Juhong Min

Jongmin Lee

Jean Ponce

Minsu Cho

Nprc

Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features

Establishing visual correspondences under large intraclass variations requires analyzing images at different levels, from features linked to semantics and context to local patterns, while being invariant to instance-specific details.

To tackle these challenges, we represent images by "hyperpixels" that leverage a small number of relevant features selected among early to late layers of a convolutional neural network. Taking advantage of the condensed features of hyperpixels, we develop an effective real-time matching algorithm based on Hough geometric voting. The proposed method, hyperpixel flow, sets a new state of the art on three standard benchmarks as well as a new dataset, SPair-71k, which contains a significantly larger number of image pairs than existing datasets, with more accurate and richer annotations for in-depth analysis.

Introduction

Establishing visual correspondences under large intraclass variations, i.e., matching scenes depicting different instances of the same object categories, remains a challenging problem in computer vision. It requires analyzing scenes at different levels, from features linked to semantics and context to local image patterns, while being invariant to irrelevant instance-specific details. Recent methods have addressed this problem using deep convolutional features. Many of them [START_REF] Christopher B Choy | Universal correspondence network[END_REF][START_REF] Han | Scnet: Learning semantic correspondence[END_REF][START_REF] Kim | Fcss: Fully convolutional self-similarity for dense semantic correspondence[END_REF][START_REF] Rocco | End-toend weakly-supervised semantic alignment[END_REF] formulate this task as local region matching and learn to assign a local region in an image to a correct match in another image. Others [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF]41,[START_REF] Rocco | End-toend weakly-supervised semantic alignment[END_REF][START_REF] Hongsuck | Attentive semantic alignment with offset-aware correlation kernels[END_REF] cast it as image alignment and learn to regress the parameters of global geometric transformation, e.g., using an affine or thin plate spline model [8]. These methods, however, mainly perform the prediction based on the output of the last convolutional layer, and fail to fully exploit the different levels of semantic features available to resolve the severe ambiguities in matching linked with intra-class variations.

We propose a novel dense matching method, dubbed hyperpixel flow (Figure 1). Inspired by the hypercolumns [START_REF] Hariharan | Hypercolumns for object segmentation and fine-grained localization[END_REF] used in object segmentation and detection, we represent images by "hyperpixels" that leverage different levels of features among early to late layers of a convolutional neural network and disambiguate parts of images in multiple visual aspects. The corresponding feature layers for hyperpixels are selected by a simple yet effective search process which requires only a small validation set of supervised image pairs. We show that the resultant hyperpixels provide both fine-grained and context-aware features suited for semantic correspondence and that only a few layers are sufficient and even better for the purpose, thus making hyperpixels an effective representation for light-weight computation. To obtain a geometrically consistent flow of hyperpixels, we present a real-time dense matching algorithm, regularized Hough matching (RHM), building on a recent region matching method using geometric voting [4]. Furthermore, we also introduce a new large-scale dataset, SPair-71k, with more accurate and richer annotations, which facilitates indepth analysis for semantic correspondence.

Our paper makes four main contributions:

• We propose hyperpixels for establishing reliable dense correspondences between two images, which provide multi-layer features robust to local ambiguities.

• We present an efficient matching algorithm, regularized Hough matching (RHM), that achieves a speed of more than 50 fps on a GPU for 300 × 200 image pairs.

• We introduce a new dataset, SPair-71k, which contains a significantly larger number of image pairs with richer annotations than existing ones.

• The proposed method, hyperpixel flow, sets a new state of the art on standard benchmarks as well as SPair-71k. [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] for semantic matching and object discovery. Ham et al. [START_REF] Ham | Proposal flow[END_REF] further extend the work with a local-offset matching algorithm, and introduce a benchmark dataset with keypoint-level annotations. Taniai et al. [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] tackle semantic correspondence jointly with cosegmentation, introducing a benchmark dataset annotated with dense flows and segmentation masks. All these hand-crafted representation fails to capture high-level semantics enough to discriminate complex patterns with large intra-class deformations.

Related Work

In this context, CNN features have emerged as good alternatives for semantic matching. Long et al. [START_REF] Long | Do convnets learn correspondence?[END_REF] show that convolutional features from a CNN pretrained on classification are transferable to correspondence problems. Choy et al. [START_REF] Christopher B Choy | Universal correspondence network[END_REF] attempt to learn a similarity metric based on a CNN using a contrastive loss with hard negative mining. Han et al. [START_REF] Han | Scnet: Learning semantic correspondence[END_REF] propose to learn a CNN end-to-end with geometric matching, which uses region proposals as matching primitives. Kim et al. [START_REF] Kim | Fcss: Fully convolutional self-similarity for dense semantic correspondence[END_REF] introduce a CNN-based selfsimilarity feature for semantic correspondence, and also use it to estimate dense affine-transformation fields by an iterative discrete-continuous optimization [START_REF] Kim | Dctm: Discrete-continuous transformation matching for semantic flow[END_REF]. Novotny et al. [37] train a geometry-aware feature in an unsupervised regime and use it for part matching and discovery by measuring confidence scores. Rocco et al. [START_REF] Rocco | Neighbourhood consensus networks[END_REF] propose a neigh-bourhood consensus network that computes robust matching similarity using 4D convolution filters.

