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The goal of HIV therapeutic vaccination is to induce HIV-specific immune response able

to control HIV replication. We previously reported that vaccination with ex vivo generated

Dendritic Cells (DC) loaded with HIV-lipopeptides in HIV-infected patients (n = 19)

on antiretroviral therapy (ART) was well-tolerated and immunogenic. Vaccine-elicited

HIV-specific T cell responses were associated with improved control of viral replication

following antiretroviral interruption (ATI from w24 to w48). We show an inverse

relationship between HIV-specific responses (production of IL-2, IL-13, IL-21, IFN-g,

CD4 polyfunctionality, i.e., production of at least two cytokines) and the peak of viral

load during ATI. Here we have performed an integrative systems vaccinology analysis

including: (i) post vaccination (w16) immune responses assessed by cytometry, cytokine

secretion, and Interferon-γ ELISPOT assays; (ii) whole blood and cellular gene expression

measured during vaccination; and (iii) viral parameters following ATI, with the objective to

disentangle the relationships between these markers and to identify vaccine signatures.

During vaccination, 69 gene expression modules out of 260 varied significantly including

(by order of significance) modules related to inflammation (Chaussabel Modules M3.2,

M4.13, M4.6, M5.7, M7.1, M4.2), plasma cells (M4.11) and T cells (M4.1, 4.15).

Cellular immune responses were positively correlated to genes belonging to T cell

functional modules (M4.1, M4.15) at w16 and negatively correlated to genes belonging

to inflammation modules (M7.1, M5.7, M3.2, M4.13, M4.2). More specifically, we show

that prolonged increased abundance of inflammatory gene pathways related to toll-like

receptor signaling (especially TLR4) are associated with both lower vaccine immune

responses and control of viral replication post ATI. Further comparison of DC vaccine
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gene signatures with previously reported non-HIV vaccine signatures, such as flu and

pneumococcal vaccines, revealed common pathways across vaccines. Overall, these

results show that too long duration and too high intensity of vaccine inflammatory

responses hamper the magnitude of effector responses.

Keywords: dendritic cell, HIV, antiretroviral therapy interruption, therapeutic vaccine, gene expression, systems

biology

INTRODUCTION

Systems biology approaches applied to immunology and
vaccinology aim at analyzing the whole data available from
various high throughput technologies to better understand and
predict diseases and mechanisms of interventions (1–3). In
vaccinology, these approaches have been successfully used in
several applications such as yellow fever (4), influenza (5–
9), malaria (10), pneumococcus and meningococcus (11, 12),
and HIV vaccines (13) to identify gene signatures associated
with vaccine responses. This is exemplified by early changes of
expression of some genes following Yellow Fever vaccination,
such as TNFRSF17, which represent a signature predictive of
cellular and humoral responses to this vaccine (4). In the same
line, innate immune pathways associated with responses to
rVSV-ZEBOV Ebola vaccine have been identified recently (14).
These studies of changes in gene expression of components
of the innate immune system help to identify relationships
between various pathways involved in responses to vaccines
(15, 16) and may contribute to understand variations in vaccine
responses according to individual characteristics such as the
age (17), sex (6), or seasons (18). There is also a recent
trend toward comparing the signatures of various vaccines to
distinguish common and specific pathways modulated by each
vaccine (11, 12).

After more than 25 years of developing HIV therapeutic
vaccines, overall the clinical effects of candidate vaccines remain
disappointing [review in (19)]. Despite the capability of eliciting
strong immune responses, the ability of the candidate vaccines to
fully control HIV replication following antiretroviral treatment
interruption remains modest and inconsistent across trials (20,
21). One of the major obstacles for therapeutic HIV vaccine
development is the lack of clear understanding of mechanisms of
action of the majority of the candidate vaccines and of immune
correlates of HIV control. Here, we take the opportunity to
apply a systems vaccinology approach to integrate virological,
immunological and transcriptomic data from a clinical trial
of vaccination with ex vivo generated Dendritic Cells (DC)
loaded with HIV-lipopeptides in HIV infected patients on
antiretroviral therapy (ART). The primary report of this study
(DALIA study) showed that the vaccination strategy was well-
tolerated and immunogenic (22). Vaccine-elicited HIV-specific
T cell responses were associated with improved control of viral
replication following antiretroviral interruption (ATI). Here, we
report results from an integrative analysis taking advantage of
repeated sampling and a large array of immuno-monitoring
assays including whole blood and cellular gene expression,

