apβ2q such

that A2 “ A Z A1. By the induction hypothesis, because β2 |ù trpφ2, B
2q,

we obtain A Z A1 |ù φ2 and, since the choice of A1 was arbitrary, we obtain
A |ù φ1 ´́̊ φ2. [\

We remind that, since there are at most 2k sequences 1 ď i1 ă . . . ă i` ď k, the
size of each of the formulaeApBq, #pB, B1q,

Ţ

pB, B1, B2q and CpB, B1q is 2Opkq. It is easy
to check that, given any SIL` formula φ such that Ppφq Ď tp1, . . . , pku, its translation
to QBF takes |φ| ¨ 2Opkq time.

In the following, we provide a tight complexity result by bounding the number of
ports that occur in a boolean term b from an atomic proposition p ( b, p

D

( b, p �́ b
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or p
D

�́ b, by a constant n ě 1, independent of the input. We shall denote by SIL`n the
fragment of SIL` formulae that meets this condition.

Corollary 2. The satisfiability and entailment problems for SIL` are in EXPSPACE.
If n ě 1 is a constant not part of the input, the satisfiability and entailment problems
for SIL`n are PSPACE-complete.

Proof : The EXPSPACE upper bound for satisfiability is immediate, since the QBF
translation of any SIL` formula φ, such that Ppφq Ď tp1, . . . , pku takes time |φ| ¨ 2Opkq.
For the entailment problem, let φ and ψ be two SIL` formulae, such that PpφqYPpψq Ď
tp1, . . . , pku and assume that there exists an architectureA such thatA |ù φ andA 6|ù
ψ. By Theorem 2, there exists a boolean valuation β : B Ñ tK,Ju, such that A P

Apβq and β |ù trpφ, Bq. Moreover, since A 6|ù ψ, for every boolean valuation β1 :
B Ñ tK,Ju, such that A P Apβ1q, we have β1 |ù  trpψ, Bq. By Fact 3, since A P

Apβq X Apβ1q, for any such valuation β1, we have that β and β1 are the same, thus
β |ù trpφ, Bq^ trpψ, Bq. Since EXPSPACE is closed under complement, by Savitch’s
Theorem, we obtain the EXPSPACE upper bound for entailment.

For the second point, the upper bound is established noticing that the number of se-
quences 1 ď i1 ă . . . ă i` ď k, for ` ď n is bounded by

`k
n

˘

, thus the transla-
tion of a SIL`n formula in QBF takes polynomial time. For the PSPACE-hard lower
bound, we reduce from the validity of QBF sentences @x1Dy1 . . .@xkDyk . F, where
F is a propositional formula with free variables x1, y1, . . . , xk, yk, written in positive
normal form (note that this is w.l.o.g.). To this end, we consider, for each variable
x P tx1, y1, . . . , xk, yku two ports xt and x f . Let false be a shorthand for emp^ p ( p,
where p is a port which is not a member of txt, x f | x P tx1, y1, . . . , xk, ykuu. In-
tuitively, haspxtq

def
“ xt ( xt ´́̊ false (resp. haspx f q

def
“ x f ( x f ´́̊ false) en-

codes the fact that x is true (resp. false). Given a set S Ď tx1, y1, . . . , xk, yku, we write
AS

def
“ ˚xPS xt ( xt _ x f ( x f . Considering the total order x1 ă y1 ă . . . ă xk ă yk,

we write Atĺxu
def
“ Atx1|x1ĺxu. The reduction from QBF to SIL`n is implemented by the

following recursive function:

τpxq def
“ haspxtq

τp xq def
“ haspx f q

τpF1 ^ F2q
def
“ τpF1q ^ τpF2q

τpF1 _ F2q
def
“ τpF1q _ τpF2q

τp@xi . Gq def
“ Atxiu ´́̊ τpGq

τpDyi . Gq def
“ rAtĺxiu ^ ppAtĺyiu ^ τpGqq ´́̊ falseqs ´́̊ false

We show that any QBF sentence @x1Dy1 . . .@xkDyk . F is valid if and only if emp ^
τp@x1Dy1 . . .@xkDyk . Fq is satisfiable, or equivalently, the entailment between emp and
τp@x1Dy1 . . .@xkDyk . Fq holds. The encoding of the universal quantifier is directly via
Atxu ´́̊ τpGq that asserts the validity of τpGq under any extension of the model (archi-
tecture) with domain either txtu or tx f u. The existential quantifier is encoded using a
double negation. If A |ù pP ^ Qq ´́̊ false, then for any extension A1 |ù P we have
A1 6|ù Q. Now assume thatA |ù rAtĺxiu ^ ppAtĺyiu ^ τpGqq ´́̊ falseqs ´́̊ false. Then,
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for any extension A1 of A, such that A1 |ù Atĺxiu, we have A1 6|ù pAtĺyiu ^ τpGqq ´́̊
false. This means that there exists an extension A2 such that A ZA1 ZA2 |ù τpGq,
which captures the fact that some valuation of yi makes the sentence valid. A similar
encoding is used in [?, Proposition 6]. [\

5.2 Decidability of SIL˚

We recall that SIL˚ is the fragment of SIL in which negation is allowed, but not the
magic wand. The proof of decidability for SIL˚ follows a very similar pattern to the
decidability proof for SIL`(§5.1). Just as before, we first define an equivalence relation
on architectures, then we characterize the equivalence classes of this relation by test
formulae. As a consequence, each formula of SIL˚ is equivalent to a boolean combi-
nation of test formulae from a finite set and, moreover, based on this fact, we obtain a
small model property that implies the decidability of SIL˚.

The main difficulty here is that SIL˚ has negation, which allows to describe archi-
tectures with invisible ports in the domain. For instance, the formula  emp ˚  emp
states the existence of at least two ports, none of them corresponding to a port symbol.
When composing such architectures, these invisible ports can determine which inter-
actions are kept and which are lost, based on their visible interaction type, which is
formally defined next.

