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A technical remark on the
Donaldson-Futaki invariant for Fano
reductive group compactifications

Gabriella Clemente

Abstract

Wepresent an elementaryway of computing theDonaldson-Futaki
invariant associated to a test-configuration of an anti-canonically po-
larized Fano reductive group compactification.

Reductive group compactifications from polytopes. Let G be a re-
ductive group and T ⊂ G be a maximal torus with character lattice M, Lie
algebra t, and dual Lie algebra t∗ ≃MR :=M⊗R. Let W be the Weyl group
of (G,T ), and let Φ denote the root system of (G,T ) with a fixed choice
of positive roots Φ

+. We declare 2ρ to be the sum of the positive roots.
The positive Weyl chamber is M+

R
:= {x ∈ MR |〈α,x〉 ≥ 0 for all α ∈ Φ

+}.
There is a one-to-one correspondence between lattice points λ ∈ M+

R
and

irreducible G−representations Eλ. Furthermore, to a lattice point λ ∈M+
R

corresponds a G×G−representation End(Eλ). The dimension of End(Eλ) is
a polynomial

dim(End(Eλ)) = (dim(Eλ))
2 =Hd(λ) +Hd−1(λ) + . . .

in λ, and here Hd stands for the degree d homogeneous part of the poly-
nomial dim(End(Eλ)), Hd−1 stands for the degree d − 1 part, and so on.

Let P+ := P∩M+
R
, C(P+) ⊆MR×R be the cone over (P+,1), and consider

the finitely generated algebra

RP =
⊕

λ∈C(P+)∩(M×Z)

End(Eλ).
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To anyW−invariant lattice polytope P ⊆MR, we can associate a polarized
reductive group compactification (XP ,LP), where XP = Proj(RP) and LP =
O(1).

The Fano condition. At the polytope level, Fano is the condition that
the distance between 2ρ and any codimension one face of P+ that does not
meet the boundary of the positive Weyl chamber is equal to one. This is a
result that can be found in [3], and which we recapitulate below.

Denote the Zariski closure of T in XP by Z, which is a toric subvariety
of XP . When XP is Fano, the support function v of P is of the form v =
vKC

+ vZ , where vKC
(x) = 〈2ρ,x〉 for all x in the positive Weyl chamber,

vKC
(wx) = vKC

(x) for all w ∈W, and vZ(x) = −g−KZ
(−x), where −g−KZ

is the
support function of the anti-canonical line bundle of the toric subvariety
Z ⊂ XP . Since P is also the polytope of Z, the associated fan ΣP gives rise to
the toric subvariety Z. From the theory of toric varieties, −KZ =

∑

ρ∈Σ(1)Dρ,
where Σ(1) is the set of 1-dimensional cones of ΣP and Dρ is a prime torus
invariant divisor on Z. The support function g−KZ

has the property that
g−KZ

(uρ) = −1 for all ρ ∈ Σ(1), where uρ is the minimal generator of the ray
ρ. In particular, if ai is the inward pointing normal to the i-th codimension
one face of P, g−KZ

(ai) = −g−KZ
(−ai) = −1. Then, v(ai) = 〈ai ,2ρ〉 − 1, and so

the facet presentation of the polytope is

P = {x ∈MR|〈ai ,x〉 ≥ 〈ai ,2ρ〉 − 1}.

As a consequence, the equation that defines the i-th boundary face of P is
fi(x) = 〈ai ,x − 2ρ〉+1 so that fi(2ρ) = 1.

Calculation of the Donaldson-Futaki invariant. In the sequel, we ob-
tain a number of identities that together with the Fano condition will allow
us to simplify Alexeev’s and Katzarkov’s Donaldson-Futaki (DF) invariant:

Theorem. (Theorem 3.3, [1]) Let f be a convex rational W−invariant piece-
wise linear function on P. Then the DF invariant of the corresponding test-
configuration is given by the formula

−F1(f ) =
1

2
∫

P+Hddµ

(
∫

∂P+
f Hddσ +2

∫

P+
f Hd−1dµ− a

∫

P+
f Hddµ

)

,

where

a =

∫

∂P+Hddσ +2
∫

P+Hd−1dµ
∫

P+Hddµ
.
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Here dµ is the Lebesgue measure restricted to P, and the boundary
measure dσ is a positive measure on ∂P that is normalized so that on each
codimension one face, which is defined by an equation l(x) := 〈a,x〉 = c,
dσ ∧ dl = ±dµ holds.

Choose once and for all an isomorphism MR ≃ Rn so that P can be
viewed as though contained in Rn.

Claim. Let Φ+ = {α1, . . . ,αr }, c =
∏r

i=1〈αi ,ρ〉
2, where ρ = 1

2

∑r
i=1αi , and let

{ej }
n
j=1 be the standard basis of Rn. Then,

1.

Hd(x) =
1

c

r
∏

i=1

〈αi ,x〉
2,

2.

Hd−1(x) =
1

c

r
∑

j=1

2〈αj ,x〉〈αj ,ρ〉〈α1,x〉
2 . . . ̂〈αj ,x〉

2
. . . 〈αr ,x〉

2,

3.