Global image alignment. Some methods have cast semantic correspondence as global alignment. Rocco et al. [41] propose a CNN architecture which takes a correlation tensor and directly predicts global transformation parameters for geometric matching. Seo et al. [START_REF] Hongsuck | Attentive semantic alignment with offset-aware correlation kernels[END_REF] improve it using offsetaware correlation kernels with attention. Rocco et al. [START_REF] Rocco | End-toend weakly-supervised semantic alignment[END_REF] develop a weakly-supervised learning framework using differentiable soft-inlier count loss function. Jeon et al. [START_REF] Jeon | Parn: Pyramidal affine regression networks for dense semantic correspondence[END_REF] propose a pyramidal affine transformation regression network to compute the correspondence hierarchically from high-level semantics to pixel-level points. Kim et al. [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF] introduce a recurrent alignment network that performs iterative local transformations with a global constraint.

Multi-layer neural features. Hariharan et al. [START_REF] Hariharan | Hypercolumns for object segmentation and fine-grained localization[END_REF] have shown that hypercolumns that combine features from multiple layers of CNN, improve object detection, segmentation, and part labeling. Following this work, several methods [START_REF] Kong | Hypernet: Towards accurate region proposal generation and joint object detection[END_REF][START_REF] Lin | Feature pyramid networks for object detection[END_REF] have used multi-layer neural features with additional modules on object detection task. Fathy et al. [START_REF] Mohammed E Fathy | Hierarchical metric learning and matching for 2d and 3d geometric correspondences[END_REF] propose coarse-to-fine stereo matching method that uses multi-layer features in sequence. In semantic correspondence, multi-layer neural features have rarely been explored despite its relevance. Novotny et al. [START_REF] Novotny | Anchornet: A weakly supervised network to learn geometrysensitive features for semantic matching[END_REF] use residual hypercolumn features to learn a set of diverse filters for object parts. Ufer and Ommer [START_REF] Ufer | Deep semantic feature matching[END_REF] employ pyramids of pre-trained CNN features to localize salient feature points guided by object proposals, and match them across images using sparse graph matching. In these methods, multi-layer features are mainly used to localize salient parts and the feature layers are manually selected following previous methods [12,[START_REF] He | Deep residual learning for image recognition[END_REF]. Unlike these approaches and the hypercolumn [START_REF] Hariharan | Hypercolumns for object segmentation and fine-grained localization[END_REF], we use a multi-layer neural feature as a pixel representation for dense matching and optimize feature layers via layer search for the purpose. We show that specific combinations of layers significantly affect matching performance and using only a small number of layers can achieve a remarkable performance.

Neural architecture search (NAS). The layer search for hyperpixels can be viewed as an instance of NAS [START_REF] Liu | DARTS: Differentiable architecture search[END_REF]51,53,54]. Unlike a general search space of network configurations in NAS, however, the search space in our work is limited to combinations of feature layers for visual correspondence.

Hyperpixel Flow

Our method presented below, dubbed hyperpixel flow, can be divided into three steps: (1) hyperpixel construction, (2) regularized Hough matching, and (3) flow formation. Figure 2 illustrates the overall architecture of our model aligned with the three steps. Each input image is fed into a convolutional neural network to create a set of hyperpixels. The hyperpixels are then used as primitives for the regularized Hough matching algorithm to build a tensor of matching confidences for all candidate correspondences. The confidence tensor is transformed into a hyperpixel flow in a post-processing step assigning a match to each hyperpixel. Three steps are detailed in this section.

Hyperpixel construction

Given an image, a convolutional neural network produces a sequence of L feature maps (f 0 , f 1 , ..., f L-1) as intermediate outputs. We represent the original image by a hyperimage by pooling a small subset of K feature maps, optimized for semantic correspondence, and concatenating them along channels with upsampling:

F = f l0 , ζ(f l1), ζ(f l2), ..., ζ(f l K-1) , (1)
where ζ denotes a function that upsamples the input feature map to the size of f l0 , the base map. We can associate with each spatial position p of the hyperimage the corresponding image coordinates, a hyperpixel feature, and its multi-scale receptive fields. Let us denote by x p the image coordinate of position p, and by f p the corresponding hyperfeature, i.e., f p = F(x p). The hyperpixel at position p on the hyperimage is then defined as

h p = (x p , f p). (2)
As will be seen in the next subsection, the hyperpixels are used as primitives for the subsequent matching process.