Example 6. Consider the architecturesA1 “ xtp, αu, ttp, α, βuuy andA2 “ xtβu, ttp, βuuy,
where the set of visible ports is P “ tpu. Because tp, α, βu P interpA1q has a non-empty
intersection with dompA2q “ tβu, we obtainA1 ZA2 “ xtp, α, βu,Hy. �

Let P Ď Ports be a set of visible ports and A “ xD,Iy be an architecture. For an
invisible port x P DzP, we define its visible interaction type as the set of interactions
involving x, restricted to their visible ports: vtA,Ppxq

def
“ IXtxu [ P. The function τA,P :

22P
Ñ 2Ports gives the set of invisible ports with a given visible interaction type from

the domain ofA:

τA,PpSq “ tx P DzP | vtA,Ppxq “ Su, for any S P 22P

Consider further the function bP : Nˆ 22P
Ñ N, defined by the recurrence relation:

bPp1,Sq
def
“ 1 and @n ą 1 . bPpn,Sq

def
“ 2 ¨

ÿ

SĎS1

bPpn´ 1,S1q

Definition 5. Given architectures Ai “ xDi,Iiy, for i “ 1, 2, a finite set of ports
P Ď Ports and an integer n ě 0, we haveA1 «

n
P A2 if and only if the following hold:

1. D1 X P “ D2 X P,
2. I1

XpD1XPq
[ P “ I2

XpD2XPq
[ P,

3. for all S P 22P
, we have:

(a) ||τA1,PpSq|| ă bPpn,Sq ñ ||τA2,PpSq|| “ ||τA1,PpSq||,
(b) ||τA1,PpSq|| ě bPpn,Sq ñ ||τA2,PpSq|| ě bPpn,Sq.
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It is easy to prove that «n
P is an equivalence relation, for any P Ď Ports and any n ě 1.

Moreover, given any set of ports P1 Ď P and any integer n1 ď n, we haveA1 «
n
P A2 ñ

A1 «
n1
P1 A2. The following lemma proves that «n

P is compatible with the composition
of architectures:

Lemma 10. Let A “ xD,Iy and A1 “ xD1,I1y be architectures and P Ď Ports
be a set of ports, such that A «n

P A
1, for some n ě 2. Then for any architectures

Ai “ xDi,Iiy, such that A “ A1 ZA2 there exist architectures A1i “ xD
1
i ,I

1
iy, such

thatA1 “ A11 ZA
1
2 andAi «

n´1
P A1i , for i “ 1, 2.

Proof : We define two mappings µi : 22P
Ñ 2Ports describing how the ports from D1zP

occur in the interactions of A1i , for i “ 1, 2, respectively. The idea is to define the
architectures A1i such that µi “ τA1i ,P, for i “ 1, 2. Let S P 22P

be an arbitrary set of
interactions involving only visible ports. We distinguish the cases below:
1. If ||τA,PpSq|| “ ||τA1,PpSq|| then there exists a bijection πS : τA1,PpSq Ñ τA,PpSq.

In this case, for each x P τA,PpSq and each S1 Ě S, we require that:

x P µipS
1q ðñ πSpxq P τAi,PpS

1q, for all i “ 1, 2 (1)

2. Else ||τA,PpSq|| , ||τA1,PpSq||, thus necessarily ||τA,PpSq|| ě bPpn,Sq and ||τA1,PpSq|| ě
bPpn,Sq, because we assumed thatA «n

P A
1. BecauseA “ A1ZA2, we have that

pD1,D2q is a partition of D and define Ei
def
“ τA,PpSq X Di, a partition of τA,PpSq,

for i “ 1, 2. We distinguish the cases below:
(a) if ||E1|| ă

bPpn,Sq
2 and ||E2|| ě

bPpn,Sq
2 let pE11, E

1
2q be a partition of τA1,PpSq

such that ||E11|| “ ||E1|| and ||E12|| ě
bPpn,Sq

2 . Such a partition exists because
||τA1,PpSq|| ě bPpn,Sq. Since ||E11|| “ ||E1||, there exists a bijection ρS :
E11 Ñ E1. Then for each x P E1 and each S1 Ě S, we require:

x P µ1pS
1q ðñ ρSpxq P τA1,PpS

1q (2)

Further, we split E12 between the sets tµ2pS
1q | S Ď S1u such that, for each

S1 Ě S, the following hold:

||τA2,PpS
1q|| ă bPpn´ 1,S1q ñ ||µ2pS

1q X E12|| “ ||τA2,PpS
1q X E2||

||τA2,PpS
1q|| ě bPpn´ 1,S1q ñ ||µ2pS

1q X E12|| ě bPpn´ 1,S1q (3)

Note that, since ||E12|| ě
ř

SĎS1 bPpn ´ 1,S1q, such a partitioning of E12 is
always possible.

(b) else, if ||E1|| ě
bPpn,Sq

2 and ||E2|| ă
bPpn,Sq

2 , we partition τA1,PpSq symmetri-
cally.

(c) otherwise, if ||E1|| ě
bPpn,Sq

2 and ||E2|| ě
bPpn,Sq

2 , then let pE11, E
1
2q be a parti-

tion of τA1,PpSq such that ||E11|| ě
bPpn,Sq

2 and ||E12|| ě
bPpn,Sq

2 . Such a partition-
ing exists because ||τA1,PpSq|| ě bPpn,Sq. Then we split E1i between the sets
tµipS

1q | S Ď S1u such that, for each S1 Ď S, the following hold, for i “ 1, 2:

||τAi,PpS
1q|| ă bPpn´ 1,S1q ñ ||µipS

1q X E1i || “ ||τAi,PpS
1q X Ei||

||τAi,PpS
1q|| ě bPpn´ 1,S1q ñ ||µipS

1q X E1i || ě bPpn´ 1,S1q (4)

27



Note that, since ||E1i || ě
ř

SĎS1 bPpn ´ 1,S1q, i “ 1, 2, such a partitioning is
always possible.

Moreover, nothing else is in µipS
1q, for any S1 P 22P

, for i “ 1, 2. We define now the
domains ofA11 andA12 as follows:

D1i
def
“ pDi X Pq Y

ď

SP22P

µipSq, for i “ 1, 2 (5)

Because the sets tτAi,PpSq | S P 22P
u form a partition of DizP, by the definition of µi,

the sets tµipSq | S P 22P
u form a partition of D1izP, for i “ 1, 2, respectively. Then we

can define mappings λi : D1izP Ñ 22P
as λipxq

def
“ S ðñ x P µipSq, for all x P D1izP,

for i “ 1, 2. Similarly, since tτA1,PpSq | S P 22P
u is a partition of D1zP, we can define

the mapping λ : D1zP Ñ 22P
as λpxq def

“ S ðñ x P τA1,PpSq. Next, we define the
interaction sets ofA1i as:

I1i
def
“ I1

XD1i Y Xi Y Yi

where:
Xi

def
“ tI Y tx, αiu | x P D1izP, I P λipxqzλpxq, I X D13´i ,HuY

tI Y tx, αiu Y pD13´izPq | x P D1izP, I P λipxqzλpxq, I X D13´i “ Hu

Yi
def
“ tI Y tβiu | I P pIi

XDiXP
[ PqzI1XD1i , I X D13´i ,HuY

tI Y pD13´izPq Y tβiu | I P pIi
XDiXP

[ PqzI1XD1i , I X D13´i “ Hu

and αi, βi P PortszpD1 Y
Ť

I1q are pairwise distinct ports that do not occur in A1,
respectively, for i “ 1, 2. Next, we prove the following facts:

Fact 4 For any S P 22P
, we have τA1i ,PpSq “ µipSq, for each i “ 1, 2.