∇Hd(x) =
1

c

n
∑

j=1

(

n
∑

i=1

2〈αi ,x〉〈αi , ej〉〈α1,x〉
2 . . . ̂〈αj ,x〉

2
. . . 〈αr ,x〉

2
)

ej ,

4. 〈∇Hd(x),ρ〉 =Hd−1(x),

5. 〈∇Hd(x),x〉 = 2rHd(x), and

6. for any smooth function f : P→ R,

div((x − 2ρ)f Hd ) = 〈∇f ,x − 2ρ〉Hd + (2r +n)f Hd − 2f Hd−1.

Proof. Let Ex be an irreducible representation with highest weight x. To
prove 1. and 2., we make use of the Weyl dimension formula

dim(Ex) =

∏r
i=1〈αi ,x + ρ〉
∏r

i=1〈αi ,ρ〉
.

From the expression
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dim(Ex)
2 =

1

c

r
∏

i=1

(〈αi ,x〉
2 +2〈αi ,x〉〈αi ,ρ〉+ 〈αi ,ρ〉

2),

it follows that if d is the highest degree homogeneous part of the polyno-
mial dim(Ex)

2, then

Hd(x) =
1

c

r
∏

i=1

〈αi ,x〉
2,

and the (d − 1)−degree homogeneous part of dim(Ex)
2 is

Hd−1(x) =
1

c

r
∑

j=1

2〈αj ,x〉〈αj ,ρ〉〈α1,x〉
2 . . . ̂〈αj ,x〉

2
. . . 〈αr ,x〉

2.

For 3., note that ∂
∂xj
〈αi ,x〉 = 〈αi , ej〉 so that

∂

∂xj
Hd(x) =

1

c

r
∑

i=1

2〈αi ,x〉〈αi , ej〉〈α1,x〉
2 . . . ̂〈αi ,x〉

2
. . . 〈αr ,x〉

2,

and hence

∇Hd(x) =
r

∑

j=1

∂

∂xj
Hd(x)ej =

1

c

n
∑

j=1

(

n
∑

i=1

2〈αi ,x〉〈αi , ej〉α1,x〉
2 . . . ̂〈αj ,x〉

2
. . . 〈αr ,x〉

2
)

ej .

For 4., notice that

∇Hd(x) =
1

c

n
∑

j=1

(

n
∑

i=1

2〈αi ,x〉〈αi , ej〉〈α1,x〉
2 . . . ̂〈αj ,x〉

2
. . . 〈αr ,x〉

2
)

ej

=
r

∑

i=1

(1

c
2〈αi ,x〉〈α1,x〉

2 . . . ̂〈αi ,x〉
2
. . . 〈αr ,x〉

2
)

n
∑

j=1

〈αi , ej〉ej

=
r

∑

i=1

(1

c
2〈αi ,x〉〈α1,x〉

2 . . . ̂〈αi ,x〉
2
. . . 〈αr ,x〉

2
)

αi

and then
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〈∇Hd(x),ρ〉 =
r

∑

i=1

1

c
2〈αi ,x〉〈αi ,ρ〉〈α1,x〉

2 . . . ̂〈αi ,x〉
2
. . . 〈αr ,x〉

2 =Hd−1(x).

For 5., observe that since

∇Hd(x) =
r

∑

i=1

(1

c
2〈αi ,x〉〈α1,x〉

2 . . . ̂〈αi ,x〉
2
. . . 〈αr ,x〉

2
)

αi ,

and since for each i,

〈1

c
2〈αi ,x〉〈α1,x〉

2 . . . ̂〈αi ,x〉
2
. . . 〈αr ,x〉

2αi ,x
〉

= 2
(1

c
〈α1,x〉

2 . . . . . . 〈αr ,x〉
2
)

,

indeed we have that

〈∇Hd(x),x〉 = 2r
(

1

c

r
∏

i=1

〈αi ,x〉
2
)

= 2rHd(x).

The above identities now imply the last point. Namely,

div((x − 2ρ)f Hd) = 〈∇(f Hd ),x − 2ρ〉+ div(x− 2ρ)f Hd

= 〈∇f ,x − 2ρ〉Hd + 〈∇Hd ,x − 2ρ〉f +nf Hd

= 〈∇f ,x − 2ρ〉Hd + 〈∇Hd ,x〉f − 2〈∇Hd ,ρ〉f +nf Hd

= 〈∇f ,x − 2ρ〉Hd + (2r +n)f Hd − 2f Hd−1.

The following is analogous to Theorem C in [2].

