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In this paper, a two-dimensional conformable fractional wave equation describing a circular membrane undergoing axisymmetric vibrations is formulated. It was found that the analytical solutions of the fractional wave equation using the conformable fractional formulation can be easily and efficiently obtained using separation of variables and double Laplace transform methods. These solutions are compared with the approximate solution obtained using the differential transform method for certain cases.

Introduction

The fractional formulation of differential equations is an extension of the fractional calculus that was first introduced in 1695 when L'Hôpital and Leibniz discussed the extension of the integer order derivative to the derivative of order 1/2. Both Euler and Lacroix studied the fractional order derivative and defined the fractional derivative using the expression for the nth derivative of the power function [START_REF] Almeida | The Variable-Order Fractional Calculus of Variations[END_REF]. Several physical and mechanical systems can be modeled more accurately using fractional derivative formulations due to the fact that many systems contain internal damping, which implies that it is impossible to derive equations describing the physical behavior of a non-conservative system using the classical energy based approach. The fractional derivative formulations can be successfully obtained in non-conservative systems by minimizing certain functionals with fractional derivative terms using some techniques from calculus of variations [START_REF]Formulation of Euler-Lagrange equations for fractional variational problems[END_REF]. Several fractional formulations for derivatives and integrals such as Riemann-Liouville, Caputo, Riesz, Riesz-Caputo, and Grünwald-Letnikov have been introduced with applications in science and engineering (refer to [START_REF] Almeida | The Variable-Order Fractional Calculus of Variations[END_REF][START_REF]Formulation of Euler-Lagrange equations for fractional variational problems[END_REF][START_REF] Yi | Fractional differential equations of motion in terms of combined Riemann-Liouville derivatives[END_REF][START_REF] Malinowska | Fractional variational calculus in terms of a combined Caputo derivative[END_REF][START_REF] Klimek | Fractional sequential mechanics-models with symmetric fractional derivative[END_REF][START_REF] Samko | Integration and differentiation to a variable fractional order[END_REF]).

While the classical definitions of fractional derivatives such as Riemann-Liouville and Caputo try to satisfy the fundamental properties of standard derivatives such as the derivatives of constant, product rule, quotient rule, and chain rule. None of the definitions are successful in their attempts other than the shared linear property between all the definitions of fractional derivatives [START_REF] Hammad | Conformable fractional heat differential equation[END_REF]. Khalil et al. [START_REF] Khalil | A new definition of fractional derivative[END_REF] put forward a new definition of fractional derivative named conformable fractional derivative as follows:

Definition 1. For 0 < β ≤ 1, given a function f : [0, ∞) → such that for all t > 0 and β ∈ (0, 1), the βth order conformable fractional derivative (CFD) of f , denoted by G β (f )(t), can be written as:

G β (f )(t) = f (β) (t) = lim ε→0 f (t + εt 1-β ) -f (t) ε (1) 
If f is β-differentiable in some (0, b), b > 0, and the limit of f (β) (t) exists as t approaches 0 + , then by CFD definition:

f (β) (0) = lim t→0 + f (β) (t) (2) 
The CFD definition is an extension of the classical derivative that happens naturally and satisfies the properties of standard derivative. The conformable derivative of constant, the product rule, the quotient rule, and the chain rule all satisfy the standard formula of standard limit-based derivative [START_REF] Lazo | Variational calculus with conformable fractional derivatives[END_REF]. Various conformable fractional forms have been introduced to many mathematical notions such as Norther's symmetry theorem and Action Principle for particles under frictional forces and have been shown to be much simpler than the ones with classical fractional derivative formulations such as Riemann-Liouville and Caputo [START_REF] Lazo | Variational calculus with conformable fractional derivatives[END_REF]. For more applications of conformable fractional derivative, see also [START_REF] Kurt | The new solution of time fractional wave equation with conformable fractional derivative definition[END_REF][START_REF] Tasbozan | New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method[END_REF]. G β satisfies all the standard derivative properties in the following theorem [START_REF] Khalil | A new definition of fractional derivative[END_REF][START_REF] Hammad | Conformable fractional heat differential equation[END_REF]: Theorem 1. Assume that 0 < β ≤ 1, and f , h be β-differentiable at a point t, then:

(i) G β (mf + wh) = mG β (f ) + wG β (h), for all m, w ∈ .

(ii) G β (t s ) = st s-β , for all s ∈ .

(iii) G β (f h) = f G β (h) + hG β (f ). (iv) G β ( f h ) = hG β (f )-f G β (h) h 2 .
(v) G β (λ) = 0, for all constant functions f (t) = λ.

(vi) If f is a differentiable function, then G β (f )(t) = t 1-β df dt .

For more mathematical examples about each property in theorem 1, we refer to [START_REF] Hammad | Conformable fractional heat differential equation[END_REF][START_REF] Khalil | Solution of some conformable fractional differential equations[END_REF]. C ¸enesiz and Kurt [START_REF] Kurt | The new solution of time fractional wave equation with conformable fractional derivative definition[END_REF] discussed the possibility of applying the CFD definition for solving the two-dimensional and three-dimensional time fractional wave equation in rectangular domain. As a result, C ¸enesiz and Kurt [START_REF] Kurt | The new solution of time fractional wave equation with conformable fractional derivative definition[END_REF] showed how the conformable fractional derivatives can easily and efficiently transform fractional differential equations into classical usual differential equations without the need for complicated methods to find the analytical solutions for partial fractional differential equations of higher dimensional systems. On the other hand, Tasbozanet et al. [START_REF] Tasbozan | New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method[END_REF] discussed how to find the analytical traveling wave solutions in the sense of the conformable derivatives for nonlinear partial differential equations such as Nizhnik-Novikov-Veselov and Klein-Gordon equations by introducing a method consisting of a series of exponential functions, known as exp-function method, to study nonlinear evolution equations.

The CFD is a type of the local fractional derivative (LFD) [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF]. The LFD has been successfully applied in modeling several applications in engineering such as the entropy (function of state) analysis of thermodynamic systems and the control theory of dynamic systems [START_REF] Acan | Analytical approximate solutions of (n+1)-dimensional fractal heat-like and wave-like equations[END_REF]. A new mathematical branch, known as fractal calculus, have been recently introduced in modeling various mathematical and engineering phenomena in hierarchical structures or porous media such as fractal kinetics [START_REF] He | Fractal calculus and its geometrical explanation[END_REF], heat conduction in fractal medium [START_REF] He | Fractal calculus and its geometrical explanation[END_REF], and the porous hairs of polar bear [START_REF] He | A new fractional derivative and its application to explanation of polar bear hairs[END_REF]. Research studies showed that there is a relation between the fractional order and the fractional dimension [START_REF] He | Fractal calculus and its geometrical explanation[END_REF]. Several definitions of fractal derivatives have been proposed by researchers such as Chen's fractal derivative and Ji-Huan He's fractal derivative (HFD) [START_REF] He | A new fractional derivative and its application to explanation of polar bear hairs[END_REF]. However, some fractional derivatives lacks the physical and geometrical interpretation, therefore, the fractal calculus is very helpful in providing a physical interpretation for many fractional models in fractal media [START_REF] He | Fractal calculus and its geometrical explanation[END_REF]. Both LFD and HFD have been applied extensively in science and engineering due to their accurate mathematical properties, physical insights, and geometrical interpretations [START_REF] He | Fractal calculus and its geometrical explanation[END_REF][START_REF] Acan | Analytical approximate solutions of (n+1)-dimensional fractal heat-like and wave-like equations[END_REF][START_REF] He | A new fractional derivative and its application to explanation of polar bear hairs[END_REF]. The fractal derivative with fractal dimensions can be applied in modeling engineering problems and describing their discontinuous media [START_REF] He | A New Fractal Derivation[END_REF] such as the applications of multi-scale fabrics and wool fibers by modeling their water permeation [START_REF] He | A new fractional derivative and its application to explanation of polar bear hairs[END_REF]. LFD and HFD have been defined in [START_REF] He | A new fractional derivative and its application to explanation of polar bear hairs[END_REF][START_REF] Acan | Analytical approximate solutions of (n+1)-dimensional fractal heat-like and wave-like equations[END_REF] on a fractal space as follows:

Definition 2. For a fractal dimension, β, where 0 < β ≤ 1, given a set of nondifferentiable functions with fractal dimension, say

C β (a, b) such that for Φ(x) ∈ C β (a, b), the βth order local fractional derivative (LFD) of Φ(x) at x = x 0 , denoted by D (β)
x Φ(x 0 ), can be written as:

D (β) x Φ(x 0 ) = Φ (β) (x 0 ) = d β Φ(x) dx β | x=x0 = lim x→x0 β (Φ(x) -Φ(x 0 )) (x -x 0 ) β (3) 
where