Proof : We prove the case i “ 1, the case i “ 2 being identical. Let x P D11zP be an
arbitrary port and S P 22P

be a set of visible interactions. We have:

x P τA11,PpSq ðñ I
1
1
Xtxu

[ P “ S
ðñ tI X P | I P I11, x P Iu “ S
ðñ tI X P | I P I1XD11 , x P Iu Y tI X P | I P X1, x P Iu Y tI X P | I P Y1, x P Iu “ S
ðñ tI X P | I P I1, x P Iu Y tI X P | I P X1, x P Iu “ S, since x P D11zP
ðñ λpxq Y pλ1pxqzλpxqq “ S
ðñ λpxq Y λ1pxq “ S
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It is sufficient to prove λpxq Ď λ1pxq in order to obtain x P τA11,PpSq ðñ λ1pxq “
S ðñ x P µ1pSq, as required. Since x P D11, by the definition of µ1, it must be the
case that x P τA1,PpS1q, for some S1 Ď S. Then λpxq “ S1 Ď S “ λ1pxq follows. [\

Next, we prove that Ai «
n´1
P A1i , for i “ 1, 2. Again, we consider only the case i “ 1,

the other case being identical. We consider the three points of Definition 5 below:

(1) D11 X P “ pD1 X Pq Y
Ť

SP22P pµ1pSq X Pq “ D1 X P, because µ1pSq Ď D11zP, and
thus µ1pSq X P “ H, for any S P 22P

.

(2) We need to show that I1
XpD1XPq

[P “ I11
XpD11XPq

[P. Note that I1 “ I
XD1YA1YB1,

where:
A1 “ tI | I P I1zI, I X pD1zPq ,Hu
B1 “ tI | I P I1zI, I X D1 Ď Pu

This is because I “ pI1 X I2q Y pI1 X 2D2q Y pI2 X 2D1q, hence IXD1 “ IX I1 and
I1 “ pIX I1q Y pI1zIq “ I

XD1 Y pA1 Y B1q.

Fact 5 IXpD1XPq [ P “ I1XpD1XPq
[ P

Proof : “Ď” Let I P IXpD1XPq be an interaction. Then IXD1X P ,H and consequently
I X DX P ,H. But then I X P P pIXpDXPqq [ P “ pI1XpD

1XPq
q [ P, becauseA «n

P A
1,

by Definition 5 (2). Then there exists I1 P I1XpD
1XPq such that I X P “ I1 X P. Hence

I1X PXD1 ,H and I1 P I1XpD1XPq, which implies IX P “ I1X P P I1XpD1XPq
[ P. The

other direction is symmetric. [\

Fact 6 pIY A1q
XpD1XPq

[ P “ pI1 Y X1q
XpD1XPq

[ P

Proof : “Ď” Let I P pIY A1q
XpD1XPq be an interaction. If I P IXpD1XPq then I X P P

I1
XpD1XPq

[ P, by Fact 5. Assume that I P A1
XpD1XPq, then I P I1zI, I X pD1zPq , H

and I X D1 X P ,H. Since I X pD1zPq ,H, there exists x P I X pD1zPq and let S def
“

vtA1,Ppxq. Then x P τA1,PpSq and, by the definition of µ1, there exists x1 P D11zP such
that x1 P µ1pSq and, consequently λ1px1q “ S. Since x P IXpD1zPq and S “ vtA1,Ppxq
we have I X P P S and thus I X P P λ1px1q. We distinguish the following cases:

– if I X P < λpx1q then I X P P X1
XpD1XPq [ P.

– else, I X P P λpx1q and, because x1 P D11zP Ď D1zP, there exists I1 P I1 such that
I X P “ I1 X P. Moreover, since pI X Pq X pD1 X Pq , H, we obtain I X P “
I1 X P P I1XpD1XPq

[ P.
“Ě” Let I P pI1 Y X1q

XpD1XPq be an interaction. If I P I1XpD1XPq then IXP P IXpD1XPq,
by Fact 5. Assume that I P X1

XpD1XPq, then there exists x1 P D11zP, such that I X P P
λ1px1qzλpx1q. By the definition of λ1, there exists x P D1zP, such that IXP P I1

Xtxu
[P.

Then there exists an interaction J P I1 such that x P J and J X P “ I X P. Since,
moreover, pIXPqXpD1XPq ,H, we have JXD1XP ,H, hence J P I1

XpD1XPq. Since
x P J and x P D1zP, we have JXpD1zPq ,H, hence J < B1. Then J P pIY A1q

XpD1XPq

and I X P “ J X P P pIY A1q
XpD1XPq

[ P. [\

Back to point (2) of Definition 5, it suffices to show the following points:

29



– B1
XpD1XPq Ď I11

XpD1XPq
[ P: Let I P B1

XpD1XPq be an interaction. Then I X P “ I
and I X D1 X P , H. If I P pIY A1q

XpD1XPq then I “ I X P P pIY A1q
XpD1XPq

[

P “ pI1 Y X1q
XpD1XPq

[ P, by Fact 6. Then I P I11
XpD1XPq

[ P. Otherwise, I <
pIY A1q

XpD1XPq then I < pIY A1q
XpD1XPq

[ P “ pI1 Y X1q
XpD1XPq

[ P, by Fact 5,
thus I < pI1 Y X1q

XpD1XPq. But because I P B1
XpD1XPq, we have I P I1

XpD1XPq, thus
I P Y1 [ P Ď I11

XpD1XPq
[ P.

– Y1
XpD1XPq [ P Ď I1

XpD1XPq
[ P: If I P Y1

XpD1XPq, then I X P P pI1
XpD1XPq

q [ P, by
the definition of Y1.

(3) by Fact 4, it is sufficient to prove that, for all S P 22P
:

1. ||τA1,PpSq|| ă bPpn´ 1,Sq ñ ||µ1pSq|| “ ||τA1,PpSq||:

Let S P 22P
be an arbitrary set of interactions such that ||τA1,PpSq|| ă bPpn´ 1,Sq

and let x P µ1pSq be a port. We shall exhibit a unique port y P τA1,PpSq in order to
prove that ||µ1pSq|| ď ||τA1,PpSq||. By the definition of µ1, there exists a set S1 Ď S
such that x P τA1,PpS1q. We distinguish the following cases:

– if ||τA,PpS1q|| “ ||τA1,PpS
1q|| then let y “ πS1pxq P τA1,PpSq, where πS1 :

τA1,PpS
1q Ñ τA,PpS

1q is the bijection from (1).
– else, if ||τA,PpS1q|| , ||τA1,PpS1q|| and ||τA,PpS1q X D1|| ă

bPpn,S1q
2 then let

y “ ρS1pxq P τA1,PpSq, where ρS1 is the bijection from (2).
– otherwise, if ||τA,PpS1q|| , ||τA1,PpS1q|| and ||τA,PpS1q X D1|| ě

bPpn,S1q
2 then,

because ||τA1,PpSq|| ă bPpn´ 1,Sq, we obtain, by (4) that:

||µ1pSq X E11|| “ ||τA1,PpSq X τA,PpS
1q X D1||

where E11 Ď τA1,PpS
1q is such that x P E11. Then there exists a bijection ξ :

µ1pSq X E11 Ñ τA1,PpSq X τA,PpS
1q X D1 and let y “ ξpxq P τA1,PpSq.

