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Abstract

In this study, we analyze the absence epileptic seizures using the data recorded
from di�erent layers of somatosensory cortex of absence epileptic rats. We aim
to 1) extract the epileptic activities or sources generating the seizures, and 2)
investigate the temporal changes of seizures. To achieve our goals, we describe
the recorded seizures by a linear superposition of static and dynamic sources.
The static sources are stable and have a �xed structure, while the dynamic
sources can be intermittent, and may be with di�erent locations. Retrieving
the sources and their structures from the recorded seizures helps us to achieve
the desired analysis. Experimental results show the existence of a static source
and three speci�c dynamic sources during the recorded seizures. The dynamic
sources randomly activate with the static source and one of them disappears
towards the end of the seizures. Moreover, it is shown that the spatial locations
of the sources are similar in di�erent absence epileptic rats.

Keywords: Absence epilepsy; seizure; static sources; dynamic sources; static
structure; dynamic structure

1. Introduction

Absence epilepsy is one of the several kinds of epilepsy which is more common
in children [12, 6]. Sudden emergence of seizures associated with appearance
of spike and wave discharges in electroencephalogram (EEG) recordings is the
indication of absence epilepsy [32, 17].

Analysis of absence epileptic seizures has been a challenging problem over the
past decades [5, 30, 4, 27]. For instance, [4] investigates the temporal changes of
the brain activities during seizures using intracranial EEG data recorded from
Genetic Absence Epilepsy Rat from Strasbourg (GAERS), which is one of the
well-validated animal model for absence epilepsy [34]. At �rst, source sepa-
ration methods are applied on temporal sliding windows of the data, and the
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relevant temporal sources are estimated for each window. Then, by compar-
ing the sources in di�erent time windows, it is shown that they become more
stationary after a latency from the onset of seizures.

The analysis of absence epileptic seizures has also been done in humans [31,
42, 30]. For instance in [31], the EEG-fMRI data were acquired from 13 patients
su�ering from absence epilepsy. Then, by applying gamma function regressors
on sliding time windows of the data, and calculating the F-value, it was shown
that the cortical activations and deactivations tend to occur earlier than the
thalamic responses during seizures. As another example in [42], neuromagnetic
sources were volumetrically scanned with accumulated source imaging from 14
patients. Then, e�ective connectivity networks of the entire brain, including the
cortico�thalamo network, were evaluated at the source level through Granger
causality analysis [37]. The obtained results show that the cortico�thalamic
e�ective connectivity increases during seizures. Moreover, the direction of the
connectivity is predominantly from the cortex to the thalamus in the beginning
of seizures.

Neuroscientists investigated a lot the networks involved in seizures and the
spatial localization of their starting points [33, 41]. Several theories have been
suggested about the spatial localization of seizures. Some of them point to cor-
tex as the main origin, while a few of them consider thalamus area as the main
origin of seizures [8]. The most recent theory �lling the gap between cortical
and thalamic origin is that both cortex and thalamus participate in the gener-
ation of seizures [29, 39]. By investigating the non-linear correlations between
the recorded signals from cortex and thalamus in the Wistar Absence Glaxo
from Rijswik (WAG/Rij) rat model, it has been shown that in the beginning of
seizures, somatosensory cortex drives thalamus, while thereafter, somatosensory
cortex and thalamus drive each other until the end of seizures [29]. Existence
of a cortical starting area has also been recognized in GAERS [34].

A second step is now to wonder if one can de�ne a more accurate localization
of epileptic events, by studying what happens in the di�erent layers of the
somatosensory cortex. In this purpose, a data set was acquired in Grenoble
Institute of Neurosciences (GIN) from di�erent layers of somatosensory cortex
of GAERS. In this study, we explore the seizures using the recorded data. We
aim to answer the following questions:

1) Which epileptic activities or sources generate the recorded seizures?
2) How do the recorded seizures change over time?
It must be mentioned that all previous researches have investigated the

seizures using the data recorded from di�erent areas of the brain, however, this
is the �rst study that explores the seizures using the data recorded from one
"column" of the cortex. The data were recorded using a set of very close sen-
sors (leads) distributed along a needle located in somatosensory cortex. Hence,
they were acquired from di�erent layers of a cortex "column". We describe
the recorded seizures by a linear combination of epileptic sources. We assume
that there are two kinds of sources during seizures, static and dynamic sources.
Static sources model the background epileptic activities and dynamic sources
are complementary to static sources in the modelization of spikes, which are the
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typical shapes during a seizure. The static sources are stable and have a �xed
structure with respect to the recording electrode, while the dynamic sources are
intermittent and their positions may change along the seizure. We propose a
method to retrieve the static and dynamic sources and their structures from
the recorded seizures. Then, we analyze the recorded seizures and answer the
mentioned questions using the obtained results.

The initial idea of this study was published in the conference article [1]. In
this study, we present a comprehensive treatment of the initial idea including 1)
the explanation of the data acquisition and the necessary preprocessing steps,
2) the accurate de�nition of the considered model with its physiological and
mathematical reasons, 3) the explanation of the proposed method with all of
its important mathematical details, 4) the veri�cation of the proposed method
using simulations, and 5) the interpretation and cross-validation of the results
obtained from the neural data set.

The rest of the paper is organized as follows. Section 2 introduces the charac-
teristics of the data and the considered model for seizures. Problem formulation
and considered assumptions are stated in Section 3. The proposed method for
estimating the model parameters is explained in Section 4, while Section 5 is
dedicated to simulations and experimental results. Finally, the discussion and
concluding remarks are reported in Section 6.

2. Materials

2.1. Data

The dataset used in this study was recorded from the somatosensory cor-
tex of four adult GAERS. One electrode with sixteen sensors (n = 16) with
an inter-distance of 150µm was perpendicularly inserted in the somatosensory
cortex (Fig. 1), so that the di�erent sensors measured the extracellular �eld
potentials in di�erent layers of somatosensory cortex [20, 28]. The recording
region was accurately determined by neuroscientists before the data acquisi-
tion. The sampling frequency was fs = 20 kHz. More details about the data
acquisition process can be found in [18]. All the experiments were submitted
and approved by the local Ethical Committee and European Union guidelines
(directive 86/609/EEC).

