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In this study, we analyze the absence epileptic seizures using the data recorded from dierent layers of somatosensory cortex of absence epileptic rats. We aim to 1) extract the epileptic activities or sources generating the seizures, and 2) investigate the temporal changes of seizures. To achieve our goals, we describe the recorded seizures by a linear superposition of static and dynamic sources. The static sources are stable and have a xed structure, while the dynamic sources can be intermittent, and may be with dierent locations. Retrieving the sources and their structures from the recorded seizures helps us to achieve the desired analysis. Experimental results show the existence of a static source and three specic dynamic sources during the recorded seizures. The dynamic sources randomly activate with the static source and one of them disappears towards the end of the seizures. Moreover, it is shown that the spatial locations of the sources are similar in dierent absence epileptic rats.

Introduction

Absence epilepsy is one of the several kinds of epilepsy which is more common in children [START_REF] Caraballo | Childhood absence epilepsy and electroencephalographic focal abnormalities with or without clinical manifestations[END_REF][START_REF] Amor | Imaging brain synchrony at high spatiotemporal resolution: application to MEG signals during absence seizures[END_REF]. Sudden emergence of seizures associated with appearance of spike and wave discharges in electroencephalogram (EEG) recordings is the indication of absence epilepsy [START_REF] Panayiotopoulos | Typical absence seizures and related epileptic syndromes: Assessment of current state and directions for future research[END_REF][START_REF] Das | Stimulus reconstruction from neural spike trains: Are conventional lters suitable for both periodic and aperiodic stimuli?[END_REF].

Analysis of absence epileptic seizures has been a challenging problem over the past decades [START_REF] Amor | Cortical Local and Long-range Synchronization Interplay in Human Absence Seizure Initiation[END_REF][START_REF] Moeller | Dynamic analysis of absence seizures in humans: all the same but all dierent[END_REF][START_REF] Amini | Dynamical analysis of brain seizure activity from eeg signals[END_REF][START_REF] Marten | Derivation and analysis of an ordinary dierential equation meaneld model for studying clinically recorded epilepsy dynamics[END_REF]. For instance, [START_REF] Amini | Dynamical analysis of brain seizure activity from eeg signals[END_REF] investigates the temporal changes of the brain activities during seizures using intracranial EEG data recorded from Genetic Absence Epilepsy Rat from Strasbourg (GAERS), which is one of the well-validated animal model for absence epilepsy [START_REF] Polack | Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures[END_REF]. At rst, source separation methods are applied on temporal sliding windows of the data, and the relevant temporal sources are estimated for each window. Then, by comparing the sources in dierent time windows, it is shown that they become more stationary after a latency from the onset of seizures.

The analysis of absence epileptic seizures has also been done in humans [START_REF] Moeller | Dynamic analysis of absence seizures in humansan eeg fmri study[END_REF][START_REF] Wu | Quantify neuromagnetic network changes from pre-ictal to ictal activities in absence seizures[END_REF][START_REF] Moeller | Dynamic analysis of absence seizures in humans: all the same but all dierent[END_REF]. For instance in [START_REF] Moeller | Dynamic analysis of absence seizures in humansan eeg fmri study[END_REF], the EEG-fMRI data were acquired from 13 patients suering from absence epilepsy. Then, by applying gamma function regressors on sliding time windows of the data, and calculating the F-value, it was shown that the cortical activations and deactivations tend to occur earlier than the thalamic responses during seizures. As another example in [START_REF] Wu | Quantify neuromagnetic network changes from pre-ictal to ictal activities in absence seizures[END_REF], neuromagnetic sources were volumetrically scanned with accumulated source imaging from 14 patients. Then, eective connectivity networks of the entire brain, including the corticothalamo network, were evaluated at the source level through Granger causality analysis [START_REF] Seth | Granger causality analysis in neuroscience and neuroimaging[END_REF]. The obtained results show that the corticothalamic eective connectivity increases during seizures. Moreover, the direction of the connectivity is predominantly from the cortex to the thalamus in the beginning of seizures.

Neuroscientists investigated a lot the networks involved in seizures and the spatial localization of their starting points [START_REF] Panayiotopoulos | A Clinical Guide to Epileptic Syndromes and their Treatment[END_REF][START_REF] Vlachos | The concept of eective inow: Application to interictal localization of the epileptogenic focus from ieeg[END_REF]. Several theories have been suggested about the spatial localization of seizures. Some of them point to cortex as the main origin, while a few of them consider thalamus area as the main origin of seizures [START_REF] Avoli | A brief history on the oscillating roles of thalamus and cortex in absence seizures[END_REF]. The most recent theory lling the gap between cortical and thalamic origin is that both cortex and thalamus participate in the generation of seizures [START_REF] Meeren | Cortical Focus Drives Widespread Corticothalamic Networks During Spontaneous Absence Seizures in Rats[END_REF][START_REF] Steriade | Neuronal Substrates of Sleep and Epilepsy[END_REF]. By investigating the non-linear correlations between the recorded signals from cortex and thalamus in the Wistar Absence Glaxo from Rijswik (WAG/Rij) rat model, it has been shown that in the beginning of seizures, somatosensory cortex drives thalamus, while thereafter, somatosensory cortex and thalamus drive each other until the end of seizures [START_REF] Meeren | Cortical Focus Drives Widespread Corticothalamic Networks During Spontaneous Absence Seizures in Rats[END_REF]. Existence of a cortical starting area has also been recognized in GAERS [START_REF] Polack | Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures[END_REF].

A second step is now to wonder if one can dene a more accurate localization of epileptic events, by studying what happens in the dierent layers of the somatosensory cortex. In this purpose, a data set was acquired in Grenoble Institute of Neurosciences (GIN) from dierent layers of somatosensory cortex of GAERS. In this study, we explore the seizures using the recorded data. We aim to answer the following questions:

1) Which epileptic activities or sources generate the recorded seizures? 2) How do the recorded seizures change over time? It must be mentioned that all previous researches have investigated the seizures using the data recorded from dierent areas of the brain, however, this is the rst study that explores the seizures using the data recorded from one "column" of the cortex. The data were recorded using a set of very close sensors (leads) distributed along a needle located in somatosensory cortex. Hence, they were acquired from dierent layers of a cortex "column". We describe the recorded seizures by a linear combination of epileptic sources. We assume that there are two kinds of sources during seizures, static and dynamic sources. Static sources model the background epileptic activities and dynamic sources are complementary to static sources in the modelization of spikes, which are the typical shapes during a seizure. The static sources are stable and have a xed structure with respect to the recording electrode, while the dynamic sources are intermittent and their positions may change along the seizure. We propose a method to retrieve the static and dynamic sources and their structures from the recorded seizures. Then, we analyze the recorded seizures and answer the mentioned questions using the obtained results.