The unique y P τA1,PpSq is defined as the image of x via a bijection that choses
among the above disjoint cases. Moreover, since these are the only cases that ex-
plain why x P µ1pSq, i.e. nothing else is in µ1pSq, we obtain that ||µ1pSq|| “

||τA1,PpSq||, as required.

2. ||τA1,PpSq|| ě bPpn´ 1,Sq ñ ||µ1pSq|| ě bPpn´ 1,Sq:

Let S P 22P
be a set of interactions such that ||τA1,PpSq|| ě bPpn,Sq. By the

definition of µ1, for each x P µ1pSq there exists S1 Ď S such that x P τA1,PpS1q
and let S1, . . . ,Sk Ď S be all the sets of interactions such that τA1,PpSiq X µ1pSq ,

H. Moreover, the sets τA1,PpSiq are pairwise disjoint and µ1pSq “
Ťk

i“1 µ1pSq X

τA1,PpSiq, leading to ||µ1pSq|| “
řk

i“1 ||µ1pSq X τA1,PpSiq||. For an arbitrary 1 ď
i ď k, we distinguish the following cases:

– if ||τA,PpSiq|| “ ||τA1,PpSiq||, then by (1), we have:

||µ1pSq X τA1,PpSiq|| “ ||τA1,PpSq X τA,PpSiq||
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– else, if ||τA,PpSiq|| , ||τA1,PpSiq|| and ||τA,PpSiq X D1|| ă
bPpn,Siq

2 , then by
(2), we have:

||µ1pSq X τA1,PpSiq|| “ ||τA1,PpSq X τA,PpSiq||

– othwerwise, if ||τA,PpSiq|| , ||τA1,PpSiq|| and ||τA,PpSiq X D1|| ě
bPpn,Siq

2 ,
since ||τA1,PpSq|| ě bPpn´ 1,Sq, by (4) we obtain:

||µ1pSq X τA1,PpSiq|| ě bPpn´ 1,Sq

If ||µ1pSq X τA1,PpSiq|| ě bPpn ´ 1,Sq for some 1 ď i ď k, then ||µ1pSq|| ě

bPpn´ 1,Sq and we are done. Otherwise, we compute:

||µ1pSq|| “

k
ÿ

i“1

||µ1pSq X τA1,PpSiq|| “

k
ÿ

i“1

||τA1,PpSq X τA,PpSiq|| “ ||τA1,PpSq|| ě bPpn´1,Sq

The latter equality is by definition of µ1 and the assumption ||µ1pSq X τA1,PpSiq|| ă

bPpn´ 1,Sq, for all 1 ď i ď k.

Finally, we must prove thatA11 ZA
1
2 “ A

1. We compute:

D11 Y D12 “ ppD1 Y D2q X Pq Y
Ť

SP22P µ1pSq Y
Ť

SP22P µ2pSq

“ pDX Pq Y pD1zPq, because tµ1pSquSP22P Y tµ2pSquSP22P partitions D1zP
“ pD1 X Pq Y pD1zPq, sinceA «P

n A
1 thus D1 X P “ DX P

“ D1

By the definition of I1i , i “ 1, 2, we have:

I11 X I
1
2 “ pI

1XpD
1
1q Y X1 Y Y1q X pI

1XpD
1
2q Y X2 Y Y2q

and prove that I11 X I
1
2 “ I

1XpD
1
1q X I1

XpD12q, by showing the following:
– I1XpD

1
1q X X2 “ H: if there exists an interaction I P I1XpD

1
1q X X2, then α2 P I, by

the definition of X2, and I < I1, because α2 <
Ť

I1, contradiction.
– I1XpD

1
1q X Y2 “ H: if there exists an interaction I P I1XpD

1
1q X Y2, then β2 P I, by the

definition of Y2 and I < I1, because β2 <
Ť

I1, contradiction.
– X1 X X2 “ H: if there exists an interaction I P X1 X X2, then α1 P I, by the

definition of X1 and thus I < X2, by the definition of X2, contradiction.
– Y1XX2 “ H: if there exists an interaction I P Y1XX2, then β1 P I, by the definition

of Y1 and thus I < X2, by the definition of X2, contradiction.
– Y1 X Y2 “ H: if there exists an interaction I P Y1 X Y2, then β1 P Y1, by the

definition of Y1 and thus I < Y2, by the definition of Y2, contradiction.
Proving the emptiness of the remaining sets X1 X I

1XpD
1
2q, X1 X Y2 and Y1 X I

1XpD
1
2q

is done symmetrically. Also, by the definition of Xi and Yi, for i “ 1, 2, we have that
I X D11 ,H and I X D12 ,H, for all I P

Ť

i“1,2 Xi Y Yi. Consequently, we obtain:

I1i X 2D13´i “ I1
XpD1i q, for i “ 1, 2
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and conclude the proof as follows:

pI11XI
1
2qYpI

1
1X2D12qYpI12X2D11q “ pI1

XpD11qXI1
XpD12qqYpI1

XpD11qX2D12qYpI1
XpD12qX2D11q “ I1

[\

The next theorem proves that the architectures which are equivalent in the sense of
Definition 5 cannot be distinguished by SIL˚ formulae up to a given bound, defined
recursively on the structure of formulae:

bndpempq def
“ 1 bndpp( bq def

“ 1

bndpp �́ bq def
“ 1 bndpp

D

�́ bq def
“ 1

bndpψ1 ^ ψ2q
def
“ maxpbndpψ1q, bndpψ2qq bndp ψ1q

def
“ bndpψ1q

bndpψ1 ˚ ψ2q
def
“ maxpbndpψ1q, bndpψ2qq ` 1

Theorem 3. LetA “ xD,Iy andA1 “ xD1,I1y be architectures, P P 2Ports be a set of
ports and n ě 1 be an integer, such that A «n

P A
1. Then, for any formula ψ of SIL˚,

such that Ppψq Ď P and bndpψq ď n, we haveA |ù ψ if and only ifA1 |ù ψ.