β (Φ(x) -Φ(x 0 )) ∼ = Γ(1 + β) (Φ(x) -Φ(x 0 )) Definition 3.
Using figure 1 in [START_REF] He | A New Fractal Derivation[END_REF], the fractal geometry describes the distance between two points, say x a and x b , in a discontinuous media i.e. porous medium such that M is supposed to be the smallest measure (thickness) in the given fractal media where any discontinuity less than this measure is neglected. Given a fractal dimension, say β, and constant, say ξ, the Ji-Huan He's fractal derivative (HFD) can be written [START_REF] He | A New Fractal Derivation[END_REF][START_REF] He | A new fractional derivative and its application to explanation of polar bear hairs[END_REF] as follows:

DΦ(t) Dx β = lim ∆x→M Φ(x a ) -Φ(x b ) ξM β = Γ(1 + β) lim ∆x→M Φ(x a ) -Φ(x b ) (x a -x b ) β (4) 
where ∆x = x a -x b ; and ∆x tends only to M and it does not tend to 0. By using the fractal gradient [START_REF] He | Fractal calculus and its geometrical explanation[END_REF], ξM β = M β Γ(1+β) such that ξM β is extremely small, but ξM β > M . For more applications using HFD in applied science and engineering, we refer to [START_REF] He | Fractal calculus and its geometrical explanation[END_REF][START_REF] Hu | On fractal space-time and fractional calculus[END_REF][START_REF] He | A new fractional derivative and its application to explanation of polar bear hairs[END_REF][START_REF] He | A tutorial review on fractal spacetime and fractional calculus[END_REF].

In addition, He's fractional derivative (HFcD) has been applied for modeling several scientific phenomena (see [START_REF] He | A new fractional derivative and its application to explanation of polar bear hairs[END_REF][START_REF] Liu | A fractional nonlinear system for release oscillation of silver ions from hollow fibers[END_REF]). The physical and geometrical interpretations of the HFcD were discussed in [START_REF] He | Fractal calculus and its geometrical explanation[END_REF][START_REF] He | A tutorial review on fractal spacetime and fractional calculus[END_REF]. The following is the definition of HFcD [START_REF] He | A new fractional derivative and its application to explanation of polar bear hairs[END_REF][START_REF] Liu | A fractional nonlinear system for release oscillation of silver ions from hollow fibers[END_REF]: Definition 4. Assume β to be the fractional dimension of the fractal medium, the He's fractional derivative (HFcD), denoted by ∂ β ∂t β , can be written as::

∂ β Ψ ∂t β = 1 Γ(m -β) d m dt m t t0 (ξ -t) m-β-1 [Ψ 0 (ξ) -Ψ(ξ)]dξ (5) 
where for a fractional-order problem in fractal media, the continuum partner of problem with the same initial and boundary conditions of the fractal partner has the same solution which is Ψ 0 (x, t) [START_REF] He | A new fractional derivative and its application to explanation of polar bear hairs[END_REF].

The conformable fractional derivative (CFD) is basically a generalized fractal derivative or q-derivative [START_REF] Atangana | New properties of conformable derivative[END_REF]. The q-derivative is very important in quantum calculus where the derivative is expressed using Leibniz's notation and the spacetime is discontinuous in quantum scales [START_REF] He | A tutorial review on fractal spacetime and fractional calculus[END_REF]. The generalized q-derivative (fractal derivative) using CFD definition 1 can be written [START_REF] Atangana | New properties of conformable derivative[END_REF] as follows: Definition 5. Using definition 1, given a function Ψ : [0, ∞) → such that for all t > 0 and β ∈ (0, 1), and by assuming q = 1 + εt -β where q tends to 1 and ε tends to 0, the generalized q-derivative (fractal derivative), denoted by G β (Ψ)(t), is written as:

G β (Ψ)(t) = Ψ (β) q (t) = lim q→1 Ψ(qt) -Ψ(t) qt β -t β = lim q→1 Ψ(qt) -Ψ(t) (q -1)t β (6) 
This generalized q-derivative coincides with definition 11 of q-derivative in [START_REF] He | A tutorial review on fractal spacetime and fractional calculus[END_REF].

Weberszpil and Chen in [START_REF] Weberszpil | Generalized Maxwell relations in thermodynamics with metric derivatives[END_REF] showed that using the method of change of variables in part (vi) of theorem 1 to transform t to 1 + x l0 , the CFD is simply a Hausdorff derivative (HD) which is valid for differential functions. HD is a kind of fractal derivatives [START_REF] Liang | Hausdorff Calculus: Applications to Fractal Systems[END_REF] that has been applied in various engineering phenomena to describe the physical behaviors and complex mechanics [START_REF] Chen | Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations[END_REF]. HD extends the modeling approach used in the classical continuum mechanics to fractal materials using the Hausdorff calculus [START_REF] Liang | Hausdorff Calculus: Applications to Fractal Systems[END_REF]. Some examples of HD applications in science and engineering are anomalous diffusion, non-Guassian distribution, creep and relaxation in fractal media, and viscosity [START_REF] Liang | Hausdorff Calculus: Applications to Fractal Systems[END_REF][START_REF] Chen | Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations[END_REF].

CFD is simply a usual Newton derivative multiplied by the term t 1-β [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF]. The term t 1-β in the definition 1 is basically a type of fractional conformable function (FCF) (see definition 5 in [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF]) [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF]. CFD combines the properties of usual derivative with the properties of fractional derivatives [START_REF] Meng | The Extremal Solution To Conformable Fractional Differential Equations Involving Integral Boundary Condition[END_REF]. Therefore, CFD can be applied to extend and generalize theorems from the classical calculus such as integration by parts, mean value theorem, power series expansion, and Rolle's theorem [START_REF] Meng | The Extremal Solution To Conformable Fractional Differential Equations Involving Integral Boundary Condition[END_REF]. From definition 1, the function is differentiable in the sense of conformable derivatives which implies that the Taylor power series expansion (TPSE) exists for CFD, while the other forms of fractional derivatives where functions are not differentiable, TPSE do not exist, when there are infinitely differentiable functions at some points [START_REF] Meng | The Extremal Solution To Conformable Fractional Differential Equations Involving Integral Boundary Condition[END_REF]. As a result, several researchers got motivated to explore the CFD and apply it in modeling phenomena in applied science and engineering [START_REF] Meng | The Extremal Solution To Conformable Fractional Differential Equations Involving Integral Boundary Condition[END_REF].

The CFD can be physically interpreted as a modified standard limit-based derivative in magnitude and direction [START_REF] Silva | Conformable Laplace Transform of Fractional Differential Equations[END_REF]. Therefore, CFD is a special case of the wellknown directional derivative (DD). The directional derivative is a kind of G ateaux derivative (GD). Zhao and Luo proposed in [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF] a new generalized form of CFD named the general conformable fractional derivative (GRCFD) by extending and generalizing the definition of G ateaux derivative (see definition 2 in [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF]) into Extended G ateaux derivative (see definition 3 in [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF]) and Linear Extended G ateaux derivative (see definition 4 in [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF]) together with the definition of CFD. The physical and geometrical interpretations of CFD were also discussed in [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF] using GRCFD as a special case of CFD. Using definitions 2, 3, 4, and 5 and using + as a space in [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF] and definition 1 in this paper, GRCFD can be defined [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF] as follows: Definition 6. For 0 < β ≤ 1, given a fractional conformable function, say Ω(m, β), the general conformable fractional derivative (GRCFD) can be written as:

D β Ω G m = lim ε→0 G(m + εΩ(m, β)) -G(m) ε (7) 
For the definition of GRCFD of arbitrary order, we refer to definition 7 in [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF]. Since CFD is a modified version of Newton derivative, then the geometrical and physical meaning of CFD can be interpreted [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF] as the slope of tangent where the value of the given function in the definition of G ateaux derivative in [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF] changes as m (independent variable) changes ε, and the magnitude and direction of the velocity of particle are obtained from the ratio limit of the changes in function value. In addition, the Extended G ateaux derivative can be interpreted [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF] as a special case of velocity of particle where the magnitude and direction of this velocity depends only on Ω(m, ε, β), while the physical meaning of the Linear Extended G ateaux derivative is just a modified version of usual velocity (as a multiple of usual velocity of particle) in magnitude and direction where this derivative can be geometrically represented [START_REF] Zhao | General conformable fractional derivative and its physical interpretation[END_REF] as the gradient of a given function, G , projected onto Ω(m, β) (we also refer to [START_REF] Abdeljawad | On geometric fractional calculus[END_REF] for new proposed multiplicative (geometric) forms of conformable fractional derivatives and integrals).

