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Abstract
The rising atmospheric CO2 level is partly responsible for global warming. Despite numerous warnings from scientists dur-
ing the past years, nations are reacting too slowly, and thus, we will probably reach a situation needing rapid and effective 
techniques to reduce atmospheric CO2. Therefore, advanced engineering methods are particularly important to decrease the 
greenhouse effect, for instance, by capturing CO2 using solvents. Experimental testing of many solvents under different con-
ditions is necessary but time-consuming. Alternatively, modeling CO2 capture by solvents using a nonlinear fitting machine 
learning is a rapid way to select potential solvents, prior to experimentation. Previous predictive machine learning models 
were mainly designed for blended solutions in water using the solution concentration as the main input of the model, which 
was not able to predict CO2 solubility in different types of physical solvents. To address this issue, here, we developed a new 
descriptor-based chemoinformatics model for predicting CO2 solubility in physical solvents in the form of mole fraction. The 
input factors include organic structural and bond information, thermodynamic properties, and experimental conditions. We 
studied the solvents from 823 data, including methanol (165 data), ethanol (138), n-propanol (98), n-butanol (64), n-pentanol 
(59), ethylene glycol (52), propylene glycol (54), acetone (51), 2-butanone (49), ethylene glycol monomethyl ether (46 data), 
and ethylene glycol monoethyl ether (47), using artificial neural networks as the machine learning model. Results show 
that our descriptor-based model predicts the CO2 absorption in physical solvents with generally higher accuracy and low 
root-mean-squared errors. Our findings show that using a set of simple but effective chemoinformatics-based descriptors, 
intrinsic relationships between the general properties of physical solvents and their CO2 solubility can be precisely fitted 
with machine learning.

Keywords  Chemoinformatics · Greenhouse gas · CO2 · Absorption · Solubility · Physical solvent · Chemical descriptors · 
Prediction · Machine learning · Artificial neural network (ANN)

Introduction

Carbon dioxide (CO2) is a major greenhouse gas inducing 
worldwide global warming (Krupa and Kickert 1993). The 
global CO2 level increased to more than 408 parts per mil-
lion (ppm) in 2018 compared to about 300 ppm in 1950s 
(Zhang et al. 2018c, https​://www.co2.earth​). Combustion of 
chemicals in industry can also lead to significant increase in 
CO2 levels within a short period (Liu et al. 2014, 2018a, b). 
Therefore, engineering methods are currently developed to 
decrease CO2 levels rapidly. For instance, CO2 electrochemi-
cal reduction and collection reduces CO2 emission from the 
usage of fuel cells (Adzic et al. 2007; Li and Henkelman 
2017; Li et al. 2018a, b, c). Electrochemical reduction also 
provides carbon sources for higher value product formation 
via electrochemistry (Aeshala et al. 2013; Padilla et al. 2017; 
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Singh et al. 2017). However, the main drawback of electro-
reduction is that it cannot directly use the atmospheric CO2, 
which could lead to additional cost for the CO2 capture.

On the other hand, liquid-based chemical absorption is a 
common method for CO2 capture (Aaron and Tsouris 2005; 
Yu et al. 2012; Li et al. 2013; Zhang et al. 2018a; Koyt-
soumpa et al. 2018). There are some widely reported absor-
bents, including physical solvents (Gui et al. 2011), alkali 
(Tontiwachwuthikul et al. 1992), alkanolamine (Paul et al. 
2008), ionic liquids (Dai et  al. 2015), and amino acid 
salts solutions (Wei et al. 2014). Although there are many 
advanced methods for CO2 capturing, the most commonly 
used and economical solvent-based process in industry is 
still using physical solvents (Gui et al. 2011). Physical sol-
vents are non-corrosive compared with chemical solvents, 
requiring only carbon steel construction. Physical solvents 
such as methanol involve physical affinities such as polarity 
to dissolve a compound, whereas chemical solvents such as 
ethanolamines and potassium carbonate rely on chemical 
reactions. The aim of this paper is to accurately predict the 
CO2 solubility in physical solvents at relatively high pressure 
because higher pressure favors CO2 recovery.