Proof : By induction on the structure of ψ. We consider the cases:

– emp: if A |ù emp then D “ H and I “ H. Since A «n
P A

1, we have D X P “
D1 X P “ H. Suppose, for a contradiction, that there exists a port x P D1zP. Then
there exists a set S P 22P

such that x P τA1,PpSq, hence ||τA1,PpSq|| ě 1. Since
A «n

P A
1, it must be that ||τA,PpSq|| ě 1, which contradicts with ||τA,PpSq|| “ 0,

a consequence of D “ H. Hence D1 “ H and I1 “ H follows, since A1 is an
architecture, thusA1 |ù emp. The other direction is symmetrical.

– p( b: ifA |ù p( b, we have D “ tpu and I $ b, for all I P I. SinceA «n
P A

1

and p P Ppp( bq Ď P, we obtain DX P “ D1 X P “ tpu. Moreover, D1zP “ H
follows in the same way as above and thus D1 “ tpu. Since A «n

P A
1, we have

IXP[ P “ I1XP
[ P. Let I1 P I1 be an interaction. Then I1 “ JYU 1, where J Ď P

and U 1 X P “ H. Consequently, there exists an interaction I “ J X U, for some
U X P “ H. Moreover, since I $ b and Ppbq Ď P, we have J $ b, thus I1 $ b and
A1 |ù p( b follows.

– p �́ b: by an argument similar to the point above.

– p
D

�́ b: by an argument similar to the point above.

– ψ1 ^ ψ2: if A |ù ψ1 ^ ψ2 then A |ù ψi, for i “ 1, 2. By the induction hypothesis,
since bndpψiq ď maxpbndpψ1q, bndpψ2qq “ bndpψ1 ^ ψ2q, we obtainA1 |ù ψi, for
i “ 1, 2, henceA1 |ù ψ1 ^ ψ2.
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–  ψ1: by a direct application of the induction hypothesis.

– ψ1˚ψ2: ifA |ù φ1˚φ2 then there exist architecturesAi |ù φi, for i “ 1, 2, such that
A “ A1ZA2. By Lemma 10, becauseA «n

P A
1, there exist architecturesA1i , such

that Ai «
n´1
P A1i , for i “ 1, 2 and A1 “ A11 Z A

1
2. By the induction hypothesis,

since bndpψiq ď maxpbndpψ1q, bndpψ2qq ď n ´ 1, we obtain that A1i |ù ψi, for
i “ 1, 2, and thusA1 |ù ψ1 ˚ ψ2. [\

Next, we move on to the definition of test formulae for SIL˚:

Definition 6. Given a set of port symbols P Ď PSym and an integer n ě 1, we denote
by TestFormpP, nq the following set of formulae, for each p, q1, . . . , qk P P and each
1 ď m ď bPpn,Hq:

hasppq def
“ p( p ´́̊ K p D

ãÑ˝ q1 . . . qk
def
“ p

D

( q1 . . . qk ˚ J

typepq1, . . . , qkq ě m def
“ pDx . x

D

( q1 . . . qkq ˚ . . . ˚ pDx . x
D

( q1 . . . qkq
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

m times

Given architectures A1 and A2, we write A1 �
n
P A2 for A1 |ù ψ ðñ A2 |ù ψ, for

all ψ P TestFormpP, nq.

The following lemma proves that the equivalence of architectures via test formulae
is a refinement of the equivalence relation introduced by Definition 5.

Lemma 11. Given a set of ports P P 2Ports and an integer n ě 1, for any two architec-
turesAi “ xDi,Iiy, for i “ 1, 2, we haveA1 «

n
P A2 ifA1 �

n
P A2.

Proof : We prove the three points of Definition 5:

(1) Suppose, for a contradiction, that D1XP * D2XP, thus there exists a port p P D1XP
such that p < D2. Then A1 |ù hasppq and A2 6|ù hasppq. Since p P P thus hasppq P
TestFormpP, nq, we reached a contradiction withA1 �

n
P A2. Hence D1 X P Ď D2 X P

and the other direction is symmetrical.

(2) Suppose, for a contradiction, that I1
XpD1XPq

[ P * I2
XpD2XPq

[ P. Then, there exists
an interaction J P I1

XpD1XPq
[ P such that J < I2

XpD2XPq
[ P. Let p P J X D1 be a

port (we know that one exists because J P I1
XpD1XPq

[ P) and let tq1, . . . , qku
def
“ Jztpu.

Since p P J X D1 and J Ď P, by the previous point, we have p P D2 X P. We have
A1 |ù p D

ãÑ˝ q1 . . . qk and since A1 �
n
P A2, we obtain A2 |ù p D

ãÑ˝ q1 . . . qk. But then
we obtain J P I2

XpD2XPq
[ P, contradiction. Hence I1

XpD1XPq
[ P Ď I2

XpD2XPq
[ P and

the other direction is symmetrical.

(3) Let S P 22Ports
be a set of visible ports. We distinguish the following cases:

– if ||τA1,PpSq|| ă bPpn,Sq and ||τA2,PpSq|| , ||τA1,PpSq|| then let m “ ||τA1,PpSq||.
We have A1 |ù typepSq ě m ^  typepSq ě m` 1 and A2 6|ù typepSq ě
m ^  typepSq ě m` 1. Since m ` 1 ď bPpn,Sq ď bPpn,Hq, we obtain that
typepSq ě m, typepSq ě m` 1 P TestFormpP, nq, thus A1 6�

n
P A2, contradiction.

Then ||τA1,PpSq|| ă bPpn,Sq ñ ||τA2,PpSq|| “ ||τA1,PpSq||.
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– if ||τA1,PpSq|| ě bPpn,Sq and ||τA2,PpSq|| ă bPpn,Sq then let ||τA2,PpSq|| “ m.
We have A2 |ù typepSq ě m ^  typepSq ě m` 1 and A1 6|ù typepSq ě m ^
 typepSq ě m` 1. Since m`1 ď bPpn,Sq ď bPpn,Hq, we obtain thatA1 6�

n
P A2,

contradiction. Then ||τA1,PpSq|| ě bPpn,Sq ñ ||τA2,PpSq|| ě bPpn,Sq. [\

A first consequence of this result is that every formula of SIL˚ is equivalent to a
finite boolean combination of test formulae.

Corollary 3. Each formula ψ of SIL˚ is equivalent to a finite boolean combination of
test formulae from TestFormpPpψq, bndpψqq.

Proof : The proof is the same as for Corollary 1. [\

The other consequence is a small model property for the SIL˚ fragment, which
entails the decidability of its satisfiability problem.

Corollary 4. If ψ is a satisfiable SIL˚ formula has a model A “ xD,Iy such that
||D|| ď B and ||I|| ď B, for each I P I, where B “ Op2||Ppψq||q ¨ bPpψqpbndpψq,Hq.

Proof : LetA1 “ xD1,I1y be the architecture obtained fromA as follows :
– remove from D and from each I P I enough many ports p P DzPpψq, such that
||τA1,Ppψq||pSq ď bPpψqpbndpψq,Hq, for each S P 22Ports

, and
– remove from each from each I P I all ports p P IzpDY Ppψqq.