Circular vibrating membrane problem (CVMP) has been applied in several applications in engineering such as industrial dynamic filtration modules and vibratory shear enhanced process (VSEP) for wastewater treatment systems [START_REF] Jaffrin | Dynamic filtration with rotating disks, and rotating and vibrating membranes: an update[END_REF][START_REF] Kola | Transverse vibration as novel membrane fouling mitigation strategy in anaerobic membrane bioreactor applications[END_REF]. CVMP has been also used extensively in investigating the transverse vibration using a vibrating membrane in a linearly transverse direction and analyzing the modes of transverse vibratory motion [START_REF] Kola | Application of low frequency transverse vibration on fouling limitation in submerged hollow fibre membranes[END_REF]. CVMP studies the vibration of membranes (vibration equation) which has many practical applications in industry and bioengineering [START_REF] Singh | A reliable numerical algorithm for the fractional vibration equation[END_REF]. Studying the two-dimensional analysis of wave mechanics and propagation in CVMP is very important in building the components of microphones, speakers, and some medical and industrial instruments [START_REF] Singh | A reliable numerical algorithm for the fractional vibration equation[END_REF].

In this paper, we formulate the two-dimensional time fractional wave partial differential equation in the sense of conformable fractional derivative for a circular membrane undergoing axisymmetric vibrations, and we solve it using the methods of separation of variables, double Laplace transform, and reduced differential transform. We compare and discuss all obtained approximate solutions using those methods and the error between analytical and approximate solutions.

In Section 2, the conformable fractional wave partial differential equation is solved using the methods of separation of variables, double Laplace transform, and reduced differential transform. In Section 3, we discuss the error between analytical and approximate solutions from section 2, and we compare all results with the classical analytical solution from [START_REF] Wollkind | Comprehensive Applied Mathematical Modeling in the Natural and Engineering Sciences[END_REF][START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF]. In Section 4, the conclusion of this study is presented.

Conformable fractional wave equation

In this section, we investigate the conformable fractional mixed initial-boundary value problem of a circular membrane [START_REF] Wollkind | Comprehensive Applied Mathematical Modeling in the Natural and Engineering Sciences[END_REF] of radius R and constant density ρ o where the initial vibration conditions are radially symmetric or axisymmetric. Under such conditions, polar coordinates (r, θ) can be introduced such that m(x, y, t) = M (r, t) where the displacement is independent of θ, and the initial displacement and velocity functions can be written as q(r) and n(r), respectively. The laplacian in polar coordinates can be written as:

∇ 2 = ∂ 2 ∂r 2 + 1 r ∂ ∂r + 1 r 2 ∂ 2 ∂θ 2 (8) 
Since the initial vibration conditions are axisymmetric, they are dependent only on the radial distance r from the center of the circle. Hence, q(r) and p(r) do not depend on θ, and instead they depend only on r, and from equation ( 3), the term ∂ 2 ∂θ 2 = 0. Consequently, the governing system of equations for a circular membrane undergoing axisymmetric vibrations can be mathematically modeled by the following two-dimensional wave partial differential equation equation in the sense of CFD:

∂ 2β M ∂t 2β = c 2 o ∂ 2 M ∂r 2 + 1 r ∂M ∂r (9) 0 < r < R; t > 0; 0 < β ≤ 1; and c 2 o =(τ o /ρ o )
where τ o is the assumed to be the constant value of the elastic membrane stretch-resisting restorative force per unit length or surface tension. Equation ( 9) is subjected to the following boundary and initial conditions:

M (R, t) = 0; and M (r, t) bounded as r → 0 for t > 0 (10) 
M (r, 0) = q(r); and

∂ β M ∂t β (r, 0) = p(r); for 0 < r < R and 0 < β ≤ 1 ( 11 
)
The problem is divided into two main parts; analytical solution part and approximate solution part:

2.1. The analytical solution by the separation of variables method. By using the separation of variables method, we let M (r, t) = V (r)G(t) to be the solution form of the governing conformable fractional wave partial differential equation and boundary conditions. The following is obtained from substituting the assumed solution form in equation ( 9):

d 2β G(t) dt 2β V (r) = c 2 o d 2 V (r) dr 2 G(t) + 1 r dV (r) dr G(t) (12) 
Dividing both sides of equation ( 12) by c 2 o , left hand side term of equation ( 12) by G(t), and the two terms of the right hand side of equation ( 12) by V (r), we obtain:

d 2β G(t) dt 2β 1 G(t)c 2 o = c 2 o d 2 V (r) dr 2 1 V (r) + 1 r dV (r) dr 1 V (r) ≡ -λ 2 ( 13 
)
where λ is the separation constant. As a result, the following two equations are obtained:

d 2β G(t) dt 2β + c 2 o G(t)λ 2 = 0 ( 14 
)
d 2 V (r) dr 2 + 1 r dV (r) dr + λ 2 V (r) = 0 (15) 
From equation ( 14), it is necessary to introduce the sequential CFD from [START_REF] Abdeljawad | On conformable fractional calculus[END_REF] as follows:

Definition 7. For 0 < β < 1, and n ∈ Z + , given a function f : [0, ∞) → , the nth order of sequential CFD can be generally written as:

(n) G β f (t)=G β G β G β ...G β f (t). Let's consider the f : [0, ∞) →
to be a second continuously differentiable function [START_REF] Abdeljawad | On conformable fractional calculus[END_REF] and β ∈ (0, 0.5], then the 2 nd order of sequential CFD is written as:

(2) G β f (t) = G β G β f (t) = (1 -β)t 1-2β f (1) (t) + t 2-2β f (2) (t) if t > 0 0 if t = 0 (16) 
By using the sequential CFD definition and property (vi) from theorem (1), equation ( 14) can be re-written as:

(1 -β)t 1-2β G (1) (t) + t 2-2β G (2) (t) + c 2 o G(t)λ 2 = 0 Q.E.D. (17) 
Multiplying both sides equation ( 15) by r 2 to make calculations simple, we obtain:

r 2 d 2 V (r) dr 2 + r dV (r) dr + r 2 λ 2 V (r) = 0 (18) 
Let's now introduce the change of variables [START_REF] Wollkind | Comprehensive Applied Mathematical Modeling in the Natural and Engineering Sciences[END_REF]: s = λr for V (r) = ψ(s) such that for dV (r) dr , it is transformed into the following:

dV (r) dr = dψ(s) dr (s) = dψ(s) ds ds dr (s) = λ dψ(s) ds (19) 
Similarly, for d 2 V (r) dr 2 , it is transformed into the following:

d 2 V (r) dr 2 = d dr λ dψ(s) ds (s) = λ 2 d 2 ψ ds 2 (s) (20) 
Substituting r = ( s λ ) and results from [START_REF] Demirci | A method for solving differential equations of fractional order[END_REF] and [START_REF] Dhunde | Double Laplace transform method for solving space and time fractional telegraph equations[END_REF] in equation ( 18), we obtain the following equation:

s 2 d 2 ψ(s) ds 2 + s dψ(s) ds + s 2 ψ(s) = 0; for 0 < s < λR (21) 
From the boundary condition in [START_REF] Arikoglu | Solution of fractional differential equations by using differential transform method[END_REF], ψ(s) in equation ( 21) is also bounded as s → 0, and ψ(λR) = 0. By using the results from the eigenvalue problem involving the Bessel function of the first kind of order zero in [START_REF] Wollkind | Comprehensive Applied Mathematical Modeling in the Natural and Engineering Sciences[END_REF][START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF], we have:

V (R) = 0 → J o (λR) = 0
where λR is the root of Bessel function J o , and

V (r) = J o (λr).
Hence, it can be concluded that for n ∈ Z + , λ n = ξn R , and

V n (r) = J o ( ξnr R
) is the corresponding solution to equation [START_REF] Arikoglu | Solution of fractional differential equations by using differential transform method[END_REF] where J o has infinitely many positive zeros such that ξ 1 < ξ 2 < ξ 3 < ... < ξ n where ξ n is the n th positive zero of the Bessel function J o .