The initial idea of this study was published in the conference article [START_REF] Akhavan | Static and dynamic modeling of absence epileptic seizures using depth recordings[END_REF]. In this study, we present a comprehensive treatment of the initial idea including 1) the explanation of the data acquisition and the necessary preprocessing steps, 2) the accurate denition of the considered model with its physiological and mathematical reasons, 3) the explanation of the proposed method with all of its important mathematical details, 4) the verication of the proposed method using simulations, and 5) the interpretation and cross-validation of the results obtained from the neural data set.

The rest of the paper is organized as follows. Section 2 introduces the characteristics of the data and the considered model for seizures. Problem formulation and considered assumptions are stated in Section 3. The proposed method for estimating the model parameters is explained in Section 4, while Section 5 is dedicated to simulations and experimental results. Finally, the discussion and concluding remarks are reported in Section 6.

Materials

Data

The dataset used in this study was recorded from the somatosensory cortex of four adult GAERS. One electrode with sixteen sensors (n = 16) with an inter-distance of 150 µm was perpendicularly inserted in the somatosensory cortex (Fig. 1), so that the dierent sensors measured the extracellular eld potentials in dierent layers of somatosensory cortex [START_REF] Einevoll | Modelling and analysis of local eld potentials for studying the function of cortical circuits[END_REF][START_REF] Mazzoni | Information content of local eld potentials[END_REF]. The recording region was accurately determined by neuroscientists before the data acquisition. The sampling frequency was f s = 20 kHz. More details about the data acquisition process can be found in [START_REF] Depaulis | The genetic absence epilepsy rat from strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies[END_REF]. All the experiments were submitted and approved by the local Ethical Committee and European Union guidelines (directive 86/609/EEC).

Appearance of spikes in seizures is the most important indication of absence epilepsy. In the recorded data, the spikes appear in dierent channels simultaneously during the seizures because the data has been acquired very locally. Hence, we can consider each n = 16 spikes (at the same time) as one time window, and consider each seizure as a train of spike time windows as shown in Fig. 1.

Model for Seizures

In our work regarding spatio-temporal modeling of absence seizures [START_REF] Akhavan | Characterizing absence epileptic seizures from depth cortical measurements[END_REF], we assumed hidden states during a seizure. Each spike of a seizure is produced when one of the hidden states is activated. We also assumed that each state has a few specic substates, which generate the spike in that state. By extracting the states and their substates, we showed that there were some specic substates which were common in all of the states. Hence, they always participated in the generation of spikes during the seizures. In other words, there were some background activities during the seizures. Based on these results, we consider the following static-dynamic model in this study.

We assume that some physical activities or phenomena are taking place during the seizures and the sensors on the electrode record the instantaneous linear combination of the signals produced by the mentioned sources. Since somatosensory cortex is the main onset region of seizures, we assume that the sources are located in the vicinity of the recording electrode. The mixture of the signals is considered linear and instantaneous due to the quasi-static assumption of Maxwell's laws. We assume that there are two kinds of sources during the seizures, static and dynamic sources.

Static Sources: The position of the static sources is xed. The static sources always participate in the generation of the seizures. The static sources statistically can be non-stationary. For instance, their amplitude may change in dierent time windows, however, they are always on and contribute in the generation of the data. The contribution of the static sources in the generation of the data is shown by a matrix called the static structure. The number of static sources is xed and equal to m (m < n).

Dynamic Sources: Unlike static sources, a dynamic source sometimes participates in the generation of the data, and it may be o in some of the time windows. The location of dynamic sources may change in dierent layers of somatosensory cortex over time. In each time window, the contribution of the dynamic sources in the generation of the data is shown by a matrix called the dynamic structure. The number of dynamic sources in each time window is unknown.

Schematic diagrams of the considered model for three time windows are shown in Fig. 2. All of the sources and their structures in dierent time windows are unknown and we should retrieve them from the recorded seizures. In the following, we explain how the time windows are considered for a seizure. 

Time Windows of Seizures

As mentioned in subsection 2.1, we consider each n = 16 spikes (at the same time) as one time window as shown in Fig. 1. For this purpose, we must at rst separate the seizures from the data, and then, detect the spikes during the seizures.

Since the amplitude of the signals changes signicantly at the beginning and at the end of the seizures, we separate the seizures from the data by simple thresholding. Since the data are intracranial recordings and they are not too noisy, we employ the thresholding method for separating the seizures from the data. However, if the data were noisy such as scalp EEG recordings, more ecient methods such as proposed in [START_REF] Van Luijtelaar | Methods of automated absence seizure detection, interference by stimulation, and possibilities for prediction in genetic absence models[END_REF] are required for separating the seizures from the data. A good survey on seizure detection methods can be found in [START_REF] Alotaiby | Eeg seizure detection and prediction algorithms: a survey[END_REF]. It is also worth mentioning that the focus of this study is on analyzing the seizures, however, the data between seizures are also valuable. These data can be processed to predict the occurrence of seizures. For instance, authors of [START_REF] Li | Predictability analysis of absence seizures with permutation entropy[END_REF] analyzed the data between seizures using a well-known criterion called permutation entropy, and achieved the average anticipation time around 4.9 s. The data analyzed in [START_REF] Li | Predictability analysis of absence seizures with permutation entropy[END_REF] were EEG data acquired from GAERS rats.