as well as phenotypic and cytokine production in response
to HIV vaccine antigens. We show here correlations between
gene signatures, cellular responses measured before ATI and
the magnitude of HIV rebound following ATI in vaccinated
individuals. Especially, inflammatory pathways linked to TLR
4 were associated with poor vaccine responses whereas T cell
modules induced by the vaccination were associated with viral
control. Finally, by applying new statistical tools (23, 24) to the
re-analysis of existing data on the responses to other vaccines
(11), we reveal common pathways associated with the response
to different vaccines.

METHODS

DALIA Phase 1/2 Trial
The ANRS/VRI DALIA 1 is a phase I single-center study (North
Texas Infectious Diseases Consultants, Dallas, TX) sponsored
by the Baylor Institute for Immunology Research and the
Agence Nationale de Recherches sur le SIDA et les hepatites
(INSERM ANRS). The study was approved by the IRB of Baylor
Research Institute (BRI) (NCT 00796770). All patients gave
written informed consent.

The study design is shown in Figure 1. Eligible patients were
asymptomatic HIV-1-infected adults with CD4+ T cell counts
>500 cells/µL, CD4+ T cells ≥25%, plasma HIV RNA <50
copies/mL at screening and within the previous 3 months while
on ART, with CD4+ nadir ≥300 cells/µL, and no history of
AIDS-defining events. Nineteen patients were enrolled.

Participants received four vaccinations at w0, 4, 8, and 12.
At w22, patients who had HIV-1 RNA <400 copies/mL were
proposed to interrupt ART from w24 to w48. ART could be
resumed from w24 to w48 at any time according to the following
criteria: (i) if the patients or their doctors wished so; (ii) if CD4+
T cell count was <350 cells/µL and <25% of total lymphocytes
at two consecutive measurements 2-weeks apart; and (iii) in the
case of occurrence of an opportunistic infection or a serious
non-AIDS defining event.

Post vaccination (w16) immune responses assessment by
cytometry, cytokine secretion, and Interferon-γ ELISPOT assays
were described elsewhere (22).

RNA Isolation and Microarray Sample
Preparation
Whole blood RNA was purified using TempusTM Spin RNA
Isolation Kit (ThermoFisher scientific). PBMC, CD4- and CD8-
lymphocytes RNA were purified on Qiagen RNeasy Micro
Kit. RNA was quantified using a ND-8000 spectrophotometer
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FIGURE 1 | Outline of the ANRS/VRI DALIA 1 clinical trial. Gene abundance in whole blood has been evaluated at any single time point. Gene abundance following

PBMC isolation and stimulation has been done with sample coming from baseline (W-4) and after vaccination (W16). At W16, a deep immunological evaluation has

been performed with Multiplex, intracellular staining and ELISPOT.

(NanoDrop Technologies, Fisher Scientific, Ilkirch Cedex,
France) before being checked for integrity on a 2100 BioAnalyzer
(Agilent Technologies, Massy Cedex, France). cDNA was
synthesized and biotin-labeled cRNA was generated by an in
vitro transcription reaction using Ambion Illumina TotalPrep
RNA Amplification Kits (Applied Biosystem/Ambion, Saint-
Aubin, France). Labeled cRNA were hybridized on Illumina
Human HT-12V4 BeadChips. All steps were done following the
manufacturers’ protocols.