Testing solvents for CO2 capture requires numerous 
experiments to assess optimal conditions, for instance, 
vapor–liquid equilibrium (VLE) experiments with varying 
temperatures and CO2 partial pressures, leading to high labor 
works and economic costs (Zhang et al. 2018b). To address 
this issue, machine learning modeling has been proven as a 
powerful tool to directly predict the CO2 solubility in solu-
tion, with the simple input data of solution concentrations, 
temperature, and partial CO2 pressures (Zhang et al. 2018b). 
Recently, it was found that a generalized input representa-
tion that includes different components and compositions 
of blended solutions (solutions with mixture of at least 
two components) can precisely predict the CO2 solubility 
in seven types of blended solutions (Li and Zhang 2018). 
Also, due to the nonlinear intrinsic trends of CO2 solubility, 
mining the intrinsic trends of CO2 solubility with varying 
experimental conditions is particularly important. Previ-
ous studies have found that, compared with other theoreti-
cal methods, e.g., equation of states (EOS) (Duan and Sun 
2003), molecular dynamics (MD) (Murad and Gupta 2000), 
and polynomial fittings, a knowledge-based machine learn-
ing can help to mine the intrinsic relationships of CO2 solu-
bility with high accuracy and much lower computational 
costs. This indicates that a machine learning model can help 
to predict the performance of a CO2 absorbent and optimize 
its experimental conditions, in a very cost-effective way.

Nonetheless, contrary to blended solutions, it is rather 
difficult to predict the CO2 solubility in physical solvents 
(pure organic solvent without solute) because such a pre-
diction requires precise descriptors that could identify and 
differentiate different molecular structures. Currently, there 

are some state-of-the-art descriptors for atomistic simula-
tions, also named ‘fingerprints’ that could capture the atomic 
interactions in an atomistic system (Behler and Parrinello 
2007; Li et al. 2017b). However, it sometimes requires a 
large number of input data with varying hyper-parameters, 
which limits the training efficiency of the model for non-
atomistic simulations.

To predict CO2 solubility in physical solvents, in this let-
ter, we address this issue by proposing a set of novel chem-
oinformatics-based descriptors for organic molecules, with 
the input data of structural and bond information, molecu-
lar thermodynamic properties, and experimental conditions. 
Using 823 data of 11 physical solvents extracted from exper-
imental literature, we found that such a novel representa-
tion can help to precisely capture the intrinsic relationships 
between the physical solvent and CO2 solubility. With rigor-
ous model evaluations, we found that such a model is gen-
eral enough to predict the CO2 solubility in organic solvents 
with high accuracy, which could help to dramatically reduce 
experimental budgets of looking for promising solvents and 
optimal conditions for CO2 capture.

Experimental

Descriptors

To predict the CO2 solubility in various physical solvents, 
the input data of the models should include the descriptors 
that fully describe the structural and bond information, rele-
vant thermodynamic properties, and experimental operating 
conditions. To describe the structural and bond information, 
in this study, we included the number of each element (C, 
H, and O), number of bonds (C–C, C–H, O–H, C–O, and 
C=O), molecular weight, numbers of hydrogen donors and 
acceptors, number of rotatable bond, and molecular com-
plexity (the quantitative structural complexity of a molecule 
(Böttcher 2016)), as the inputs of the model. To provide 
more information that is potentially relevant to the solubility, 
several thermodynamic properties including density, vapor 
density, vapor pressure, dipole moment, and boiling point 
were also used as input variables. Note that all these data 
can be easily found from previous experimental measure-
ments in online database. In our study, all these properties 
were extracted from PubChem (Wang et al. 2009). Our pre-
liminary algorithmic testings show that though the modeling 
accuracies majorly depend on the input data of structural and 
bond information, the use of these thermodynamic proper-
ties as the input data could further lower down the prediction 
errors. To test the experimental conditions, temperature and 
the operating CO2 partial pressure are also used as the input 
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variables (Bezanehtak et al. 2002; Tsivintzelis et al. 2004; 
Secuianu et al. 2008, 2009; Yim et al. 2010; Gui et al. 2011).

