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The rising atmospheric CO 2 level is partly responsible for global warming. Despite numerous warnings from scientists during the past years, nations are reacting too slowly, and thus, we will probably reach a situation needing rapid and effective techniques to reduce atmospheric CO 2 . Therefore, advanced engineering methods are particularly important to decrease the greenhouse effect, for instance, by capturing CO 2 using solvents. Experimental testing of many solvents under different conditions is necessary but time-consuming. Alternatively, modeling CO 2 capture by solvents using a nonlinear fitting machine learning is a rapid way to select potential solvents, prior to experimentation. Previous predictive machine learning models were mainly designed for blended solutions in water using the solution concentration as the main input of the model, which was not able to predict CO 2 solubility in different types of physical solvents. To address this issue, here, we developed a new descriptor-based chemoinformatics model for predicting CO 2 solubility in physical solvents in the form of mole fraction. The input factors include organic structural and bond information, thermodynamic properties, and experimental conditions. We studied the solvents from 823 data, including methanol (165 data), ethanol (138), n-propanol (98), n-butanol (64), n-pentanol (59), ethylene glycol (52), propylene glycol (54), acetone (51), 2-butanone (49), ethylene glycol monomethyl ether (46 data), and ethylene glycol monoethyl ether (47), using artificial neural networks as the machine learning model. Results show that our descriptor-based model predicts the CO 2 absorption in physical solvents with generally higher accuracy and low root-mean-squared errors. Our findings show that using a set of simple but effective chemoinformatics-based descriptors, intrinsic relationships between the general properties of physical solvents and their CO 2 solubility can be precisely fitted with machine learning.

Introduction

Carbon dioxide (CO 2 ) is a major greenhouse gas inducing worldwide global warming [START_REF] Krupa | The greenhouse effect: the impacts of carbon dioxide (CO 2 ), ultraviolet-B (UV-B) radiation and ozone (O 3 ) on vegetation (crops)[END_REF]. The global CO 2 level increased to more than 408 parts per million (ppm) in 2018 compared to about 300 ppm in 1950s (Zhang et al. 2018c, https ://www.co2.earth ). Combustion of chemicals in industry can also lead to significant increase in CO 2 levels within a short period [START_REF] Liu | New insights into thermal decomposition of polycyclic aromatic hydrocarbon oxyradicals[END_REF](Liu et al. , 2018a, b), b). Therefore, engineering methods are currently developed to decrease CO 2 levels rapidly. For instance, CO 2 electrochemical reduction and collection reduces CO 2 emission from the usage of fuel cells [START_REF] Adzic | Platinum monolayer fuel cell electrocatalysts[END_REF][START_REF] Li | Dehydrogenation selectivity of ethanol on close-packed transition metal surfaces: a computational study of monometallic, Pd/Au, and Rh/Au catalysts[END_REF]Li et al. 2018a, b, c). Electrochemical reduction also provides carbon sources for higher value product formation via electrochemistry [START_REF] Aeshala | Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO 2 to fuel[END_REF][START_REF] Padilla | Selective CO 2 electroreduction to C 2 H 4 on porous Cu films synthesized by sacrificial support method[END_REF] Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s1031 1-019-00874 -0) contains supplementary material, which is available to authorized users.

1 3 [START_REF] Singh | Ag-Co bimetallic catalyst for electrochemical reduction of CO 2 to value added products[END_REF]. However, the main drawback of electroreduction is that it cannot directly use the atmospheric CO 2 , which could lead to additional cost for the CO 2 capture.