For equation [START_REF] Chen | Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations[END_REF], the WolframAlpha computational intelligence solver is used to obtain the following solution:

G n (t) = E n cos c o λ n t β β + K n sin c o λ n t β β ; for n ∈ Z + (22) 
By substituting λ n = ξn R in equation [START_REF] Eltayeb | A note on solutions of wave, Laplace's and heat equations with convolution terms by using a double Laplace transform[END_REF], the solution can be re-written as:

G n (t) = E n cos c o ξ n t β βR + K n sin c o ξ n t β βR ; for n ∈ Z + (23) 
By using the superposition principle, the general solution for the conformable fractional mixed initial-boundary value can be written as a linear combination of both V n (r) and G n (t):

M (r, t) = ∞ n=1 M n (r, t) = ∞ n=1 V n (r)G n (t) = ∞ n=1 J o ξ n r R × E n cos c o ξ n t β βR + K n sin c o ξ n t β βR ; for n ∈ Z + Q.E.D. (24) 
To find the coefficients, E n and K n , from equation ( 24) so the general solution satisfies the initial conditions in [START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF], the first condition M (r, 0) = q(r) is substituted in equation [START_REF] He | A new fractional derivative and its application to explanation of polar bear hairs[END_REF] as follows:

M (r, 0) = q(r) = ∞ n=1 M n (r, 0) = ∞ n=1 V n (r)G n (0) = ∞ n=1 J o ξ n r R × E n cos c o ξ n (0) β βR + K n sin c o ξ n (0) β βR = ∞ n=1 J o ξ n r R × [E n cos (0) + K n sin (0)] = ∞ n=1 J o ξ n r R E n ; for n ∈ Z + Q.E.D. (25) 
For the second initial condition, ∂M ∂t (r, 0) = p(r), in [START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF], we first find ∂ β M ∂t β (r, t) from equation ( 24) using the two examples from [START_REF] Hammad | Conformable fractional heat differential equation[END_REF] where G β (sin( t β β )) = cos( t β β ) and G β (cos( t β β )) = -sin( t β β ), and our previous conclusion λ n = ξn R as follows:

∂ β M ∂t β (r, t) = p(r) = ∞ n=1 J 0 ξ n r R c o ξ n R × -E n sin c o ξ n t β βR + K n cos c o ξ n t β βR ; for n ∈ Z + (26) 
We now substitute ∂M ∂t (r, 0) = p(r) in equation ( 26) as follows:

∂ β M ∂t β (r, 0) = p(r) = ∞ n=1 J 0 ξ n r R c o ξ n R × -E n sin c o ξ n 0 β βR + K n cos c o ξ n 0 β βR = ∞ n=1 J 0 ξ n r R c o ξ n R [-E n sin (0) + K n cos (0)] = ∞ n=1 J 0 ξ n r R c o ξ n R K n ; for n ∈ Z + Q.E.D. (27) 
Using the orthogonality property of Bessel function J 0 ( ξnr R ) and representing the normalization constant in terms of J 1 (ξ n ), we obtain the following:

E n = q(r), J 0 ξ n r R r J 0 ξ n r R 2 r = 2 R 2 J 2 1 (ξ n ) R 0 rq(r)J 0 ξ n r R dr; for n ∈ Z + (28) K n = R c o ξ n p(r), J 0 ξ n r R r J 0 ξ n r R 2 r = 2 Rc o ξ n J 2 1 (ξ n ) R 0 rp(r)J 0 ξ n r R dr; for n ∈ Z + (29) 
By substituting the results from ( 28) and ( 29) in equation ( 24), the most general solution for the conformable fractional mixed initial-boundary value problem emerging from the separation of variables method can be written as follows:

M (r, t) = ∞ n=1 2 R 2 J 2 1 (ξ n ) R 0 q(r)J 0 ξ n r R r dr cos c o ξ n t β βR J 0 ξ n r R + ∞ n=1 2 Rc o ξ n J 2 1 (ξ n ) R 0 p(r)J 0 ξ n r R r dr sin c o ξ n t β βR J 0 ξ n r R ; for n ∈ Z + Q.E.D. (30) 
2.2. The analytical solution by the conformable fractional double Laplace transform method.

The classical Laplace transform method for a function of single variable has been used extensively in solving ordinary differential equations and partial differential equations. Double Laplace transform and other multiple Laplace transformations were introduced by Estrin and Higgins in [START_REF] Estrin | The solution of boundary value problems by multiple Laplace transformations[END_REF] to solve partial differential equations. Double Laplace transform (DLT) has been rarely introduced or not at all for certain cases in the literature for solving partial differential equations [START_REF] Debnath | The double Laplace transforms and their properties with applications to functional, integral and partial differential equations[END_REF]. Introducing double Laplace transform to solve the fractional differential equations is an open math problem [START_REF] Anwar | Fractional Caputo heat equation within the double Laplace transform[END_REF]. Eltayeb and Kılıçman in [START_REF] Eltayeb | On double Sumudu transform and double Laplace transform[END_REF] used the DLT and Sumudu transform methods to solve non-fractional one-dimensional wave equation with variable coefficients (see also [START_REF] Kılıçman | On the applications of Laplace and Sumudu transforms[END_REF][START_REF] Eltayeb | A note on solutions of wave, Laplace's and heat equations with convolution terms by using a double Laplace transform[END_REF]). There are some recent research studies on solving fractional differential equations such as heat and telegraph equations in the sense of Caputo derivatives [START_REF] Dhunde | Double Laplace transform method for solving space and time fractional telegraph equations[END_REF][START_REF] Anwar | Fractional Caputo heat equation within the double Laplace transform[END_REF].

To define the conformable fractional double Laplace transform, let's first define the conformable fractional integral (CFI) [START_REF] Silva | Conformable Laplace Transform of Fractional Differential Equations[END_REF] as follows:

Definition 8. For 0 < β ≤ 1, given a function f : [0, ∞) →
such that for all t ≥ 0, the βth order conformable fractional integral (CFI) of f from 0 to t can be written as:

I β (f )(t) = t 0 f (ψ)d β ψ = t 0 f (ψ)ψ β-1 dψ Q.E.D. ( 31 
) If β = 1, then I β (f )(t) = I β=1 (t β-1 f )(t) which is the classical improper Riemann integral of a function f (t). For 0 < β ≤ 1, given a continuous function f on (0, ∞), then G β (f )(t) [I β (f )(t)] = f (t).
Let's now define the conformable fractional double Laplace transform (CFDLT) as follows: Definition 9. For 0 < β ≤ 1, given a function M (r, t) : [0, ∞) → such that for all r, t > 0, the βth order conformable fractional double Laplace transform (CFDLT) of M (r, t), denoted by rt β [M (r, t)], starting from 0 can be written as:

rt β [M (r, t)] = r β t β [M (r, t)] = M ¯rt β (s a , s b ) = ∞ 0 e -sa r β β ∞ 0 e -s b t β β M (r, t) d β t d β r = ∞ 0 ∞ 0 e -(sa r β β +s b t β β ) M (r, t) d β r d β t = ∞ 0 ∞ 0 e -(sa r β β +s b t β β ) M (r, t)r β-1 t β-1 dr dt; Q.E.D. ( 32 
)
where s a , s b ∈ C. The above definition is true provided that the above integral exists. Previously, it is assumed that M (r, t) = V (r)G(t). By using definition [START_REF] Anwar | Fractional Caputo heat equation within the double Laplace transform[END_REF], the CFDLT can be written [START_REF] Dhunde | Double Laplace transform method for solving space and time fractional telegraph equations[END_REF]:

rt β [V (r)G(t)] = r β t β [V (r)G(t)] = V ¯β(s a )G ¯β(s b ) = r β [V (r)] t β [G(t)] (33) 
Let's show the CFDLT of the second-order conformable fractional partial derivative (CFPD) with respect to t [START_REF] Omran | Fractional double Laplace transform and its properties[END_REF] as follows:

rt β ∂ 2β ∂t 2β M (r, t) = ∞ 0 ∞ 0 e -sa r β β e -s b t β β ∂ 2β M ∂t 2β (r, t) d β r d β t = ∞ 0 e -sa r β β ∞ 0 e -s b t β β ∂ 2β M ∂t 2β (r, t) d β t d β r (34) 
To find the above inner integral, let's use the theorem 3.1 of conformable fractional integration by parts and lemma 2.8 in [START_REF]Formulation of Euler-Lagrange equations for fractional variational problems[END_REF] in addition to definition [START_REF]Formulation of Euler-Lagrange equations for fractional variational problems[END_REF] to obtain the following:

rt β ∂ 2β ∂t 2β M (r, t) = ∞ 0 e -sa r β β e -s b t β β M (r, t)| ∞ t=0 - ∞ 0 ∂ 2β ∂t 2β e -s b t β β M (r, t) d β t d β r = ∞ 0 e -sa r β β M (r, 0)r β-1 dr + ∞ 0 ∞ 0   s 2 b e -s b t β β t β-1 -s b e -s b t β β t β (1 -β)   e -s b t β β e -sa r β β r β-1 dt dr = s 2β b M ¯rt β (s a , s b ) -s 2β-1 b M ¯rt β (s a , 0) -s 2β-2 b (M ¯rt β ) t (s a , 0) (35) 
As a result, The CFDLT of the first-order conformable fractional partial derivative (CFPD) with respect to t can be similarly written as:

rt β ∂ β ∂t β M (r, t) = s β b M ¯rt β (s a , s b ) -s β-1 b M ¯rt β (s a , 0) (36) 
The CFDLT of the first-order conformable fractional partial derivative (CFPD) with respect to t can be also generally written as:

rt β ∂ β ∂t β M (r, t) = s β b M ¯rt β (s a , s b ) - ζ-1 γ=0 s β-1-γ b r ∂ γ M (r, 0) ∂t γ (37) 
The double Laplace transform in [START_REF] Lazo | Variational calculus with conformable fractional derivatives[END_REF] coincides with the general form of the double Laplace transform of the partial fractional derivatives in the sense of Caputo derivatives in [START_REF] Anwar | Fractional Caputo heat equation within the double Laplace transform[END_REF][START_REF] Dhunde | Double Laplace transform method for solving space and time fractional telegraph equations[END_REF]. The complex double integral formula in [START_REF] Debnath | The double Laplace transforms and their properties with applications to functional, integral and partial differential equations[END_REF][START_REF] Dhunde | Double Laplace transform method for solving space and time fractional telegraph equations[END_REF] can be used to write the inverse conformable fractional double Laplace transform, denoted by

