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Abstract
Climate change is predicted to induce more extreme events such as storms, heat waves, drought and floods. Dust storms are 
frequently occurring in northern China. Those storms degrade air quality by decreasing visibility and inducing cardiovascular 
and respiratory diseases. To control dust storms, the Chinese government has launched a large-scale afforestation program by 
planting trees in arid areas, but the effectiveness of this program is still uncertain because the trajectories and altitudes of dust 
transport are poorly known. In particular, afforestation would be effective only if dust transport occurs at low altitudes. To 
test this hypothesis, we analyzed the extreme dust storm from May 2 to 7, 2017, which resulted in record-breaking dust loads 
over northern China. For that, we used dust RGB-composite data from the Himawari-8 satellite and the cloud-aerosol lidar, 
moderate-resolution imaging spectroradiometer data, and surface monitoring data. The source regions of the dust storms were 
identified using the hybrid single-particle Lagrangian integrated trajectory model and infrared pathfinder satellite observa-
tion. Contrary to our hypothesis, results show that dust is transported at high altitude of 1.0–6.5 km over long distances from 
northwestern China. This finding explains why the afforestation has not been effective to prevent this storm. Results also 
disclose the highest particulate matter (PM) concentrations of 447.3 μg/m3 for  PM2.5 and 1842.0 μg/m3 for  PM10 during the 
dust storm. Those levels highly exceed Chinese ambient air quality standards of 75 μg/m3 for  PM2.5 and 150 μg/m3 for  PM10.

Keywords Regional severe haze · Massive dust storm · Satellite observation · Optical properties

Introduction

Climate change is predicted to modify the frequency of 
extreme events such as heat waves, heavy precipitation, 
and storms (Beniston et al. 2007). Dust affects atmospheric 

dynamics, cloud formation, and air temperature (Evan et al. 
2008; Seinfeld and Pandis 2016; Kim et al. 2017). Sky-
borne dusts are transported over long distance and degrade 
air quality by decreasing visibility and inducing cardiovas-
cular and respiratory diseases (Ichinose et al. 2008; Shen 
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et al. 2009; Johnston et al. 2011; Kang et al. 2013; Crooks 
et al. 2016; Kim et al. 2017; Bi et al. 2016; Sun et al. 2018). 
Eastern Asia is one of the largest sources of dust worldwide 
with annual amounts of about 800 Tg atmospheric dust, fre-
quently occurring in spring (Zhang et al. 1997). Asian dust 
storms originate mainly from the desert and Gobi regions 
located in Inner Mongolia of China, the Taklamakan Desert 
in Xin Jiang Province of China, and southern Mongolia 
(Bishop et al. 2002; Shao and Dong 2006; Cao et al. 2008; 
Tan et al. 2017). In China, desert and Gobi areas account 
for about 13% of the country’s total land area and are thus 
abundant sources of dust storms (Song 2004).

In recent years, dust storms have seriously impacted 
northern China (NC) and downwind areas. For instance, an 
intense dust storm occurred from March 29 to April 7, 2007, 
during which the average concentration of total suspended 
particulate matter (TSP) was 4198.6 μg/m3 with an extreme 
peak of 9607.4 μg/m3 on March 31 (Huang et al. 2010). In 
Beijing,  PM10 concentrations for two dust storms on March 
28 and April 28, 2012 reached 755 μg/m3and 767 μg/m3, 
respectively, reducing visibility and causing substantial eco-
nomic losses (Liu et al. 2014).

Aerosol spectral optical properties are primary param-
eters governing scattering and absorption of solar radiation 
(Jung et al. 2017). In addition to aerosols from anthropo-
genic emissions, dust aerosols have prominent influences 
on radiative forcing (IPCC 2013). Aerosol optical thickness 
(AOT) observed by the aerosol robotic network AERONET 
provides an assessment of global aerosol properties (Holben 
et al. 1998). Bi et al. (2016) showed that Asian dust has 
a high light scattering propensity single-scattering albedo 
(SSA) of 0.935 at 550 nm and a low wavelength dependence 
of optical properties, shown by an angström exponent (AE) 
of 0.2 at 440–870 nm.