In vitro Stimulation of Purified PBMC With
HIV Peptides for Gene Expression and
Cytokines Profile Analyses
For cytokine profile analysis, in vitro stimulation of purified
PBMC with HIV antigens has been performed as previously
reported (22). For gene expression analysis, 106 of thawed
PBMC resuspended in RPMI 1640 media with L-Glutamax
supplemented with Penicillin/Streptomycin and 10% HS (R-
10HS) were stimulated for 6 and 20 h in 48-well plates with
2µg/ml of HIV LIPO-5 vaccine itself, a pool of 5 long
peptides corresponding to LIPO-5 vaccine sequences (Gag17–
35, Gag253–284, Pol325–355, Nef66–97, and Nef116–145) at
2 µM/peptide, or a pool of 36 peptides (15-mers overlapping
by 11 amino acids, covering LIPO-5 vaccine sequences) at 2
µg/ml/peptide, in a humidified 37◦C cell incubator with 5%
CO2. Cells were then transferred in eppendorf tubes, pelleted,

resuspended in 350 µL lysis buffer and frozen immediately at
−80◦C until transcriptomic analysis as described (25).

Published Data of Whole Blood
Transcriptional Response to Influenza and
Pneumococcal Vaccines
Data of the whole blood transcriptional response to influenza
and pneumococcal vaccines of 46 individuals were publicly
available in the NCBI Gene Expression Omnibus under code
GSE30101 (11).

Statistical Analyses
Statistical analyses were performed using R software version
3.2.2 (The R foundation for Statistical Computing, Vienna,
Austria). Gene transcription data were pre-processed (25, 26) and
corrected for potential batch effects (27). Statistical comparisons
between groups of interest were based on empirical Bayes
moderated t-statistics (28). An adaptive FDR procedure was used
to control for test multiplicity (29). Unsupervised hierarchical
clustering heatmap analysis was performed on scaled raw
expression using Euclidean distance matrix and Ward’s linkage
method (30). Canonical pathway and biological function analyses
were then carried out using genes differentially expressed
between groups with adaptive FDR-adjusted P < 0.05 and fold-
change |FC| >1.5.

Time-course gene set analysis was performed using TcGSA,
an innovative approach relying on mixed regression models and
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likelihood ratio test to identify gene sets the expression which
is significantly changing over time (23). It uses pre-defined gene
sets, such as the Chaussabel’s modules or the BTMs (12). TcGSA
accounts for patient heterogeneity and allows gene sets to be
broken down into several distinct gene subsets with different
dynamics. Gene expression from the DALIA trial was analyzed
separately before and after antiretroviral treatment interruption
due to the large and noticeable impact of the viral rebound,
with a cubic polynomial time-basis for modeling gene-specific
non-linear dynamics. Bootstrap analyses were performed to
check the consistency of these results and allowed reporting
the proportion (among 1,000 bootstrap samples) that a given
module was selected. Gene abundances from the studies reported
in Obermoser et al. (11) were modeled by a constant expression
over time plus a spike at D1 (where the majority of the signal was
observed for both the flu and the pneumococcal vaccines).

A transcriptomic signature was then derived through an
integrative analysis of the gene expression at w16 from the
significant modules identified by TcGSA together with the
viro-immunological measurements at w16 in the DALIA trial,
performed using sparse group Partial Least Squares (sgPLS) with
leave-one-out cross-validation (31). This is a recent variable
selection method for high-dimensional data that can account for
an essential grouping structure in the data (i.e., the gene sets for
the gene expression) and that is based on the maximization of the
covariance between two data matrices (namely the viro-immune
response and the gene abundances). A regularization approach
based on Lasso penalty selects the most contributive variables.
This allows to down-select the gene abundances at w16 most
associated with the viro-immune response at w16. A complete
description of the methods can be found in Liquet et al. (31).

Functional analysis of the immune signature was performed
with Ingenuity Pathway Analysis software (IPA R©, Qiagen,
Redwood City, California, Spring Release March 2018) and
CluePedia and ClueGO in Cytoscape (32, 33).

All microarray data is MIAME compliant and the raw and
normalized data have been deposited in the MIAME compliant
database Gene Expression Omnibus (http://www.ncbi.nlm.nih.
gov/geo/, GEO Series accession number GSE46734).