( rt β ) -1 [M ¯rt β (s a , s b )],
as follows:

Definition 10. For 0 < β ≤ 1, given an analytic function M ¯rt β (s a , s b ) for all s a , s b ∈ C such that both s a and s b are defined [START_REF] Dhunde | Double Laplace transform method for solving space and time fractional telegraph equations[END_REF] by Re{s a ≥ } and Re{s b ≥ ς}, where , ς ∈ , the inverse conformable fractional double Laplace transform (ICFDLT) can be written as follows:

( rt β ) -1 [M ¯rt β (s a , s b )] = ( r β ) -1 t β ) -1 [M ¯rt β (s a , s b )] = M (r, t) = 1 2πi +i∞ -i∞ e sar ds a 1 2πi ς+i∞ ς-i∞ e s b t M ¯rt β (s a , s b )ds b = -1 4π 2 +i∞ -i∞ ς+i∞ ς-i∞ e sar e s b t M ¯rt β (s a , s b ) ds a ds b Q.E.D. (38) 
Let's prove the existence and uniqueness of CFDLT in the following theorem: Proof. Since M (r, t) is a continuous exponential-order function M (r, t) : [0, ∞) → such that for some , ς ∈ and s a , s b ∈ C on the interval [0, ∞) = {r, t|0 ≤ r, t < ∞}, then ∃L ∈ Z + such that ∀s a > S a and s b > S b [START_REF] Debnath | The double Laplace transforms and their properties with applications to functional, integral and partial differential equations[END_REF][START_REF] Anwar | Fractional Caputo heat equation within the double Laplace transform[END_REF] as follows:

|M (r, t)| ≤ L e r β β +ς t β β (39) 
Examine: sup r,t>0

M (r, t) e ω r β β +µ t β β < 0, then we have the following:

lim (r,t)→∞ e -ω r β β -µ t β β |M (r, t)| = L e -(ω-)r r β β e -(µ-ς)r t β β = 0; ∀ ω > ; µ > ς Similarly,|M ¯rt β (s a , s b )| = ∞ 0 ∞ 0 e -(sa r β β +s b t β β ) M (r, t) d β r d β t = ∞ 0 ∞ 0 e -(sa r β β +s b t β β ) M (r, t)r β-1 t β-1 dr dt ≤ L ∞ 0 ∞ 0 e -((sa-) r β β +(s b -ς) t β β ) M (r, t)r β-1 t β-1 dr dt = ∞ 0 e -(sa-) r β β r β-1 dr ∞ 0 e -(s b -ς) t β β t β-1 dt = L (s a -)(s b -ς) ; ∀ Re{s a > }, Re{s b > ς} (40) 
Since the lim (sa,s b )→∞ |M ¯rt β (s a , s b )| = lim (sa,s b )→∞ M ¯rt β (s a , s b ) = 0 [START_REF] Debnath | The double Laplace transforms and their properties with applications to functional, integral and partial differential equations[END_REF], then the conformable fractional double Laplace transform (CFLT) of M (r, t) exists and can be written as (32) ∀ s a > , s b > ς.

Numerical Experiment 1: By using the above definitions and theorems of the CFDLT, let's solve the mixed initial-boundary value problem (equation ( 9)) subject to the following boundary and initial conditions: M (R, t) = 0; and M (r, t) bounded as r → 0 for t > 0 (41) M (r, 0) = 0; and ∂ β M ∂t β (r, 0) = cos r β + sin r β ; for 0 ≤ r < R and 0 < β ≤ 1 (42) Let's apply the CFDLT method to equation ( 9), the following is obtained:

s 2β b M ¯rt β (s a , s b ) -s 2β-1 b M ¯rt β (s a , 0) -s 2β-2 b (M ¯rt β ) t (s a , 0) = c 2 o ∂ 2 M ¯rt β (s a , s b ) ∂r 2 + 1 r ∂M ¯rt β (s a , s b ) ∂r (43) 
Similarly, let's apply the conformable fractional single Laplace transform of the initial conditions in (42):

M ¯rt β (s a , 0) = 0; and (M ¯rt

β ) t (s a , 0) =      s b s 2 b + 1 β 2 +      1 β s 2 b + 1 β 2           (44) 
By substituting the initial conditions of (44) in equation ( 43), we obtain:

s 2β b M ¯rt β (s a , s b ) -s 2β-1 b (0) -s 2β-2 b      s b s 2 b + 1 β 2 +      1 β s 2 b + 1 β 2           = c 2 o ∂ 2 M ¯rt β (s a , s b ) ∂r 2 + 1 r ∂M ¯rt β (s a , s b ) ∂r (45) 
Let's simplify [START_REF] Samko | Integration and differentiation to a variable fractional order[END_REF] to obtain the following:

s 2β b M ¯rt β (s a , s b ) - s 2β b s 2 b      s b s 2 b + 1 β 2 +      1 β s 2 b + 1 β 2           = c 2 o ∂ 2 M ¯rt β (s a , s b ) ∂r 2 + 1 r ∂M ¯rt β (s a , s b ) ∂r (46) 
By taking s 2β b as a common factor on the left side of ( 46) and dividing both sides by c 2 o , we obtain the following:

s 2β b c 2 o      M ¯rt β (s a , s b ) - 1 s 2 b      s b s 2 b + 1 β 2 +      1 β s 2 b + 1 β 2                = ∂ 2 M ¯rt β (s a , s b ) ∂r 2 + 1 r ∂M ¯rt β (s a , s b ) ∂r (47) Assume that M ¯rt β * (s a , s b ) = M ¯rt β (s a , s b ) - 1 s 2 b      s b s 2 b + 1 β 2 +      1 β s 2 b + 1 β 2           (48 
) By applying the assumption in ( 48) on ( 47) and combine the left-hand side term with the right-hand side terms together, the following is obtained:

∂ 2 M ¯rt β * (s a , s b ) ∂r 2 + 1 r ∂M ¯rt β * (s a , s b ) ∂r - s 2β b c 2 o M ¯rt β * (s a , s b ) = 0 ( 49 
)
Multiplying all terms in (49) on both sides by r 2 , we obtain:

r 2 ∂ 2 M ¯rt β * (s a , s b ) ∂r 2 + r ∂M ¯rt β * (s a , s b ) ∂r - s 2β b c 2 o r 2 M ¯rt β * (s a , s b ) = 0 (50) 
The WolframAlpha computational intelligence solver is used to obtain the following solution of (50):

M ¯rt β * (s a , s b ) = ψ J 0 is β b r c o + ϕ Y 0 -is β b r c o ;
where

J 0 is β b r c o and Y 0 -is β b r c o
are the zeroth order Bessel functions of 1st and 2nd kind, respectively. [START_REF] Weberszpil | Generalized Maxwell relations in thermodynamics with metric derivatives[END_REF] From the boundary conditions in [START_REF] Momani | Numerical comparison of methods for solving linear differential equations of fractional order[END_REF], M (R, t) = 0 and M (r, t) remains bounded as r → 0 for t > 0 which means that M ¯rt β (R, s b ) has a finite value. As a result, M ¯rt β * (R, s b ) has a finite value, and from the physical point of view for wave equation solution in [START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF], ϕ is set to be zero so that the whole term,

Y 0 -is β b r c o , is
terminated. The solution of (51) becomes as follows:

M ¯rt β * (s a , s b ) = ψ J 0 is β b r c o ; where J 0 is β b r c o
is the zeroth order Bessel functions of 1st kind.

