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1. Log fold change cutoff tuning and consequences 
 

 
Figure 1: Distributions of logFCs of peptides belonging to proteins having the same concentration between two conditions 
from three benchmark datasets. 

Fig. 1 illustrates why filtering on the logFC is often tempting and sometimes necessary. One considers 
the logFC distribution of the raw peptide intensities (with no missing values, and only from proteins 
that are known to be equally concentrated in the compared conditions) of several benchmark datasets 
from [1] and [2]. While all the logFC should be equal to zero, one practically observes that a varying 
but significant proportion of peptides have different logFCs. These distributions are generally centered 
on a value that is close to zero, yet, their variance are rather different from one dataset to another, 
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due to  difference of biological complexity of the sample, of sample preparation and MS analysis 
reproducibility. With this regards, filtering out particularly low logFC may be helpful. However, doing 
so does not require displaying a volcano plot, as the logFC distribution should be sufficient to find an 
adapted threshold. This is why, in latest Prostar releases, the logFC thresholds of all the pairwise 
comparisons are tuned to a same value, according to what the practitioner reads on the superimposed 
distributions (see Fig. 2). 
 

 
Figure 2: Superimposition of six logFC distributions resulting from a lab dataset (unpublished so far) containing 4 different 
biological conditions. All the logFC distributions are centered on zero, making it possible to tune the overall logFC threshold to 
a fairly small value.  

Let us note that if some proteins have been filtered out with a high logFC cutoff, we can end up with 
selected proteins only associated with low p-values. This is not inherently a problem for most of the 
subsequent processing steps, apart from the estimation of the proportion of non-DA proteins (termed 
𝜋0 in the penultimate section of the main article). In fact, most of the 𝜋0 estimation methods are based 
on the assumption that all the p-values are distributed between 0 and 1. Thus working on a dataset 
where too many proteins where filtered out due to their logFC may compromise the validity of this 
assumption and thus lead to inaccurate estimate (and consequently spurious FDR). 
 
Fortunately, there is a simple mathematical trick to recover unbiased 𝜋0  estimates if the p-values are 
distributed between 0 and a value 𝑝𝑚𝑎𝑥 < 1: it consists in dividing all the p-values by 𝑝𝑚𝑎𝑥 and then 
applying the methods of the literature. Afterwards, all the downstream FDR analysis can be conducted 
on the original p-values and with the 𝜋0  estimates obtained on “rescaled” p-values. From a practical 
viewpoint, it is either necessary to explicitly apply this tricks by coding the corresponding 
computations, or to rely on a software tools or package which incorporates it, such as for instance 
CP4P [2], which is directly called from Prostar interface [3]. 
 

2. Well-calibrated distribution examples  
 
Fig 3. of the main article depicts a nearly optimal calibration plot, where roughly half of the dataset 
proteins are non-DA. This figure comes from [2] and was built with a simulated dataset, so as to 
illustrate a “perfect” scenario. The interest of simulated datasets is too precisely describe how small 
modifications in the distributions derives into calibration changes. The following figures represents 
various calibration plots from simulated datasets where only the proportions of non-DA and of DA 
proteins are changed with respect to that of [2]. To do so, one uses the following R code: 
 
> library(cp4p) 
> n <- 1000 
> pi0 <- 0.5 
> pval1 <- rbeta(n*(1-pi0),shape1=0.5, shape2=20) 



> pval2 <- runif(n*pi0) 
> pval <- c(pval1,pval2) 
> calibration.plot(pval) 
> calibration.plot(pval, "ALL") 

 
which provides Fig. 3. On the left panel, one has a plot akin to Fig 3 of the main article (up to stochastic 
variations resulting from different simulation runs), while on the right panel, one observes that the 
various 𝜋0 estimates concur, which is a sign of correct calibration. 

 
Figure 3: Calibration plots resulting from the code above: The left panel depicts the (default) Pound estimator, while the right 
panel shows the convergence of the various estimating methods. 

In the code above, if one changes 𝜋0 from 0.5 to 0.25 or to 0.75, one obtains the calibration plots of 
Fig. 4. 
 

 
Figure 4: Calibration plots with 𝜋0 = 0.25 (left panel) and with 𝜋0 = 0.75 (right panel). 