RESULTS

Changes in Whole Blood Gene Expression
in Individuals Immunized With ex vivo

Generated DC HIV Vaccine
All 19 included patients received the four vaccinations as planned
(Figure 1) with no changes in vaccine dose. Among them,
16 had all data available for the integrative analysis. Their
characteristics are reported in Table 1. First, we analyzed changes
in transcriptomic whole blood gene expression throughout the
study; i.e., every 4 weeks from baseline, including time points
before each vaccination at weeks 0, 4, 8, and 12 and at week
22, i.e., 2 weeks before ATI. For this, we developed a specific
statistical method, the time course gene set analysis, to detect
significant change of gene abundance in groups of genes over
time taking into account the heterogeneity of the dynamics

TABLE 1 | Baseline characteristics.

n = 16

Male n (%) 14 (88)

Age (years) Median (IQR) 45 (36–49)

Race/Ethnicity

White n (%) 11 (69)

Black/African American n (%) 2 (13)

Hispanic/Latino n (%) 3 (19)

Body Mass Index (kg/m2) Median (IQR) 27 (25–28)

(19–25) n (%) 4 (25)

(25–30) n (%) 11 (69)

>=30 n (%) 1 (6)

Mode of transmission (type of sexual

contact)

Homosexual/bisexual n (%) 13 (81)

Heterosexual n (%) 3 (19)

HIV clinical stage

A n (%) 15 (94)

B n (%) 1 (6)

Nadir CD4+ (/mm3) Median (IQR) 346 (318–411)

CD4+ (/mm3) at W-8 Median (IQR) 711 (635–930)

CD4+ (/mm3) at W0 Median (IQR) 647 (545–757)

HAART

With NRTI n (%) 16 (100)

With NNRTI n (%) 14 (88)

With PI n (%) 3 (19)

Time between the start date of the

first HAART regimen and inclusion

(years)

Median (IQR) 10 (6.7–13.7)

Time between the start date of current

HAART regimen and inclusion (years)

Median (IQR) 2.8 (1–3.8)

among a given group (23). A simple gene by gene analysis did
not reveal significant changes after correction for test multiplicity
(False Discovery rate <5%). The analysis of the time course
of gene sets, as defined by Chaussabel et al. (34), revealed 69
modules with dynamics that changed over time before ATI.
As shown in Figure 2A, the modules exhibiting significant
changes (as reported by order of significance through the
percentile distribution of the statistics) were modules annotated:
(i) “inflammation” (M3.2, M4.13, M4.6, M5.7, M7.1, M4.2,
M5.1) and; (ii) and T cell activation (M4.1, M4.15). The
dynamics of gene abundances over time varied between modules
(Figure 2A). Inflammation modules M3.2, M4.2, M4.6, M4.13,
M5.7 decreased in average abundance during the period of
vaccination and then increased to reach levels above baseline
before treatment interruption (at w16). Interestingly, the T
cell modules (M4.1, M4.15) presented inverse dynamics. The
inflammation modules M5.1 and M7.1 increased continuously
during the vaccination period.

The composition ofM3.2 wasmainly based on genes related to
toll-like receptor signaling pathway, especially TLR4 (Figure 2B)
and genes related to neutrophil activation involved in immune
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response (e.g., ADGRG3, ALOX5, BST1, CD55, CD63, CDA,
CKAP4, CRISPLD2, FOLR3, FPR2, GCA, ITGAM, LILRA3,
MME, MMP25, OSCAR). Ingenuity Pathway analysis (IPA)
revealed an interaction of the different inflammatory modules
centered on theM3.2module and the TLR4 pathway (Figure 2B).
The module M4.6 that includes MYD88 is enriched in genes
related to type 1 and type 2 (IFNγ ) interferon signaling pathways.
The modules M4.13, annotated “activation and cell division
of leukocytes,” M5.7 and M7.1 (Figure 2B) are related to cell
activation, and so is module M5.1, which is associated to myeloid
cells and neutrophils activation (including TYROBP gene related
to several processes). Regarding T cell activation modules,
changes in gene expression during the vaccination period
concernedmore specifically themoduleM4.1, which is composed
of genes related to T cell selection (e.g., BCL11B, BCL2, CCR7,
CD28) and diversification of TCR (e.g., BCL11B, LEF1, TCF7);
and the module M4.15, which is also related to T cell selection
(LY9, THEMIS, ZAP70) and differentiation (e.g., CD2, CD27,
GPR18, ITK, LCK, LY9, RASGRP1). In addition, other modules

related to platelets (M1.1), mitochondrial respiration and stress
(M5.10, M5.6, M6.2), erythrocytes (M3.1, M2.3), plasma cells
(M4.11) exhibited significant changes during the vaccination
period.