(
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Similarly, since M (R, t) = 0 from (42), then M ¯rt β (R, s b ) = 0. let's substitute M ¯rt β (R, s b ) = 0 and (52) in equation ( 48) to obtain the following:

M ¯rt β * (R, s b ) = ψ J 0 is β b R c o = M ¯rt β (R, s b ) - 1 s 2 b      s b s 2 b + 1 β 2 +      1 β s 2 b + 1 β 2           (53) M ¯rt β * (R, s b ) = ψ J 0 is β b R c o = - 1 s 2 b      s b s 2 b + 1 β 2 +      1 β s 2 b + 1 β 2           (54) 
As a result, ψ can be written as follows:

ψ =               -1 s 2 b           s b s 2 b + 1 β 2      +      1 β s 2 b + 1 β 2                +      1 β s 2 b + 1 β 2           s 2 b J 0 is β b R c o               J 0 is β b r c o ( 56 
)
By substituting (56) in equation ( 48), we obtain the following:

M ¯rt β (s a , s b ) = -                         s b s 2 b + 1 β 2      +      1 β s 2 b + 1 β 2           s 2 b J 0 is β b R c o               J 0 is β b r c o +      s b s 2 b + 1 β 2 +      1 β s 2 b + 1 β 2           s 2 b ( 57 
)
After simplifications, we obtain:

M ¯rt β (s a , s b ) = J 0 is β b R c o -J 0 is β b r c o s 2 b J 0 is β b R c o           s b s 2 b + 1 β 2      +      1 β s 2 b + 1 β 2           (58)
By using the residue theorem of the complex inversion formula and the solution in [START_REF] Korfalı | Vibrations of a Circular Membrane Subjected To a Pulse, Vibration Problems ICOVP 2005[END_REF] with a few mathematical simplifications, it is easy to obtain the ICFDLT of equation ( 58) which is the following approximate analytical solution for equation ( 9) subject to the boundary and initial conditions in ( 41) and ( 42), respectively, using the method of CFDLT:

M (r, t) = ∞ ξ=1 iJ 0 λ ξ r R cos -λ ξ c o t β Rβ + i sin -λ ξ c o t β Rβ λ 2 ξ c o R J 1 (λ ξ ) ; where i R s β b ξ c o = λ ξ ; i r s β b ξ c o = λ ξ r R [36]; and 0 < β ≤ 1 (59)
Figures ( 1), ( 2), and (3) show the numerical simulation of the approximate analytical solution (59) for β = 1; 0.75; 0.50, respectively.

The approximate analytical solution by the conformable reduced differential transform method.

To show the efficiency of CFD, let's obtain an approximate analytical solution to the two-dimensional conformable fractional wave equation. A fractional differential equation (FDE) approximate method is the conformable fractional differential transform method (CFDTM) in the sense of CFD [START_REF] Ünal | Solution of conformable fractional ordinary differential equations via differential transform method[END_REF]. The differential transform method (DTM) was introduced by Zhou [START_REF] Zhou | Differential transformation and its application for electrical circutits[END_REF] for solving ordinary differential equations by formulating Taylor series [START_REF] Ünal | Solution of conformable fractional ordinary differential equations via differential transform method[END_REF][START_REF] Zhou | Differential transformation and its application for electrical circutits[END_REF]. With the introduction of fractional differential equations (FDEs), the fractional differential transform method (FDTM) was developed by Arikoglu and Ozkol in [START_REF] Arikoglu | Solution of fractional differential equations by using differential transform method[END_REF] to solve FDEs by formulating power series. Similarly, CFDTM can be used to solve CFD by formulating conformable fractional power series, and can be defined as [START_REF] Ünal | Solution of conformable fractional ordinary differential equations via differential transform method[END_REF]: Definition 11. For some 0 < β ≤ 1, given a function f (t) is infinitely β-differentiable function. Then, the conformable fractional differential transform of f (t) can be written as:

F β (k) = 1 β k k! G to β f (k) (t) t=to ( 60 
)
where (G to β f ) (k) (t) is the kth number of CFD application's times, and the conformable fractional differential transform of initial conditions for integer order derivatives can be also written as [START_REF] Ünal | Solution of conformable fractional ordinary differential equations via differential transform method[END_REF]:

F β (k) =      1 (βk)! d βk f (t) dt βk t=to for k=0,1,..., n β -1 if βk ∈ Z + 0 if βk ∈ Z + Q.E.D. ( 61 
)
Definition 12. Suppose that F β (k) is the conformable fractional differential transform for f (t) such that the inverse conformable fractional differential transform of F β (k) can be written as [START_REF] Ünal | Solution of conformable fractional ordinary differential equations via differential transform method[END_REF]:

f (t) = ∞ k=0 F β (k)(t -t o ) βk = ∞ k=0 1 β k k! G to β f (k) (t) t=to (t -t o ) βk Q.E.D. (62) 
Recently, Acan et al. [START_REF] Acan | Solution of conformable fractional partial differential equations by reduced differential transform method[END_REF] introduced the reduced differential transform method (RDTM) for solving partial differential equation, and Acan and Baleanu [START_REF] Acan | A New Numerical Technique for Solving Fractional Partial Differential Equations[END_REF] developed a new definition for the conformable reduced differential transform method (CRDTM) as follows:

Definition 13. For some 0 < β ≤ 1, given a function m(x, t) is analytic continuously β-differentiable function with respect to time t and space x. Then, the conformable reduced differential transform of m(x, t) can be written as:

M β k (x) = 1 β k k! t G (k) β m t=to ( 63 
)
where t G β (k) m = (( t G β )( t G β )...( t G β ))m(x, t)
, and the conformable reduced differential transform of initial conditions for integer order derivatives can be also written as [START_REF] Acan | A New Numerical Technique for Solving Fractional Partial Differential Equations[END_REF][START_REF] Acan | Solution of conformable fractional partial differential equations by reduced differential transform method[END_REF]:

F β (k) =      1 (βk)! ∂ βk ∂t βk m(x, t) t=to for k=0,1,..., n β -1 if βk ∈ Z + 0 if βk ∈ Z + Q.E.D. (64) 
For ( 61) and (64), n is the order of conformable differential operator for ordinary differential equation and partial differential equation, respectively. Definition 14. Suppose that M β k (x) is the conformable reduced differential transform for m(x, t) such that the inverse conformable reduced differential transform of M β k (x) can be written as [START_REF] Acan | A New Numerical Technique for Solving Fractional Partial Differential Equations[END_REF][START_REF] Acan | Solution of conformable fractional partial differential equations by reduced differential transform method[END_REF]:

m(x, t) = ∞ k=0 M β k (x)(t -t o ) βk = ∞ k=0 1 β k k! t G (k) β m t=to (t -t o ) βk Q.E.D. (65) 
For theorems and basic operations about both DTM and CRDTM, we refer to [START_REF] Ünal | Solution of conformable fractional ordinary differential equations via differential transform method[END_REF][START_REF] Acan | A New Numerical Technique for Solving Fractional Partial Differential Equations[END_REF].

Numerical Experiment 2: By using the basic operations of CRDTM in [START_REF] Acan | A New Numerical Technique for Solving Fractional Partial Differential Equations[END_REF], CRDTM is applied to solve the mixed initial-boundary value problem (see equation ( 9)) as follows:

β(k + 1)(k + 2)M β k+2 (r) =   ∂ 2 ∂r 2 M β k (r) + k j=0 M β k-j (r) ∂ ∂r M β j (r)   ; c 2
o is assumed to be equal 1 for simplicity (66)

Hence, the recurrence relation of equation ( 66) can be written as follows:

M β k+2 (r) = ∂ 2 ∂r 2 M β k (r) + k j=0 M β k-j (r) ∂ ∂r M β j (r) β(k + 1)(k + 2) Q.E.D. (67) 
where M β k (r) is the conformable reduced differential function. For the initial conditions in [START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF], we assume that q(r) = cos r β + sin r β and p(r) = 2cos r β + 2sin r β . By applying CRDTM to the assumed initial conditions, we obtain the following:

M β 0 (r) = cos r β + sin r β M β 1 (r) = 2cos r β + 2sin r β (68) 
By substituting (68) in equation (67), the following M β k (r) values are obtained as follows:

M β 2 (r) = -cos r β -sin r β 2!β 2 M β 3 (r) = -2cos r β -2sin r β 3!β 3 M β 4 (r) = cos r β + sin r β 4!β 4 M β 5 (r) = 2cos r β + 2sin r β 5!β 5 M β 6 (r) = -cos r β -sin r β 6!β 6 (69)
Consequently, the set of values {M β k (r)} n k=0 provides the following approximate solution:

m w (r, t) = w k=0 M β k (r)t βk =                                    w k=0 (-1) 3k 2 k!β k cos rt βk β + sin rt βk β ; if k is even 2 cos rt βk β + sin rt βk β + w k=3
(-1)

2k 3 +(k-(k-3)) k!β k 2cos rt βk β + 2sin rt βk β ; if k is odd (70)

Comparison of results and Discussion

Consequently, after trying to solve this particular two-dimensional wave equation using the classical definitions of fractional derivatives such as Riemann-Liouville, Caputo, Riesz, Riesz-Caputo, and Grünwald-Letnikov, the analytical solution is very complicated to obtain or even may impossible to obtain due to the fact that the classical fractional derivatives are nonlocal differential operators represented using convolution integrals with a weakly singular kernels [START_REF] Avcı | Conformable heat problem in a cylinder[END_REF]. To show a simple example of how complicated to obtain analytical solution using classical fractional derivatives for this particular problem, we refer to the general solution obtained in [START_REF] Sandev | The general time fractional wave equation for a vibrating string[END_REF] for the time fractional wave equation for a vibrating string. We also refer to a method used in solving classical fractional differential equations (FDEs) in [START_REF] Demirci | A method for solving differential equations of fractional order[END_REF], but it cannot find analytical solutions to some examples and cases of FDEs. As a result, the conformable fractional derivatives (CFD) are local operator and can be implemented successfully and easily in various case studies arising from science and engineering in comparison to classical fractional derivatives. CFD can also be used very efficiently in constructing mathematical models for complex problems in physics and engineering.