It is easy to check thatA «bPpψqpbndpψq,Hq
Ppψq A1 thus, by Theorem 3, we obtain thatA1 |ù

ψ. Further, we compute:

||D1|| “ ||D1 X Ppψq|| ` ||D1zPpψq||
“ ||D1 X Ppψq|| `

ř

SP22Ports ||τA,Ppψq||pSq

ď ||Ppψq|| ` 2||Ppψq|| ¨ bPpψqpbndpψq,Hq “ B

Let I P I1 be an interaction. We compute:

||I|| “ ||DX I|| ` ||IzD||
ď ||D|| ` ||Ppψq|| “ B [\

5.3 Decidability of Component-based Extensions of SIL

In this section we extend the decidability results from §5.2 and §5.1 to fragments of
the logic SLa obtained by considering variables i, j P IVars ranging over component
identifiers and function symbols p, q P PFun, interpreted as functions mapping com-
ponent identifiers to ports. Moreover, we allow equality atoms i “ j and port terms
ppiq to occur anywhere a port symbol p P PSym is allowed to occur in SIL˚ and SIL`,
respectively.
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6 Behaviors of Component-based Systems

In this section we define the behaviors of an architecture, which are the sequences of
interaction events, ordered by the moment in time when the events occur. We consider
systems consisting of finitely many components, with no à priori bound on their number,
that are replicas of a small number of finite-state machines.

Formally, a finite-state machine (FSM) is a pair M “ pQ,Ñq, where Q is a finite
set of states and ÑĎ Q ˆ 2Ports ˆ Q is a transition relation, where q I

ÝÑ q1 stands for
pq, I, q1q PÑ. We denote by ΣpMq def

“ tI | Dq, q1 P Q . q I
ÝÑ q1u the set of transition

labels of M. We write pQ1,Ñ1q Ď pQ2,Ñ2q for Q1 “ Q2 andÑ1ĎÑ2.
The asynchronous product of two FSMs Mi “ pQi,Ñiq, for i “ 1, 2, is the FSM

M1 b M2
def
“ pQ1 ˆ Q2,Ñq where, for all qi, q1i P Qi, i “ 1, 2 and all I P 2Ports,

pq1, q2q
I
ÝÑ pq11, q

1
2q if and only if one of the following holds:

– q1
I
ÝÑ1 q11 and q2

I
ÝÑ2 q12,

– q1
I
ÝÑ1 q11, q2 “ q12 and I < ΣpM2q,

– q2
I
ÝÑ1 q12, q1 “ q11 and I < ΣpM1q.

Definition 7. Given an architecture A “ xD,Iy and a FSM M “ pQ,Ñq, such that
I X D , H, for all I P ΣpMq. We define rAsM

def
“ pQ,ÑAq where, for all q, q1 P Q and

all I P 2Ports we have, q I
ÝÑA q1 if and only if q I

ÝÑ q1 and I P I.

Note that rAsM is undefined if ΣpMq contains interactions that do not intersect with
dompAq. The following theorem relates the composition of architectures with the asyn-
chronous product of their behaviors.

Theorem 4. LetAi “ xDi,Iiy be architectures and M “ pQi,Ñiq be FSMs, such that
rAisMi is defined, for all i “ 1, 2. Then the following hold:
1. rA1 ZA2sM1bM2 Ď rA1sM1 b rA2sM2 ,
2. rA1 ZA2sM1bM2 “ rA1sM1 b rA2sM2 if, moreover, I X D3´i ,Hñ I P I3´i, for

all I P Ii, i “ 1, 2.

Proof : In the following, we denote:

A1 ZA2
def
“ xD1 Y D2,IZy

M1 b M2
def
“ pQ1 ˆ Q2,Ñ12q

rA1 ZA2sM1bM2

def
“ pQ1 ˆ Q2,Ñq

rAisMi

def
“ pQi,ÑAiq, for i “ 1, 2

rA1sM1 b rA2sM2

def
“ pQ1 ˆ Q2,Ñbq

Note that, because rAisMi is defined, for i “ 1, 2, for each I P ΣpM1bM2q “ ΣpM1qY

ΣpM2q we have I X pD1 Y D2q ,H, thus rA1 ZA2sM1bM2 is defined.

1 Let pq1, q2q
I
ÝÑ pq11, q

1
2q be a transition of rA1 ZA2sM1bM2 , for some I P 2Ports. Then

I P IZ and pq1, q2q
I
ÝÑ12 pq11, q

1
2q. Since IZ “ pI1 X I2q Y pI1 X 2D2q Y pI2 X 2D1q,

we distinguish the following cases: (1) I P I1 X I2, (2) I P I1 and I X D2 “ H
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and (3) I P I2 and I X D1 “ H. Moreover, based on the definition of M1 b M2, we
distinguish the following cases: (a) qi

I
ÝÑi q1i , for i “ 1, 2, (b) q1

I
ÝÑ1 q11, q2 “ q12 and

I < ΣpM2q, (c) I < ΣpM1q, q1 “ q11 and q2
I
ÝÑ2 q12. We give the proof in the following

composed cases:

(1a) Since I P Ii and qi
I
ÝÑi q1i , we obtain qi

I
ÝÑAi

q1i , for both i “ 1, 2, thus pq1, q2q
I
ÝÑb

pq11, q
1
2q.

(1b) Since I P I1 and q1
I
ÝÑ1 q11, we obtain q1

I
ÝÑA1

q11. Moreover, q2 “ q12 and
I < ΣpM2q Ě ΣprA2sM2q, thus pq1, q2q

I
ÝÑb pq11, q2q.

(1c) This case is symmetrical to (1b).

(2a) Since I P I1 and q1
I
ÝÑ1 q11, we obtain q1

I
ÝÑA1

q11. Moreover, because I X D2 “

H and since rA2sM2 is defined, we obtain I < ΣpM2q. If q2 “ q12, we obtain that
pq1, q2q

I
ÝÑb pq11, q2q. Else, q2 , q12 and q2

I
ÝÑ2 q12 contradicts I < ΣpM2q.

(2b) Similar to (2a), using directly that q2 “ q12 and I < ΣpM2q.

(2c) Because I X D2 “ H and since rA2sM2 is defined, we obtain I < ΣpM2q, which
contradicts q2

I
ÝÑ2 q12.

The cases (3a), (3b) and (3c) are symmetrical to (2a), (2b) and (2c), respectively.