However, if one changes 𝜋0 to some very large proportion, as on Fig. 5, one obtains a calibration plot 
that may look similar to an ill-calibrated one (as for instance Fig. 11, below), due to the absence of 
sharp angle at the basis of the green region, which results from the small proportion of DA proteins. In 
this simulated case, the uniform distribution of the non-DA protein is perfect, so that the various 
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estimate concurs and it is easy to assess the good calibration. However, in case of a small proportion 
of non-DA proteins, if the uniformity of non-DA protein is not perfect, the discrimination between a 
good calibration (as on fig. 5) and a not as good one (Fig. 11) may become difficult. 
 

 
Figure 5: Calibration plots with 𝜋0 = 0.9 

3. Ill-calibrated distribution examples 
 
Now, let us reduce the total amount of tested proteins (from n=1000 to n=100). Although the 
distributions are in line with the theory, the corresponding calibration plot on Fig. 6 is not satisfying, 
for the curve displays steps. If  𝜋0 = 0.5, the steps are thin and evenly distributed on the curve (Fig. 6, 
left panel), while if If  𝜋0 = 0.1 (Fig. 6, right panel), the steps are wider but concentrated on the lower 
left side of the curve. Let us also note that for such stepped curve, the color display may be erratic, for 
the tool is pushed to the limit it was made for. All this should be a sign that despite a theoretically 
correct distribution, and thus a theoretically good calibration, the FDR will be unstable. This is why, we 
advise to consider this type of graph as ill-calibrated rather than well-calibrated. Concretely, the FDR 
can be stabilized (to the price of a small over-estimation) by selecting an estimation method which 
provides a larger value for 𝜋0 (see Fig. 7). 

 
Figure 6: Calibration plots with n=100 and  𝜋0 = 0.5 (left panel) or 𝜋0 = 0.1 (right panel). 
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Figure 7: Different calibration plots corresponding to the scenario of Figure 6 (right panel) : Depending on the dataset, 
the estimate which is the more conservative is not the same, so that tuning it on purpose is necessary. 

Now, let us return to the original simulation which provided good calibration and let us add 50 non-DA 
proteins (thus with a rather high p-value) that have strongly correlated behavior across the samples. 
This can be achieved by the following code: 
> n <- 1000 
> pi0 <- 0.5 
> pval1 <- rbeta(n*(1-pi0),shape1=0.5, shape2=20) 
> pval2 <- runif(n*pi0) 
> pcol <- jitter(rep(0.75,50)) 
> pval <- c(pval1,pval2,pcol) 

 
As a result of the correlation, their p-values will be roughly similar, which breaks the uniformity 
assumption. As a result, one observes a calibration of lower quality (Fig. 8). Moreover, depending on 
the 𝜋0 estimator, for a same calibration curves, the calibration issue can appears as having different 
origin (either uniformity underestimation or too low concentration). Even though such limit cases are 
difficult to assess, they must be considered as ill-calibrated. To compensate for this, it is possible to 
increase 𝜋0 by selecting an appropriate estimator, yet, it is sometime not sufficient, so that one has to 
fix 𝜋0=1 (as with BH original estimator) to have the most conservative FDR estimate, as illustrated on 
Fig. 9. 
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Figure 8: Calibration plots in case of correlated analytes which lead to non-DA uniformity. Depending on the accuracy of 
the estimator for each case, such calibration plot may appear as having a non uniform non-DA distribution (left panel 
with Langaas estimate) or an insufficient concentration of DA proteins (right panel, Storey’s estimator based on spline). 

 

 
Figure 9:To recover correct calibration, one needs to increase 𝜋0 beyond what the most over-conservative estimate 
proposes (left panel), so that one has to rely on original BH procedure, by tuning 𝜋0 to 1 (right panel). 

Now that the influence of a single yet large group of correlated proteins (50 of them) on the calibration 
curve is wel--pictured, one easily understands why in real life datasets, one observes more progressive 
curves. In these datasets, there is no such thing as a single large group of highly correlated proteins 
but instead, a continuum of more or less correlated pairs or small groups of proteins. Thus, instead of 
having a single highly visible bump (in red on Fig. 8 left panel) one has a progressive deviation from the 
straight line depicting the uniformity, as illustrated on Fig 10 (on the basis of the iSa dataset [4]). This 
dataset typically reproduces the kind of calibration plot one observes on numerous proteomics dataset 
with a large enough number of proteins to avoid stepped curves, yet with partially correlated proteins 
and few replicates per conditions, leading to an ill-calibrated plot (progressive curve without sharp 
angle on the right hand side and diverging 𝜋0 estimates as illustrated on the left panel figure). In this 
context, it is advised to promote a conservative estimate (here, abh or slim – right panel figure) or even 
to stick to BH procedure. 
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Figure 10: On the left panel, one observes that the various 𝜋0 estimates are not converging. Moreover, due to the very 
progressive curve and the absence of sharp angle on the right hand side, it is difficult to determine if one estimate is 
better than the other is, so that an overconservative estimate should be preferred (right panel). 