Once the seizures are separated from the data, we individually detect the spikes for each seizure following the proposed method in [START_REF] Quiroga | Unsupervised Spike Detection And Sorting With Wavelets And Superparamagnetic Clustering[END_REF] and construct the time windows (each of length 87.5 ms, L = 1750 samples). We also align the time windows using the improved version of Woody's method proposed in [START_REF] Cabasson | Time delay estimation: A new insight into the woody's method[END_REF] to achieve higher correlation among the time windows, and get accurate results. Finally, the time windows are consecutively placed for each seizure separately. Thus, a seizure constituted by K spikes, is represented by the concatenation of its K elementary time windows. Hence, we remove the part of the recordings, which are not directly related to spikes. Now, we dene our problem on the time windows of a seizure for estimating the model parameters. Assume that the considered seizure has K elementary time windows, and each time window consists of L samples. For the k th time window, we express the data at each time instant t as follows:

y (k) (t) = As (k) (t) + B (k) u (k) (t) + n (k) (t) t = 1, 2, ..., L (1) 
where y

(k) t = [y (k) 1 (t), ..., y (k) 
n (t)] T ∈ IR n , A ∈ IR n×m and s (k) t = [s (k) 1 (t), ..., s (k) 
m (t)] T ∈ IR m represent the recorded signals on the sensors, the static structure and the static sources, respectively. If we assume that the total number of dynamic sources activated in the k th time window is equal to

r k , B (k) ∈ IR n×r k and u (k) t = [u (k) 1 (t), ..., u (k) r k (t)] T ∈ IR r k show
the dynamic structure and the dynamic sources, respectively. It should be noted that A is common to all time windows, while B (k) is changing on each time window. Finally, n

(k) t = [n (k) 1 (t), ..., n (k) n (t)] T ∈ IR n is
an independent and identically distributed (i.i.d.) noise vector at dierent sensors, which is considered to be a zero-mean Gaussian noise with an unknown covariance matrix Σ N ∈ IR n×n .

For each time window k (k = 1, 2, ..., K), if we concatenate the L vectors (samples) of the recorded signals, the static sources, the dynamic sources and the noise, we obtain the matrices 1) can be written as:

Y (k) ∈ IR n×L , S (k) ∈ IR m×L , U (k) ∈ IR r k ×L and N (k) ∈ IR n×L . Therefore, (
Y (k) = AS (k) + B (k) U (k) + N (k) (2) 
Hence, the set of unknown parameters (Θ) can be expressed as

Θ = {A, K k=1 { S (k) , r k , B (k) , U (k) }} (3) 
We aim to extract Θ using recorded signals in all of the time windows, i.e., Y (k) for k = 1, 2, ..., K.

Known Characteristics of The System

The following assumptions are considered in the procedure of parameters extraction.

(A1) The number of static sources (m) is a constant for all the seizures, and it is determined by physiological reasons.

Neuroscientists have spatially and temporally explored the spike and wave discharges generating the seizures, and they have shown that these spike and wave discharges are similar in dierent seizures of a specic rat [START_REF] Depaulis | The genetic absence epilepsy rat from strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies[END_REF][START_REF] Meeren | Cortical Focus Drives Widespread Corticothalamic Networks During Spontaneous Absence Seizures in Rats[END_REF][START_REF] Polack | Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures[END_REF]. In other words, there is intra-rat similarity between the seizures. We use this suitable physiological information to obtain m. In fact, we expect to obtain results with intra-rat similarity. For this purpose, we extract the model parameters by considering dierent m. Then, the number of static sources which leads to the results with better intra-rat similarity is considered as the optimum number of static sources. It is worth mentioning that the similarity between results can be measured by the cross correlation coecient.

(A2) The total number of static and dynamic sources (m + r k ) is less than the number of sensors (n) in each time window.

Consider (2) without presence of noise:

Y (k) = [A B (k) ] S (k) U (k) (4) 
If we assume k) ] for estimating the sources. Therefore, m + r k ≤ n and [A B (k) ] must be a full column rank matrix.

[A B (k) ] ∈ IR n×(m+r k ) is known, it is needed to compute the inverse of [A B (
(A3) The columns of A are unit norm.

To omit the scaling ambiguity problem in separation of the static sources, the columns of A are considered unit norm vectors [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Applications[END_REF].

(A4) Static sources and dynamic sources are considered uncorrelated in each time window.

When the sources are considered uncorrelated, it means that there is no linear synchronization between them. Mathematically, we can write:

1 L L t=1 s (k) (t)u (k) (t) T = 0 ∈ IR m×r k 1 L L t=1 s (k) (t)s (k) (t) T = Λ (k) s ∈ IR m×m 1 L L t=1 u (k) (t)u (k) (t) T = Λ (k) u = I ∈ IR r k ×r k (5) 
where

Λ (k) s
is the auto-correlation matrix of the static sources in the k th time window and unknown. It is a diagonal matrix with positive entries which are not necessarily constant during dierent time windows. Auto-correlation matrix of dynamic sources (Λ (k) u ) is considered equal to identity matrix (I) in order to omit the scaling ambiguity problem in separation of dynamic sources [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Applications[END_REF].

(A5) The dynamic sources are considered statistically independent in each time window.

There is no synchronization between the dynamic sources, and they may randomly activate in each time window. Hence, we assume that they are statistically independent. It should be noted that two random variables (X, Y ) are independent when their joint probability distribution is the product of their marginal probability distributions, i.e.,

p X,Y (x, y) = p X (x) p Y (y) (6) 
If X and Y are independent, then, they are also uncorrelated because

E X,Y (xy) = E X (x) E Y (y) (7) 
However, the reverse of this remark is not correct. This means that if X and Y are uncorrelated, then they are not essentially independent. Hence, independency is a stronger condition than uncorrelatedness [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Applications[END_REF]. (A6) The noise is uncorrelated with all of the sources in each time window. Since the noise is zero-mean and independent of the sources, it is uncorrelated with all of the sources in each time window, i.e.,

1 L L t=1 s (k) (t)n (k) (t) T = 0 ∈ IR m×n 1 L L t=1 u (k) (t)n (k) (t) T = 0 ∈ IR r k ×n (8)
Now, the problem statement is complete. The goal is estimating the set of unknown parameters (Θ) from the time windows of a recorded seizure (Y (k) for k = 1, 2, ..., K) based on the known characteristics of the model.

Proposed Method

At rst, we estimate the static structure (A) and the number of dynamic sources in each time window (r k ). Then, the dynamic sources (U (k) ) are obtained in each time window. Finally, we estimate the static sources (S (k) ) and the dynamic structure (B (k) ) in each time window.