On the other hand, liquid-based chemical absorption is a common method for CO 2 capture [START_REF] Aaron | Separation of CO 2 from flue gas: a review[END_REF][START_REF] Yu | A review of CO 2 capture by absorption and adsorption[END_REF][START_REF] Li | Advances in CO 2 capture technology: a patent review[END_REF]Zhang et al. 2018a;[START_REF] Koytsoumpa | The CO 2 economy: review of CO 2 capture and reuse technologies[END_REF]. There are some widely reported absorbents, including physical solvents [START_REF] Gui | Solubility of CO 2 in alcohols, glycols, ethers, and ketones at high pressures from[END_REF], alkali [START_REF] Tontiwachwuthikul | Phase compositions and saturated densities for the binary systems of carbon dioxide with ethanol and dichloromethane[END_REF], alkanolamine [START_REF] Paul | Theoretical studies on separation of CO 2 by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC)[END_REF], ionic liquids [START_REF] Dai | Absorption of CO 2 with methanol and ionic liquid mixture at low temperatures[END_REF], and amino acid salts solutions [START_REF] Wei | Amino acid salts for CO 2 capture at flue gas temperatures[END_REF]. Although there are many advanced methods for CO 2 capturing, the most commonly used and economical solvent-based process in industry is still using physical solvents [START_REF] Gui | Solubility of CO 2 in alcohols, glycols, ethers, and ketones at high pressures from[END_REF]. Physical solvents are non-corrosive compared with chemical solvents, requiring only carbon steel construction. Physical solvents such as methanol involve physical affinities such as polarity to dissolve a compound, whereas chemical solvents such as ethanolamines and potassium carbonate rely on chemical reactions. The aim of this paper is to accurately predict the CO 2 solubility in physical solvents at relatively high pressure because higher pressure favors CO 2 recovery.

Testing solvents for CO 2 capture requires numerous experiments to assess optimal conditions, for instance, vapor-liquid equilibrium (VLE) experiments with varying temperatures and CO 2 partial pressures, leading to high labor works and economic costs (Zhang et al. 2018b). To address this issue, machine learning modeling has been proven as a powerful tool to directly predict the CO 2 solubility in solution, with the simple input data of solution concentrations, temperature, and partial CO 2 pressures (Zhang et al. 2018b). Recently, it was found that a generalized input representation that includes different components and compositions of blended solutions (solutions with mixture of at least two components) can precisely predict the CO 2 solubility in seven types of blended solutions [START_REF] Li | Mining the intrinsic trends of CO 2 solubility in blended solutions[END_REF]. Also, due to the nonlinear intrinsic trends of CO 2 solubility, mining the intrinsic trends of CO 2 solubility with varying experimental conditions is particularly important. Previous studies have found that, compared with other theoretical methods, e.g., equation of states (EOS) [START_REF] Duan | An improved model calculating CO 2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[END_REF], molecular dynamics (MD) [START_REF] Murad | A simple molecular dynamics simulation for calculating Henry's constant and solubility of gases in liquids[END_REF], and polynomial fittings, a knowledge-based machine learning can help to mine the intrinsic relationships of CO 2 solubility with high accuracy and much lower computational costs. This indicates that a machine learning model can help to predict the performance of a CO 2 absorbent and optimize its experimental conditions, in a very cost-effective way.

Nonetheless, contrary to blended solutions, it is rather difficult to predict the CO 2 solubility in physical solvents (pure organic solvent without solute) because such a prediction requires precise descriptors that could identify and differentiate different molecular structures. Currently, there are some state-of-the-art descriptors for atomistic simulations, also named 'fingerprints' that could capture the atomic interactions in an atomistic system [START_REF] Behler | Generalized neural-network representation of high-dimensional potential-energy surfaces[END_REF]Li et al. 2017b). However, it sometimes requires a large number of input data with varying hyper-parameters, which limits the training efficiency of the model for nonatomistic simulations.

To predict CO 2 solubility in physical solvents, in this letter, we address this issue by proposing a set of novel chemoinformatics-based descriptors for organic molecules, with the input data of structural and bond information, molecular thermodynamic properties, and experimental conditions. Using 823 data of 11 physical solvents extracted from experimental literature, we found that such a novel representation can help to precisely capture the intrinsic relationships between the physical solvent and CO 2 solubility. With rigorous model evaluations, we found that such a model is general enough to predict the CO 2 solubility in organic solvents with high accuracy, which could help to dramatically reduce experimental budgets of looking for promising solvents and optimal conditions for CO 2 capture.