 
Several datasets can leads to calibration plots related to that of Fig. 10, yet with a more or less flat 
curve on the left side of the plot: This simply depends on the proportion of non-DA protein, as in 
Fig 4. However, what is important here is to assess that there is no sharp angle on the right side, 
making the distinction between DA and non-DA proteins blur, and leading to imprecise FDR 
estimation. However, in the case were very few proteins are DA, one can end up with a plot which 
is similar to that of Fig 5, yet, with an important divergence from uniformity which is “hidden” due 
to the curve being compacted around the diagonal (see Fig. 11). This figure displays the calibration 
plot of one of the cp4p datasets, where only 41 UPS proteins are DA in a complex yeast 
background. Due to the various correlation among the yeast proteins, the uniformity of non-DA 
protein is far from perfect, which explains why all the 𝜋0 estimates are not as in line as on Fig. 5. 
On such datasets, it is important to fix 𝜋0 to high values, because in addition to be more 
conservative, it corresponds to the reality underlying the experiment. 

 
Figure 11: A real dataset (from [3]), with a large proportion of non-DA proteins, which differ from Fig. 5 due to the non-
perfect uniformity distribution under the null hypothesis. As often, relying on a more conservative 𝜋0 estimate is 
efficient to recover uniformity. 



Now let us illustrate the influence of the logFC cutoff on the p-value calibration. Let us consider another 
cp4p dataset accessible through the demo mode of Prostar (One considers the Exp2_R100_prot which 
exhibits greater fold changes on DA proteins). In absence of filtering (see Fig 12, left panel), one 
observes an ill but manageable calibration plot. However, if the logFC cut of is tuned to 0.25, so that 
65% of the proteins are removed, one ends up with a calibration plot which display a sharper curve 
(see Fig 12, left panel). However, the various estimate do not converge and the curve is less regular, 
indicating the FDR will most likely be instable. Thus, to compensate for this, it will be necessary to 
choose a more conservative 𝜋0 leading to a higher FDR, so that the final benefit of the logFC filter is 
disputable. 

 
Figure 12: Two calibration plots of a same dataset without logFC filtering (left panel), and with a cutoff equal to to 
0.25, so that 65% of the proteins are discarded. 

 

4. Miscalibrated distribution examples 
 

Now, if one increases the logFC cutoff to very high value, with the idea it will help getting rid of all the 
non-DA proteins, a rather deteriorated calibration plot can be obtained, as on Fig. 13, where a cutoff 
equal to 1 discards 97% of the proteins. On such cases, the FDR will be spurious not matter the 
tentative correction with increased 𝜋0 values: the p-values are miscalibrated, and this cannot be 
corrected on the calibration plot. One has to review previous processing steps to avoid spurious FDR. 
 
Another common situation is to have a large dataset with very few DA proteins. As the dataset is much 
larger than that of Fig. 13, even with very stringent logFC cutoffs, steps do not appears: the number of 
remaining proteins after filtering is high enough to have a smooth curve. As the dataset as very few 
DA proteins, it is difficult to obtain a low enough FDR, so that it can be tempting to increase the logFC 
cutoff: thanks to the dataset size, no steps appears so that the FDR can be assumed to be rather stable. 
Consequently, the logFC cutoff parameter can be devoid from its original use, and turn into a way to 
isolate on the volcao plot the very few proteins which look the most interesting. Although any reader 
of this article has now understand that it does not correspond to any good practice, the consequence 
on the calibration plot are immediate, as one observes a curve such as the one of Fig. 14. Concretely, 
any FDR computed after such calibration will have no value. The only solution in such a case is to 
decrease the logFC cutoff and to accept that it is not possible to have a low FDR with a large number 
of DA proteins if the dataset does not contain enough DA protein with large enough fold changes. 