2 To show that rA1 ZA2sM1bM2 Ě rA1sM1 b rA2sM2 , let pq1, q2q
I
ÝÑb pq11, q

1
2q be a

transition of rA1 ZA2sM1bM2 “ rA1sM1brA2sM2 . We distinguish the following cases:
(1) if qi

I
ÝÑrAisMi

q1i , then qi
I
ÝÑi q1i and I P Ii, for both i “ 1, 2. We obtain pq1, q2q

I
ÝÑ12

pq11, q
1
2q and I P I1 X I2 Ď IZ, thus pq1, q2q

I
ÝÑ pq11, q

1
2q.

(2) if q1
I
ÝÑrA1sM1

q11, q2 “ q12 and I < ΣprA2sM2q, we consider two cases:

(a) if I P I2zΣpM2q then I P I1 X I2 Ď IZ and pq1, q2q
I
ÝÑ12 pq11, q2q, thus

pq1, q2q
I
ÝÑ pq11, q2q.

(b) else I < I2 and since I P I1, by the hypothesis I X D2 , H ñ I P I2, we
deduce that I X D2 “ H. Then I P I1 X 2D2 Ď IZ. Moreover, since rA2sM2

is defined, we obtain I < ΣpM2q, thus pq1, q2q
I
ÝÑ12 pq11, q2q and pq1, q2q

I
ÝÑ

pq11, q2q follows.
(3) This case is symmetrical to the above one.

[\

7 Dynamic Reconfigurability

We extend architectures to capture reconfigurability, by distinguishing between the ar-
chitecture layer, describing the components that are active in the system and their inter-

36



actions, and the map layer, which is the graph onto which the components are deployed.
Formally, the component layer consists of:

– a countably infinite set Id of component identifiers, ranged over by the set of iden-
tifier variables IVar “ ti, j, . . .u,

– a finite set of total port functions of type Id Ñ Ports, denoted by the set of function
symbols PFun “ tp, q, . . .u.

The map layer consists of:
– a countably infinite set Nodes of map nodes, with a designated element nil P Nodes

and ranged over by the node variables NVar “ tn,m, . . .u,
– a partial map M : Nodes áfin Nodesk, with finite domain dompMq, where nil <

dompMq. We assume that the image of each node n P dompMq consists of exactly
k ě 1 nodes Mpnq “ pn1, . . . , nkq.

The link between the layers is established by a finite partial deployment function ∆ :
Id áfin dompMq Y tnilu. By Arch we denote the set of architectures A “ xD,Iy, with
D Ď Ports and I Ď 2Ports, such that DX I ,H, for all I P I. Moreover, by Mapsk we
denote the set of maps M : Nodes áfin Nodesk.

We describe such systems using a combination of two resource logics, defined in
the following. Given a constant k ě 1, the formulae of the Separation Logic of Maps
(SLk

m) are defined by the following syntax:

t :“ nil | n P NVar
φ :“ t1 “ t2 | empm | i { t, i P IVar | t0 ÞÑ pt1, . . . , tkq | Qpt1, . . . , t#Qq |

φ1 ^ φ2 |  φ1 | Di . φ1, i P IVar | Dn . φ1, n P NVar | φ1 ˚m φ2 | φ1 ´́̊ m φ2

where Qpt1, . . . , t#pQqq P NPred is a predicate symbol of type Nodes#pQq Ñ tK,Ju.
By Jm we denote the equality n “ n, the choice of n P NVar being unimportant. A
SLmsentence is a formula in which all variables occur within the scope of a quantifier.

Since SLk
m formulae contain two types of variables, we consider extended valuations

ν : IVarY NVar Ñ IdY Nodes, such that νpxq P Id, when x P IVar and νpnq P Nodes,
when n P NVar. For a term t, we write νptq to denote the node nil if t “ nil and the
node νpnq if t “ n P NVar. The semantics of SLk

m is defined by a satisfaction relation
x∆,My |ùXν φ between pairs of deployments and maps and formulae, parameterized by
a valuation ν : IVar Y NVar Ñ Id Y Nodes and an interpretation of predicate symbols
X : NPred Ñ

Ť

kě1 2NodeskˆMaps, such that XpQq Ď Nodes#pQq ˆMaps.

x∆,My |ùXν t1 “ t2 ðñ νpt1q “ νpt2q
x∆,My |ùXν empm ðñ M “ H

x∆,My |ùXν x { t ðñ ∆pνpxqq “ νptq
x∆,My |ùXν t0 ÞÑ pt1, . . . , tkq ðñ dompMq “ tνpt0qu and Mpνpt0qq` “ pνpt1q, . . . , νptkqq
x∆,My |ùXν Qpt1, . . . , t#pQqq ðñ pxνpt1q, . . . , νpt#pQqqy,Mq P XpQq
x∆,My |ùXν Dx . φ1 ðñ xD,My |ùX

νrxÐis φ1, for some node i P Id
x∆,My |ùXν Dn . φ1 ðñ xD,My |ùX

νrnÐvs φ1, for some node v P Nodes
x∆,My |ùXν φ1 ˚m φ2 ðñ there exists maps M1,M2 such that dompM1q X dompM2q “ H,

M “ M1 Y M2 and x∆,Miy |ù
X
ν φi, for i “ 1, 2

x∆,My |ùXν φ1 ´́̊ m φ2 ðñ for all maps M1 such that dompM1q X dompMq “ H
and x∆,M1y |ù

X
ν φ1, we have x∆,M1 Y My |ùXν φ2
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The semantics of the boolean connectives is standard, thus we omit it for brevity.
The combined Separation Logic of Architectures and Maps (SLam) is the extension

of SLa which allows SLk
m sentences to occur as atomic propositions. A SLam formula

is interpreted over structures pA, ∆,Mq, where A “ xD,Iy is an architecture, ∆ is a
deployment and M is a map, by a satisfaction relation pA, ∆,Mq |ùXν φ parameterized
by a valuation ν : IVar Y NVar Ñ Id Y Nodes, as before, and an interpretation X :
IPred Y NPred Ñ

Ť

kě1 2Idk
Y 2Idk

, such that XpPq Ď Id#pPq, when P P IPred, and
XpPq Ď Nodes#pPq, when P P NPred.

Both SLa and SLmuse predicate symbols, whose interpretation is the least solution
of a system of inductive definitions of the form:

Ppx1, . . . , x#Pq Ð ρa, where P P IPred and x1, . . . , x#pPq P IVar
Qpn1, . . . , n#Qq Ð ρm, where Q P NPred and n1, . . . , n#pQq P NVar

where the logical fragments used for the rules of the system are given by the syntax:

ρa :“ x “ y | x , y | empa | ppxq( b | ppxq
D

( b | ppxq �́ b | ppxq
D

�́ b |
Ppx1, . . . , x#Pq | ρ

1
a ˚ ρ

2
a | Dx . ρ1a

ρm :“ t1 “ t2 | t1 , t2 | empm | t1 ÞÑ t2 | Qpt1, . . . , t#Qq | ρ
1
m ˚m ρ

2
m | Dn . ρ

1
m

The main restriction here is that all predicate symbols occur at positive polarity within
the rules, which ensures the monotonicity of the rules and the existence of least solu-
tions. The following example defines two common structures, used in many applica-
tions.

