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A technical remark on the Donaldson-Futaki invariant for Fano reductive group compactifications

We present an elementary way of computing the Donaldson-Futaki invariant associated to a test-configuration of an anti-canonically polarized Fano reductive group compactification.

Reductive group compactifications from polytopes. Let G be a reductive group and T ⊂ G be a maximal torus with character lattice M, Lie algebra t, and dual Lie algebra t * ≃ M R := M ⊗ R. Let W be the Weyl group of (G, T ), and let Φ denote the root system of (G, T ) with a fixed choice of positive roots Φ + . We declare 2ρ to be the sum of the positive roots. The positive Weyl chamber is M + R := {x ∈ M R | α, x ≥ 0 for all α ∈ Φ + }. There is a one-to-one correspondence between lattice points λ ∈ M + R and irreducible G-representations E λ . Furthermore, to a lattice point

λ ∈ M + R corresponds a G × G-representation End(E λ ). The dimension of End(E λ ) is a polynomial dim(End(E λ )) = (dim(E λ )) 2 = H d (λ) + H d-1 (λ) + . . .
in λ, and here H d stands for the degree d homogeneous part of the polynomial dim(End(E λ )), H d-1 stands for the degree d -1 part, and so on.

Let P + := P ∩ M + R , C(P + ) ⊆ M R × R be the cone over (P + , 1), and consider the finitely generated algebra

R P = λ∈C(P + )∩(M×Z)
End(E λ ).
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To any W -invariant lattice polytope P ⊆ M R , we can associate a polarized reductive group compactification (X P , L P ), where X P = Proj(R P ) and L P = O(1).

The Fano condition. At the polytope level, Fano is the condition that the distance between 2ρ and any codimension one face of P + that does not meet the boundary of the positive Weyl chamber is equal to one. This is a result that can be found in [START_REF] Ruzzi | Fano symmetric varieties with low rank[END_REF], and which we recapitulate below.

Denote the Zariski closure of T in X P by Z, which is a toric subvariety of X P . When X P is Fano, the support function

v of P is of the form v = v K C + v Z , where v K C (x) = 2ρ, x for all x in the positive Weyl chamber, v K C (wx) = v K C (x)
for all w ∈ W , and v Z (x) = -g -K Z (-x), where -g -K Z is the support function of the anti-canonical line bundle of the toric subvariety Z ⊂ X P . Since P is also the polytope of Z, the associated fan Σ P gives rise to the toric subvariety Z. From the theory of toric varieties, -K Z = ρ∈Σ(1) D ρ , where Σ(1) is the set of 1-dimensional cones of Σ P and D ρ is a prime torus invariant divisor on Z. The support function g -K Z has the property that

g -K Z (u ρ ) = -1 for all ρ ∈ Σ(1)
, where u ρ is the minimal generator of the ray ρ. In particular, if a i is the inward pointing normal to the i-th codimension one face of P, g

-K Z (a i ) = -g -K Z (-a i ) = -1. Then, v(a i ) = a i , 2ρ -1,
and so the facet presentation of the polytope is

P = {x ∈ M R | a i , x ≥ a i , 2ρ -1}.
As a consequence, the equation that defines the i-th boundary face of P is

f i (x) = a i , x -2ρ + 1 so that f i (2ρ) = 1.
Calculation of the Donaldson-Futaki invariant. In the sequel, we obtain a number of identities that together with the Fano condition will allow us to simplify Alexeev's and Katzarkov's Donaldson-Futaki (DF) invariant:

Theorem. (Theorem 3.3, [START_REF] Alexeev | On K-stability of reductive varieties[END_REF]) Let f be a convex rational W -invariant piecewise linear function on P. Then the DF invariant of the corresponding testconfiguration is given by the formula

-F 1 (f ) = 1 2 P + H d dµ ∂P + f H d dσ + 2 P + f H d-1 dµ -a P + f H d dµ ,
where

a = ∂P + H d dσ + 2 P + H d-1 dµ P + H d dµ .
Here dµ is the Lebesgue measure restricted to P, and the boundary measure dσ is a positive measure on ∂P that is normalized so that on each codimension one face, which is defined by an equation l(x) := a, x = c, dσ ∧ dl = ±dµ holds.

Choose once and for all an isomorphism M R ≃ R n so that P can be viewed as though contained in R n .

Claim. Let Φ + = {α 1 , . . . , α r }, c = r i=1 α i , ρ 2
, where ρ = 1 2 r i=1 α i , and let {e j } n j=1 be the standard basis of R n . Then, 1.

H d (x) = 1 c r i=1 α i , x 2 ,
2.

H d-1 (x) = 1 c r j=1 2 α j , x α j , ρ α 1 , x 2 . . . α j , x 2 . . . α r , x 2 ,
3. 