Appearance of spikes in seizures is the most important indication of absence
epilepsy. In the recorded data, the spikes appear in di�erent channels simul-
taneously during the seizures because the data has been acquired very locally.
Hence, we can consider each n = 16 spikes (at the same time) as one time win-
dow, and consider each seizure as a train of spike time windows as shown in Fig.
1.

2.2. Model for Seizures

In our work regarding spatio-temporal modeling of absence seizures [2], we
assumed hidden states during a seizure. Each spike of a seizure is produced when
one of the hidden states is activated. We also assumed that each state has a
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Figure 1: From left to right, implementation scheme, recording electrode, a seizure and a
time window (length of 87.5ms) Each time window represents a spike recorded on a electrode
constituted of n = 16 sensors, and shows the recorded signals in di�erent layers of the cortex.
The seizure onset and the end of the seizure are indicated by tonset and to�set, respectively.

few speci�c substates, which generate the spike in that state. By extracting the
states and their substates, we showed that there were some speci�c substates
which were common in all of the states. Hence, they always participated in
the generation of spikes during the seizures. In other words, there were some
background activities during the seizures. Based on these results, we consider
the following static-dynamic model in this study.

We assume that some physical activities or phenomena are taking place
during the seizures and the sensors on the electrode record the instantaneous
linear combination of the signals produced by the mentioned sources. Since
somatosensory cortex is the main onset region of seizures, we assume that the
sources are located in the vicinity of the recording electrode. The mixture of the
signals is considered linear and instantaneous due to the quasi-static assumption
of Maxwell's laws. We assume that there are two kinds of sources during the
seizures, static and dynamic sources.

Static Sources: The position of the static sources is �xed. The static
sources always participate in the generation of the seizures. The static sources
statistically can be non-stationary. For instance, their amplitude may change
in di�erent time windows, however, they are always on and contribute in the
generation of the data. The contribution of the static sources in the generation
of the data is shown by a matrix called the static structure. The number of
static sources is �xed and equal to m (m < n).

Dynamic Sources: Unlike static sources, a dynamic source sometimes
participates in the generation of the data, and it may be o� in some of the
time windows. The location of dynamic sources may change in di�erent layers
of somatosensory cortex over time. In each time window, the contribution of
the dynamic sources in the generation of the data is shown by a matrix called
the dynamic structure. The number of dynamic sources in each time window is
unknown.

Schematic diagrams of the considered model for three time windows are
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shown in Fig. 2. All of the sources and their structures in di�erent time windows
are unknown and we should retrieve them from the recorded seizures. In the
following, we explain how the time windows are considered for a seizure.

Figure 2: Static and dynamic sources for three consecutive time windows. The static sources
(s1, s2, s3) and the dynamic sources (u1, u2) are shown in the left and right sides of the
sensors, respectively. The position of the static sources with respect to the sensors is �xed,
while the position of the dynamic sources change.

2.3. Time Windows of Seizures

As mentioned in subsection 2.1, we consider each n = 16 spikes (at the same
time) as one time window as shown in Fig. 1. For this purpose, we must at
�rst separate the seizures from the data, and then, detect the spikes during the
seizures.

Since the amplitude of the signals changes signi�cantly at the beginning and
at the end of the seizures, we separate the seizures from the data by simple
thresholding. Since the data are intracranial recordings and they are not too
noisy, we employ the thresholding method for separating the seizures from the
data. However, if the data were noisy such as scalp EEG recordings, more
e�cient methods such as proposed in [25] are required for separating the seizures
from the data. A good survey on seizure detection methods can be found in
[3]. It is also worth mentioning that the focus of this study is on analyzing
the seizures, however, the data between seizures are also valuable. These data
can be processed to predict the occurrence of seizures. For instance, authors
of [24] analyzed the data between seizures using a well-known criterion called
permutation entropy, and achieved the average anticipation time around 4.9 s.
The data analyzed in [24] were EEG data acquired from GAERS rats.

Once the seizures are separated from the data, we individually detect the
spikes for each seizure following the proposed method in [35] and construct the
time windows (each of length 87.5 ms, L = 1750 samples). We also align the
time windows using the improved version of Woody's method proposed in [10]
to achieve higher correlation among the time windows, and get accurate results.
Finally, the time windows are consecutively placed for each seizure separately.
Thus, a seizure constituted by K spikes, is represented by the concatenation of
its K elementary time windows. Hence, we remove the part of the recordings,
which are not directly related to spikes. Now, we de�ne our problem on the
time windows of a seizure for estimating the model parameters.
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3. Problem statement

3.1. Problem Formulation

Assume that the considered seizure has K elementary time windows, and
each time window consists of L samples. For the kth time window, we express
the data at each time instant t as follows:

y(k)(t) = As(k)(t) + B(k)u(k)(t) + n(k)(t) t = 1, 2, ..., L (1)

where y
(k)
t = [y

(k)
1 (t), ..., y

(k)
n (t)]T ∈ IRn, A ∈ IRn×m and s

(k)
t = [s

(k)
1 (t), ..., s

(k)
m (t)]T

∈ IRm represent the recorded signals on the sensors, the static structure and
the static sources, respectively. If we assume that the total number of dy-
namic sources activated in the kth time window is equal to rk, B(k) ∈ IRn×rk

and u
(k)
t = [u

(k)
1 (t), ..., u

(k)
rk (t)]T ∈ IRrk show the dynamic structure and the

dynamic sources, respectively. It should be noted that A is common to all

time windows, while B(k) is changing on each time window. Finally, n
(k)
t =

[n
(k)
1 (t), ..., n

(k)
n (t)]T ∈ IRn is an independent and identically distributed (i.i.d.)

noise vector at di�erent sensors, which is considered to be a zero-mean Gaussian
noise with an unknown covariance matrix ΣN ∈ IRn×n.

For each time window k (k = 1, 2, ...,K), if we concatenate the L vectors
(samples) of the recorded signals, the static sources, the dynamic sources and
the noise, we obtain the matrices Y(k) ∈ IRn×L, S(k) ∈ IRm×L, U(k) ∈ IRrk×L

and N(k) ∈ IRn×L. Therefore, (1) can be written as:

Y(k) = AS(k) + B(k)U(k) + N(k) (2)

Hence, the set of unknown parameters (Θ) can be expressed as

Θ = {A,
K⋃
k=1

{S(k), rk ,B
(k),U(k)}} (3)

We aim to extract Θ using recorded signals in all of the time windows, i.e., Y(k)

for k = 1, 2, ...,K.