Extraction of The Static Structure and The Number of Dynamic Sources

We follow the proposed method in [START_REF] Yeredor | Non-orthogonal joint diagonalization the least-squares sense with application in blind source separation[END_REF], regarding the joint diagonalization of a set of target matrices, to estimate the static structure and the number of dynamic sources in each time window. Since the sources are uncorrelated according to (A4), we solve the following optimization problem:

Θ 1 = argmin Θ1 g(Θ 1 ) Θ 1 = {A, K k=1 { Λ (k) s , r k , R (k) B }} g(Θ 1 ) = K k=1 R (k) y -AΛ (k) s A T -B (k) I Λ (k) u B (k) T R (k) B 2 F (9) 
where 

R (k) B = B (k) Λ (k) u B (k) T , .
R (k) y = 1 L L t=1 y (k) (t)y (k) (t) T (10) 
It should be mentioned that Λ (k) s

is not an important parameter, but it must be estimated during the optimization. The other noticeable point is that the rank of R (k) B is equal to r k , and since r k < n, it is a low-rank matrix. We use this information to extract the number of dynamic sources (r k ) in each time window.

The following constraints must also be considered in the optimization: c 1 ) The columns of A are unit norms.

c 2 ) Λ (k) s is diagonal with positive entries. c 3 ) R (k)
B is a low-rank and positive semidenite matrix (R (k) B 0). We use alternating least square (ALS) method to solve the optimization problem. We consider some feasible initial values for Θ 1 , then, we alternately perform the following steps until the convergence of the parameters.

Step 1. Assuming Λ

B for k = 1, 2, ..., K are xed, we have:

A = argmin A K k=1 R (k) y -AΛ (k) s A T -R (k) B 2 F s.t. diag(A T A) = I (11) 
where diag(X) keeps the diagonal entries of X, and makes the other entries equal to zero. This constrained optimization problem can easily be solved using gradient-projection (GP) method [START_REF] Kelley | Iterative Methods for Optimization[END_REF] (see Appendix A).

Step 2. Assuming A and R

(k)

B are xed, we have:

Λ (k) s = argmin Λ (k) s R (k) y -AΛ (k) s A T -R (k) B 2 F s.t. Λ (k) s = diag(Λ (k) s ), Λ (k) s 0 (12) 
This optimization problem is solved using non-negative least square (NNLS) method if we consider the vectorization form of all matrices in the problem (see Appendix B). This step must be performed for all of the time windows (k = 1, 2, ..., K) separately.

Step 3. Assuming A and Λ (k) s

are xed, we have:

R (k) B = argmin R (k) B R (k) y -AΛ (k) s A T -R (k) B F s.t. R (k) B 0, R (k) 
B is low-rank. [START_REF] Cardoso | Blind beamforming for non-gaussian signals[END_REF] This step must also be performed for all of the time windows (k = 1, 2, ..., K) separately. We will explain later why we remove the power two in the objective function. Since we must impose R

B to be a low-rank matrix, we use the penalty parameter to minimize both the objective function and the rank of R (k) B . Hence, we have:

R (k) B = argmin R (k) B R (k) y -AΛ (k) s A T -R (k) B F + λ (k) rank(R (k) B ) s.t. R (k) B 0 ( 14 
)
where λ (k) is a penalty parameter which helps to minimize the rank of R

B . Since minimization of rank function is an NP-hard problem [START_REF] Recht | Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[END_REF], we approximate rank(R

(k) B ) with Tr{R (k)
B } which is a well-known convex relaxation for this function [START_REF] Candes | Matrix completion with noise[END_REF][START_REF] Malek-Mohammadi | Performance guarantees for schatten-p quasi-norm minimization in recovery of low-rank matrices[END_REF]. The obtained optimization problem is very similar to the square root LASSO problem [START_REF] Belloni | Square-root lasso: pivotal recovery of sparse signals via conic programming[END_REF][START_REF] Koochakzadeh | Multi-antenna assisted spectrum sensing in spatially correlated noise environments[END_REF], and it can be converted to a semidenite programming (SDP) as shown in Appendix C. The main advantage of the square-root LASSO is that the penalty parameter can be obtained independently from variance of the noise. This is the main reason that we dropped the power of two in the objective function considered in [START_REF] Cardoso | Blind beamforming for non-gaussian signals[END_REF]. The nal optimization problem can be solved using well known solvers like sdpt3 and cvx [START_REF] Toh | SDPT3 a matlab software package for semidenite programming, version 1.3[END_REF].

We repeat Step 1, Step 2, and Step 3 until convergence, i.e., the parameters do not signicantly change. Hence, the static structure ( A), the autocorrelation matrix of static sources ( Λ

(k) s ) and R (k)
B for k = 1, 2, ..., K are estimated. Finally, the number of dynamic sources in each time window is obtained as follows:

r k = rank( R (k) B ) (15) 

Extraction of Dynamic Sources

Consider the singular value decomposition (SVD) of the static structure as follows:

A = V Σ Q T , V = [v 1 ... v m V1 v m+1 ... v n V2 ] (16) 
where V 1 ∈ IR n×m is an orthonormal basis for the columns of A and V 2 ∈ IR n×(n-m) spans the null space of A because we know that rank(A) = m.

Hence, if we left multiply both sides of (2) by V T 2 , we can omit the contribution of the static sources in each time window:

V T 2 Y (k) Y (k) = V T 2 AS (k) 0 + V T 2 B (k) B (k) U (k) + V T 2 N (k) N (k) (17) 
where Y (k) ∈ IR (n-m)×L , B (k) ∈ IR (n-m)×r k and N (k) ∈ IR (n-m)×L are respectively the projected data, the projected dynamic structure and the projected noise in the k th time window. The distribution of each column of the projected noise is

N (0, V T 2 Σ N V 2 ).
The important point here is that we must be sure that B (k) is not equal to zero because the dynamic sources must be kept. According to (A2), since we assumed that [A B (k) ] ∈ IR n×(m+r k ) is a full rank matrix, each column of B (k) certainly exists in the space of V 2 , and hence, B (k) would not be equal to zero. Now, we can extract the dynamic sources in each time window.