Experimental

Descriptors

To predict the CO 2 solubility in various physical solvents, the input data of the models should include the descriptors that fully describe the structural and bond information, relevant thermodynamic properties, and experimental operating conditions. To describe the structural and bond information, in this study, we included the number of each element (C, H, and O), number of bonds (C-C, C-H, O-H, C-O, and C=O), molecular weight, numbers of hydrogen donors and acceptors, number of rotatable bond, and molecular complexity (the quantitative structural complexity of a molecule [START_REF] Böttcher | An additive definition of molecular complexity[END_REF])), as the inputs of the model. To provide more information that is potentially relevant to the solubility, several thermodynamic properties including density, vapor density, vapor pressure, dipole moment, and boiling point were also used as input variables. Note that all these data can be easily found from previous experimental measurements in online database. In our study, all these properties were extracted from PubChem [START_REF] Wang | PubChem: a public information system for analyzing bioactivities of small molecules[END_REF]. Our preliminary algorithmic testings show that though the modeling accuracies majorly depend on the input data of structural and bond information, the use of these thermodynamic properties as the input data could further lower down the prediction errors. To test the experimental conditions, temperature and the operating CO 2 partial pressure are also used as the input 1 3

variables [START_REF] Bezanehtak | Vapor-liquid equilibrium for binary systems of carbon dioxide + methanol, hydrogen + methanol, and hydrogen + carbon dioxide at high pressures[END_REF]Tsivintzelis et al. 2004;[START_REF] Secuianu | Phase behavior for carbon dioxide + ethanol system: experimental measurements and modeling with a cubic equation of state[END_REF][START_REF] Secuianu | Phase equilibria experiments and calculations for carbon dioxide + methanol binary system[END_REF][START_REF] Yim | Vapor-liquid equilibria of carbon dioxide + n-propanol at elevated pressure[END_REF][START_REF] Gui | Solubility of CO 2 in alcohols, glycols, ethers, and ketones at high pressures from[END_REF].

Modeling

Machine learning and other algorithmic methods are powerful techniques that can help to address both scientific and engineering issues (Park andJun 2013, 2015). Here, we used artificial neural networks (ANNs) as the machine learning algorithm for data training [START_REF] Zhang | Forecasting with artificial neural networks[END_REF]Li et al. 2017a). Specifically, general regression neural network (GRNN) [START_REF] Specht | A general regression neural network[END_REF]) and multilayer feed-forward neural network [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF][START_REF] Svozil | Introduction to multi-layer feed-forward neural networks[END_REF]) with a backpropagation optimization, namely back-propagation neural network (BPNN) [START_REF] Nawi | A new back-propagation neural network optimized[END_REF], were used as the algorithms. In order to determine the best BPNN, different network architectures of BPNN were modeled. In this article, BPNNs with different numbers of hidden layers and neurons are denoted as X-N-Y and X-N-N-Y, where X is the number of input neurons, N is the number of hidden neurons, and Y is the number of output neurons.

A schematic picture of the artificial neural network (ANN) in the form of a back-propagation neural network (BPNN) is depicted in Fig. 1, with the input, hidden, and output layers. Each circle (neuron) in the input layer represents an independent variable that has potential relationships with the output. The circle (neuron) in the output layer represents the dependent variable, e.g., CO 2 solubility. Each neuron connects to all the other neurons in the layer nearby in the form of weights. The training of an ANN is, essentially, the optimization of the weight values. A sigmoid function was used as the activation function that transfers the input data and weights into the output values.