Ground-based observations and satellite remote sensing 
are used to track the sources, transport paths, and optical 
properties of dust aerosols. For instance, Tong et al. (2012) 

obtained aerosol concentration data from the interagency 
monitoring of protected visual environments network 
(IMPROVE) and analyzed the characteristics of dust storms 
in the western U.S.. The hybrid single-particle Lagrangian 
integrated trajectory model HYSPLIT has been used to 
identify the transport paths of dust storms (Yu et al. 2014; 
Mamouri et al. 2016; Jung et al. 2017; Wang et al. 2017; Sun 
et al. 2018). The vertical structure of dust aerosols based on 
cloud-aerosol lidar with orthogonal polarization (CALIOP) 
is used to track dust storms on a global scale since June 
2006 (Hunt et al. 2009). Satellite-retrieved aerosol optical 
properties, e.g., aerosol optical thickness (AOT), angström 
exponent (AE), and single-scattering albedo (SSA), have 
also been compared with data from the European aero-
sol research lidar network (EARLINET) and AERONET 
(Mamouri et al. 2016).

Here, we analyzed the massive dust storm that occurred 
over northern China during May 2 to 7, 2017 with multiple 
data sources; we determined the origins and track trajec-
tories of air masses with the HYSPLIT model and cloud-
aerosol lidar and infrared pathfinder satellite observation 
(CALIPSO). Additionally, we analyzed the optical proper-
ties of dust aerosols based on data provided by the AER-
ONET network to investigate the radiative impacts of dust 
aerosols.

Experiments

Data sources

The dust red green blue (RGB)-composite product was 
provided at hourly intervals by the Himawari-8 satellite 
and is used to monitor dust transport events (http://rammb 
.cira.colos tate.edu/ramsd is/onlin e/himaw ari-8.asp). The 
composite is produced from a combination of three infra-
red channels of SEVIRI: IR 12.3-IR 11.2 (red), IR 11.2-
IR 8.6 (green), and IR 11.2 (blue). The dust RGB images 
are described in detail by Lensky and Rosenfeld (2008). 
Daily particle concentrations with  PM2.5 and  PM10 from 
May 2 to 7, 2017, were obtained from online monitoring 
and analysis platform for air quality in China, at https ://
www.aqist udy.cn.

The CALIOP instruments provide vertical profiles and 
depolarization measurements of aerosol and cloud layers 
at 532 and 1064 nm near nadir. Detailed information about 
CALIPSO and its instruments is described by Winker et al. 
(2003) and Hunt et al. (2009). This current study used 
total attenuated backscatter at 532 nm and aerosol sub-
types based on color-modulated, altitude-time images of 
CALIPSO, version 3.4, on May 5, 2017, 2:42 Beijing time 
(BT) and May 6, 2017, 3:26 BT.

Fig. 1  a: Himawari-8 satellite RGB-composite images showing dust 
in northern China from May 2 to 7, 2017. The white lines denote Chi-
na’s boundaries. The pink and purple colors represent dust. The dust 
plumes move from west to east. b and c: Daily averaged observed 
concentrations of  PM2.5 and  PM10 (μg/m3), respectively, at the moni-
toring site over China. Sparse dust layer was observed on May 2, 
and visually dense dust plumes are clearly seen over western Inner 
Mongolia at 22:00, May 3. These layers moved to the middle and east 
areas. The most widely affected dust loads were observed over many 
areas in northern China on May 4 and 5. The dust slowly decreased 
and dissipated on May 6 and 7. The daily average values of both 
 PM2.5 and  PM10 in northern China were relatively low on May 2, as 
sporadic higher levels in northern China began to occur on May 3. 
The highest concentrations occurred on May 4 and 5, with the high-
est  PM2.5 and  PM10 concentrations of 447.3 μg/m3 and 1842.0 μg/m3, 
respectively. High  PM2.5 and  PM10 concentrations seriously affected 
air quality. RGB red green blue. PM particulate matter. PM2.5 particu-
lates with a diameter of 2.5 μm or less

◂

http://rammb.cira.colostate.edu/ramsdis/online/himawari-8.asp
http://rammb.cira.colostate.edu/ramsdis/online/himawari-8.asp
https://www.aqistudy.cn
https://www.aqistudy.cn
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Land surface elements of global ecological patterns were 
characterized by an ecophysiographic stratification of the 
earth. The stratification promoted 3923 terrestrial ecologi-
cal land units (ELU). In this study, the data characterizing 
desert, Gobi, and sandy lands were extracted from the ELU 
at a base resolution of 250 m. The Three-North Shelter For-
est Program, launched in 1978, focuses on soil and water 
conservation and desertification control by planting trees in 
semiarid and arid areas. See detail in Zhang et al. (2016).