Modeling

Machine learning and other algorithmic methods are pow-
erful techniques that can help to address both scientific 
and engineering issues (Park and Jun 2013, 2015). Here, 
we used artificial neural networks (ANNs) as the machine 
learning algorithm for data training (Zhang et al. 1998; Li 

et al. 2017a). Specifically, general regression neural network 
(GRNN) (Specht 1991) and multilayer feed-forward neural 
network (Hornik et al. 1989; Svozil et al. 1997) with a back-
propagation optimization, namely back-propagation neural 
network (BPNN) (Nawi et al. 2013), were used as the algo-
rithms. In order to determine the best BPNN, different net-
work architectures of BPNN were modeled. In this article, 
BPNNs with different numbers of hidden layers and neurons 
are denoted as X–N–Y and X–N–N–Y, where X is the number 

Fig. 1   Structure of the back-propagation neural network (BPNN) 
developed in this study, with the input, hidden, and output layers. The 
empty circles represent the neurons of the artificial neural network 

(ANN) algorithmic architecture. The input and output layers, respec-
tively, represent the input and output variables of the model. Each 
neuron interconnects with all the neurons in the adjacent layers
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of input neurons, N is the number of hidden neurons, and Y 
is the number of output neurons.

A schematic picture of the artificial neural network 
(ANN) in the form of a back-propagation neural network 
(BPNN) is depicted in Fig. 1, with the input, hidden, and 
output layers. Each circle (neuron) in the input layer rep-
resents an independent variable that has potential relation-
ships with the output. The circle (neuron) in the output 
layer represents the dependent variable, e.g., CO2 solubil-
ity. Each neuron connects to all the other neurons in the 
layer nearby in the form of weights. The training of an 
ANN is, essentially, the optimization of the weight values. 
A sigmoid function was used as the activation function 
that transfers the input data and weights into the output 
values.

Being different from BPNN, GRNN has a fixed network 
architecture with the Gaussian as the activation function (Li 
et al. 2015). More algorithmic principles of the BPNN and 
GRNN can be found in Hornik et al. (1989), Specht (1991) 
and Svozil et al. (1997). In order to compare the linear and 
nonlinear fitting results, multiple linear regressions (MLR) 
were also performed and compared with ANNs.

The modeling processes include the training and testing 
of the model. For each training and testing, all data were 
firstly shuffled and then split into the training and testing 
sets. The training sets were used for the data fitting, while 
the testing sets were used to validate the predictive capacity 
of the model. To evaluate the model performance, previous 
studies have shown that compared with a tedious cross-val-
idation method (Browne 2000), a sensitivity test could also 
be more valuable, with significantly less time-consumption 

and less computational costs (Li et al. 2017a, b; Maeda 
2018). Therefore, in our study, we used sensitivity tests to 
evaluate our model. To perform a sensitivity test, multiple 
training and testing processes were repeated with randomly 
shuffled data before each modeling. Then, the average 
root-mean-squared error (RMSE) of the testing set can be 
acquired. For all the modeling processes in this study, the 
average RMSE was used as the loss function to evaluate the 
accuracy of the model (Li et al. 2017a):

where n represents the number of data in the training or 
testing set, A

i
 represents the actual value, and P

i
 represents 

the predicted value. In order to define the optimized network 
architecture, 624 data from Gui et al. (2011) were used for 
evaluating the RMSEs of the modeling with varying num-
bers of hidden neurons and hidden layers, with the reason 
that experiments done by the same literature would lead to 
less noises.

Data collection

CO2 solubility, in the form of mole fraction, in 11 absor-
bent types, was collected from the experimental literature 
(Bezanehtak et al. 2002; Tsivintzelis et al. 2004; Secuianu 
et al. 2008, 2009; Yim et al. 2010; Gui et al. 2011). Their 
descriptive statistics are listed in Table 1. In the machine 
learning modeling, 823 data were used. From Table 1, all 

(1)RMSE =

�

∑n

i=1

�

P
i
− A

i

�2

n
,

Table 1   Data range of experimental conditions and CO2 solubility in physical solvents

a Mole fraction (x) =  ng

ng+nl

 (ng and nl denote the amounts of gas and solvent, respectively)

Liquid type No. of data Temperature (K) Pressure (MPa) Solubility (mole fraction)a References

Methanol 67 288.15–318.15 0.1236–5.5761 0.0062–0.3185 Gui et al. (2011)
33 278.15–308.15 1.5–7.433 0.0903–0.8869 Bezanehtak et al. (2002)
65 293.15–323.15 0.48–9.51 0.0254–0.9683 Secuianu et al. (2009)