Following ATI (from week 24 onwards), changes in gene
expression were assessed every week until week 28 and every
4 weeks until week 44. The abundance of the genes in the
inflammatory modules tended to decrease over time up to
44 weeks (Figure 2C). The dynamics of the genes from some
modules (M5.1, M7.1) was more complex, with subsets of the
genes showing distinct dynamics. During this period, there was a
significant increase in the abundance of type-1 interferon genes,
as previously described in HIV/SIV primary infection (35), and
enriched in the module M1.2, M3.4, and M5.12 (Figure 2D).

In a robustness analysis, the analysis of the dynamics of
the genes during vaccination (preATI) was performed with the
Blood Transcriptional Modules (BTMs) that are other gene sets
generated using another approach than Chaussabel et al. (12).
Overall, the results were consistent with the initial analysis

FIGURE 2 | Continued
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FIGURE 2 | Continued
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FIGURE 2 | (A) Dynamics of gene abundance before antiretroviral treatment interruption. Dynamics of the gene abundance in various modules that changed

significantly over time including inflammatory modules (M3.2, M4.13, M4.6, M5.7, M7.1, M4.2, M5.1) and T cell module (M4.1). Lines are smoothed trajectories

predicted by the longitudinal statistical model (23). (B) Composition of inflammatory modules and relationship with TLRs. Relationships between inflammatory modules

M3.2 and M4.2, M5.7, M7.1, and M5.15 (annotated “Neutrophils”) and TLR genes using Pathexplorer in IPA. Links between modules that are not concerning M3.2

are not represented. Links between inflammatory modules other than M3.2 and TLRs other than TLR4 are not represented. (C) Dynamics of gene abundance after

antiretroviral treatment interruption: inflammatory modules. Dynamics of gene abundance in “inflammatory modules” that changed significantly over time. Various

colors reflects different trajectories in the same modules defined by unsupervised clustering (23). (D) Dynamics of gene abundance after antiretroviral treatment

interruption: interferon modules.

using the Chaussabel’s modules. There was a significant variation
of 26 modules enriched in activated dendritic cells/monocytes
(BTM64), in monocytes (BTM11.0, BTM118.0, BTM37.1,
BTM163), in T cells (BTM7.0, BTM223) and modules annotated
“immune activation” (BTM37.0), “T cell activation” (BTM7.1),
“TLR and inflammatory signaling (BTM16). The other modules
were “blood coagulation” (BTM11.1), “platelet activation”
(BTM32.0, M32.1), and 6 modules were not annotated (see
Supplementary Table 1).

Changes in Cellular Gene Expression in
Response to HIV Antigens in Vaccinated
Individuals
PBMC collected at baseline and at week 16, 4 weeks
after the last vaccination, were stimulated with 15-mers
overlapping HIV peptides carried by ex vivo DC vaccines (see
section Methods) during 20 h. The stimulation by 15-mers
led to a differential expression of a large number of genes
compared to unstimulated cells (Figure 3). At baseline, the
comparison between stimulated and unstimulated conditions
showed a differential expression of 4,638 genes, including
1,214 that were differentially expressed at baseline only
and not at week 16. The genes differentially expressed at
baseline only belonged to various pathways including defense
pathways, especially the type 1 interferon signaling pathway
(Figures 4A,B). At w16, the comparison revealed a differential
expression of 6,716 genes, including 3,292 that were differentially
expressed at w16 only. At week 16, even more pathways
were mobilized, from general cellular processes to immune
response processes (Figure 4C). When looking at the 404 genes
that significantly changed between baseline and week 16 after
stimulation, there is a clear enrichment of the genes involved
in pathways related to response to cytokines: CXCL9, 10,
11, 13, FOXO3, FYN, HLADP, DQ, DR (Figure 4D). More
specifically, it involved Th1 and Th2 pathways, T Helper

cell differentiation, dendritic cell maturation, and antigen
presentation pathways.