Being different from BPNN, GRNN has a fixed network architecture with the Gaussian as the activation function [START_REF] Li | Prediction of zeta potential of decomposed peat via machine learning: comparative study of support vector machine and artificial neural networks[END_REF]. More algorithmic principles of the BPNN and GRNN can be found in [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF], [START_REF] Specht | A general regression neural network[END_REF] and [START_REF] Svozil | Introduction to multi-layer feed-forward neural networks[END_REF]. In order to compare the linear and nonlinear fitting results, multiple linear regressions (MLR) were also performed and compared with ANNs.

The modeling processes include the training and testing of the model. For each training and testing, all data were firstly shuffled and then split into the training and testing sets. The training sets were used for the data fitting, while the testing sets were used to validate the predictive capacity of the model. To evaluate the model performance, previous studies have shown that compared with a tedious cross-validation method [START_REF] Browne | Cross-validation methods[END_REF], a sensitivity test could also be more valuable, with significantly less time-consumption and less computational costs (Li et al. 2017a, b;[START_REF] Maeda | Technical note: how to rationally compare the performances of different machine learning models[END_REF]. Therefore, in our study, we used sensitivity tests to evaluate our model. To perform a sensitivity test, multiple training and testing processes were repeated with randomly shuffled data before each modeling. Then, the average root-mean-squared error (RMSE) of the testing set can be acquired. For all the modeling processes in this study, the average RMSE was used as the loss function to evaluate the accuracy of the model (Li et al. 2017a):

where n represents the number of data in the training or testing set, A i represents the actual value, and P i represents the predicted value. In order to define the optimized network architecture, 624 data from [START_REF] Gui | Solubility of CO 2 in alcohols, glycols, ethers, and ketones at high pressures from[END_REF] were used for evaluating the RMSEs of the modeling with varying numbers of hidden neurons and hidden layers, with the reason that experiments done by the same literature would lead to less noises.

Data collection

CO 2 solubility, in the form of mole fraction, in 11 absorbent types, was collected from the experimental literature [START_REF] Bezanehtak | Vapor-liquid equilibrium for binary systems of carbon dioxide + methanol, hydrogen + methanol, and hydrogen + carbon dioxide at high pressures[END_REF]Tsivintzelis et al. 2004;[START_REF] Secuianu | Phase behavior for carbon dioxide + ethanol system: experimental measurements and modeling with a cubic equation of state[END_REF][START_REF] Secuianu | Phase equilibria experiments and calculations for carbon dioxide + methanol binary system[END_REF][START_REF] Yim | Vapor-liquid equilibria of carbon dioxide + n-propanol at elevated pressure[END_REF][START_REF] Gui | Solubility of CO 2 in alcohols, glycols, ethers, and ketones at high pressures from[END_REF]. Their descriptive statistics are listed in Table 1. In the machine learning modeling, 823 data were used. From Table 1, all 1 3

(1) RMSE = � ∑ n i=1 � P i -A i � 2 n ,
these variables are quite diverse, which is well suited for the training of a generalized machine learning model.

Results and discussion

In this section, we show the modeling results of the artificial neural network (ANN) for predicting the CO 2 solubility. Predictive performances of different ANN algorithmic architectures and different models are compared.

Model training and testing

To test the descriptors developed in these studies, we developed a back-propagation neural network (BPNN), a general regression neural network (GRNN), and multiple linear regression (MLR), then we compared their accuracies (Figs. 2,3). For BPNN, the best network architecture with minimized root-mean-squared errors (RMSE) must be found prior in comparison with other machine learning algorithms [START_REF] Maeda | Technical note: how to rationally compare the performances of different machine learning models[END_REF]. Since GRNN has a fixed network architecture, only one type of GRNN was developed in this study.

To define the optimized BPNN architecture, the BPNNs with one and two hidden layers were respectively examined. For each specific network architecture, ten multiple training and testing processes, with randomly shuffled data for each time, were performed and the average RMSEs in the testing set were calculated for each architecture.