3.2. Known Characteristics of The System

The following assumptions are considered in the procedure of parameters
extraction.

(A1) The number of static sources (m) is a constant for all the seizures, and
it is determined by physiological reasons.

Neuroscientists have spatially and temporally explored the spike and wave
discharges generating the seizures, and they have shown that these spike and
wave discharges are similar in di�erent seizures of a speci�c rat [18, 29, 34]. In
other words, there is intra-rat similarity between the seizures. We use this suit-
able physiological information to obtain m. In fact, we expect to obtain results
with intra-rat similarity. For this purpose, we extract the model parameters by
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considering di�erent m. Then, the number of static sources which leads to the
results with better intra-rat similarity is considered as the optimum number of
static sources. It is worth mentioning that the similarity between results can be
measured by the cross correlation coe�cient.

(A2) The total number of static and dynamic sources (m+ rk) is less than
the number of sensors (n) in each time window.

Consider (2) without presence of noise:

Y(k) = [A B(k)]

[
S(k)

U(k)

]
(4)

If we assume [A B(k)] ∈ IRn×(m+rk) is known, it is needed to compute the
inverse of [A B(k)] for estimating the sources. Therefore, m + rk ≤ n and
[A B(k)] must be a full column rank matrix.

(A3) The columns of A are unit norm.
To omit the scaling ambiguity problem in separation of the static sources,

the columns of A are considered unit norm vectors [15].
(A4) Static sources and dynamic sources are considered uncorrelated in each

time window.
When the sources are considered uncorrelated, it means that there is no

linear synchronization between them. Mathematically, we can write:

1

L

L∑
t=1

s(k)(t)u(k)(t)
T

= 0 ∈ IRm×rk

1

L

L∑
t=1

s(k)(t)s(k)(t)
T

= Λ(k)
s ∈ IRm×m

1

L

L∑
t=1

u(k)(t)u(k)(t)
T

= Λ(k)
u = I ∈ IRrk×rk (5)

where Λ
(k)
s is the auto-correlation matrix of the static sources in the kth time

window and unknown. It is a diagonal matrix with positive entries which are
not necessarily constant during di�erent time windows. Auto-correlation matrix

of dynamic sources (Λ
(k)
u ) is considered equal to identity matrix (I) in order to

omit the scaling ambiguity problem in separation of dynamic sources [15].
(A5) The dynamic sources are considered statistically independent in each

time window.
There is no synchronization between the dynamic sources, and they may

randomly activate in each time window. Hence, we assume that they are sta-
tistically independent. It should be noted that two random variables (X,Y )
are independent when their joint probability distribution is the product of their
marginal probability distributions, i.e.,

pX,Y (x, y) = pX(x) pY (y) (6)
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If X and Y are independent, then, they are also uncorrelated because

EX,Y (xy) = EX(x)EY (y) (7)

However, the reverse of this remark is not correct. This means that if X and
Y are uncorrelated, then they are not essentially independent. Hence, indepen-
dency is a stronger condition than uncorrelatedness [15].

(A6) The noise is uncorrelated with all of the sources in each time window.
Since the noise is zero-mean and independent of the sources, it is uncorrelated

with all of the sources in each time window, i.e.,

1

L

L∑
t=1

s(k)(t)n(k)(t)
T

= 0 ∈ IRm×n

1

L

L∑
t=1

u(k)(t)n(k)(t)
T

= 0 ∈ IRrk×n (8)

Now, the problem statement is complete. The goal is estimating the set of
unknown parameters (Θ) from the time windows of a recorded seizure (Y(k) for
k = 1, 2, ...,K) based on the known characteristics of the model.

4. Proposed Method

At �rst, we estimate the static structure (A) and the number of dynamic
sources in each time window (rk). Then, the dynamic sources (U(k)) are ob-
tained in each time window. Finally, we estimate the static sources (S(k)) and
the dynamic structure (B(k)) in each time window.

4.1. Extraction of The Static Structure and The Number of Dynamic Sources

We follow the proposed method in [44], regarding the joint diagonalization
of a set of target matrices, to estimate the static structure and the number
of dynamic sources in each time window. Since the sources are uncorrelated
according to (A4), we solve the following optimization problem:

Θ̂1 = argmin
Θ1

g(Θ1)

Θ1 = {A,
K⋃
k=1

{Λ(k)
s , rk ,R

(k)
B }}

g(Θ1) =

K∑
k=1

‖R(k)
y −AΛ(k)

s AT −B(k)

I︷︸︸︷
Λ(k)
u B(k)T︸ ︷︷ ︸

R
(k)
B

‖2F (9)

where R
(k)
B = B(k)Λ

(k)
u B(k)T , ‖.‖F denotes the Frobenius norm, and the auto-

correlation matrix of the recorded signals (R
(k)
y ∈ IRn×n) in the kth time window
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is calculated as follows:

R(k)
y =

1

L

L∑
t=1

y(k)(t)y(k)(t)
T

(10)

It should be mentioned that Λ
(k)
s is not an important parameter, but it must

be estimated during the optimization. The other noticeable point is that the

rank of R
(k)
B is equal to rk, and since rk < n, it is a low-rank matrix. We use

this information to extract the number of dynamic sources (rk) in each time
window.

The following constraints must also be considered in the optimization:
c1) The columns of A are unit norms.

c2) Λ
(k)
s is diagonal with positive entries.

c3) R
(k)
B is a low-rank and positive semide�nite matrix (R

(k)
B � 0).

We use alternating least square (ALS) method to solve the optimization
problem. We consider some feasible initial values for Θ1, then, we alternately
perform the following steps until the convergence of the parameters.

Step 1. Assuming Λ
(k)
s and R

(k)
B for k = 1, 2, ...,K are �xed, we have:

Â = argmin
A

K∑
k=1

‖R(k)
y −AΛ(k)

s AT −R
(k)
B ‖

2
F

s.t. diag(ATA) = I (11)

where diag(X) keeps the diagonal entries of X, and makes the other entries
equal to zero. This constrained optimization problem can easily be solved using
gradient-projection (GP) method [22] (see Appendix A).