To select the optimal set of feature maps for hyperpixels, we perform a search over all convolutional layers of a given CNN so that a subsequent matching algorithm achieves the best validation performance. In our case, we use regularized Hough matching (Sec. 3.2) for the matching algorithm and the probability of correct keypoints (PCK) (Sec. 5.2) for the performance metric. For the search algorithm, we use a variant of beam search [START_REF] Medress | Speech understanding systems: Report of a steering committee[END_REF], which is a breadth-first search algorithm with a limited memory. Basically, at each iteration, it evaluates the effect of each candidate layer by adding it to current combinations of layers in the memory and then replaces them with a fixed number of top performing combinations. The search process is repeated until the number of selected layers reaches the maximum number of layers allowed. Finally, we use the best combination found along the search. The detailed procedure is summarized in Algorithm 1, where we restrict base layer candidates, L base only to layers with a sufficient spatial resolution.

(L * , v *) ← M .findBest(); 21 if v * > v sel then 22 (L sel , v sel) ← (L * , v *);

Regularized Hough matching

In order to establish visual correspondences, we adapt the probabilistic Hough matching (PHM), algorithm of Cho et al. [4], to hyperpixels. The key idea of PHM is to re-weight appearance similarity by Hough space voting to enforce geometric consistency. In our context, let D = (H, H) be two sets of hyperpixels, and m = (h, h) be a hyperpixel match where h and h are respectively elements of H and H . Given a Hough space X of possible offsets (image transformation) between the two hyperpixels, the confidence for match m, p(m|D), is computed as

p(m|D) ∝ p(m a) x∈X p(m g |x) m∈H×H p(m a)p(m g |x), (3)
where p(m a) represents the confidence for appearance matching and p(m g |x) is the confidence for geometric matching with an offset x, measuring how close the offset induced by m is to x. By sharing the Hough space X for all matches, PHM efficiently computes the match confidence with good empirical performance [4, [START_REF] Ham | Proposal flow[END_REF][START_REF] Han | Scnet: Learning semantic correspondence[END_REF].

In this work we compute appearance matching confidence using hyperpixel features:

p(m a) = ReLU f • f f f d , (4)
where the ReLU function clamps negative values to zero and the exponent d is used to emphasize the difference between the hyperpixel features. When combined with Hough voting, this similarity function with d ≥ 2 improves matching performance by suppressing noisy activations. We set d = 3 in our experiments.

To compute p(m g |x), we construct a two-dimensional offset space, quantize it into a grid of bins, and use a set of center points of the bins for X . For Hough voting, each match m is assigned to the corresponding offset bin to increment the score of the bin by the appearance similarity score, p(m a). Despite their (serial) complexity of O(|H| × |H |), the operations are mutually independent, and can thus easily be parallelized on a GPU.

Previous versions of PHM all use multi-scale region proposals [35, [START_REF] Pont-Tuset | Multiscale combinatorial grouping for image segmentation and object proposal generation[END_REF][START_REF] Jasper Rr Uijlings | Selective search for object recognition[END_REF] as matching primitives described with HOG [4, 14] or a single feature map from a CNN [START_REF] Ham | Proposal flow[END_REF][START_REF] Han | Scnet: Learning semantic correspondence[END_REF]. While using irregular and multi-scale region proposals focuses attention on object-like regions, it requires creating a three-dimensional offset space for translation and scale changes with higher memory and computation. In contrast, the use of hyperpixels reduces the Hough space down to two dimensions and makes the voting procedure faster and simpler since all hyperpixels are homogeneous on a predefined regular grid. In addition, unlike region proposals, hyperpixels provide (quasi-)dense image features and their multilayer features improve performance in practice. In our GPU implementation, our algorithm, regularized Hough matching (RHM), runs 100 to 500 times faster than PHM (2∼20 msecs vs. 1∼2 secs), enabling real-time matching.

Flow formation and keypoint transfer

The raw output of RHM is a tensor of confidences for all candidate matches. It can easily be transformed into a hyperpixel flow in a post-processing step of assigning a match to each hyperpixel, e.g., by nearest-neighbor assignment. Since the base map of the hyperimage is selected among early layers, the flow is dense enough for many applications.

Transferring keypoints from an image to the corresponding points in another image is commonly used for evaluating semantic correspondences. We use a simple method for keypoint transfer using hyperpixel flow; given a keypoint x p in a source image, its neighbor hyperpixels N (x p) are collected whose base map receptive fields cover the keypoint, and the displacement vectors from the centers of the base map receptive fields to the keypoint, denoted by {d(x q)} xq∈N (xp) , are computed. Given the hyperpixel flow T of N (x p) predicted by our method, we apply the average of the displacements {T (x q) + d(x q)} xq∈N (xp) to localize a corresponding keypoint in the target image.