Integrative Systems Vaccinology: Linking
Changes in Gene Expression,
Vaccine-Elicited Immune Responses, and
Viral Dynamics Post ATI
Then, we assessed whether changes in whole blood gene
expression identified through module variations at week 16 (4
weeks after the last vaccination and before ATI) were correlated
to HIV-specific cellular immune response at the same time point
and the viral dynamics following ATI. As previously published
(36), the vaccination led to an increase in the magnitude and
breath of HIV-specific T-cell responses as measured by IFN-γ
ELISPOT after stimulation by HIV peptides pools. HIV-specific
CD4+ and CD8+ T responses were polyfunctional (producing
2 or more cytokine) as measured by ICS. Also, vaccination
induced a broad repertoire of cytokine-secreting cells as assessed
by Luminex assay (IL-2, IL-13, IL-17, IL-21, IP10). The different
types of T-cell responses were summarized by a polyfunctionality
U-score for multivariate data [see section Methods and reference
in (22)]. The cellular responses measured at week 16 after
vaccination and before ART interruption were associated with
the peak of viral load measured after ATI (22).

We found that a large part of the inflammatory modules
(M3.2, M4.2, M4.13, M5.7, M7.1) was negatively correlated
to vaccine-elicited HIV specific cellular immune responses.
The module 5.15, annotated “Neutrophils,” was also negatively
correlated to the immune response (Figure 5). All these modules
were associated with each other and especially with M3.2
(Figure 2B). In contrast, modules related to the T cell response
(M4.1 and M4.15) were positively correlated to these cellular
immune responses. Inflammatory gene expression changes were
positively correlated with the maximum HIV RNA values post
ATI, whereas T cell activation gene expression changes were
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FIGURE 3 | Gene expression in stimulated PBMC. Upset diagram of the genes differentially expressed in PBMC after 20 h of stimulation with 15 mers at week-4

(baseline) and week 16 in comparison of unstimulated cells and between week-4 and week 16.

negatively correlated with this virological parameter (Figure 5).
Thus, the patients who mobilized predominantly inflammatory
genes in response to vaccination were those who presented
the worst immune responses to the vaccine and the highest
HIV RNA levels after ATI. The average correlation between
gene abundance of inflammation modules and maximum viral
load after ATI was 0.53 (Supplementary Figure 1). Interestingly,
the inverse correlation identified between inflammatory gene
expression and vaccine response at week 16 was already
consistently detectable at earlier time points (at weeks 4, 8, and
12) (Supplementary Table 2).

Highlighting a Common Inflammatory
Pathway to Different Vaccines
In order to better characterize mechanisms of dendritic cell-
based vaccine immunogenicity, we compared whole blood gene
expression signatures identified in our trial with those described
with other vaccines, for which protective correlates have been
identified. We took the opportunity of published studies in
which the same methods for measuring transcriptomic changes
were used as the ones in the present study. For this, we
revisited published data using our statistical approach based
on gene set analyses of longitudinal data [here and detailed
in (23)]. Obermauser et al. reported the early commitment of
inflammation modules following Pneumococcus and Influenzae
vaccinations in healthy humans (11), with a lower inflammatory
signal with the Influenzae vaccine. We found a consistent
commitment of the inflammatory modules especially M3.2

(including RGL4, CDA, NFIL3), M4.13 (including TREML2),
and M4.2 (including S100P) both in our therapeutic HIV vaccine
trial and in the Pneumoccocus and Influenzae vaccine data
sets (23). Furthermore, an increased abundance of the genes
of these modules was associated with a poorer response to the
Pneumoccocus vaccine [as reported in (11)] and to the Influenzae
vaccine, in accordance with the lower response to dendritic
cell-HIV vaccine in our trial.