Moderate-resolution imaging spectroradiometer 
(MODIS) products at the Beijing site (39.98°N, 116.38°E), 
provided by the AERONET, are applied to illustrate dust 

aerosol optical characteristics, at https ://aeron et.gsfc.
nasa.gov. In order to further analyze the effects of fine 
and coarse particles on optical properties, the validated 
aerosol optical thickness (AOT) at 440, 500, 675, 870, and 
1020 nm was obtained during May 2 and 7, 2017. Unfor-
tunately, size distributions on May 3 and 5, AOT and AE 
on May 3, and SSA on May 3, 5, 6, and 7 are not available 
because of missing data. Moreover, we also estimated the 
effects of aerosols on radiative forcing through volume 
aerosol size distributions (dV/dlnr), angström exponent 
(AE) at 440–870 nm, and single-scattering albedo (SSA) 
at 440, 670, 870, and 1020 nm.

Three-North Shelter Forest
Desert, Gobi, Sandy land

Cluster 1
Cluster 2
Cluster 3

Map

Pressure

Air trajectory
Cluster

Fig. 2  72  h air mass backward trajectories at 12 cities from May 2 
to 7, 2017. The locations of the 12 cities are displayed in the mid-
dle map. In the surrounding maps, the airflow back trajectories (blue 
lines) and their clusters (red lines) at each city are presented in the 
top panels, and the pressure characteristics (hPa) of cluster-mean 
back trajectories are shown in the bottom panels. The blue, red, 
and green lines in the pressure diagrams correspond to clusters 1, 2 
and, 3, respectively. Most of the air flows are mainly from northwest 
China. Trajectories were divided into two or three clusters in 12 cit-
ies, and all of the main contribution clusters were found to primarily 
originate from northwestern China and western Outer Mongolia. The 
mean altitude of the trajectories remained between 1.0 and 6.5  km. 

This illustrates why the Three-North Shelter Forest Program did not 
play a role in prevention of the dust storm for this case. This is due to 
the long-range and high-altitude transport of dust, whereas the Three-
North Shelter Forest Program can only mainly improve the local cli-
mate and is good for windbreak and sand fixation. The data of desert, 
Gobi, and sandy land, extracted from the ecological land units (ELU) 
at a base resolution of 250  m, show that abundant dust sources are 
located in the northwest of China (northern Xinjiang, northwestern 
Qinghai and Gansu, and western Inner Mongolia) and the southern 
part of the Outer Mongolia. The airflow carried large amounts of dust 
from this region through high-altitude transport to northern China’s 
provinces during the dust storm

https://aeronet.gsfc.nasa.gov
https://aeronet.gsfc.nasa.gov
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Back‑trajectory model configuration

To investigate the effects of transport sources on air qual-
ity during the dust storm in northern China, the HYSPLIT 
model was used to calculate air mass back trajectories 
(Wang et al. 2009; Yu et al. 2014, http://ready .arl.noaa.
gov/HYSPL IT.php). The 72 h back trajectories were calcu-
lated every 2 h at 100 m above surface from 12 monitoring 
sites of two municipalities, Beijing and Tianjing, and ten 
provincial capital cities: Harbin, Changchun, Shenyang, 
Shijiazhuang, Taiyuan, Xi’an, Xining, Lanzhou, Yinchuan, 
and Hohhot. The national centers for environmental pre-
diction final analyses (NCEP FNL) fields, retrieved from 
NOAA data with a spatial resolution of 0.5 × 0.5° at every 
3 h, were used as input meteorological data.