Proposition. Suppose that P satisfies the Fano condition. Let f : P → R be a
function as in the theorem that is affine linear on P+. Then, the DF invariant
of the test-configuration associated to f is given by

−F1(f ) =
1

2VolDH(P+)

∫

P+
〈∇f ,x − 2ρ〉Hddµ =

1

2
〈barDH(P

+)− 2ρ,∇f 〉,

where barDH(P
+) = 1

VolDH (P+)

∫

P+ xHddµ and VolDH(P
+) =

∫

P+Hddµ are the

barycenter and respectively the volume of P+ with respect to the Duistermaat-
Heckman (DH) measure.
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Proof. Suppose that ∂P+ has k codimension one faces ∂P+
i . Let {∂P

+
i : i =

1, . . . ,m} be the set of all codimension one faces of P+ that do not intersect
the boundary of the positive Weyl chamber. Suppose that ∂P+

i is defined
by 〈ai ,x〉−ci = 0 and set fi(x) := 〈ai ,x〉−ci . The (inward) unit normal vector

field to ∂P+
i is −

∇fi
‖∇fi ‖

= − ai
‖ai‖

. Since P+ satisfies the Fano condition, for x ∈

∂P+
i , we have that

〈(x − 2ρ)f Hd ,−
ai
‖ai‖
〉 = −Hdf

(〈

x − 2ρ,
ai
‖ai‖

〉)

=
−Hd(x)f

‖ai‖

(

〈x,ai〉 − 〈2ρ,ai〉
)

=
Hd(x)f

‖ai‖

(

〈2ρ,ai〉 − ci

)

=
Hd(x)f

‖ai‖
.

The divergence theorem implies that

∫

P+
div((x−2ρ)f Hd)dµ =

m
∑

i=1

∫

∂P+
i

Hdf

‖ai‖
dσi+

k
∑

i=m+1

∫

∂P+
i

〈(x−2ρ)f Hd ,−
ai
‖ai‖
〉dσi ,

where dσi is the standard Lebesgue measure on ∂P with domain restricted
to ∂Pi . When i = m + 1, . . . ,k, ∂P+

i is in the boundary of the positive Weyl
chamber, and

∫

∂P+
i

〈(x − 2ρ)f Hd ,
ai
‖ai‖
〉dσi = 0.

Then
∫

P+
div((x − 2ρ)f Hd)dµ =

m
∑

i=1

∫

∂P+
i

Hd(x)f

‖ai‖
dσi

and the right hand side is the definition of
∫

∂P+
f Hddσ.

By 6. of the claim, taking f = 1, we obtain that

div((x − 2ρ)Hd) = (2r +n)Hd − 2Hd−1.
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Then, by the divergence theorem,

∫

∂P+
Hddσ = (2r +n)

∫

P+
Hddµ− 2

∫

P+
Hd−1dµ.

Hence,

a =

∫

∂P+Hddσ +2
∫

P+Hd−1dµ
∫

P+Hddµ
= 2r +n.

Upon substituting the above calculations into Alexeev’s andKatzarkov’s
DF invariant (cf. Theorem), again using 6. of the claim to rewrite the first
integral, we find that

−F1(f ) =
1

2
∫

P+Hddµ

∫

P+
〈∇f ,x − 2ρ〉Hddµ.

Suppose that f on P+ is given as f (x) =
∑n

j=1 bjxj +k. Put b = (b1, . . . ,bn),

x = (x1, . . . ,xn) and 2ρ = (2ρ1, . . . ,2ρn), and let ej be the j−th standard basis
vector of Rn. Then 〈∇f ,x − 2ρ〉 =

∑n
j=1 bj(xj − 2ρj ) and it follows that

−F1(f ) =
1

2VolDH(P+)

∫

P+
〈∇f ,x − 2ρ〉Hddµ

=
1

2VolDH(P+)

( n
∑

j=1

bj

∫

P+
xjHddµ−

n
∑

j=1

bj(2ρj )VolDH(P
+)
)

=
1

2

(

〈barDH(P
+),

n
∑

j=1

bjej〉 −
n

∑

j=1

bj(2ρj )
)

=
1

2

(

〈barDH(P
+),b〉 − 〈b,2ρ〉

)

=
1

2
〈barDH(P

+)− 2ρ,∇f 〉.

Acknowledgment. I thank Jean-Pierre Demailly, my PhD supervisor,
for his encouragement to make this computation available. I thank the
European Research Council for financial support in the form of a PhD
grant from the project “Algebraic and Kähler geometry” (ALKAGE, no.

7



670846). The present work is an excerpt of my Master’s degree project,
which I completed inMay of 2017, under the supervision of Richard Hind.
I thank him and Mark Behrens, who funded me during the final stage of
myMaster’s degree. I also thank those faculty members of the Notre Dame
mathematics department who were supportive of my work.

References

[1] V. Alexeev and L. Katzarkov, On K-stability of reductive varieties, G.
Geom. Funct. Anal. 15 (2005), no. 2, 297-310.

[2] T. Delcroix, K-stability of Fano spherical varieties, arXiv:1608.01852.

[3] A. Ruzzi, Fano symmetric varieties with low rank, Publ. Res. Inst. Math.
Sci. 48 (2012), no. 2, 235-278.

Gabriella Clemente
Université Grenoble Alpes, Institut Fourier, UMR 5582 du CNRS,
100 rue des Maths, 38610 Gières, France
email: gabriella.clemente@univ-grenoble-alpes.fr

8