Results show that for the network with one hidden layer, the average testing RMSE generally decreases first with the increase in hidden neurons, while it increases after the hidden neuron is larger than 20 (Fig. 2a, red points). This indicates that before the hidden neuron reaches 20, there were generally under-fitting of the data, while after that there would be over-fitting, according to [START_REF] Tetko | Neural network studies. 1. Comparison of overfitting and overtraining[END_REF].

Concerning BPNN with two hidden layers, it can be clearly seen that all the tested architectures yield high average testing RMSEs (Fig. 2a, blue points), indicating an over-fitting phenomenon. With this evaluation, it can be concluded that with our new input descriptors and the literature database, BPNN with a 20-20-1 architecture has the minimized error. This suggests that 20-20-1 is a good network architecture. Though the number of hidden neurons is relatively large, it fulfills the empirical machine learning theory that with relatively large input data, the number of hidden neuron should also be increased in order to provide more weights to construct the complicated nonlinear relationships between the independent and dependent variables.

To evaluate how many training data could lead to a good predictive model, we compared the BPNN (20-20-1) with GRNN and MLR. Sensitivity tests were performed in these three models, with the training percentages of 70%, 80%, and 90% (Fig. 2b). For each training and testing process, all the data were shuffled and then split into the training and testing sets before modeling.

Figure 2b shows the results of the average RMSEs in testing sets after sensitivity tests. Each data point was the averaged RMSE in the testing set from ten repeated training processes. Results reveal that the BPNN (20-20-1) outperforms the GRNN and MLR, having significantly lower average RMSEs in the three training percentages. Compared with GRNN, BPNN in this case has much better performance in capturing the nonlinear relationships between the input and output data. Also, it is expected that BPNN would have better extrapolation predictive capacity than GRNN since GRNN is mainly designed for interpolation with a kernelbased algorithm. Noteworthy, although GRNN has much faster convergence speed when training with a suitable data size [START_REF] Li | Mining the intrinsic trends of CO 2 solubility in blended solutions[END_REF], the BPNN should still be used in this case, to guarantee the predictive accuracy of this model.

To compare the predicted and actual data in both the training and testing sets, selected representative results trained and tested from the data provided by [START_REF] Gui | Solubility of CO 2 in alcohols, glycols, ethers, and ketones at high pressures from[END_REF] are shown in Fig. 3a,b. Results show that with a larger training set, the testing set tends to have higher accuracy with data points close to the y = x diagonal. This indicates that larger training sets could help to more precisely capture the relationships between the chemoinformatics-based descriptors and the CO 2 solubility in physical solvents. To expand the model with larger databases, experimental data from other studies were also added to the training and testing databases, with totally 823 experimental data groups (Table 1). Similar training and testing evaluation processes show that though the predictive accuracy slightly decreases due to the data noise in experiments done by different research groups, the predictive performances of the model are still guaranteed (Fig. 3c,d).

Conclusion

We designed a new descriptor representation that includes structural and bond information, thermodynamic properties of solvent, and experimental operating conditions as the model input variables, to predict CO 2 solubility in physical solvents. A model with a back-propagation algorithm trained from 823 experimental data of alcohol, ketone, and ether solvents shows good accuracy for the prediction of CO 2 solubility. Our comparative analysis shows that a backpropagation neural network (BPNN) with an algorithmic architecture of 20-20-1 can perform minimized errors, outperforming the general regression neural network (GRNN) and linear regression models. This study shows that with a set of reasonable chemoinformatics-based descriptors, CO 2 solubility could be precisely predicted when being dissolved in physical solvents under varying experimental conditions.

Moreover, we show that a machine learning model can be used to predict the performance of a CO 2 absorbent and to optimize its experimental operating conditions. With the future demand of big data analysis, it is expected that such a model with larger and more diverse experimental database could help to meet the demand with more types of organic solvents. It is also expected that a well-trained model with these descriptors could also predict the CO 2 solubility in other more complicated organic solvents. It should be noted that in this study, we selected the structural and bond information, thermodynamic properties, and experimental conditions as the model input data. It is also expected that some other information, e.g, other thermodynamic properties of the organic solvent that have potential correlations with CO 2 solubility, could also help to further improve the model comprehensiveness and applicability when dealing with more types of complicated organic solvents.