According to (A5), since we assumed that the dynamic sources are statistically independent, we are faced with an overdetermined BSS problem in the presence of noise. Hence, independent component analysis (ICA) can be applied to extract the dynamic sources (U (k) ) from noisy measurements [START_REF] Arora | Provable ica with unknown gaussian noise, and implications for gaussian mixtures and autoencoders[END_REF]. We use JADE algorithm to extract the dynamic sources [START_REF] Cardoso | Blind beamforming for non-gaussian signals[END_REF]. Since we have estimated the number of dynamic sources (r k ) in the previous part, the dimension of the separating matrix W (k) ∈ IR r k ×(n-m) is known, and regarding [START_REF] Das | Stimulus reconstruction from neural spike trains: Are conventional lters suitable for both periodic and aperiodic stimuli?[END_REF], we get:

W (k) Y (k) = W (k) B (k) U (k) + W (k) N (k) (18) 
In fact, ICA tries to make the rows of W (k) Y (k) as much independent as possible. After applying ICA, the dynamic sources ( U (k) ) are determined.

For each time window, the explained procedure must be applied to retrieve the dynamic sources in all of the time windows.

Extraction of Static Sources and Dynamic Structure

When the static structure (A) and the dynamic sources (U (k) ) are determined, we can extract the static sources (S (k) ) and the dynamic structure (B (k) ) in each time window using the maximum log-likelihood estimator (MLE). It can be shown that minimizing the following objective function leads to nding the MLE solution of the parameters:

q(S (k) , B (k) ) = Y (k) -AS (k) -B (k) U (k) 2 F (19)
This objective function can simply be minimized using alternation minimization. For each time window, [START_REF] Du | Real-time tracking based on weighted compressive tracking and a cognitive memory model[END_REF] must be minimized to retrieve the static sources ( S (k) ) and the dynamic structure ( B (k) ) in all of the time windows.

By determination of the static sources and the dynamic structure in all of the time windows, all parameters of the model are determined.

Simulation and Experimental Results

In this section, we rst show the eciency of the proposed method using simulated data. Then, the results obtained from depth recordings are presented.

Simulations

Data Generation

We generate the data according to (1) for each time window. The simulated data are dierent from the neural data, but we aim to provide simple signals with the same assumptions as the spikes in seizures, and check the eciency of the dierent steps of the proposed method. We consider K = 50 time windows (each of length L = 100), n = 10 sensors, m = 5 static sources, and at most n -m = 5 dynamic sources in each time window. The number of dynamic sources (r k ) is chosen randomly between 1 and 5 in each time window. Then, we generate the static structure A by a random matrix of size 10 × 5 with zero-mean and unit-variance i.i.d. Gaussian entries followed by normalizing the columns. In each time window, the static sources are considered as a mixture of three sine signals with dierent frequencies as follows:

s (k) i (t) = 3 j=1 α ikj sin(2π(10i + 3j -10)f 0 t) i = 1, 2, ..., 5, k = 1, 2, ..., 50, 1 ≤ t ≤ 100 (20) 
where f 0 = 1 L = 0.01. The amplitude of sine signals (α ikj ) is uniformly distributed between 0 and 1. The static sources are not stationary because the amplitudes α ikj change in dierent time windows, and according to (A4), they are uncorrelated with each other because they have dierent frequencies in each time window. The entries of the dynamic structure in each time window B (k) ∈ IR 10×r k are independently chosen from zero-mean and unit-variance Gaussian distribution. The dynamic sources in each time window are again considered sine signals as follows:

u (k) i (t) = 2L 3 3 j=1 sin(2π(10i + 3j + 40)f 0 t) i = 1, ..., r k , k = 1, 2, ..., 50, 1 ≤ t ≤ 100 (21) 
where 2L 3 is equal to 200 3 in order to have unit norm dynamic sources. According to (A4) and (A5), the frequencies are selected such that the dynamic sources are mutually independent and uncorrelated with the static sources. Finally, each column of the noise N (k) is generated from Gaussian distribution with zero-mean and covariance matrix σ 2 0 I ∈ IR 10×10 for all of the time windows. We also use the following criteria to evaluate the performance of the proposed method in estimation of the parameters:

Er S = mean k S (k) -S (k) 2 F S (k) 2 F , Er A = A -A 2 F A 2 F , Er r = mean k |r k -r k | r k Er U = mean k: r k = r k U (k) -U (k) 2 F U (k) 2 F , Er B = mean k: r k = r k B (k) -B (k) 2 F B (k) 2 F ( 22 
)
where X means estimated X. It should be noted that Er r is not squared. We also consider the signal to noise (SNR) ratio as follows for the simulations:

SNR = 10 log( 1 K K k=1 Y (k) -N (k) 2 F N (k) 2 F ) (23) 

Results

It is worth noting that we assume that the number of static sources (m = 5) is known during the simulations.

First Simulation: In this simulation, we consider σ 2 0 such that SNR = 20 dB. The values of the criteria introduced in ( 22) are reported in the fth row of Table 1. Moreover, the actual and estimated number of dynamic sources in each time window are shown in Fig. 3. F / S (k) 2 F ) for the static sources in these time windows are 0.038 and 0.183, respectively. The performance is excellent for the 20 th time window where the number of sources is correctly estimated. Conversely, the performance is not very good (as showed both by the high squared error and visual inspection) for the 21 th time window where the number of dynamic sources was not estimated correctly (see Fig. 3).

Second Simulation: In this simulation, we repeat the rst simulation for dierent SNR. The values of the criteria introduced in ( 22) are reported in Table 1. In a specic time window in which the number of dynamic sources was obtained correctly in dierent SNR, the estimated signals for the rst static source are shown in Fig. 5. These results conrm the eciency of the proposed method in retrieving the model parameters. 

Depth Recordings

We recall that the dataset was acquired from four absence epileptic rats using an electrode with n = 16 sensors. The recorded data from each rat consisted of few seizures, and each seizure was a train of spike time windows. We apply the proposed method on time windows of a seizure to extract the static and dynamic sources and their structures.

Parameter Extraction (Training Phase)

Since there is no prior information about the number of static sources (m), we apply the proposed method on the seizures for dierent m and select the one which has suitable biophysiological interpretation. As explained in (A1), the suitable model order must lead to results with intra-rat similarity. In other words, the results should be similar in dierent seizures of a GAERS rat [START_REF] Depaulis | The genetic absence epilepsy rat from strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies[END_REF]. Considering this point, the best result is obtained by considering m = 1 for all of the seizures. Since a single static source sucient (m = 1), the static structure A ∈ IR n×m reduces to a simple vector with n = 16 entries. We consider one of the seizures of the rst rat which consists of K = 390 time windows as the training seizure to show the results.