DISCUSSION

By taking advantage of both blood and cellular analyses,
a longitudinal study design and the comparison between a
pre- and post ATI period, we were able to demonstrate an
association between the mobilization of inflammatory pathways,
the magnitude of vaccine elicited HIV cellular responses and
the viral dynamics after ATI after experimental therapeutic DC-
based vaccination in HIV-infected patients. The results reported
here contribute to identify gene signatures of a therapeutic DC-
based vaccine against HIV and to a better understanding of the
actions of these vaccines.

Longitudinal analysis of whole blood gene expression
revealed changes in gene abundance from modules involved in
“inflammation” and “activation” and “differentiation of T cell.”
Interestingly, changes in abundance of genes involved in myeloid
activation and trafficking were detectable at early vaccination
time points. Although activation of inflammatory pathways is
known as a physiological response to vaccinations, our results
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FIGURE 4 | Continued
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FIGURE 4 | Pathways of differentially expressed genes in stimulated PBMC. Pathways of differentially expressed genes between stimulated and unstimulated cells at:

(A) W-4 (N = 1,214) Overview chart with functional groups and (B) Functionally grouped network with terms as nodes linked based on their kappa score (C) W16

(N = 3,292) and (D) genes which expression changed significantly between week-4 (baseline) and week 16 (N = 404) after stimulation. Analysis performed with

CLUEGO (GO Biological and Immune System processes ontologies, Network specificity: Global).

FIGURE 5 | Integrative analysis of changes in gene expressions and cellular immune responses at W16 and viral dynamics after ATI. Correlations from −1 (blue) to +1

(red) estimated from sparse partial least square approach. Peak HIV RNA plasma viral load Post ATI is the maximum observed value of HIV RNA viral load after ATI.

Other immune markers have been measured at week 16: IL-21, IFN-γ, IL-2, IL-13 by LUMINEX and CD4 polyfunctionality by ICS. LUMIscore and TH1score are

calculated scores using several cytokine measurements at W16 (see section methods).

revealed also that modifications of genes related to differentiation
and activation of T cells following vaccination behave in the
opposite way at the same time points. Consistently, genes related
to toll-like receptor signaling pathways and Interferon type 1

and 2 were mobilized in the blood of vaccinated individuals.
Comparison between pre- and post-vaccination (w16) changes
in gene expression induced by HIV antigen stimulation enriched
these observations showing an induction of genes related to
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cellular immune responses to cytokines, T cell, and dendritic
cell responses.

A very specific feature of our study consists in the timing of
whole blood sampling for gene expression that was performed
every 4 weeks. This schedule is very different from previous
studies that usually took blood few hours after vaccination [e.g.,
(10, 11, 13)]. Here, we thus studied long-term trends of gene
abundance that could be associated to changes in equilibrium
states of biological functions or changes in the representation
of cell populations. The intensity of the signals in the whole
blood associated with the vaccinations was high enough to
detect the changes of genes abundance and did not require
additional analyses taking into account cell populations (37).
Analyses at the module (i.e., gene set) level were needed to
detect the signals in this study during the vaccination period
(23) because this type of analysis is much more powerful than
a gene-by-gene analysis (38). By not measuring changes of
gene abundance at early days after vaccination, we may have
missed the dynamics of the innate response detectable at day 1
and day 3 after vaccination (10, 11, 14, 39). Nevertheless, it is
interesting to note that subtle changes are still detectable later
on (i.e., after day 7) when using geneset/module approaches
with appropriate statistical methods (23). This is confirmed also
by our re-analysis of public datasets of transcriptomic changes
after Pneumococcus or Influenzae vaccination in humans (11).
Modules including genes associated with inflammation (M3.2,
M4.2, M5.1, M5.7) were detected day 1 after pneumococcal
vaccine but also with flu vaccine when using the same analytical
approach than in this paper (11). The same observation was
made following Meningococcus vaccine as reported in Li et al.
(12). TLR and inflammatory signaling (BTM 16), enrichment
in neutrophils (BTM37.1), in monocytes (BTM11.0, BTM118.0)
were found 6 h after a vaccination with a recombinant HIV-1
envelop glycoprotein adjuvanted with the TLR4 agonist GLA-AF
(13). The same inflammatory/TLR/chemokines BTMs signatures
were reported day 1 and day 2 following malaria vaccine based
on Ad35 vector or virus-like particles based on a mixture of the
fusion reconstruct (RTS) with native HBsAg (S) (10). Therefore,
it is interesting to note that signatures mostly reported at early
time points were also found later in our study.