Step 2. Assuming A and R
(k)
B are �xed, we have:

Λ̂(k)
s = argmin

Λ
(k)
s

‖R(k)
y −AΛ(k)

s AT −R
(k)
B ‖

2
F

s.t. Λ(k)
s = diag(Λ(k)

s ), Λ(k)
s � 0 (12)

This optimization problem is solved using non-negative least square (NNLS)
method if we consider the vectorization form of all matrices in the problem
(see Appendix B). This step must be performed for all of the time windows
(k = 1, 2, ...,K) separately.

Step 3. Assuming A and Λ
(k)
s are �xed, we have:

R̂
(k)
B = argmin

R
(k)
B

‖R(k)
y −AΛ(k)

s AT −R
(k)
B ‖F

s.t. R
(k)
B � 0, R

(k)
B is low-rank. (13)

This step must also be performed for all of the time windows (k = 1, 2, ...,K)
separately. We will explain later why we remove the power two in the objective
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function. Since we must impose R
(k)
B to be a low-rank matrix, we use the penalty

parameter to minimize both the objective function and the rank of R
(k)
B . Hence,

we have:

R̂
(k)
B = argmin

R
(k)
B

‖R(k)
y −AΛ(k)

s AT −R
(k)
B ‖F + λ(k) rank(R

(k)
B )

s.t. R
(k)
B � 0 (14)

where λ(k) is a penalty parameter which helps to minimize the rank of R
(k)
B .

Since minimization of rank function is an NP-hard problem [36], we approximate

rank(R
(k)
B ) with Tr{R(k)

B } which is a well-known convex relaxation for this func-
tion [11, 26]. The obtained optimization problem is very similar to the square
root LASSO problem [9, 23], and it can be converted to a semide�nite program-
ming (SDP) as shown in Appendix C. The main advantage of the square-root
LASSO is that the penalty parameter can be obtained independently from vari-
ance of the noise. This is the main reason that we dropped the power of two in
the objective function considered in (13). The �nal optimization problem can
be solved using well known solvers like sdpt3 and cvx [40].

We repeat Step 1, Step 2, and Step 3 until convergence, i.e., the param-
eters do not signi�cantly change. Hence, the static structure (Â), the auto-

correlation matrix of static sources (Λ̂
(k)
s ) and R̂

(k)
B for k = 1, 2, ...,K are esti-

mated. Finally, the number of dynamic sources in each time window is obtained
as follows:

r̂k = rank(R̂
(k)
B ) (15)

4.2. Extraction of Dynamic Sources

Consider the singular value decomposition (SVD) of the static structure as
follows:

A = V Σ QT , V = [v1 ...vm︸ ︷︷ ︸
V1

vm+1 ...vn︸ ︷︷ ︸
V2

] (16)

where V1 ∈ IRn×m is an orthonormal basis for the columns of A and V2 ∈
IRn×(n−m) spans the null space of A because we know that rank(A) = m.
Hence, if we left multiply both sides of (2) by VT

2 , we can omit the contribution
of the static sources in each time window:

VT
2 Y(k)︸ ︷︷ ︸
Y′(k)

= VT
2 AS(k)︸ ︷︷ ︸

0

+ VT
2 B(k)︸ ︷︷ ︸
B′(k)

U(k) + VT
2 N(k)︸ ︷︷ ︸
N′(k)

(17)

where Y
′(k) ∈ IR(n−m)×L, B

′(k) ∈ IR(n−m)×rk and N
′(k) ∈ IR(n−m)×L are re-

spectively the projected data, the projected dynamic structure and the projected
noise in the kth time window. The distribution of each column of the projected
noise is N (0,VT

2 ΣNV2). The important point here is that we must be sure that
B

′(k) is not equal to zero because the dynamic sources must be kept. According
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to (A2), since we assumed that [A B(k)] ∈ IRn×(m+rk) is a full rank matrix,
each column of B(k) certainly exists in the space of V2, and hence, B

′(k) would
not be equal to zero. Now, we can extract the dynamic sources in each time
window.

According to (A5), since we assumed that the dynamic sources are statis-
tically independent, we are faced with an overdetermined BSS problem in the
presence of noise. Hence, independent component analysis (ICA) can be ap-
plied to extract the dynamic sources (U(k)) from noisy measurements [7]. We
use JADE algorithm to extract the dynamic sources [13]. Since we have esti-
mated the number of dynamic sources (rk) in the previous part, the dimension

of the separating matrix W(k) ∈ IRrk×(n−m) is known, and regarding (17), we
get:

W(k)Y
′(k) = W(k)B

′(k)U(k) + W(k)N
′(k) (18)

In fact, ICA tries to make the rows of W(k)Y
′(k) as much independent as

possible. After applying ICA, the dynamic sources (Û(k)) are determined.
For each time window, the explained procedure must be applied to retrieve

the dynamic sources in all of the time windows.

4.3. Extraction of Static Sources and Dynamic Structure

When the static structure (A) and the dynamic sources (U(k)) are deter-
mined, we can extract the static sources (S(k)) and the dynamic structure (B(k))
in each time window using the maximum log-likelihood estimator (MLE). It can
be shown that minimizing the following objective function leads to �nding the
MLE solution of the parameters:

q(S(k),B(k)) = ‖Y(k) −AS(k) −B(k)U(k)‖2F (19)

This objective function can simply be minimized using alternation minimization.
For each time window, (19) must be minimized to retrieve the static sources

(Ŝ(k)) and the dynamic structure (B̂(k)) in all of the time windows.
By determination of the static sources and the dynamic structure in all of

the time windows, all parameters of the model are determined.

5. Simulation and Experimental Results

In this section, we �rst show the e�ciency of the proposed method using
simulated data. Then, the results obtained from depth recordings are presented.