The obtained static structure (A) and static sources (s As shown in Fig. 8, there are three clusters in the dynamic sources. It should be noted that the suitable criterion for choosing the number of clusters in dynamic sources is that the averages of the clusters corresponding to dynamic sources must have intra-rat similarity, i.e., the results should be similar in dierent seizures of a specic rat [START_REF] Depaulis | The genetic absence epilepsy rat from strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies[END_REF]. After determination of the clusters, we also separate their corresponding dynamic structures which are shown in the left side of Fig. 8. The red curves show the averages of the clusters.

Based on the obtained results, we can conclude that there are one static source that we can interpret as modeling the background activity, and three kinds of dynamic sources during the training seizure, which model the dierent shapes of the spikes and their variability. A linear superposition of the background activity and a dynamic source generates the data in each time window of the training seizure. In fact, this remark answers the rst question mentioned in Section 1, and it is illustrated in Fig. 9. We recall that the rst question was about the epileptic sources generating the recorded seizures. As shown, all kinds of dynamic sources participate in the generation of the data in the beginning of the training seizure, while in the end of the training seizure, the rst and the third dynamic sources just participate in the generation of the data. As mentioned in the beginning of Section 1, the recent theory about the origin of seizures states that in the beginning of seizures, somatosensory cortex drives thalamus, while thereafter, somatosensory cortex and thalamus drive each other until the end of seizures. In fact, a change point exists in the middle of seizures. What we observe in Fig. 10 conrms the existence of such change point during the seizures because one of the sources suddenly disappears in the middle of the seizure. In fact, this paragraph answers the second question mentioned in Section 1. We recall that the second question was about the temporal changes of the recorded seizures.

Results For Other Seizures of The Rat

We have intra-rat similarity between the results obtained from the seizures of the rst rat. This means that the extracted average of the clusters are similar to the results obtained from the training seizure. The sequence of the clusters for one of the seizures which consists of K = 88 time windows is shown in Fig. 11. As shown, again, in the end of the seizure, the rst and the third dynamic sources only participate in the generation of the seizure. 

Results For Other Rats

For other rats, when we extract the model parameters, the interpretable results are again obtained by considering one static source (m = 1). The estimated number of dynamic sources is also equal to one (r k = 1) in each time window. Moreover, the same model as Fig. 6 and Fig. 8 can be considered after clustering the sources, i.e., there are three kinds of dynamic sources and a static source. Furthermore, one kind of dynamic sources completely disappears towards the end of the seizures.

For instance, the results obtained from one of the seizures of the second rat are shown in Figs. 12 and13. Moreover, the sequence of clusters is shown in Fig. 14. The noticeable point is that the obtained sources in the second rat are different from the ones in the rst rat, however, the obtained static structure and averages of clusters for the dynamic structures are similar to ones in the rst rat. This means that there is no inter-rat similarity between the obtained sources, while there is inter-rat similarity between the obtained structures. This is quantitatively shown in subsection 5.2.5. Since the structures are related to the arrangement of the sources around the sensors, we can conclude that the origins of the sources are similar in these two rats. Similar results are obtained in other rats. The basic results for one of the other rats are brought in Appendix D.

Adaptation of The Average of Clusters The Training Seizure

Now, we want to check if the results of clustering (averages of clusters) are adapted to the training seizure or not. For this purpose, we calculate the reconstruction error as explained in the following.

By considering the obtained static structure, the average of the normalized static sources, the average of the normalized dynamic structures, and the average of the dynamic sources respectively as a, s, b j (j = 1, 2, 3) and u j (j = 1, 2, 3), each time window of the training seizure (Y (k) ) and its reconstruction ( Y (k) ) can be expressed as:

Y (k) = α (k) a s T + 3 j=1 β (k) j b j u T j Y (k) +N (k) (24) 
where α (k) and β 

α (k) = Tr{Y (k) s a T }, β (k) j = Tr{Y (k) u j b T j } (25) 
Now, we can dene the reconstruction error as follows:

Er train = 1 K K k=1 Y (k) -Y (k) 2 F Y (k) 2 F ( 26 
)
This error is equal to 0.03 for the training seizure indicating that the obtained results of clustering are compatible with the training seizure. Now, we want to check if the results of clustering (average of clusters) are also adapted to the other seizures or not.

Cross-Validation (Testing Phase)

We rst perform the cross-validation for the seizures of the same rat. We consider one of the seizures as the testing seizure. Then, using the obtained parameters from the training seizure and regarding [START_REF] Li | Predictability analysis of absence seizures with permutation entropy[END_REF], we estimate the best kind of dynamic source and structure, and scaling coecients for each time window of the testing seizure. If we again employ the MLE method, we get:

{ j, α (k) , β (k) j } = argmin j,α (k) ,β (k) j Y (k) -α (k) a s T -β (k) j b j u T j 2 F (27)
By determination of the parameters, the reconstructed time window is calculated as follows:

Y (k) = α (k) a s T + β (k) j b j u T j (28) 20 
Now, we calculate the reconstruction error as to check the compatibility of the parameters, obtained from the training seizure, with the testing seizure:

Er test = 1 K test Ktest k=1 Y (k) -Y (k) 2 F Y (k) 2 F ( 29 
)
where K test shows the number of time windows in the considered testing seizure. We perform the proposed training and testing phase on ve seizures of the rst rat. The last seizure is the seizure considered in the previous part. The results of the reconstruction are reported in Table 2. These results show the intra-rat similarity between seizures, in the sense that the static and dynamic sources and structures trained on one seizure, provide an accurate estimation of signals in other seizures. For other rats, the reconstruction errors have the same order of magnitude as the rst rat which show the generality of the results of clustering and proposed model for the recorded seizures.

Since there is no inter-rat similarity between the sources, the aforementioned cross-validation framework between two seizures from two dierent rats is meaningless. Hence, we calculate the cross correlation coecient between the results obtained from the two rats. Tables 3 and4 respectively show the cross correlation coecient between the obtained structures and sources from the rst and second rat. As reported in Table 3, since the cross correlation coecients between the structures obtained from two seizures of dierent rats are close to one, we nd that the structures in all seizures and all rats are similar, or in other words, they have inter-rat similarity. Since the structures are corresponding to the spatial topography of the sources, we can conclude that the spatial locations of the sources are similar in dierent rats. Moreover, as reported in Table 4, since the cross correlation coecients between the sources obtained from two seizures of dierent rats are not close to one, we nd that the sources do not have inter-rat similarity. Since the sources show the temporal activation functions of their origins, we can conclude that the propagated signals from the origins are not similar in dierent rats.