Ethanol 70 288.15–318.15 0.058–5.7168 0.0055–0.3278 Gui et al. (2011)
46 293.15–353.15 0.52–11.08 0.0187–0.9125 Secuianu et al. (2008)
22 313.2–328.2 1.6–9.42 0.0778–0.8437 Tsivintzelis et al. (2004)

n-propanol 65 288.15–318.15 0.1313–5.7216 0.0102–0.3743 Gui et al. (2011)
33 313.15–343.15 1.39–12.74 0.0469–0.9183 Yim et al. (2010)

n-butanol 64 288.15–318.15 0.0667–5.9165 0.0045–0.4116 Gui et al. (2011)
n-pentanol 59 288.15–318.15 0.1537–5.8762 0.0097–0.4255 Gui et al. (2011)
Ethylene glycol 52 288.15–318.15 0.0942–5.7898 0.0023–0.0954 Gui et al. (2011)
Propylene glycol 54 288.15–318.15 0.1277–5.4291 0.0028–0.114 Gui et al. (2011)
Acetone 51 288.15–318.15 0.0617–5.3291 0.0075–0.6992 Gui et al. (2011)
2-butanone 49 288.15–318.15 0.1583–5.4216 0.023–0.759 Gui et al. (2011)
Ethylene glycol monomethyl ether 46 288.15–318.15 0.1253–5.4271 0.0082–0.5926 Gui et al. (2011)
Ethylene glycol monoethyl ether 47 288.15–318.15 0.1012–5.5651 0.0162–0.5999 Gui et al. (2011)
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these variables are quite diverse, which is well suited for the 
training of a generalized machine learning model.

Results and discussion

In this section, we show the modeling results of the artifi-
cial neural network (ANN) for predicting the CO2 solubil-
ity. Predictive performances of different ANN algorithmic 
architectures and different models are compared.

Model training and testing

To test the descriptors developed in these studies, we devel-
oped a back-propagation neural network (BPNN), a gen-
eral regression neural network (GRNN), and multiple lin-
ear regression (MLR), then we compared their accuracies 
(Figs. 2, 3). For BPNN, the best network architecture with 
minimized root-mean-squared errors (RMSE) must be found 
prior in comparison with other machine learning algorithms 
(Maeda 2018). Since GRNN has a fixed network architec-
ture, only one type of GRNN was developed in this study.

To define the optimized BPNN architecture, the BPNNs 
with one and two hidden layers were respectively exam-
ined. For each specific network architecture, ten multiple 
training and testing processes, with randomly shuffled data 
for each time, were performed and the average RMSEs in 
the testing set were calculated for each architecture.

Results show that for the network with one hidden layer, 
the average testing RMSE generally decreases first with 
the increase in hidden neurons, while it increases after 
the hidden neuron is larger than 20 (Fig. 2a, red points). 
This indicates that before the hidden neuron reaches 20, 
there were generally under-fitting of the data, while after 
that there would be over-fitting, according to Tetko et al. 
(1995).

Concerning BPNN with two hidden layers, it can be 
clearly seen that all the tested architectures yield high aver-
age testing RMSEs (Fig. 2a, blue points), indicating an 
over-fitting phenomenon. With this evaluation, it can be 
concluded that with our new input descriptors and the lit-
erature database, BPNN with a 20-20-1 architecture has the 
minimized error. This suggests that 20-20-1 is a good net-
work architecture. Though the number of hidden neurons 
is relatively large, it fulfills the empirical machine learning 
theory that with relatively large input data, the number of 
hidden neuron should also be increased in order to provide 
more weights to construct the complicated nonlinear rela-
tionships between the independent and dependent variables.

To evaluate how many training data could lead to a good 
predictive model, we compared the BPNN (20-20-1) with 
GRNN and MLR. Sensitivity tests were performed in these 

three models, with the training percentages of 70%, 80%, 
and 90% (Fig. 2b). For each training and testing process, all 
the data were shuffled and then split into the training and 
testing sets before modeling.