5.1. Simulations

5.1.1. Data Generation

We generate the data according to (1) for each time window. The simulated
data are di�erent from the neural data, but we aim to provide simple signals
with the same assumptions as the spikes in seizures, and check the e�ciency of
the di�erent steps of the proposed method. We consider K = 50 time windows
(each of length L = 100), n = 10 sensors, m = 5 static sources, and at most

11



n − m = 5 dynamic sources in each time window. The number of dynamic
sources (rk) is chosen randomly between 1 and 5 in each time window. Then,
we generate the static structure A by a random matrix of size 10 × 5 with
zero-mean and unit-variance i.i.d. Gaussian entries followed by normalizing the
columns. In each time window, the static sources are considered as a mixture
of three sine signals with di�erent frequencies as follows:

s
(k)
i (t) =

3∑
j=1

αikj sin(2π(10i+ 3j − 10)f0 t)

i = 1, 2, ..., 5, k = 1, 2, ..., 50,

1≤ t ≤ 100 (20)

where f0 = 1
L = 0.01. The amplitude of sine signals (αikj) is uniformly dis-

tributed between 0 and 1. The static sources are not stationary because the
amplitudes αikj change in di�erent time windows, and according to (A4), they
are uncorrelated with each other because they have di�erent frequencies in each
time window. The entries of the dynamic structure in each time window B(k)

∈ IR10×rk are independently chosen from zero-mean and unit-variance Gaussian
distribution. The dynamic sources in each time window are again considered
sine signals as follows:

u
(k)
i (t) =

√
2L

3

3∑
j=1

sin(2π(10i+ 3j + 40)f0 t)

i = 1, ..., rk, k = 1, 2, ..., 50,

1≤ t ≤ 100 (21)

where
√

2L
3 is equal to

√
200
3 in order to have unit norm dynamic sources. Ac-

cording to (A4) and (A5), the frequencies are selected such that the dynamic
sources are mutually independent and uncorrelated with the static sources. Fi-
nally, each column of the noise N(k) is generated from Gaussian distribution
with zero-mean and covariance matrix σ2

0I ∈ IR10×10 for all of the time win-
dows. We also use the following criteria to evaluate the performance of the
proposed method in estimation of the parameters:

ErS = mean
k

‖S(k) − Ŝ(k)‖2F
‖S(k)‖2F

, ErA =
‖A− Â‖2F
‖A‖2F

, Err = mean
k

|rk − r̂k|
rk

ErU = mean
k: rk=r̂k

‖U(k) − Û(k)‖2F
‖U(k)‖2F

, ErB = mean
k: rk=r̂k

‖B(k) − B̂(k)‖2F
‖B(k)‖2F

(22)

where X̂ means estimated X. It should be noted that Err is not squared. We
also consider the signal to noise (SNR) ratio as follows for the simulations:

SNR = 10 log(
1

K

K∑
k=1

‖Y(k) −N(k)‖2F
‖N(k)‖2F

) (23)
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5.1.2. Results

It is worth noting that we assume that the number of static sources (m = 5)
is known during the simulations.

First Simulation: In this simulation, we consider σ2
0 such that SNR =

20 dB. The values of the criteria introduced in (22) are reported in the �fth row
of Table 1. Moreover, the actual and estimated number of dynamic sources in
each time window are shown in Fig. 3.

Figure 3: The actual and estimated number of dynamic sources in di�erent time windows
(SNR = 20 dB).

As shown in Fig 3, the estimated number of dynamic sources is often equal
to the actual number. To see the behavior of the actual and estimated sources,
the third and �fth static sources and their estimations during the 20th and 21th

time window are zoomed in Fig. 4.

Figure 4: The actual and estimated static sources during the 20th and 21th time window.
The vertical dashed line shows the boundary of the time windows.

The normalized squared error (‖S(k) − Ŝ(k)‖2F /‖S(k)‖2F ) for the static sources
in these time windows are 0.038 and 0.183, respectively. The performance is
excellent for the 20th time window where the number of sources is correctly
estimated. Conversely, the performance is not very good (as showed both by
the high squared error and visual inspection) for the 21th time window where
the number of dynamic sources was not estimated correctly (see Fig. 3).
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Second Simulation: In this simulation, we repeat the �rst simulation for
di�erent SNR. The values of the criteria introduced in (22) are reported in
Table 1.

Table 1: Performance of the proposed method in di�erent SNR.

SNR( dB) ErA ErS ErU ErB Err

5 0.146 0.233 0.178 0.127 0.136

10 0.033 0.151 0.097 0.106 0.079

15 0.004 0.089 0.078 0.096 0.041

20 0.002 0.046 0.022 0.037 0.019

25 ≤ 0.001 0.006 ≤ 0.001 ≤ 0.001 0.002

In a speci�c time window in which the number of dynamic sources was
obtained correctly in di�erent SNR, the estimated signals for the �rst static
source are shown in Fig. 5. These results con�rm the e�ciency of the proposed
method in retrieving the model parameters.

Figure 5: The actual and estimated signals for the �rst static source in a speci�c time window
in di�erent SNR. The top left �gure shows the actual static source.

5.2. Depth Recordings

We recall that the dataset was acquired from four absence epileptic rats using
an electrode with n = 16 sensors. The recorded data from each rat consisted
of few seizures, and each seizure was a train of spike time windows. We apply
the proposed method on time windows of a seizure to extract the static and
dynamic sources and their structures.

5.2.1. Parameter Extraction (Training Phase)

Since there is no prior information about the number of static sources (m),
we apply the proposed method on the seizures for di�erent m and select the
one which has suitable biophysiological interpretation. As explained in (A1),
the suitable model order must lead to results with intra-rat similarity. In other
words, the results should be similar in di�erent seizures of a GAERS rat [18].
Considering this point, the best result is obtained by consideringm = 1 for all of

14



the seizures. Since a single static source is su�cient (m = 1), the static structure
A ∈ IRn×m reduces to a simple vector with n = 16 entries. We consider one
of the seizures of the �rst rat which consists of K = 390 time windows as the
training seizure to show the results.

The obtained static structure (A) and static sources (s
(k)
1 (t)) in di�erent time

windows for the training seizure are shown in Fig. 6 (for better representation,
we normalized the static sources). It can be observed that the static sources in
di�erent time windows are similar, hence, we can consider them as one cluster.
The average of this cluster is shown in red. In fact, we can represent all the
static sources by only one pattern which is the average of the cluster.