We recall that the dataset consists of the data recorded from four GAERS rats, and the data of each rat consist of several seizures. We extracted the sources and their structures from all of the seizures in all of the rats. In summary, the obtained results show that:

1) The structures in all seizures and all rats are similar. In fact, the structures have both intra-rat and inter-rat similarities.

2) The sources in all seizures of a specic rat are similar, but the sources obtained from the seizures of dierent rats are not similar. In fact, the sources have intra-rat similarity, but they do not have inter-rat similarity.

The results presented in Tables 2,3, 4 conrm the above conclusions.

In the end of this section, it must be mentioned that the considered model and the proposed method can be adapted to several applications [START_REF] Shirzadian Gilan | Level crossing rate and average fade duration of amplify and forward relay channels with cochannel interference[END_REF][START_REF] Yavari Manesh | Sigmoid function detector in the presence of heavy-tailed noise for multiple antenna cognitive radio networks[END_REF][START_REF] Chandrasekhar | An iphone application for blood pressure monitoring via the oscillometric nger pressing method[END_REF] such as radar signals [START_REF] Zhu | Detection of moving targets in sea clutter using complementary waveforms[END_REF][START_REF] Dai | Adaptively iterative weighting covariance matrix estimation for airborne radar clutter suppression[END_REF], or target tracking in videos [START_REF] Hu | Robust object tracking via multi-cue fusion[END_REF][START_REF] Du | Real-time tracking based on weighted compressive tracking and a cognitive memory model[END_REF].

Conclusion

In this paper, we analyzed the absence epileptic seizures using depth cortical recordings. The data were recorded from dierent layers of somatosensory cortex of four absence epileptic rats, and the data of each rat consisted of several seizures. The main goals of the study were 1) retrieving the epileptic activities, or in other words, sources generating the recorded seizures, and 2) nding the dynamics of the recorded seizures. The spike time windows were the most important epileptic events during the recorded seizures. Based on neurophysiological priors and previous contributions, we modeled the spike time windows of each seizure by a linear combination of static and dynamic sources. Then, we proposed an approach to retrieve the static and dynamic sources and their structures. It is worth mentioning that the of the sources represents the contribution of the sources in the generation of data. We extracted the results from all seizures and all rats, and conrmed the generality of the obtained results using a cross-validation framework. The obtained results show that there are a static source and three kinds of dynamic sources during seizures. In fact, there are a background epileptic activity and three dynamic sources which randomly activate with the background activity during the seizures. Moreover, one kind of dynamic sources completely disappear towards the end of the seizures. The obtained results show that the structures have both intra-rat and inter-rat similarities. Hence, we can conclude that the spatial locations of the epileptic sources are similar in dierent rats. The main dierence between the results of dierent rats is regarding the sources. Although, the sources have intra-rat similarity, but, they do not have inter-rat similarity. In fact, the signals propagated from the epileptic origins are not similar in dierent rats because the neurons of each rat may have their own specic activation functions. As the future work, it would be interesting if we record data from multiple areas of the cortex using several multisensor electrodes with high spatial resolution. Then, we would have recordings both in dierent layers of the cortex (column) and in dierent locations, hence, we can consider both radial and transversal propagations of epileptic events. 

This kind of problems can be solved using well known solvers like sdpt3 and cvx [START_REF] Toh | SDPT3 a matlab software package for semidenite programming, version 1.3[END_REF]. Regarding the penalty term, we can consider the proposed value in squareroot LASSO problem [START_REF] Belloni | Square-root lasso: pivotal recovery of sparse signals via conic programming[END_REF] because the two problems are the same. The penalty term is independent of the noise variance and obtained as follows according to [START_REF] Belloni | Square-root lasso: pivotal recovery of sparse signals via conic programming[END_REF]:

λ (k) = c n φ -1 (1 - α 2n 2 ) ( 40 
)
where c > 1 is a constant, φ is the cumulative distribution function (CDF) of a zero-mean and unit variance Gaussian variable, and 1 -α is the probability of detection.

D. Results for Other Rats

The results obtained from one of the seizures of the third rat which consists of K = 253 time windows are shown in Figs. 15 and16. Moreover, the sequence of clusters is shown in Fig. 17.

As discussed before and observed in Figs. 15 and 16, the structures have both intra-rat and inter-rat similarities, while the sources just have intra-rat similarity. Moreover, as shown in Fig. 17 

Figure 1 :

 1 Figure 1: From left to right, implementation scheme, recording electrode, a seizure and a time window (length of 87.5 ms) Each time window represents a spike recorded on a electrode constituted of n = 16 sensors, and shows the recorded signals in dierent layers of the cortex. The seizure onset and the end of the seizure are indicated by tonset and t oset , respectively.

Figure 2 :

 2 Figure 2: Static and dynamic sources for three consecutive time windows. The static sources (s 1 , s 2 , s 3 ) and the dynamic sources (u 1 , u 2 ) are shown in the left and right sides of the sensors, respectively. The position of the static sources with respect to the sensors is xed, while the position of the dynamic sources change.

F

  denotes the Frobenius norm, and the autocorrelation matrix of the recorded signals (R (k) y ∈ IR n×n ) in the k th time window is calculated as follows:

Figure 3 :

 3 Figure 3: The actual and estimated number of dynamic sources in dierent time windows (SNR = 20 dB). As shown in Fig 3, the estimated number of dynamic sources is often equal to the actual number. To see the behavior of the actual and estimated sources, the third and fth static sources and their estimations during the 20 th and 21 th time window are zoomed in Fig. 4.

Figure 4 :

 4 Figure 4: The actual and estimated static sources during the 20 th and 21 th time window. The vertical dashed line shows the boundary of the time windows. The normalized squared error ( S (k) -S (k) 2F / S (k) 2 F ) for the static sources in these time windows are 0.038 and 0.183, respectively. The performance is excellent for the 20 th time window where the number of sources is correctly estimated. Conversely, the performance is not very good (as showed both by the high squared error and visual inspection) for the 21 th time window where the number of dynamic sources was not estimated correctly (see Fig.3).