Example 7. A pipeline architecture, starting with x and ending with y, where xp refers
to the component previous to x and yn to the component next to y:

pipepx, xp, yn, yq Ð emp ˚ x “ yn ˚ xp “ y
pipepx, xp, yn, yq Ð Dz . inpxq �́ outpxpq ˚ outpxq

D

( inpzq ˚ pipepz, x, yn, yq

An acyclic list map, stretching between nodes n and m:

alistpn,mq Ð emp ˚m n “ m
alistpn,mq Ð Dn1 . n ÞÑ n1 ˚m n , m ˚m alistpn1,mq

�

7.1 Synchronization and Deployment Rules

We consider universally quantified sentences that describe the interactions of the archi-
tecture, of the form @x . φmpxq Ñ φapxq, where x “ x1, . . . , xm P IVar, φm is a formula
of SLmand φa is a formula of SLa. We call these sentences synchronization rules in the
following.

Example 8. The synchronization rule below requires that each two components de-
ployed on neighbouring map nodes interact via their in and out ports, respectively:

@x@y . pDnDm . n , m^ n ÞÑ m ˚m Jm ^ x { n^ y { mq Ñ

inpxq
D

�́ outpyq ˚ outpyq
D

�́ inpxq ˚ Ja

�
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The following formula states that an identifier belongs to an existing component,
i.e. is allocated. We recall that the set PFun of port symbols is finite is finite.

allocapxq
def
“

˜

ł

pPPFun

ppxq( ppxq

¸

´́̊ Ka

We write Dax . φ as a shorthand for Dx . allocapxq^φ and @ax . φ for @x . allocapxq Ñ φ.
In a similar way, we define the set of nodes that are part of the domain of the map:

allocmpnq
def
“ n ÞÑ n ´́̊ Km

and write Dmn . φ (resp. @mn . φ) for Dn . allocmpnq ^ φ (resp. @n . allocmpnq Ñ φ).
We can now specify deployment rules, which are sentences such as:

@axDmn . x { n (every component is deployed)
@mnDax . x { n (every node has a deployed component)

@mn@ax@ay . x { n^ y { n Ñ x “ y (at most one component is deployed on each node)

Note that we need SLam to write syncrhonization rules, whereas deployment rules can
be written using only SL.m We state the following synthesis problem:

Definition 8 (Architecture Synthesis). Given a SLmsentence φ, synchronization rules
Φ1, . . . , Φk and deployment rules Ψ1, . . . , Ψ`, find a SLa sentence ψ such that the fol-
lowing SLam formula is valid:

˜

φ^
k
ľ

i“1

Φi ^
ľ̀

i“1

Ψi

¸

Ñ ψ

Example 9. Considering the formula DnDm . alistpn,mq (Example 7), the syncrhoniza-
tion rule:

pΦq @x@y . pDnDm . n , m^ n ÞÑ m ˚ Jm ^ x { n^ y { mq Ñ

inpxq
D

�́ outpyq ˚ outpyq
D

�́ inpxq ˚ Ja

and the deployment rules:

pΨ1q @axDmn . x { n
pΨ2q @mnDax . x { n
pΨ3q @mn@ax@ay . x { n^ y { n Ñ x “ y

a solution to the architecture synthesis problem is DxDxpDynDy . pipepx, xp, yn, yq (Ex-
ample 7). �

7.2 Reconfiguration Axioms

In this section we tackle the problem of defining the reconfiguration actions. First, we
describe their operational semantics, in terms of updates of the map and the deploy-
ment and then we give their axiomatic semantics in terms of Hoare triples. The latter is
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derived from a set of local axioms, describing the changes to the (small set of) cells af-
fected by the reconfiguration and a frame rule enabling a general weakest pre- (strongest
post-) condition calculus.

A reconfiguration sequence is a set of actions written in the following syntax:

i P IVar, n P NVar, ` P t1, . . . , ku
term :“ n | nil

action :“ n.` “ term | deploypi, nq | deletepnq | n “ new | n “ term | n “ m.`

The operational semantics is given in terms of steps pσ, ∆,Mq{ pσ1, ∆1,M1q where
σ : NVar Ñ Nodes is a store, ∆ and M are the deployment and map functions, and σ1,
∆1 and M1 denote the next values of σ, ∆ and M, respectively. Given a tuple τ P Nodesk

and 1 ď ` ď k, we denote by τ` its `-th element and by τt`Ðαu the tuple with the same
elements as τ except for its `-th element, who is set to α. The following rules define the
reconfiguration steps:

σpnq P dompMq τ “ Mpσpnqqt`Ðσptqu

pσ, ∆,Mq{ pσ, ∆,Mrσpnq Ð τsq
n.` “ t

pσ, ∆,Mq{ pσ, ∆ri Ð σpnqs,Mq
deploypi, nq

σpnq P dompMq M1 “ Mztxσpnq,Mpnqyu
pσ, ∆,Mq{ pσ, ∆,M1q

freepnq

v < dompMq M1 “ M Y txv, p

k
hkkkkikkkkj

nil, . . . , nilqyu
pσ, ∆,Mq{ pσrn Ð vs, ∆,M1q

n “ new

pσ, ∆,Mq{ pσrn Ð σptqs, ∆,Mq
n “ t

σpmq P dompMq
pσ, ∆,Mq{ pσrn Ð Mpσpmqq`s, ∆,Mq

n “ m.`

In order to carry out deductive verification of reconfiguration sequences, we define
the semantics of the reconfiguration actions by the following set of local axioms, the
encompass the principle of local reasoning:

tDm1 . . . Dmk . n ÞÑ pm1, . . . ,mkqu n.` “ t tn ÞÑ pm1, . . . ,m`´1, t,m``1, . . . ,mkqu

tempmu deploypi, nq ti { n^ empmu

tDm . n ÞÑ mu freepnq tempmu

tempmu n “ new tn ÞÑ p

k
hkkkkikkkkj

nil, . . . , nilqu

tn “ m^ empmu n “ t tn “ trm{ns ^ empmu

tm ÞÑ pm1, . . . ,mkqu n :“ m.` tn “ m` ^ m ÞÑ pm1, . . . ,mkqu
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These small axioms define a full predicate transformer calculus by means of the follow-
ing frame rule, that captures the idea of local reasoning:

tφuCtψu
tφ ˚m FuCtψ ˚m Cu

modifpCq X fvpFq “ H

where modifpn :“ newq “ modifpn :“ tq “ modifpn :“ rmsq “ tnu and modifprns :“ tq “
modifpfreepnqq “ H denotes the set of variables whose values are altered by the action.
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