Figure 6: The estimated static structure (left) and the estimated static source in di�erent
time windows (right) for the training seizure. To better show the static sources, they are
normalized. The average of the static sources is shown in red.

The estimated number of dynamic sources is also equal to one (rk = 1)
in all of the time windows of the training seizure. The extracted dynamic

structure (B(k)) and source (u
(k)
1 (t)) in di�erent time windows of the training

seizure are shown in Fig. 7 (for better representation, the dynamic structures
are normalized).

Figure 7: The estimated dynamic structure (left) and the estimated dynamic source in di�erent
time windows (right) for the training seizure. To better show the dynamic structures, they
are normalized.
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By observing the estimated dynamic sources, it can be understood that
there are a few kinds of dynamic sources in the training seizure. Therefore, we
partition the estimated dynamic sources using k-means clustering. The obtained
results are shown in the right side of Fig. 8.

Figure 8: There are three clusters in the dynamic sources. The average of each cluster is
shown in red.

As shown in Fig. 8, there are three clusters in the dynamic sources. It
should be noted that the suitable criterion for choosing the number of clusters
in dynamic sources is that the averages of the clusters corresponding to dy-
namic sources must have intra-rat similarity, i.e., the results should be similar
in di�erent seizures of a speci�c rat [18]. After determination of the clusters,
we also separate their corresponding dynamic structures which are shown in the
left side of Fig. 8. The red curves show the averages of the clusters.

Based on the obtained results, we can conclude that there are one static
source that we can interpret as modeling the background activity, and three
kinds of dynamic sources during the training seizure, which model the di�erent
shapes of the spikes and their variability. A linear superposition of the back-
ground activity and a dynamic source generates the data in each time window
of the training seizure. In fact, this remark answers the �rst question mentioned
in Section 1, and it is illustrated in Fig. 9. We recall that the �rst question was
about the epileptic sources generating the recorded seizures.
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Figure 9: One kind of the dynamic spikes (sources) is added to the background spike (static
source) to generate the spike time windows during the training seizure. MUX stands for
multiplexer which only allows one dynamic spike to pass in each time window.

Since one kind of dynamic sources participate in the generation of the data in
each time windows, we can assign a cluster to each time window. The sequence
of clusters for the training seizure is shown in Fig. 10.

Figure 10: Sequence of clusters for the training seizure.

As shown, all kinds of dynamic sources participate in the generation of the
data in the beginning of the training seizure, while in the end of the training
seizure, the �rst and the third dynamic sources just participate in the generation
of the data. As mentioned in the beginning of Section 1, the recent theory about
the origin of seizures states that in the beginning of seizures, somatosensory
cortex drives thalamus, while thereafter, somatosensory cortex and thalamus
drive each other until the end of seizures. In fact, a change point exists in
the middle of seizures. What we observe in Fig. 10 con�rms the existence
of such change point during the seizures because one of the sources suddenly
disappears in the middle of the seizure. In fact, this paragraph answers the
second question mentioned in Section 1. We recall that the second question was
about the temporal changes of the recorded seizures.
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5.2.2. Results For Other Seizures of The First Rat

We have intra-rat similarity between the results obtained from the seizures
of the �rst rat. This means that the extracted average of the clusters are similar
to the results obtained from the training seizure. The sequence of the clusters
for one of the seizures which consists of K = 88 time windows is shown in Fig.
11. As shown, again, in the end of the seizure, the �rst and the third dynamic
sources only participate in the generation of the seizure.

Figure 11: Sequence of clusters for one of the seizures from the �rst rat which consists of
K = 88 spike time windows. It is worth mentioning that the time scale di�ers from Fig. 10
due to the di�erent number of spikes in the seizures.

5.2.3. Results For Other Rats

For other rats, when we extract the model parameters, the interpretable
results are again obtained by considering one static source (m = 1). The es-
timated number of dynamic sources is also equal to one (rk = 1) in each time
window. Moreover, the same model as Fig. 6 and Fig. 8 can be considered
after clustering the sources, i.e., there are three kinds of dynamic sources and a
static source. Furthermore, one kind of dynamic sources completely disappears
towards the end of the seizures.

For instance, the results obtained from one of the seizures of the second rat
are shown in Figs. 12 and 13. Moreover, the sequence of clusters is shown in
Fig. 14.

Figure 12: The static structure (left) and sources (right) obtained from one of the absence
seizures of the second rat with K = 560 time windows.
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Figure 13: The dynamic structures (left) and sources (right) obtained from one of the absence
seizures of the second rat with K = 560 time windows.

Figure 14: Sequence of clusters for one of the seizures of the second rat which consists of
K = 560 time windows.

The noticeable point is that the obtained sources in the second rat are dif-
ferent from the ones in the �rst rat, however, the obtained static structure
and averages of clusters for the dynamic structures are similar to ones in the
�rst rat. This means that there is no inter-rat similarity between the obtained
sources, while there is inter-rat similarity between the obtained structures. This
is quantitatively shown in subsection 5.2.5. Since the structures are related to
the arrangement of the sources around the sensors, we can conclude that the
origins of the sources are similar in these two rats. Similar results are obtained
in other rats. The basic results for one of the other rats are brought in Appendix
D.
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5.2.4. Adaptation of The Average of Clusters to The Training Seizure

Now, we want to check if the results of clustering (averages of clusters)
are adapted to the training seizure or not. For this purpose, we calculate the
reconstruction error as explained in the following.

By considering the obtained static structure, the average of the normalized
static sources, the average of the normalized dynamic structures, and the average
of the dynamic sources respectively as a, s, bj (j = 1, 2, 3) and uj (j = 1, 2, 3),

each time window of the training seizure (Y(k)) and its reconstruction (Ŷ(k))
can be expressed as:

Y(k) = α(k)a sT +

3∑
j=1

β
(k)
j bju

T
j︸ ︷︷ ︸

Ŷ(k)

+N(k) (24)

where α(k) and β
(k)
j are the scaling coe�cients because we have normalized the

parameters of the model. One of β
(k)
j (j = 1, 2, 3) is non-zero, and two of them

are zero for each time window. Since we already clustered the dynamic sources
and structures, the zero entries are known. It can be shown that the MLE

solution of α(k) and non-zero β
(k)
j are as follows:

α̂(k) = Tr{Y(k) saT }, β̂
(k)
j = Tr{Y(k)ujb

T
j } (25)

Now, we can de�ne the reconstruction error as follows:

Ertrain =
1

K

K∑
k=1

‖Y(k) − Ŷ(k)‖2F
‖Y(k)‖2F

(26)

This error is equal to 0.03 for the training seizure indicating that the obtained
results of clustering are compatible with the training seizure. Now, we want to
check if the results of clustering (average of clusters) are also adapted to the
other seizures or not.