Due to the difficulty of analytical solutions using classical fractional derivatives, several research studies have developed approximate methods to approximate analytical solutions for the fractional differential equations in the calculus of variations. Approximate methods for FDEs have been introduced successfully in [START_REF] Momani | Numerical comparison of methods for solving linear differential equations of fractional order[END_REF][START_REF] Blaszczyk | Numerical solution of fractional Sturm-Liouville equation in integral form[END_REF][START_REF] Pirim | Hermite collocation method for fractional order differential equations[END_REF][START_REF] Duman | Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative[END_REF].

To discuss the error between the analytical and approximate solutions from using all three methods in sections 2.1, 2.2, and 2.3, let's do a numerical test for various values of β and t with various initial conditions from the suggested numerical experiments in this paper and using example 2 in section 4.2 of [START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF] to discuss the accuracy, reliability, and applicability of the three proposed methods in sections 2. All numerical data of the obtained approximate solutions in table 1, 3, and 3 have been calculated and approximated for the first three terms using an online computer software, known as Keisan Online Calculator service, developed by CASIO COMPUTER CO., LTD.

Numerical Example 1: By using the mixed initial-boundary value problem in [START_REF] Anwar | Fractional Caputo heat equation within the double Laplace transform[END_REF] and [START_REF] Arikoglu | Solution of fractional differential equations by using differential transform method[END_REF], and example 2 in section 4.2 of [START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF], the initial conditions in [START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF] can be written as: M (r, 0) = q(r) = 1 -r 2 ; and ∂ β M ∂t β (r, 0) = p(r) = 0; for 0 < r < R and 0

< β ≤ 1 R = c o = 1 (71) 
The above example represents a circular membrane with axisymmetric initial shape [START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF]. By using the conformable separation of variables method (CSVM) in section 2.1, the approximate analytical solution can be written as:

M approximate (r, t) = ∞ n=1 8 ξ 3 n J 1 (ξ n ) cos ξ n t β β J 0 (ξ n r) (72) 
Similarly, the analytical solution in [START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF] using the separation of variables method (SVM) can be also written as:

M analytical (r, t) = ∞ n=1 8 ξ 3 n J 1 (ξ n ) cos (ξ n t) J 0 (ξ n r) (73) 
Table 1 shows the numerical data for both analytical and approximate analytical solutions from using CSVM and SVM for different values of r, t, and β. The absolute error between the analytical and approximate analytical solutions, written as Error = |M approximate (r, t) -M analytical (r, t)|, has also been recorded in table 1. From Table 1, it is obvious that at various values of r and t, when β values are getting close to 1, absolute error values become very small. At β = 1, the obtained approximate analytical solution from CSVM becomes equivalent to the analytical solution from SVM. Figure 4 shows the approximate solutions for different values of t and β at a fixed r = 0.5. From Figure 4, at β = 0.75 the obtained approximate solution by CSVM are closer to the analytical solution using the SVM for integerorder derivatives. Therefore, the behavior of membrane's displacement with respect to time at various β values at a fixed value of membrane radii [START_REF] Singh | A reliable numerical algorithm for the fractional vibration equation[END_REF] in Figure 4 can be described as the value of β increases in the conformable formulation (CSVM), the approximate solution from CSVM becomes closer to the analytical solution using the integer-order SVM, and the absolute error value between analytical and approximate solutions becomes small.

Numerical Example 2: By using the numerical experiment 1 in section 2.2, the approximate solution in (59) can be written with only the real part which satisfies the mixed initial-boundary value problem in ( 9), [START_REF] Arikoglu | Solution of fractional differential equations by using differential transform method[END_REF], and (11) as follows: [START_REF] Korfalı | Vibrations of a Circular Membrane Subjected To a Pulse, Vibration Problems ICOVP 2005[END_REF] M (r, t)

= ∞ ξ=1 J 0 λ ξ r R sin λ ξ c o t β Rβ λ 2 ξ c o R J 1 (λ ξ ) ; where 0 < β ≤ 1 (74) 
The above equation (74) represents the approximate solution with a real part only using the conformable double Laplace transform method (DLTM). Let's also assume 

M (r, t) = ∞ ξ=1 J 0 (λ ξ r) sin λ ξ t β β λ 2 ξ J 1 (λ ξ ) ; where 0 < β ≤ 1 (75)
To compare the above approximate solution with approximate analytical solution, let's use the proposed mixed initial-boundary value problem in [START_REF] Meng | The Extremal Solution To Conformable Fractional Differential Equations Involving Integral Boundary Condition[END_REF] and [START_REF] Momani | Numerical comparison of methods for solving linear differential equations of fractional order[END_REF] to find the approximate analytical solution in the sense of conformable derivative. Since M (r, 0) = q(r) = 0, then E n = 0 in [START_REF] Hu | On fractal space-time and fractional calculus[END_REF]. K n in (29) can be found as follows:

K n = 2 Rc o ξ n J 2 1 (ξ n ) R 0 p(r)J 0 ξ n r R r dr = 2 ξ n J 2 1 (ξ n ) 1 0 cos r β + sin r β J 0 (ξ n r) r dr (76) 
By using integration by parts for (76) and the identity [START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF] in [START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF], we have the following: u = cos r β + sin r β ; du = -sin r β + cos r β dr; dv = J 0 (ξ n r) r dr; and v = 1 ξn J 1 (ξ n ). Let -sin r β + cos r β = ω; we have the following:

1 0 cos r β + sin r β J 0 (ξ n r) r dr = cos r β + sin r β ξ n J 1 (ξ n ) - 1 0 J 1 (ξ n ) ξ n ω dr = cos r β + sin r β ξ n J 1 (ξ n ) + 1 0 -cos r β + sin r β ξ n J 1 (ξ n ) dr = cos r β + sin r β ξ n J 1 (ξ n ) + J 1 (ξ n ) ξ n         - sin r β 1 β - cos r β 1 β         r=1 r=0 = cos r β + sin r β ξ n J 1 (ξ n ) + J 1 (ξ n ) ξ n -βsin 1 β -βcos 1 β + 1 β = cos r β + sin r β ξ n J 1 (ξ n ) + J 1 (ξ n ) ξ n -β sin 1 β + cos 1 β -1 = cos r β + sin r β -β sin 1 β + cos 1 β -1 ξ n J 1 (ξ n ) (77) 
By substituting (77) in (76), we obtain K n as follows:

2 ξ n J 2 1 (ξ n ) 1 0 cos r β + sin r β J 0 (ξ n r) r dr = 2 ξ n J 2 1 (ξ n ) cos r β + sin r β -β sin 1 β + cos 1 β -1 ξ n J 1 (ξ n ) = 2 ξ 2 n J 1 (ξ n ) cos r β + sin r β -β sin 1 β + cos 1 β -1 (78) 
To obtain the approximate analytical solution using CSVM, let's substitute (78) in [START_REF] Khalil | Solution of some conformable fractional differential equations[END_REF] as follows: and β = 0.50, both approximate solutions using CSVM and DLTM in Table 2 are equivalent to each other with no absolute error between them. When β = 0.75 or β = 1 for r = t = 0.1; 0.3; 0.5; 0.7; 0.9, the absolute error values become very small. Figure 5 shows the approximate solutions for different values of t and β at a fixed r = 0.5. Between t = 0.1 and t = 0.2 at a fixed value (r = 0.5) of membrane radii in figure 5, the behavior of membrane's displacement with respect to time shows that the numerical values of approximate solution DLTM and CSVM at various β values are very close to each other and the absolute error values between them small. In table 2, it is also clear that numerical value of approximate solutions using CSVM at β = 1 and DLTM at β = 0.50 are close to each other and the error between them is very small. When the time is very small i.e. t = 0.1, both approximate solutions from using CSVM and DLTM are very close to each other in value and the absolute error values between them become smaller than other numerical values of the same approximate solutions at larger time periods.