Results and discussion

Atmospheric characteristics in northern China 
derived from satellite and surface observations

Figure 1a presents dust RGB-composite images during 
May 2 to May 7, 2017. A sparse dust layer is observed on 
May 2 (top image). Then, visually dense dust plumes are 
clearly formed over western Inner Mongolia at 22:00, May 
3. These layers moved to the middle and east areas. The most 
widely affected dust loads are then observed over many areas 
in northern China on May 4 and 5. The dust then slowly 
decreased and dissipated on May 6 and 7 (bottom image).

Figure 1b, c presents the spatial distributions of the daily 
averaged variations of particulate matter  PM2.5 and  PM10 
concentrations at each monitoring station during the dust 
storm.  PM2.5 refers to particulates with a diameter of 2.5 μm 

Fig. 3  CALIPSO a total attenuated backscatter profiles and b aerosol 
subtype at 532 nm on May 5, 2017, 2:42 Beijing time (BT); c total 
attenuated backscatter profiles and d aerosol subtype at 532  nm on 
May 6, 2017, 3:26 BT. The black boxes represent the study regions 
along orbits. The aerosol layer structures including the total attenu-
ated backscatter profiles at 532 nm and aerosol subtypes transporting 
from west to east were captured by two CALIPSO overpass obser-
vations at 2:42, May 5, 2017 and at 3:26, May 6, 2017. On May 5, 
the total attenuated backscatter profiles clearly show the existence 
of multiple aerosol layers over Shaanxi, Shanxi, and Inner Mongo-

lia. Intensive aerosol layers were detected from 1.5 to 8.0  km. The 
aerosol layers for the second overpass on May 6 were slightly lower 
and concentrated between 1.0 and 7.0  km over Qinghai, Ningxia, 
and Inner Mongolia, especially in Inner Mongolia where the height 
reached only up to 1.9  km due to the eastward movements of the 
cyclonic flow. Aerosol subtype images provide information about the 
vertical structures of the aerosol layer. It can be seen that the aerosol 
types are identified as dust accompanied by a small amount of other 
anthropogenic species during the dust storm

http://ready.arl.noaa.gov/HYSPLIT.php
http://ready.arl.noaa.gov/HYSPLIT.php
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or less. The daily average values of both  PM2.5 and  PM10 in 
northern China were relatively low on May 2 (top). Spo-
radic higher levels began to occur on May 3 in northern 
China. Then, the highest concentrations occurred on May 
4 and 5, with the highest  PM2.5 and  PM10 concentrations of 
447.3 μg/m3 and 1842.0 μg/m3, respectively. Those levels 
highly exceed the limits of the GB 3095-2012 Secondary 
Chinese Ambient Air quality Standard CAAQS of 75 μg/
m3 for  PM2.5 and 150 μg/m3 for  PM10. High  PM2.5 and  PM10 
concentrations thus seriously degraded air quality.

Origins of the dust storm engulfing northern China

Figure 2 shows transport pathways of airflow using back-
trajectory analyses during the dust storm. Trajectories were 
classified into two or three clusters in 12 cities. All of the 
main contributing clusters originated from northwestern 
China and western Outer Mongolia. The mean altitude of 
the trajectories remained between 1.0 and 6.5 km. This illus-
trates why the Three-North Shelter Forest Program (Zhang 
et al. 2016) as one of the most enterprising meteorological-
modification programs of the twentieth century in China, did 
not prevent this dust storm. Indeed, this program can only 
improve the local climate at low altitude, e.g., for windbreak 
and sand fixation.

The data from the desert, Gobi, and sandy land, extracted 
from the ecological land units (ELU) at a base resolution of 
250 m, show that abundant dust sources are located in the 
northwest of China, e.g., northern Xinjiang, northwestern 
Qinghai and Gansu, and western Inner Mongolia, and in 
the southern part of the Outer Mongolia. The airflow car-
ried large amounts of dust through high-altitude transport to 
provinces of northern China during the dust storm.