SPair-71k dataset

With growing interest in semantic correspondence, several annotated benchmarks are now available. Some popular ones are summarized in Table 1. Due to the high expense of ground-truth annotations for semantic correspondence, early benchmarks [2, 22] only support indirect evaluation using a surrogate evaluation metric rather than direct matching accuracy. For example, the Caltech-101 dataset in [START_REF] Chen | Detect what you can: Detecting and representing objects using holistic models and body parts[END_REF] provides binary mask annotations of objects of interest for 1,515 pairs of images and the accuracy of mask transfer is evaluated as a rough approximation to that of matching. Recently, Ham et al. [START_REF] Ham | Proposal flow[END_REF][START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF] and Taniai et al. [START_REF] Taniai | Joint recovery of dense correspondence and cosegmentation in two images[END_REF] have introduced datasets with ground-truth correspondences. Since then, PF-WILLOW [START_REF] Ham | Proposal flow[END_REF] and PF-PASCAL [START_REF] Ham | Proposal flow: Semantic correspondences from object proposals[END_REF] have been used for evaluation in many papers. They contain 900 and 1,300 image pairs, respectively, with keypoint annotations for semantic parts.

All previous datasets, however, have several drawbacks: First, the amount of data is not sufficient to train and test a large model. Second, image pairs do not display much variability in viewpoint, scale, occlusion, and truncation. Third, the annotations are often limited to either keypoints or object segmentation masks, which hinders in-depth analysis. Fourth, the datasets have no clear splits for training, validation, and testing. Due to this, recent evaluations in [START_REF] Han | Scnet: Learning semantic correspondence[END_REF][START_REF] Rocco | End-toend weakly-supervised semantic alignment[END_REF][START_REF] Rocco | Neighbourhood consensus networks[END_REF] have been done with different dataset splits of PF-PASCAL. Furthermore, the splits are disjoint in terms of image pairs, but not images: some images are shared between training and testing data. To resolve these issues, we introduce a new dataset, SPair-71k, consisting of total 70,958 pairs of images from PASCAL 3D+ [50] and PASCAL VOC 2012 [9] * . The dataset is significantly larger with rich annotations and clearly organized for learning. In particular, several types of useful annotations are available: keypoints of semantic parts, object segmentation masks, bounding boxes, viewpoint, scale, truncation, and occlusion differences for image pairs, etc. Figure 3 presents the statistics of SPair-71k in pie chart forms and shows a sample image pair with its annotations. For details on our dataset, we refer the readers to the website: http://cvlab.postech.ac.kr/ research/SPair-71k/.

Experimental Evaluation

In this section we compare the proposed method with recent state-of-the-art methods and discuss the results.

Implementation details

We use two CNNs as main backbone networks for hyperpixel features, ResNet-50 and ResNet-101 [START_REF] He | Deep residual learning for image recognition[END_REF] pre-trained on ImageNet [7]. All convolutional layers of the networks are used as candidate feature layers for hyperpixels. We extract the features at the end of each layer before a ReLU activation. The optimal set of hyperpixel layers, (l 0 , ..., l K-1), is determined by Algorithm 1 run with a validation split of a target dataset. For this beam search, we set the beam size 4 and the maximum number of layers allowed 8. For the exponent value for hyperpixel similarity, we fix d = 3 based on search using PF-PASCAL validation split. * We do not include 'dining table' and 'sofa' classes because they appear as background in most images and their semantic keypoints are too ambiguous to localize.

Evaluation metric

For evaluation on PF-WILLOW, PF-PASCAL, and SPair-71k, we use a common evaluation metric of percentage of correct keypoints (PCK), which counts the average number of correctly predicted keypoints given a tolerance threshold. Given predicted keypoint k pr and groundtruth keypoint k gt , the prediction is considered correct if Euclidean distance between them is smaller than a given threshold. The correctness c of each keypoint can be expressed as [START_REF] Ham | Proposal flow[END_REF][START_REF] Han | Scnet: Learning semantic correspondence[END_REF][START_REF] Kim | Fcss: Fully convolutional self-similarity for dense semantic correspondence[END_REF]41,[START_REF] Rocco | End-toend weakly-supervised semantic alignment[END_REF] are borrowed from [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF]. where w τ and h τ are the width and height of either an entire image or object bounding box, τ ∈ {img, bbox}, and α τ is a tolerance factor (in most cases, α = 0.1). Note that PCK with α bbox is a more stringent metric than one with α img . The final PCK of a benchmark is evaluated by averaging PCKs of all input image pairs. Following recent papers [START_REF] Han | Scnet: Learning semantic correspondence[END_REF]41,[START_REF] Rocco | End-toend weakly-supervised semantic alignment[END_REF][START_REF] Rocco | Neighbourhood consensus networks[END_REF], we evaluate PF-WILLOW with α bbox and PF-PASCAL with α img using the same dataset split as in [START_REF] Rocco | Neighbourhood consensus networks[END_REF].

c = 1 if d(k pr , k gt) ≤ α τ • max (w τ , h τ) 0 otherwise, (5)
For SPair-71k, we use α bbox , which is more stringent.

Results and analysis

Hyperpixel layers. Interestingly, in both cases, adding the second layer significantly boosts the performance of PCK, and only a few more layers are sufficient to achieve a comparable performance with the best one. After reaching an optimized set of layers, adding more damages the performance. This result demonstrates the effectiveness of hyperpixels compared to conventional hypercolumn features. The result also implies that features resolving local-ambiguity lie in between particular layers, e.g., between layer 20 and 30 in our case.