Figure 5 :

 5 Figure 5: The actual and estimated signals for the rst static source in a specic time window in dierent SNR. The top left gure shows the actual static source.

  )) in dierent time windows for the training seizure are shown in Fig.6(for better representation, we normalized the static sources). It can be observed that the static sources in dierent time windows are similar, hence, we can consider them as one cluster. The average of this cluster is shown in red. In fact, we can represent all the static sources by only one pattern which is the average of the cluster.

Figure 6 :

 6 Figure 6: The estimated static structure (left) and the estimated static source in dierent time windows (right) for the training seizure. To better show the static sources, they are normalized. The average of the static sources is shown in red. The estimated number of dynamic sources is also equal to one (r k = 1) in all of the time windows of the training seizure. The extracted dynamic structure (B (k) ) and source (u

  )) in dierent time windows of the training seizure are shown in Fig.7(for better representation, the dynamic structures are normalized).

Figure 7 :

 7 Figure 7: The estimated dynamic structure (left) and the estimated dynamic source in dierent time windows (right) for the training seizure. To better show the dynamic structures, they are normalized.

Figure 8 :

 8 Figure 8: There are three clusters in the dynamic sources. The average of each cluster is shown in red.

Figure 9 :

 9 Figure 9: One kind of the dynamic (sources) is added to the background spike (static source) to generate the spike time windows during the training seizure. MUX stands for multiplexer which only allows one dynamic spike to pass in each time window.

Figure 10 :

 10 Figure 10: Sequence of clusters for the training seizure.

Figure 11 :

 11 Figure 11: Sequence of clusters for one of the seizures from the rst rat which consists of K = 88 spike time windows. It is worth mentioning that the time scale diers from Fig. 10 due to the dierent number of spikes in the seizures.

Figure 12 :

 12 Figure 12: The static structure (left) and sources (right) obtained from one of the absence seizures of the second rat with K = 560 time windows.

Figure 13 :

 13 Figure 13: The dynamic structures (left) and (right) obtained from one of the absence seizures of the second rat with K = 560 time windows.

Figure 14 :

 14 Figure 14: Sequence of clusters for one of the seizures of the second rat which consists of K = 560 time windows.

  are the scaling coecients because we have normalized the parameters of the model. One of β (k) j (j = 1, 2, 3) is non-zero, and two of them are zero for each time window. Since we already clustered the dynamic sources and structures, the zero entries are known. It can be shown that the MLE solution of α (k) and non-zero β (k) j are as follows:

  in this study were acquired at Grenoble institute of Neurosciences (GIN) in the team Synchronization and Modulation of Neural Networks in Epilepsy (SyMoNNE) supervised by Dr. A. Depaulis. Also, this work has been partly supported by the European project 2012-ERC-AdG-320684 CHESS.Bibliography where I ∈ IR n 2 ×n 2 the identity matrix. Hence, we can express[START_REF] Recht | Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[END_REF] as the following semidenite programming (SDP) problem:

  , one of the dynamic sources disappear towards the end of the seizures.

Figure 15 :

 15 Figure 15: The static structure (left) and sources (right) obtained from one of the absence seizures of the third rat with K = 253 time windows.

  

Table 1 :

 1 Performance of the proposed method in dierent SNR.

	SNR( dB)	Er A	Er S	Er U	Er B	Err
	5	0.146	0.233	0.178	0.127	0.136
	10	0.033	0.151	0.097	0.106	0.079
	15	0.004	0.089	0.078	0.096	0.041
	20	0.002	0.046	0.022	0.037	0.019
	25	≤ 0.001	0.006	≤ 0.001	≤ 0.001	0.002

Table 2 :

 2 Reconstruction error for 5 dierent seizures of the rst rat. The seizures respectively consist of K 1 = 87, K 2 = 94, K 3 = 95, K 4 = 88 and K 5 = 390 time windows. The diagonal and non-diagonal entries of the table respectively show Er train and Ertest.

	Training on			Testing on		
	seizure	1	2	3	4	5
	1	0.05	0.11	0.13	0.12	0.09
	2	0.07	0.06	0.10	0.09	0.08
	3	0.08	0.11	0.06	0.10	0.09
	4	0.10	0.09	0.10	0.08	0.10
	5	0.09	0.10	0.11	0.12	0.03

Table 3 :

 3 The cross correlation coecient between the obtained structures from the rst and second rat.

	First Rat		Second Rat		
		a	b1	b2	b3
	a	0.97	-0.61	-0.54	-0.72
	b1	-0.58	0.94	0.78	0.36
	b2	-0.46	0.77	0.98	0.27
	b3	-0.77	0.35	0.32	0.96

Table 4 :

 4 The cross correlation coecient between obtained sources from the rst and second rat.

	First Rat		Second Rat		
		s	u1	u2	u3
	s	0.83	0.86	0.65	0.53
	u1	0.78	0.81	0.64	0.58
	u2	0.49	0.46	0.88	0.71
	u3	0.63	0.66	0.73	0.79

Appendices

A. Extraction of The static structure By assuming

B , we get:

We solve this optimization problem using gradient projection (GP) method. We iteratively perform the following steps (gradient and projection) until convergence of A.

Gradient Step: In the gradient step, we use the Newton method to speed up the convergence. The gradient and Hessian of the objective function with respect to A is calculated as follows:

where ⊗ denotes the Kronecker product, I ∈ IR n×n is the identity matrix, and Π ∈ IR n 2 ×n 2 is the permutation matrix which provides the following equality:

where vec(A) denotes a long vector obtained by stacking the columns of A.

Hence, by considering a = vec(A) and g = vec(G), we perform the following iteration in this step:

Then, we reshape a to construct its matricization form. Projection (Normalization) Step: In this step, each column of A is normalized. [START_REF] Quiroga | Unsupervised Spike Detection And Sorting With Wavelets And Superparamagnetic Clustering[END_REF] where λ

s1 must be non-negative. This optimization problem is a non-negative least square (NNLS) problem. There are many toolboxes that can be employed to solve this problem very fast (e.g., nnls function in MATLAB).

C. Extraction of R (k) B

By assuming

If we consider r = vec(Z (k) -R

B ) ∈ IR n 2 , we can write [START_REF] Recht | Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[END_REF] as:

Moreover, using a Schur complement argument, the constraint √ r T r ≤ t is equivalent to: tI r r T t 0