Figure 3 shows that the aerosol layer structures, including 
the total attenuated backscatter profiles at 532 nm and aero-
sol subtypes transporting from west to east, were captured by 
two CALIPSO overpass observations at 2:42, May 5, 2017 
and at 3:26, May 6, 2017. On May 5, the total attenuated 
backscatter profiles clearly show the existence of multiple 
aerosol layers over Shaanxi, Shanxi, and Inner Mongolia. 
Massive aerosol layers were detected from 1.5 to 8.0 km, 
consistent with the previous results (Fig. 3a). The aerosol 
layers for the second overpass on May 6 were slightly lower 
and concentrated between 1.0 and 7.0 km over Qinghai, 
Ningxia, and Inner Mongolia. Yet in Inner Mongolia, the 
aerosol height reached up to 1.9 km due to the eastward 
movements of the cyclonic flow (Fig. 3c).

Aerosol subtype images provide information about the 
vertical structures of the aerosol layer (Fig. 3b, d). Here, 
it can be seen that the aerosol is composed of dust accom-
panied by a small amount of other anthropogenic species 
during the dust storm.

Impacts of dust on optical and radiative variables

Figure 4 presents time series of aerosol optical properties 
at the Beijing site from May 2 to May 7, 2017. We studied 
two types of size distributions: the fine mode with radius 
lower than 0.6 μm and the coarse mode with radius higher 
than 0.6 μm (Dubovik et al. 2002). Figure 4a shows that size 
distributions are primarily influenced by the coarse mode. 
On May 2, the dust storm has not reached Beijing. Then, 
the size distribution is unimodal on May 4. At this date, 
the coarse mode has increased dramatically and the peak 
value of number concentration in the coarse mode is around 
2.2 μm as a result of the dust transport.

The daily averaged trends of aerosol optical thickness 
(AOT) at various different wavelengths from 440 to 1020 nm 
have similar trends, and the amounts of  AOT440nm are the 
highest among them (Fig. 4b). The maximum retrievable 
 AOT440nm value is 2.3 on May 4, when the dust plume is the 
densest. Daily averaged variations of the angström exponent 
(AE) values at 440–870 nm are almost the opposite of the 
AOT (Fig. 4b).

Because the AE presents a negative correlation with par-
ticle diameters (Eck et al. 1999), greatly lower AE values 
reflect larger aerosol particles. As shown by Bi et al. (2016), 
Asian dust has a low wavelength dependence of optical prop-
erties with AE of about 0.2 at 440–870 nm. In addition, 
single-scattering albedo (SSA) is also one of the crucial fac-
tors used in assessing the aerosol effects on radiative forcing 
and climate change (Jacobson 2000; Yu et al. 2000). In our 
results, SSA values at the four wavelengths, 440, 670, 870, 
and 1020 nm, are similar and range from 0.90 to 0.93 with 
an average of 0.92 ± 0.02 on May 2 (Fig. 4c). Subsequently, 
the values increased on May 4, illustrating that external dust 
aerosols may strengthen aerosol scattering.

Conclusion

Severe dust episodes over northern China are caused by 
long-range transported dust from northwestern China and 
western Outer Mongolia. A massive dust storm occurred in 
northern China from May 2 to 7, 2017. The downwind area 
was affected by the dust storm, and the air quality strongly 
deteriorated in a short time. During this period, high  PM2.5 
and  PM10 concentrations were observed in northwestern 
China with maximum values of 447.3 μg/m3 and 1842.0 μg/
m3, respectively. During the storm, aerosols were concen-
trated vertically from 1.0 to 8.0 km, and the aerosol types 
were identified as dust accompanied by a small amount of 
anthropogenic emissions during the dust storm. The dust 
was thus transported at high altitudes, which made the 
Three-North Shelter Forest Program inefficient in this case. 
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Therefore, it needs to accurately locate the source of dust in 
order to reduce hazards of dust storms.

The air mass back-trajectory clusters originated primar-
ily from northwestern China and southern Outer Mongolia. 
Additionally, aerosol size distributions during the dust storm 
were primarily influenced by the coarse mode particles. A 
significant increase in coarse particles led to high concen-
trations of  PM10, especially on May 4. Extreme values of 
aerosol optical thickness and single-scattering albedo (SSA) 
and low values of angström exponent were observed when 
the dust plume was the most dense.
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