Benchmark comparisons. Table 2 summarizes comparison to recent methods on three standard benchmarks: PF-PASCAL, PF-WILLOW, and Caltech-101. In this experiment, the hyperpixels tuned using the validation split of PF-PASCAL are evaluated on the test split of PF-PASCAL, and futher evaluated on PF-WILLOW and Caltech-101 for checking transferability as done in [START_REF] Han | Scnet: Learning semantic correspondence[END_REF][START_REF] Jeon | Parn: Pyramidal affine regression networks for dense semantic correspondence[END_REF][START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF]41,[START_REF] Rocco | End-toend weakly-supervised semantic alignment[END_REF][START_REF] Hongsuck | Attentive semantic alignment with offset-aware correlation kernels[END_REF].

The results clearly show that the proposed method sets new state-of-the-art results on all the three benchmarks, proving the effectiveness of our approach. Note that all recent neural methods for semantic correspondence rely on ImageNetpretrained features, and thus their performance depends on the backbone networks (indicated by subscripts). As expected, our method using the stronger backbone of ResNet-101 improves the performance compared to using ResNet-50. Furthermore, using the backbone of FCN [START_REF] Lin | Feature pyramid networks for object detection[END_REF] pretrained with PASCAL VOC 2012 [START_REF] Mark Everingham | The pascal visual object classes challenge: A retrospective[END_REF], that is a superset of our target dataset [START_REF] Ham | Proposal flow[END_REF], significantly boosts performance. This shows that our method is flexible in using backbone networks and can further improve by adopting a better one. [START_REF] Rocco | End-toend weakly-supervised semantic alignment[END_REF] 74.8 41 A2Net res101 [START_REF] Hongsuck | Attentive semantic alignment with offset-aware correlation kernels[END_REF] 70.8 53 RTNs res101 [START_REF] Kim | Recurrent transformer networks for semantic correspondence[END_REF] 75.9 376

Local region matching

SCNet vgg16 [START_REF] Han | Scnet: Learning semantic correspondence[END_REF] 72.2 > 1000 PF HOG [START_REF] Ham | Proposal flow[END_REF] 62.5 > 1000 NC-Net res101 [START_REF] Rocco | Neighbourhood consensus networks[END_REF] 78.9 261 HPF res101 w/ all layers 74. 2. The only supervised part of our method is layer selection using a validation set, which can be very small as revealed by small-set experiments, and does not require additional learning: Instead of using all the 308 pairs of the original validation split of PF-PASCAL, the layer search algorithm is performed on k random pairs per class, for a total of 20k validation pairs. The average performances over 10 trials are shown along with their standard deviations in the set of rows with k = 1, 2, 3 at the bottom of Table 2. Using as little as one sample per class (20 image pairs total) as supervisory signal gives results comparable as using all 308 pairs, outperforming the previous state of the art. Given the cost of data collection and the total amount of user-provided information in weakly-supervised methods, we thus believe that our algorithm with small k values (e.g., k = 1) is more cost effective and practical.

Effect of layer search. To check the effect of layer search, we take random combinations of 8 layers (the same number chosen by our layer search) as a baseline. The average results over 10 trials are shown with their standard deviations in the last row of Comparison to proposal flow approach [START_REF] Ham | Proposal flow[END_REF]. The core differences between hyperpixel flow and proposal flow [START_REF] Ham | Proposal flow[END_REF] are the changes in (1) matching primitives, from perproposal geometric descriptor to hyperpixels, in order to handle problems of local-ambiguity and (2) matching algorithms, from PHM to RHM, in order to leverage hyperpixel geometry for efficiency. In Table 2, significant performance improvements on three different benchmarks demonstrate that our features encoding high-level semantics while being agnostic to instance-specific details are crucial to establish robust correspondences. In addition, as shown in Table 4, the proposed voting method, RHM, with hyperpixels shows an impressive improvement in speed compared to [START_REF] Ham | Proposal flow[END_REF].

Inference time comparison. With RHM, predicting dense correspondences for a single pair of images turns out to be much faster compared to other recent models. Figure 5: Qualitative results on SPair-71k. The source images are transformed to target images using correspondences. Table 6: PCK analysis on SPair-71k. Difficulty levels of view points and scales are labeled easy, medium, and hard, while those of truncation and occlusion are indicated by none, source, target, and both.