∇H d (x) = 1 c n j=1 n i=1
P → R, div((x -2ρ)f H d ) = ∇f , x -2ρ H d + (2r + n)f H d -2f H d-1 .
Proof. Let E x be an irreducible representation with highest weight x. To prove 1. and 2., we make use of the Weyl dimension formula

dim(E x ) = r i=1 α i , x + ρ r i=1 α i , ρ . From the expression dim(E x ) 2 = 1 c r i=1 ( α i , x 2 + 2 α i , x α i , ρ + α i , ρ 2 ),
it follows that if d is the highest degree homogeneous part of the polynomial dim(E x ) 2 , then

H d (x) = 1 c r i=1 α i , x 2 ,
and the (d -1)-degree homogeneous part of dim(E x ) 2 is

H d-1 (x) = 1 c r j=1 2 α j , x α j , ρ α 1 , x 2 . . . α j , x 2 . . . α r , x 2 .
For 3., note that ∂ ∂x j α i , x = α i , e j so that

∂ ∂x j H d (x) = 1 c r i=1 2 α i , x α i , e j α 1 , x 2 . . . α i , x 2 . . . α r , x 2 ,
and hence

∇H d (x) = r j=1 ∂ ∂x j H d (x)e j = 1 c n j=1 n i=1
2 α i , x α i , e j α 1 , x 2 . . . α j , x 2 . . . α r , x 2 e j .

For 4., notice that

∇H d (x) = 1 c n j=1 n i=1 2 α i , x α i , e j α 1 , x 2 . . . α j , x 2 . . . α r , x 2 e j = r i=1 1 c 2 α i , x α 1 , x 2 . . . α i , x 2 . . . α r , x 2 n j=1 α i , e j e j = r i=1 1 c 2 α i , x α 1 , x 2 . . . α i , x 2 . . . α r , x 2 α i
and then

∇H d (x), ρ = r i=1 1 c 2 α i , x α i , ρ α 1 , x 2 . . . α i , x 2 . . . α r , x 2 = H d-1 (x).
For 5., observe that since

∇H d (x) = r i=1 1 c 2 α i , x α 1 , x 2 . . . α i , x 2 . . . α r , x 2 α i ,
and since for each i,

1 c 2 α i , x α 1 , x 2 . . . α i , x 2 . . . α r , x 2 α i , x = 2 1 c α 1 , x 2 . . . . . . α r , x 2 ,
indeed we have that

∇H d (x), x = 2r 1 c r i=1 α i , x 2 = 2rH d (x).
The above identities now imply the last point. Namely,

div((x -2ρ)f H d ) = ∇(f H d ), x -2ρ + div(x -2ρ)f H d = ∇f , x -2ρ H d + ∇H d , x -2ρ f + nf H d = ∇f , x -2ρ H d + ∇H d , x f -2 ∇H d , ρ f + nf H d = ∇f , x -2ρ H d + (2r + n)f H d -2f H d-1 .
The following is analogous to Theorem C in [START_REF] Delcroix | K-stability of Fano spherical varieties[END_REF].

Proposition. Suppose that P satisfies the Fano condition. Let f : P → R be a function as in the theorem that is affine linear on P + . Then, the DF invariant of the test-configuration associated to f is given by

-F 1 (f ) = 1 2V ol DH (P + ) P + ∇f , x -2ρ H d dµ = 1 2 bar DH (P + ) -2ρ, ∇f ,
where bar DH (P + ) = Proof. Suppose that ∂P + has k codimension one faces ∂P + i . Let {∂P + i : i = 1, . . . , m} be the set of all codimension one faces of P + that do not intersect the boundary of the positive Weyl chamber. Suppose that ∂P + i is defined by a i , xc i = 0 and set f i (x) := a i , xc i . The (inward) unit normal vector field to ∂P + i is -

∇f i ∇f i = -a i a i
. Since P + satisfies the Fano condition, for x ∈ ∂P + i , we have that

(x -2ρ)f H d , - a i a i = -H d f x -2ρ, a i a i = -H d (x)f a i x, a i -2ρ, a i = H d (x)f a i 2ρ, a i -c i = H d (x)f a i .
The divergence theorem implies that 
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 1 ol DH (P + ) P + xH d dµ and V ol DH (P + ) = P + H d dµ are the barycenter and respectively the volume of P + with respect to the Duistermaat-Heckman (DH) measure.

  where dσ i is the standard Lebesgue measure on ∂P with domain restricted to ∂P i . When i = m + 1, . . . , k, ∂P + i is in the boundary of the positive Weyl chamber, and

	P +	div((x-2ρ)f H d )dµ =	m i=1 ∂P + i	H d f a i	dσ i + i=m+1 ∂P + k i	(x-2ρ)f H d , -	a i a i	dσ i ,
				∂P + i	(x -2ρ)f H d ,	a i a i	dσ i = 0.
	Then	P +	div((x -2ρ)f H d )dµ =	m i=1 ∂P + i	H d (x)f a i	dσ i
	and the right hand side is the definition of
						∂P +	f H d dσ.
	By 6. of the claim, taking f = 1, we obtain that

div((x -2ρ)H d ) = (2r + n)H d -2H d-1 .
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Then, by the divergence theorem,

Hence,

Upon substituting the above calculations into Alexeev's and Katzarkov's DF invariant (cf. Theorem), again using 6. of the claim to rewrite the first integral, we find that

Suppose that f on P + is given as

) and 2ρ = (2ρ 1 , . . . , 2ρ n ), and let e j be the j-th standard basis vector of R n . Then ∇f , x -2ρ = n j=1 b j (x j -2ρ j ) and it follows that