Figure 2b shows the results of the average RMSEs in test-
ing sets after sensitivity tests. Each data point was the aver-
aged RMSE in the testing set from ten repeated training pro-
cesses. Results reveal that the BPNN (20-20-1) outperforms 
the GRNN and MLR, having significantly lower average 
RMSEs in the three training percentages. Compared with 
GRNN, BPNN in this case has much better performance 
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Fig. 2   a Average root-mean-squared errors (RMSEs) of the testing 
sets with different back-propagation neural network (BPNN) hid-
den architectures. Red circles represent the network with one hidden 
layer, with the network architecture of 20-N-1, where N represents 
the number of hidden neurons. Blue squares represent the BPNN 
with two hidden layers, with the network architecture of 20-N–N-1. 
Each point is the average testing RMSE after ten training and test-
ing processes with shuffled data. Lower average RMSE of the model 
indicates a model with better predictive accuracy, such as the single 
hidden layer model (red data). b RMSEs of back-propagation neural 
network with a BPNN (20-20-1), general regression neural network 
(GRNN), and multiple linear regression (MLR) for the prediction of 
CO2 solubility with three sizes of training data. Each point represents 
the average testing RMSE of ten repeated modeling processes with 
randomly shuffled data
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in capturing the nonlinear relationships between the input 
and output data. Also, it is expected that BPNN would have 
better extrapolation predictive capacity than GRNN since 
GRNN is mainly designed for interpolation with a kernel-
based algorithm. Noteworthy, although GRNN has much 
faster convergence speed when  training with a suitable data 
size (Li and Zhang 2018), the BPNN should still be used in 
this case, to guarantee the predictive accuracy of this model.

To compare the predicted and actual data in both the train-
ing and testing sets, selected representative results trained 
and tested from the data provided by Gui et al. (2011) are 
shown in Fig. 3a, b. Results show that with a larger training 
set, the testing set tends to have higher accuracy with data 
points close to the y = x diagonal. This indicates that larger 
training sets could help to more precisely capture the rela-
tionships between the chemoinformatics-based descriptors 
and the CO2 solubility in physical solvents. To expand the 
model with larger databases, experimental data from other 
studies were also added to the training and testing databases, 
with totally 823 experimental data groups (Table 1). Similar 
training and testing evaluation processes show that though 
the predictive accuracy slightly decreases due to the data 
noise in experiments done by different research groups, the 
predictive performances of the model are still guaranteed 
(Fig. 3c, d).

Conclusion

We designed a new descriptor representation that includes 
structural and bond information, thermodynamic properties 
of solvent, and experimental operating conditions as the 
model input variables, to predict CO2 solubility in physi-
cal solvents. A model with a back-propagation algorithm 
trained from 823 experimental data of alcohol, ketone, and 
ether solvents shows good accuracy for the prediction of 
CO2 solubility. Our comparative analysis shows that a back-
propagation neural network (BPNN) with an algorithmic 
architecture of 20-20-1 can perform minimized errors, out-
performing the general regression neural network (GRNN) 
and linear regression models. This study shows that with a 
set of reasonable chemoinformatics-based descriptors, CO2 
solubility could be precisely predicted when being dissolved 
in physical solvents under varying experimental conditions.

Moreover, we show that a machine learning model can 
be used to predict the performance of a CO2 absorbent and 
to optimize its experimental operating conditions. With the 
future demand of big data analysis, it is expected that such a 
model with larger and more diverse experimental database 
could help to meet the demand with more types of organic 
solvents. It is also expected that a well-trained model with 
these descriptors could also predict the CO2 solubility in 

Fig. 3   Selected typical (a) 
training and (b) testing results 
of predicted values versus actual 
values trained and tested from 
624 data groups extracted from 
Gui et al. (2011). Selected 
typical (c) training and (d) test-
ing results of predicted values 
versus actual values trained 
and tested from 823 data. The 
percentages of training and 
testing sets are 80% and 20%, 
respectively. Results with other 
training and testing percentages 
can be found in Figures S1 and 
S2. The diagonal dashed line 
represents the line of y = x. The 
data point which is close to the 
diagonal dashed line indicates a 
good prediction
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other more complicated organic solvents. It should be noted 
that in this study, we selected the structural and bond infor-
mation, thermodynamic properties, and experimental condi-
tions as the model input data. It is also expected that some 
other information, e.g, other thermodynamic properties of 
the organic solvent that have potential correlations with CO2 
solubility, could also help to further improve the model com-
prehensiveness and applicability when dealing with more 
types of complicated organic solvents.
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