Fig. 1

 1 Fig. 1 Structure of the back-propagation neural network (BPNN) developed in this study, with the input, hidden, and output layers. The empty circles represent the neurons of the artificial neural network

Fig. 2 a

 2 Fig. 2 a Average root-mean-squared errors (RMSEs) of the testing sets with different back-propagation neural network (BPNN) hidden architectures. Red circles represent the network with one hidden layer, with the network architecture of 20-N-1, where N represents the number of hidden neurons. Blue squares represent the BPNN with two hidden layers, with the network architecture of 20-N-N-1. Each point is the average testing RMSE after ten training and testing processes with shuffled data. Lower average RMSE of the model indicates a model with better predictive accuracy, such as the single hidden layer model (red data). b RMSEs of back-propagation neural network with a BPNN (20-20-1), general regression neural network (GRNN), and multiple linear regression (MLR) for the prediction of CO 2 solubility with three sizes of training data. Each point represents the average testing RMSE of ten repeated modeling processes with randomly shuffled data

Fig. 3

 3 Fig. 3 Selected typical (a) training and (b) testing results of predicted values versus actual values trained and tested from 624 data groups extracted from Gui et al. (2011). Selected typical (c) training and (d) testing results of predicted values versus actual values trained and tested from 823 data. The percentages of training and testing sets are 80% and 20%, respectively. Results with other training and testing percentages can be found in Figures S1 and S2. The diagonal dashed line represents the line of y = x. The data point which is close to the diagonal dashed line indicates a good prediction

Table 1

 1 Data range of experimental conditions and CO 2 solubility in physical solvents

	Liquid type	No. of data Temperature (K) Pressure (MPa) Solubility (mole fraction) a References
	Methanol	67	288.15-318.15	0.1236-5.5761 0.0062-0.3185	Gui et al. (2011)
		33	278.15-308.15	1.5-7.433	0.0903-0.8869	Bezanehtak et al. (2002)
		65	293.15-323.15	0.48-9.51	0.0254-0.9683	Secuianu et al. (2009)
	Ethanol	70	288.15-318.15	0.058-5.7168	0.0055-0.3278	Gui et al. (2011)
		46	293.15-353.15	0.52-11.08	0.0187-0.9125	Secuianu et al. (2008)
		22	313.2-328.2	1.6-9.42	0.0778-0.8437	Tsivintzelis et al. (2004)
	n-propanol	65	288.15-318.15	0.1313-5.7216 0.0102-0.3743	Gui et al. (2011)
		33	313.15-343.15	1.39-12.74	0.0469-0.9183	Yim et al. (2010)
	n-butanol	64	288.15-318.15	0.0667-5.9165 0.0045-0.4116	Gui et al. (2011)
	n-pentanol	59	288.15-318.15	0.1537-5.8762 0.0097-0.4255	Gui et al. (2011)
	Ethylene glycol	52	288.15-318.15	0.0942-5.7898 0.0023-0.0954	Gui et al. (2011)
	Propylene glycol	54	288.15-318.15	0.1277-5.4291 0.0028-0.114	Gui et al. (2011)
	Acetone	51	288.15-318.15	0.0617-5.3291 0.0075-0.6992	Gui et al. (2011)
	2-butanone	49	288.15-318.15	0.1583-5.4216 0.023-0.759	Gui et al. (2011)
	Ethylene glycol monomethyl ether 46	288.15-318.15	0.1253-5.4271 0.0082-0.5926	Gui et al. (2011)
	Ethylene glycol monoethyl ether	47	288.15-318.15	0.1012-5.5651 0.0162-0.5999	Gui et al. (2011)

a Mole fraction (x) = n g n g +n l (n g and n l denote the amounts of gas and solvent, respectively)
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