M (r, t) = ∞ n=1 2 ξ 2 n J 1 (ξ n ) cos r β + sin r β -β sin 1 β + cos 1 β -1 × sin ξ n t β β J 0 (ξ n r) ; for n ∈ Z + and c o = R = 1 (79)
Numerical Example 3: To compare the approximate solutions from using CSVM and conformable reduced differential transform method (CRDTM), let's use the approximate solution in (70) from the numerical experiment 2 in section 2.3. Similarly, we need to find the approximate analytical solution in the sense of conformable derivative using CSVM for the mixed initial-boundary value problem in the numerical experiment 2 as we did in numerical example 2.We choose R = c o = 1 in this example. Since q(r) = cos r β + sin r β and p(r) = 2cos r β + 2sin r β , then let's find E n in (28) and K n in (29) as follows:

E n = 2 R 2 J 2 1 (ξ n ) R 0 rq(r)J 0 ξ n r R dr = 2 J 2 1 (ξ n ) 1 0 cos r β + sin r β J 0 (ξ n r) r dr (80) K n = 2 Rc o ξ n J 2 1 (ξ n ) R 0 p(r)J 0 ξ n r R r dr = 4 ξ n J 2 1 (ξ n ) 1 0 cos r β + sin r β J 0 (ξ n r) r dr (81) 
From the result in (77), E n and K n can be written as follows:

E n = 2 J 2 1 (ξ n ) 1 0 cos r β + sin r β J 0 (ξ n r) r dr = 2 ξ n J 1 (ξ n ) cos r β + sin r β -β sin 1 β + cos 1 β -1 (82) K n = 4 ξ n J 2 1 (ξ n ) 1 0 cos r β + sin r β J 0 (ξ n r) r dr = 4 ξ 2 n J 1 (ξ n ) cos r β + sin r β -β sin 1 β + cos 1 β -1 (83) 
By substituting both (82) and ( 83) in [START_REF] Khalil | Solution of some conformable fractional differential equations[END_REF], we obtain the following approximate analytical solution using CSVM:

M (r, t) = ∞ n=1 2 ξ n J 1 (ξ n ) cos r β + sin r β -β sin 1 β + cos 1 β -1
× cos ξ n t β β J 0 (ξ n r)

+ ∞ n=1 4 ξ 2 n J 1 (ξ n ) cos r β + sin r β -β sin 1 β + cos 1 β -1
× sin ξ n t β β J 0 (ξ n r) ;

for n ∈ Z + and c o = R = 1 (84)

The numerical data for approximate solutions from using CSVM and CRDTM have been recorded in Table 3 for various values of r, t and β. Table 2 shows also the absolute error between approximate solutions using CSVM and CRDTM. The absolute error value is the smallest at r = t = 0.7 and β = 1 in Table 3 which implies that both approximate solutions using CSVM and CRDTM are very close in numerical value to each other. From Table 3, it is very clear that at β = 0.85 and β = 1 at various values of r and t, most of the absolute error values between approximate solutions from using CSVM and CRDTM are smaller than absolute error values at β = 0.75. Figure 6 shows the approximate solutions for different values of t and β at a fixed value (r = 0.5) of membrane radii. The behavior of membrane's displacement with respect to time in figure 6 shows that using CSVM By comparing the analytical and approximate solutions in [START_REF] Khalil | Solution of some conformable fractional differential equations[END_REF], ( 59) and (70), with the classical non fractional standard analytical solution in [START_REF] Wollkind | Comprehensive Applied Mathematical Modeling in the Natural and Engineering Sciences[END_REF][START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF], we obtain the same analytical solution provided by [START_REF] Wollkind | Comprehensive Applied Mathematical Modeling in the Natural and Engineering Sciences[END_REF][START_REF] Asmar | Partial differential equations with Fourier series and boundary value problems[END_REF] by substituting β = 1 in equations ( 30), (59) and (70) since 0 < β ≤ 1. Figures [START_REF]Formulation of Euler-Lagrange equations for fractional variational problems[END_REF], [START_REF] Almeida | The Variable-Order Fractional Calculus of Variations[END_REF], and [START_REF] Anwar | Fractional Caputo heat equation within the double Laplace transform[END_REF] show the comparison of analytical and approximate solutions in [START_REF] Khalil | Solution of some conformable fractional differential equations[END_REF] and (70) graphically for various values of β = 1; 0.75; 0.25.

Thus, the CFD formulation is a simple fractional definition to obtain analytical solutions for fractional partial differential equations in comparison to the complicated classical fractional formulations that require various theorems, generalizations, or mathematical extensions to obtain analytical solution or even in some cases can not be obtained at all without introducing numerical and approximate methods. The analytical solutions provided in this paper can be extended to solve higher order fractional PDEs more efficiently than nonlocal classical fractional derivatives formulations.

Conclusion

Fractional differential equations have been undergoing major developments due to the importance of understanding the physical and dynamical behavior of problems arising from physics and engineering applications. This article sheds the light on the importance of the conformable fractional derivatives (CFD) and the fact that the CFD can provide efficient analytical and approximate analytical solutions for the two-dimensional fractional wave equation using novel methods such as conformable separation of variables, conformable double Laplace transform, and conformable reduced differential transform methods. We believe that the conformable fractional formulation can be applied effectively in modeling various PDEs problems.
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Table 1 .

 1 Comparison of the Analytical and Approximate Solutions from using SVM and CSVM

	(r, t)	SVM	β	CSVM Error
			0.25 0.9963 4E-3
	(0.1,0.1) 1.0003	0.75 1.0002 1E-4
			1	1.0003 0
			0.25 0.9005 4.6E-3
	(0.3,0.3) 0.9051	0.75 0.9050 1E-4
			1	0.9051 0
			0.25 0.7432 6.4E-3
	(0.5,0.5) 0.7496	0.75 0.7494 2E-4
			1	0.7496 0
			0.25 0.5056 9.6E-3
	(0.7,0.7) 0.5152	0.75 0.5148 4E-4
			1	0.5152 0
			0.25 0.1752 5.1E-3
	(0.9,0.9) 0.1803	0.75 0.1800 3E-4
			1	0.1803 0
	R = c o = 1. So, equation (74) can be simplified as follows:

Table 2

 2 

shows the numerical data for approximate solutions from using CSVM and DLTM for different values of r, t and β. The absolute error between approximate solutions using CSVM and DLTM has been recorded in table 2. At r = t = 0.9

Table 2 .

 2 Comparison of the Analytical and Approximate Solutions from using CSVM and DLTM

	(r, t)	β	CSVM	DLTM Error
		0.50 0.0017	0.0071 5.4E-3
	(0.1,0.1)	0.75 6.275E-4 0.0027 2.073E-3
		1	2.643E-4 0.0011 8.357E-4
		0.50 0.0190	0.0083 0.0107
	(0.3,0.3)	0.75 0.0093	0.0041 5.2E-3
		1	0.0052	0.0023 2.9E-3
		0.50 0.0356	0.0117 0.0239
	(0.5,0.5)	0.75 0.0198	0.0066 0.0132
		1	0.0125	0.0041 8.4E-3
		0.50 0.0291	0.0178 0.0113
	(0.7,0.7)	0.75 0.0176	0.0109 6.7E-3
		1	0.0121	0.0075 4.6E-3
		0.50 0.0098	0.0098 0
	(0.9,0.9)	0.75 0.0063	0.0064 1E-4
		1	0.0046	0.0047 1E-4

Table 3 .

 3 Comparison of the Analytical and Approximate Solutions from using CSVM and CRDTM = 1 is closer in numerical value to the numerical values using CRDTM at β = 0.75; 0.85; 1. Using CSVM at β = 0.75 and β = 1, the numerical values of approximate solutions are close to each other, but both solutions farther in value comparing to the approximate solution using CSVM at β = 1.

	(r, t)	β	CSVM CRDTM Error
		0.75 1.2840 0.3207	0.9633
	(0.1,0.1)	0.85 1.2806 0.7651	0.5155
		1	1.2828 1.1667	0.1161
		0.75 0.8764 0.3232	0.5532
	(0.3,0.3)	0.85 0.8719 0.7677	0.1042
		1	0.8672 1.1689	0.3017
		0.75 0.9710 0.3292	0.6418
	(0.5,0.5)	0.85 0.9647 0.7734	0.1913
		1	1.4054 1.1739	0.2315
		0.75 1.2609 0.3380	0.9229
	(0.7,0.7)	0.85 1.2533 0.7819	0.4714
		1	1.2445 1.1817	0.0628
		0.75 0.6170 0.3495	0.2675
	(0.9,0.9)	0.85 0.6135 0.7931	0.1796
		1	0.6092 1.1922	0.5830
	at β