5.2.5. Cross-Validation (Testing Phase)

We �rst perform the cross-validation for the seizures of the same rat. We
consider one of the seizures as the testing seizure. Then, using the obtained
parameters from the training seizure and regarding (24), we estimate the best
kind of dynamic source and structure, and scaling coe�cients for each time
window of the testing seizure. If we again employ the MLE method, we get:

{ĵ, α̂(k), β̂
(k)
j } = argmin

j,α(k),β
(k)
j

‖Y(k) − α(k)a sT − β(k)
j bju

T
j ‖2F (27)

By determination of the parameters, the reconstructed time window is calcu-
lated as follows:

Ŷ(k) = α̂(k)a sT + β̂
(k)

ĵ
bĵu

T
ĵ

(28)
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Now, we calculate the reconstruction error as follows to check the compatibility
of the parameters, obtained from the training seizure, with the testing seizure:

Ertest =
1

Ktest

Ktest∑
k=1

‖Y(k) − Ŷ(k)‖2F
‖Y(k)‖2F

(29)

whereKtest shows the number of time windows in the considered testing seizure.
We perform the proposed training and testing phase on �ve seizures of the �rst
rat. The last seizure is the seizure considered in the previous part. The results
of the reconstruction are reported in Table 2.

Table 2: Reconstruction error for 5 di�erent seizures of the �rst rat. The seizures respectively
consist of K1 = 87, K2 = 94, K3 = 95, K4 = 88 and K5 = 390 time windows. The diagonal
and non-diagonal entries of the table respectively show Ertrain and Ertest.

Training on Testing on

seizure 1 2 3 4 5

1 0.05 0.11 0.13 0.12 0.09

2 0.07 0.06 0.10 0.09 0.08

3 0.08 0.11 0.06 0.10 0.09

4 0.10 0.09 0.10 0.08 0.10

5 0.09 0.10 0.11 0.12 0.03

These results show the intra-rat similarity between seizures, in the sense that
the static and dynamic sources and structures trained on one seizure, provide
an accurate estimation of signals in other seizures. For other rats, the recon-
struction errors have the same order of magnitude as the �rst rat which show
the generality of the results of clustering and proposed model for the recorded
seizures.

Since there is no inter-rat similarity between the sources, the aforementioned
cross-validation framework between two seizures from two di�erent rats is mean-
ingless. Hence, we calculate the cross correlation coe�cient between the results
obtained from the two rats. Tables 3 and 4 respectively show the cross correla-
tion coe�cient between the obtained structures and sources from the �rst and
second rat.

Table 3: The cross correlation coe�cient between the obtained structures from the �rst and
second rat.

First Rat Second Rat

a b1 b2 b3

a 0.97 -0.61 -0.54 -0.72

b1 -0.58 0.94 0.78 0.36

b2 -0.46 0.77 0.98 0.27

b3 -0.77 0.35 0.32 0.96

As reported in Table 3, since the cross correlation coe�cients between the
structures obtained from two seizures of di�erent rats are close to one, we �nd

21



Table 4: The cross correlation coe�cient between the obtained sources from the �rst and
second rat.

First Rat Second Rat

s u1 u2 u3

s 0.83 0.86 0.65 0.53

u1 0.78 0.81 0.64 0.58

u2 0.49 0.46 0.88 0.71

u3 0.63 0.66 0.73 0.79

that the structures in all seizures and all rats are similar, or in other words, they
have inter-rat similarity. Since the structures are corresponding to the spatial
topography of the sources, we can conclude that the spatial locations of the
sources are similar in di�erent rats.

Moreover, as reported in Table 4, since the cross correlation coe�cients
between the sources obtained from two seizures of di�erent rats are not close to
one, we �nd that the sources do not have inter-rat similarity. Since the sources
show the temporal activation functions of their origins, we can conclude that
the propagated signals from the origins are not similar in di�erent rats.

We recall that the dataset consists of the data recorded from four GAERS
rats, and the data of each rat consist of several seizures. We extracted the
sources and their structures from all of the seizures in all of the rats. In summary,
the obtained results show that:

1) The structures in all seizures and all rats are similar. In fact, the structures
have both intra-rat and inter-rat similarities.

2) The sources in all seizures of a speci�c rat are similar, but the sources
obtained from the seizures of di�erent rats are not similar. In fact, the sources
have intra-rat similarity, but they do not have inter-rat similarity.

The results presented in Tables 2, 3, 4 con�rm the above conclusions.
In the end of this section, it must be mentioned that the considered model

and the proposed method can be adapted to several applications [38, 43, 14]
such as radar signals [45, 16], or target tracking in videos [21, 19].

6. Conclusion

In this paper, we analyzed the absence epileptic seizures using depth cortical
recordings. The data were recorded from di�erent layers of somatosensory cor-
tex of four absence epileptic rats, and the data of each rat consisted of several
seizures. The main goals of the study were 1) retrieving the epileptic activi-
ties, or in other words, sources generating the recorded seizures, and 2) �nding
the dynamics of the recorded seizures. The spike time windows were the most
important epileptic events during the recorded seizures. Based on neurophysi-
ological priors and previous contributions, we modeled the spike time windows
of each seizure by a linear combination of static and dynamic sources. Then,
we proposed an approach to retrieve the static and dynamic sources and their
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structures. It is worth mentioning that the structure of the sources represents
the contribution of the sources in the generation of data. We extracted the re-
sults from all seizures and all rats, and con�rmed the generality of the obtained
results using a cross-validation framework. The obtained results show that there
are a static source and three kinds of dynamic sources during seizures. In fact,
there are a background epileptic activity and three dynamic sources which ran-
domly activate with the background activity during the seizures. Moreover, one
kind of dynamic sources completely disappear towards the end of the seizures.
The obtained results show that the structures have both intra-rat and inter-rat
similarities. Hence, we can conclude that the spatial locations of the epileptic
sources are similar in di�erent rats. The main di�erence between the results of
di�erent rats is regarding the sources. Although, the sources have intra-rat sim-
ilarity, but, they do not have inter-rat similarity. In fact, the signals propagated
from the epileptic origins are not similar in di�erent rats because the neurons of
each rat may have their own speci�c activation functions. As the future work,
it would be interesting if we record data from multiple areas of the cortex us-
ing several multisensor electrodes with high spatial resolution. Then, we would
have recordings both in di�erent layers of the cortex (column) and in di�erent
locations, hence, we can consider both radial and transversal propagations of
epileptic events.
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Appendices