Model analyses on SPair-71k benchmark. We evaluate several recent methods [41,[START_REF] Rocco | End-toend weakly-supervised semantic alignment[END_REF][START_REF] Rocco | Neighbourhood consensus networks[END_REF][START_REF] Hongsuck | Attentive semantic alignment with offset-aware correlation kernels[END_REF] on our new benchmark dataset. In this experiment, our method tuned using the validation split of SPair-71k is evaluated on the test split of SPair-71k. For each method in comparison, we run two versions of each model: a trained model provided by the authors and the other further finetuned by ourselves on SPair-71k training set. The results are shown in Table 3. We fail to successfully train the method of [START_REF] Rocco | End-toend weakly-supervised semantic alignment[END_REF][START_REF] Rocco | Neighbourhood consensus networks[END_REF] on SPair-71k so that their performances drop when trained. We guess that their original learning objectives for weakly-supervised learning is fragile in presence of large view-point differences as in SPair-71k. We leave this issue for further investigation and will update the results at our benchmark page.

SPair-71k has several annotation types such as viewpoint, scale, truncation and occlusion differences. In-depth analyses of each model using these annotations are summarized in Table 6. All models perform better with pairs of small differences, and view-point and scale differences significantly affect the performances. Yet, our method shows more robust results in terms of those variations compared to the others. Figure 5 shows some examples where our method finds reliable correspondences even under a large view-point and scale difference.

Conclusion

We have proposed a fast yet effective semantic matching method, hyperpixel flow, which leverages an optimized set of convolutional layer features pre-trained on a classification task. The impressive performance of the proposed method, which is only tuned with a small vadidation split without any end-to-end training, indicates that using relevant levels of multiple neural features is crucial in semantic correspondence. We believe further research in this direction is needed together with feature learning. To this end, we have also introduced a large-scale dataset, SPair-71k, with richer annotations for in-depth analyses, which is intended to resolve drawbacks of existing semantic correspondence datasets and to serve for supervised end-to-end learning of semantic correspondence.

Figure 1 :

 1 Figure 1: Hyperpixel flow. Top: The hyperpixel is a multilayer pixel representation created with selected levels of features optimized for semantic correspondence. It provides multi-scale features, resolving local ambiguities. Bottom: The proposed method, hyperpixel flow, establishes dense correspondences in real time using hyperpixels.

(Figure 2 :

 2 Figure 2: Overall architecture of the proposed method. Hyperpixel flow consists of three main steps: hyperpixel construction, regularized Hough matching, and flow formation. For details, see text.

Algorithm 1 : 5 M 9 for k ← 1 to Kmax -1 do 10 M 14 v 19 M

 159101419 Beam search for hyperpixel layers. Input: Lcand = {0, ..., L -1}: all candidate layers Lbase: candidate layers for the base (⊂ Lcand) Nbeam: the beam size Kmax: the maximum number of layers allowed Output: Lsel: the set of selected layers 1 function SearchLayers // initialize memory buffers 2 M.init(); M .init(); // base layer search 3 forall l ∈ L base do 4 v ← evaluateLayerSet({l}); .insert(({l}, v)); .findBestN(N beam); 8 (L sel , v sel) ← M .findBest(); // layer search iterations .init(); 11 forall (L , v) ∈ M do 12 forall l ∈ L cand do 13 if l / ∈ L ∧ l > min(L) then ← evaluateLayerSet(L ∪ {l}); 15 M.insert(L ∪ {l}, v)); ← M.findBestN(N beam); 20

 View-point diff.: Medium Scale diff.: Easy Truncation: Target truncated Occlusion: None Keypoints: 8

Figure 3 :

 3 Figure 3: SPair-71k data statistics and an example pair with its annotations. Best viewed in electronic form.

Figure 4 :

 4 Figure 4: Hyperpixel layer search with ResNet-101 backbone on PF-PASCAL and SPair-71k datasets. Hyperpixel layers are in the order of selection during beam search. Dashed lines indicate PCKs when all layers of a CNN are used for hyperpixels. Best viewed in electronic form.

 For PF-PASCAL, the hyperpixel layer results are (2, 7, 11, 12, 13) with ResNet-50 and (2, 17, 21, 22, 25, 26, 28) with ResNet-101. For SPair-71k, the results are (0, 9, 10, 11, 12, 13) with ResNet-50 and (0, 8, 20, 21, 26, 28, 29, 30) with ResNet-101. In order to analyze the effect of each intermediate feature (f l0 , ..., f l K-1) on hyperpixel, we have measured PCK of our model on both PF-PASCAL and SPair-71k in the order of the layer selection during beam search as shown in Figure 4. The dashed lines represent PCKs using all layers.

 (a) Source image (b) Target image (c) HPF (ours) (d) CNNGeo [41] (e) A2Net[START_REF] Hongsuck | Attentive semantic alignment with offset-aware correlation kernels[END_REF] (f) WeakAlign[START_REF] Rocco | End-toend weakly-supervised semantic alignment[END_REF] (g) NC-Net[START_REF] Rocco | Neighbourhood consensus networks[END_REF]

Table 1 :

 1 Public benchmark datasets for semantic correspondence. The datasets are listed in chronological order. Research papers using the datasets for evaluation are listed in the last column. See text for details.