A too high and long-standing change in abundance of gene
expression associated with toll-like receptor signaling pathways
and monocyte/neutrophil activation appeared to be deleterious
for the immune response to the vaccine. This may have an
important impact on the use of adjuvants that are needed butmay
require refined adjustments (16) to avoid excessive inflammation
that could be deleterious (40). The idea of counter-regulatory
mechanisms induced by vaccines has already been discussed
such as the role of monocytes limiting the vaccine response
(14, 41). This mechanism should be clearly distinguished from
the TLR and inflammasome signals that amplify the T cell
responses (42) as this last phenomenon occurs at the place of the
immune response, that is in the lymph nodes, as an early event
in response to vaccine (43). Interestingly, these transcriptional
signature in whole blood were also found to be associated to
the response to other vaccines such as Pneumococcus (11) and
Malaria (10). For instance, in the case of pneumococcal vaccine
group, Obermoser et al. reported a negative correlation between

serology results and day 7 modular transcriptional data for
module associated with inflammation (M3.2, M4.2, and M4.13).
The direction of the association between the gene signature
and the immunological response may change over time. The
cellular CD4-T cell response measured at day 14 after vaccination
with Ad35 followed by RTS,S/AS01 was positively associated
with the inflammatory/TLR/chemokines responses (including
BTM16) at day 1 and negatively at day 6 [see Figure S5 in (10)].
Therefore, the deleterious association of persistent inflammatory
signature in whole blood several days after vaccination with
the immune response to vaccine has been reported in several
vaccine platforms. This cross-validates the phenomenon and
indicates a potential broad mechanism driving the immune
response to vaccine. Although additional information on single-
cell would be of interest to better understand the mechanisms
leading to the variation of the vaccine response, key results are
biologically relevant and may be further explored by tracing
some cell populations such as inflammatory monocytes (41).
There are other examples where the transcriptome has helped in
deciphering the role of cell populations that was then specifically
quantified as in Obermauser et al. (11) where the change of the
abundance of genes (e.g., TNFRSF17) that constitutes a plasma
cell precursor signature (M4.11) was in line with the dynamics of
the concentration of plasmablasts.

The involvement of pathways including TLR4 and MYD88
raises the hypothesis that gut translocation may interfere
with the responses to the vaccine as it does with other
immunotherapy (44). Other mechanisms could induce TLR4
signaling. It has been established that soluble gp120 has
a pro-inflammatory action through induction of TNFα, IL-
8, IL-6, CCL2 (45, 46). Inflammatory response can also be
triggered by the direct interaction of HIV-gp120 and TLR4
molecule (47). This interaction leads to both the production of
proinflammatory cytokines and to increase the HIV replication.
Furthermore, TLR expression and function can be up-regulated
in response to HIV-1 infection, emphasizing the inflammatory
response (48).

These types of result should help improving the potency of
vaccines by combining vaccines and immunomodulatory tools
(49). For instance, TLR7 agonist has been used successfully
to activate the reservoir of SIV-infected monkeys and enhance
immunological response of a recombinant adenovirus serotype
26 (Ad26) prime and modified vaccinia Ankara (MVA) boost
vaccine (50). However, it is unclear whether the beneficial effect
of the TLR7 agonist reflected its potential role as a vaccine
adjuvant or as a latency reversing agent. The effect of TLR7
agonist could actually have reduced the immunological effect of
the vaccine in case of an exaggerated inflammatory response as
described in the present study.

In conclusion, inflammatory pathways related to toll-like
receptor signaling pathways that were committed in response to
this DC-based therapeutic HIV vaccine were associated with a
poorer immune response to vaccination and poorer viral control
after ATI. Given a similar involvement and impact of these
pathways in responses to other vaccines, it is important to control
the kinetics of inflammatory responses induced by vaccines. In
total, these results are helpful for the design of further strategies
combining vaccines with adjuvants and/or immunomodulators.
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