 
Figure 13: Once 97% of the proteins were discarded due to a too stringent logFC cutoff, the calibration curve is very 
irregular. 

 
Figure 14: The effect of a too stringent logFC cutoff on a dataset with almost no clearly DA proteins (the corresponding data 
remains unpublished in this form, for the calibration is obviously not acceptable) 

Finally, although the authors of the article have never witnessed such a dataset in real life, it is 

theoretically possible to have miscalibrated plot due to a bump akin to that of Fig. 8 (left panel) yet 

which is so big that it makes it impossible to compensate. Such calibration could be witnessed in the 

case of a sample preparation which enriched a subset of highly correlated proteins which appears to 

be completely non-DA. A simulated illustration of such type of miscalibration is proposed on Fig. 3 (left 

panel) in [2]. 



5. About the approximation of the logarithmized fold change 
 

The approximation of the logarithmized fold-change is not often discussed, while in practice, it has 
consequences. Concretely, by using logFC (the approximation) instead of the real logarithmized fold-
change, one replaces an arithmetic mean by a geometric one. These two types of means are known to 
provide different results. Depending on the numerical values, the logFC can be rather close to the real 
logarithmized fold-change, or not.  
 

 
Figure 15: A : logarithmized fold-change (x-axis) versus its approximation, temred logFC (y-axis) for 34114 peptides from the 
proteome benchmark dataset used in the MaxLFQ publication [1]. The red line has for equation y=x. B : logarithmized fold-
change (x-axis) versus logFC (y-axis) for 8843 peptides from the UPS 2-fold dataset used in the cp4p publication. The red line 
has for equation y=x. C : Average observed intensities (x-axis) versus standard deviations of these raw intensities (y-axis) for 
34114 peptides from the proteome benchmark dataset used in the MaxLFQ publication. The trend line in red has been 
estimated using the loess function in R. D : Average log2 intensities (x-axis) versus standard deviation of these log2 intensities 
(y-axis) for 34114 peptides from the proteome benchmark dataset used in the MaxLFQ publication. The trend line in red has 
been estimated using the loess function in R. 

 
However, on real datasets, they are often close to one other. For instance, in Fig. 15.A and Fig. 15.B, 
we estimate a red trend line y = x for both datasets, so that, in average, the approximations and the 
real values are equal. However, the noise around this trend has a standard deviation of 0.303 in Fig. 
15.A. It means the approximation stands in a 95% confidence interval [+/-0.59]. In Fig. 15.B, the 
standard deviation is estimated at 0.058 around the trend (95% confidence interval is +/- 0.11). This 
illustrates well that the uncertainty of the approximation can vary from a dataset to another. 
 



Besides, the approximation is more representative of what we compare after performing a log-
transformation than the real logarithmized fold-change. Concretely, the log-transformation is 
important to delete a bias related to the intensity levels in the differential analysis. Indeed, there is 
generally a positive correlation between the observed means and standard deviations of raw 
intensities of peptides/proteins (Fig. 15.C). This can be a problem because in absence of log-
transformation, low-intensity proteins are more likely to be selected in the differential analysis (see 
explanation below). The log-transformation allows diminishing the correlation between the means and 
standard deviations, and therefore can be used to mitigate this bias related to the intensity levels (Fig. 
15.D). This is why log-transformation is suitable before differential analysis. In such case, the test 
statistics is a ratio which numerator is logFC (this why it is termed “t-test difference” in some software 
tools). On the other hand, this makes the two dimensions of the volcano plot largely dependent, which 
does not make is the most suitable representation. 
 
To illustrate the bias induced by the correlation between the observed means and standard deviations 
of raw intensities, let us imagine a protein with high intensity levels in two conditions A and B, but 
having a mean difference between A and B in a same order of magnitude that a protein displaying 
lower intensity levels in both conditions. If the means and standard deviations of intensities are 
positively correlated in the dataset, such a high-intensity protein will tend to have a higher standard 
deviation than the low-intensity protein. As a result, the test statistic of this high-intensity protein will 
be lower than the one of the low-intensity protein, even if they have the same mean differences of 
intensities. Therefore, for the same mean differences of intensities between both conditions, there 
will be a tendency to have higher p-values for high-intensity proteins than for the low-intensity ones, 
what will lead to favor the selection of low-intensity proteins in the differential analysis. 
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