	Dataset name	Size (pairs) Class	Source datasets	Annotations	Characteristics	Users of the dataset
	Caltech-101 [22]	1,515	101	Caltech-101 [11, 29]	object segmentation	tightly cropped images of objects, little background	[14, 16, 20, 24, 28, 41, 42, 45]
	PASCAL-PARTS [52]	3,884	20	PASCAL-PARTS [2], PASCAL3D+ [50]	keypoints (0∼12), azimuth, elevation, cyclo-rotation, body part segmentation	tightly cropped images of objects, little background, part and 3D infomation	[5, 16, 24, 25, 39, 47]
	Animal-parts [38]	≈7,000	100	ILSVRC 2012 [27]	keypoints (1∼6)	keypoints limited to eyes and feet of animals	[39]
	CUB-200-2011 [49]	120k	200	CUB-200-2011 [49]	15 part locations, 312 binary attributes, bbox	tightly cropped images of object, only bird images	[5, 21]
	TSS [46]	400	9	FG3DCar [31], JODS [44], PASCAL [17]	object segmentation, flow vectors	cropped images of objects, moderate background	[4, 14, 20, 23, 24, 25, 28, 41, 42, 45]
	PF-WILLOW [14]	900	5	PASCAL VOC 2007 [9], Caltech-256 [3, 13]	keypoints (10)	center-aligned images, pairs with the same viewpoint	[14, 16, 23, 24, 25, 39, 41, 45, 47]
	PF-PASCAL [15]	1,300	20	PASCAL VOC 2007 [9]	keypoints (4∼17), bbox.	pairs with the same viewpoint	[14, 16, 20, 23, 28, 37, 41, 42, 43, 45]
	SPair-71k (ours)	70,958	18	PASCAL3D+ [50], PASCAL VOC 2012 [9]	keypoints (3∼30), azimuth, view-point diff., scale diff., seg., bbox. trunc. diff., occl. diff., object	large-scale data with diverse clear dataset splits variations, rich annotations,	this work

Table 2 :

 2 ±0.89 83.9 ±1.14 92.2 ±0.99 44.5 ±0.90 72.5 ±1.22 84.8 ±0.93 ±1.33 84.5 ±0.77 92.9 ±0.41 44.7 ±0.92 73.1 ±1.05 85.4 ±0.84 ±1.16 84.5 ±0.27 92.7 ±0.35 45.1 ±0.55 73.4 ±0.52 85.4 ±0.48 ±11.11 74.7 ±6.46 87.3 ±3.13 32.8 ±8.12 62.4 ±6.67 78.2 ±4.20 Results on standard benchmarks of semantic correspondences. Subscripts of the method names indicate backbone networks used. The second column denotes supervisory information used for training or tuning. Numbers in bold indicate the best performance and underlined ones are the second and third best. Results of

	Methods	Supervision	PF-PASCAL (PCK@α img) 0.05 0.1 0.15	PF-WILLOW (PCK@α bbox) 0.05 0.1 0.15	Caltech-101 LT-ACC IoU
	Identity mapping PF HOG [14]	-	12.7 31.4	37.0 62.5	60.8 79.5	12.2 28.4	27.0 56.8	41.7 68.2	0.77 0.78	0.44 0.50
	CNNGeo res101 [41]	synthetic warp	41.0	69.5	80.4	36.9	69.2	77.8	0.79	0.56
	A2Net res101 [45]	(self-supervised)	42.8	70.8	83.3	36.3	68.8	84.4	0.80	0.57
	DCTM CAT-FCSS [24]		34.2	69.6	80.2	38.1	61.0	72.1	0.83	0.52
	Weakalign res101 [42]	image labels	49.0	74.8	84.0	37.0	70.2	79.9	0.85	0.63
	NC-Net res101 [43]	(weakly-supervised)	54.3	78.9	86.0	33.8	67.0	83.7	0.85	0.60
	RTNs res101 [23]		55.2	75.9	85.2	41.3	71.9	86.2	-	-
	UCN GoogLeNet [5]		29.9	55.6	74.0	24.1	54.0	66.5	-	-
	SCNet vgg16 [16]	keypoints	36.2	72.2	82.0	38.6	70.4	85.3	0.79	0.51
	NN-Cyc res101 [28]		55.1	85.7	94.7	40.5	72.5	86.9	0.86	0.62
	HPF res50 (ours) HPF res101 (ours) HPF res101-FCN (ours)	keypoints (validation only)	60.5 60.1 63.5	83.4 84.8 88.3	92.1 92.7 95.4	46.5 45.9 48.6	72.4 74.4 76.3	84.7 85.6 88.2	0.88 0.87 0.87	0.64 0.63 0.63
	HPF res101 (k=1)	keypoints	59.4 0.87	0.63
	HPF res101 (k=2)	(validation only,	58.3 0.87	0.63
	HPF res101 (k=3)	small set)	59.4 0.87	0.63
	HPF res101 (random)	-	44.5 0.85	0.55

Table 3 :

 3 Per-class PCK (α bbox = 0.1) results on SPair-71k dataset. For transferred model, the original models trained on PASCAL-VOC[41,[START_REF] Hongsuck | Attentive semantic alignment with offset-aware correlation kernels[END_REF] and PF-PASCAL[START_REF] Rocco | End-toend weakly-supervised semantic alignment[END_REF][START_REF] Rocco | Neighbourhood consensus networks[END_REF], which are provided by the authors, are used for evaluation. Note that, for SPair-71k trained models, the transferred models are further finetuned on SPair-71k dataset by ourselves with our best efforts. Numbers in bold indicate the best performance and underlined ones are the second and third best.