A. Extraction of The static structure

By assuming Z(k) = R
(k)
y −R

(k)
B , we get:

Â = argmin
A

K∑
k=1

‖Z(k) −AΛ(k)
s AT ‖2F

s.t. diag(ATA) = I (30)

We solve this optimization problem using gradient projection (GP) method. We
iteratively perform the following steps (gradient and projection) until conver-
gence of A.

Gradient Step: In the gradient step, we use the Newton method to speed
up the convergence. The gradient and Hessian of the objective function with
respect to A is calculated as follows:

G =

K∑
k=1

4AΛ(k)
s ATAΛ(k)

s − 2Z(k)AΛ(k)
s

H =

K∑
k=1

4(Λ(k)
s ATAΛ(k)

s ⊗ I) + 4(Λ(k)
s AT ⊗AΛ(k)

s )Π

+4(Λ(k)
s ⊗AΛ(k)

s AT )− 2(Λ(k)
s ⊗ Z(k)) (31)

where ⊗ denotes the Kronecker product, I ∈ IRn×n is the identity matrix, and

Π ∈ IRn2×n2

is the permutation matrix which provides the following equality:

vec(AT ) = Π vec(A) (32)

where vec(A) denotes a long vector obtained by stacking the columns of A.
Hence, by considering a = vec(A) and g = vec(G), we perform the following
iteration in this step:

a← a−H−1g

Then, we reshape a to construct its matricization form.
Projection (Normalization) Step: In this step, each column of A is

normalized.
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B. Extracting auto-correlation matrix of static sources

By assuming Z(k) = R
(k)
y −R

(k)
B , we get:

Λ̂(k)
s = argmin

Λ
(k)
s

‖Z(k) −AΛ(k)
s AT ‖2F

s.t. Λ(k)
s = diag(Λ(k)

s ), Λ(k)
s � 0 (33)

We consider the vectorized form of the proposed objective function as:

λ̂(k)
s = argmin

λ
(k)
s

‖z(k) −Qλ(k)
s ‖22 (34)

where λ
(k)
s = vec(Λ

(k)
s ) ∈ IRm2

, z
(k)
s = vec(Z(k)) ∈ IRn2

, Q = A⊗A ∈ IRn2×m2

,

and ⊗ denotes the Kronecker product. Since we know that λ
(k)
s just has n non-

zero entries, we consider the non-zero entries of λ
(k)
s in λ

(k)
s1 ∈ IRm, and also,

the columns of Q corresponding to the non-zero entries of λ
(k)
s in Q1 ∈ IRn2×m.

Hence, (33) can be expressed as:

λ̂(k)
s1 = argmin

λ
(k)
s1

‖z(k) −Q1λ
(k)
s1 ‖

2
2

s.t. λ(k)
s1 ≥ 0 (35)

where λ
(k)
s1 ≥ 0 means each entry of λ

(k)
s1 must be non-negative. This opti-

mization problem is a non-negative least square (NNLS) problem. There are
many toolboxes that can be employed to solve this problem very fast (e.g., nnls
function in MATLAB).

C. Extraction of R
(k)
B

By assuming Z(k) = R
(k)
y −AΛ

(k)
s AT , we get:

R̂
(k)
B = argmin

R
(k)
B

‖Z(k) −R
(k)
B ‖F + λ(k) Tr(R

(k)
B )

s.t. R
(k)
B � 0 (36)

If we consider r = vec(Z(k) −R
(k)
B ) ∈ IRn2

, we can write (36) as:

R̂
(k)
B = argmin

t,R
(k)
B

t+ λ(k) Tr(R
(k)
B )

s.t. R
(k)
B � 0,

√
rT r ≤ t (37)

Moreover, using a Schur complement argument, the constraint
√

rT r ≤ t is
equivalent to: [

tI r
rT t

]
� 0 (38)
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where I ∈ IRn2×n2

is the identity matrix. Hence, we can express (36) as the
following semide�nite programming (SDP) problem:

R̂
(k)
B = argmin

t,R
(k)
B

t+ λ(k) Tr(R
(k)
B )

s.t.

R
(k)
B 0 0
0 tI r
0 rT t

 � 0 (39)

This kind of problems can be solved using well known solvers like sdpt3 and cvx
[40]. Regarding the penalty term, we can consider the proposed value in square-
root LASSO problem[9] because the two problems are the same. The penalty
term is independent of the noise variance and obtained as follows according to
[9]:

λ(k) =
c

n
φ−1(1− α

2n2
) (40)

where c > 1 is a constant, φ is the cumulative distribution function (CDF) of a
zero-mean and unit variance Gaussian variable, and 1− α is the probability of
detection.

D. Results for Other Rats

The results obtained from one of the seizures of the third rat which consists
of K = 253 time windows are shown in Figs. 15 and 16. Moreover, the sequence
of clusters is shown in Fig. 17.

As discussed before and observed in Figs. 15 and 16, the structures have
both intra-rat and inter-rat similarities, while the sources just have intra-rat
similarity. Moreover, as shown in Fig. 17, one of the dynamic sources disappear
towards the end of the seizures.

Figure 15: The static structure (left) and sources (right) obtained from one of the absence
seizures of the third rat with K = 253 time windows.
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Figure 16: The dynamic structures (left) and sources (right) obtained from one of the absence
seizures of the third rat with K = 253 time windows.

Figure 17: Sequence of clusters for one of the seizures of the third rat which consists of
K = 253 time windows.
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