	Approach	Model	PCK Time (ms)
		CNNGeo res101 [41]	69.5	40
	Image	WeakAlign res101	
	alignment		

Table 4 :

 4 Inference time comparison on PF-PASCAL benchmark. Hyperpixel layers of HPF res50 * are (4,7,11,12,13).

		5	324
	HPF res50 w/ all layers	70.1	130
	HPF res101	84.8	63
	HPF res50	83.4	34
	HPF res50 *	81.1	19
	Degree of supervision. Different methods in our compar-
	ison require different degrees of supervision in training as
	indicated in the second column of Table	

Table 2 .

 2 Their much worse performance shows that our layer search is crucial.

	Matching module	PF-PASCAL PF-WILLOW α img = 0.1 α bbox = 0.1
	NN w/ (d = 1)	69.0	60.9
	RHM w/ (d = 1)	81.4	68.6
	RHM w/ (d = 2)	84.4	73.3
	RHM w/ (d = 3)*	84.8	74.4
	RHM w/ (d = 4)	84.8	74.1
	RHM w/ (d = 5)	84.5	73.9

Table 5 :

 5 Ablation studies on RHM with ResNet-101.

Table 4

 4

	demonstrates the comparison of per-pair inference time on
	PF-PASCAL. While having more than 5% improvements
	over current state-of-the-art approach [43], the proposed
	model runs 4 to 13 times faster. With a slight trade-off on
	performance, hyperpixels with fewer layers and larger re-
	ceptive field sizes enables real-time matching.
	Ablation studies on matching. To analyze the effects of
	RHM and its exponent factor d in similarity p(m a), we
	experiment with replacing RHM with naïve nearest neigh-
	bor matching (NN) and also varying exponent d of similar-

ity. As shown in Table

5

, the significant PCK gap between NN and RHM demonstrates the effectiveness of geometry matching. The performance improvement with d ≥ 2 shows its effect of suppressing noisy votes in RHM.

 .7 10.6 23.7 15.5 17.9 15.3 22.9 16.1 16.4 14.4 20.6 A2Net res101 [45] 30.9 13.3 7.4 26.1 21.1 12.4 25.0 17.4 20.5 17.6 24.6 18.6 17.2 16.4 22.3 WeakAlign res101 [42] 29.3 11.9 7.0 25.1 19.1 11.0 24.0 15.8 18.4 15.6 23.3 16.1 16.4 15.7 20.9 NC-Net res101 [43] 26.1 13.5 10.1 24.7 17.5 9.9 22.2 17.1 17.5 16.8 22.0 16.3 16.3 15.2 20.1 HPF res50 (ours) 35.0 18.9 13.6 32.0 25.1 15.4 29.7 24.5 23.5 22.9 29.6 22.9 22.1 21.3 27.2 HPF res101 (ours) 35.6 20.3 15.5 33.0 26.1 15.8 31.0 24.6 24.0 23.7 30.8 23.5 22.8 21.8 28.2

		Methods	View-point easy medi hard easy medi hard none src Scale Truncation tgt	Occlusion both none src tgt	both	All
	Identity mapping	7.3	3.7	2.6	7.0	4.3	3.3	6.5	4.8	3.5	5.0	6.1	4.0	5.1	4.6	5.6
		CNNGeo res101 [41]	25.2 10.7	5.9	22.3 16.1	8.5	21.1 12.7 15.6 13.9 20.0 14.9 14.3 12.4 18.1
	Transferred	A2Net res101 [45]	27.5 12.4	6.9											
	models															
	SPair-71k	CNNGeo res101 [41]	28.8 12.0	6.4	24.8 18									
	trained															
	models															

24.1 18.5 10.3 22.9 15.2 17.6 15.7 22.3 16.5 15.2 14.5 20.1 WeakAlign res101 [42] 29.4 12.2 6.9 25.4 19.4 10.3 24.1 16.0 18.5 15.7 23.4 16.7 16.7 14.8 21.1 NC-Net res101 [43] 34.0 18.6 12.8 31.7 23.8 14.2 29.1 22.9 23.4 21.0 29.0 21.1 21.8 19.6 26.4

Acknowledgements. This work is supported by Samsung Advanced Institute of Technology (SAIT) and Basic Science Research Program (NRF-2017R1E1A1A01077999), and also in part by the Inria/NYU collaboration and the Louis Vuitton/ENS chair on artificial intelligence.