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Abstract—Cloud-Radio Access Network (C-RAN) is an at-
tractive solution to Mobile Network Operators. Firstly, C-RAN
leverages the effect of pooling multiple Baseband Units (BBUs)
to offer centralized processing resources while hosting them on
cloud. This results in multiple benefits ranging from statistical
multiplexing gains, to energy efficiency. Secondly, C-RAN allows
deploying Remote Radio Heads (RRHs) in proximity of end-users
allowing exploiting Inter-Cell Interference Cancellation (ICIC) to
maximize throughput by coordinating multiple RRHs. In this
context, we propose, in this paper, a new throughput-aware RRHs
clustering method for C-RAN that maximizes the throughput
for end-users, while meeting multiple constrained resources on
BBUs. Our approach consists of two stages: First, individual
throughput value and requirements of each RRH are calculated
taking into account the Signal-to-Interference-plus-Noise Ratio
(SINR) values and the distance between RRHs and users. Then,
they are included into a k-dimensional Multiple-Choice Knapsack
Problem (k-MCKP) subject to several constraints in terms of
required resources in order to form RRHs clusters that maximize
the global throughput. Simulation results demonstrate the good
performance of our proposal in terms of end-users throughput,
spectral efficiency and execution time, when compared with
the optimal solution and the basic strategy using no-clustering
scenarios.

Index Terms—C-RAN, BBU Pool, RRH Cluster, k-MCKP,
CoMP

I. INTRODUCTION

With the introduction of social media and smart phones, end-
users became more and more inseparable from their phones
and continuously generating and consuming contents, through
their data-hungry devices. In 4G, LTE allowed Mobile Network
Operators (MNO) to offer Mobile Broadband (MBB) with
download speeds going up to 300 Mbps. 5G advocates a
mechanism called “Slicing” applicable to both Core Network
(CN) and Radio Access Network (RAN). Slicing enables
MNO to decompose their network architectures into virtual
networks (slices). Each slice is optimized to serve different
set of competing constraints in terms of throughput, latency,
reliability, energy efficiency among other constraints. Enhanced
Mobile Broadband (eMBB), also referred to as Extreme Mobile
Broadband (xMBB) is a class of 5G Slicing for RAN where
the focus is confined to throughput and mobility. In eMBB,
the throughput is planned to be higher than one Gbps and the
mobility is up to 500 Km/h. Such eMBB allows catering higher
data-rate demands for end-users enabling them to constantly
generate andconsume data even when they are in extreme
conditions (high velocity and high demands) [1].

Cloud-RAN (C-RAN) is an attractive solution to MNO [2]. It
saves CAPEX by leveraging the benefits of Base Stations (BSs)
components’ distribution and functionalities’ split in eNodeB

Fig. 1. Inter Cell Interference Cancellation Principle

(eNB). Specifically, the Distributed Base Station (DBS) is de-
composed into BaseBand Unit (BBU) for baseband processing
and Remote Radio Head (RRH) for radio and physical layer
functionality [3]. Knowing that not all BBU resources are
constantly used by a certain DBS eNB, BBU Pooling allows
usage maximization in three folds. Indeed, BBU pooling results
in decreasing the number of BBUs by gaining from statistical
multiplexing.It also increases resiliency against failure (no
single point of failure). In addition, it allows to leverage
coordination to exploit interference in the favor of throughput
increase. BBU Pooling is especially feasible with the advents
of Network Function Virtualization (NFV) [4], which allows
implementing vendor-based hardware BBU by a software-based
Virtual BBU (vBBU). Not only does the grouping take place
on BBU side, to save the CAPEX but also, RRHs are grouped
as “RRH Clusters”.

RRHs clustering results in mitigated interference among
RRHs or even better, an increase of throughput in case of
exploited interference. This mechanism is called Inter-Cell
Interference Cancellation (ICIC) [3] as depicted in Fig. 1.

ICIC can take place in one of the following three forms.
These forms are (1) Coordinated Scheduling and Coordinating
Beam-forming of RRHs (CS/CB), (2) Dynamic Point Selection
(DPS) to favor the best RRH to serve the end-user or (3) Joint
Transmission (JT) from multiple RRHs to a user. Coherent
JT achieves simultaneous power and multiplexing gains. The
coordination mechanism among RRHs by the BBUs is called
Coordinated Multi-Point (CoMP) [5].

To this end, we propose a two-stage approach. First, the
throughput value and weights of the impact of mapping
each RRH on BBU processing resources are calculated. Next,
such inputs are included into a k-dimensional Multiple-Choice
Knapsack Problem (k-MCKP), which is then solved using a
simple yet efficient heuristic. A ”k-MCKP” is computationally
harder than one dimension Multiple-Choice Knapsack Problem



(MCKP) [6]. MCKP is a particular case of K-MCKP where
k is equal to 1. Our goal is to select the RRHs cluster that
maximizes the throughput for end-users while meeting multiple
constraints on BBUs resources.

It is worth noting that, although, maximization of the cluster
to include the biggest number of RRHs reduces the inter-cluster
handover, this has the pitfall of increased BBU resources usage
and dramatic increase of load on front-haul links. Such trivial
solution is typically rejected due to the imposed constraints on
the BBUs. Our contributions are summarized as follows:
• Previous implementations of RRHs Clustering consider

fixed size single BBU when clustering the RRHs. Our
work considers multiple BBU pool with several constraints
as based on real hardware implementation from telecom-
munications equipments’ suppliers [7].

• We validate our problem formulation by means of simula-
tion and show the effectiveness of our proposal compared
to the optimal solution as well as the basic strategy using
no-clustering scenarios.

The remainder of this paper is organized as follows. Section
II presents an overview of related works. Section III describes
the system model and formulates the traffic aware clustering
as k-MCKP and discusses the complexity of the optimal
and heuristic solutions. Section IV elaborates the performance
evaluation and the simulation environment and discusses the
results. Section V concludes this paper.

II. RELATED WORKS

RRHs Clustering problem in C-RAN has incited considerable
research efforts in the last few years. We classify the reviewed
papers described in this section into two categories. The first
category covers papers that handled the RRHs Clustering
problem. The second category covers papers that treated MCKP
problem in other applications. Papers in the first category are
[8], [9], [10], [11] and [12]. Authors in [8] have handled RRHs
Clustering problem from interference-awareness perspective.
They have proposed an interference aware clustering algorithm
in C-RAN based on set partitioning problem aiming to min-
imize ICIC using optimal and heuristic approaches. Authors
in [9] formulated the RRHs Clustering problem as a coalition
formation game to optimize throughput, power consumption
and handover frequency. Authors in [10] worked on optimal
and heuristic solutions to RRHs Clustering, while considering
re-association between BBUs and RRHs. Although all of these
papers showed considerable improvement on treating the RRHs
Clustering problem, they did consider a fixed size group on
BBU side, resulting in a “Bin packing problem”. The fixed
size assumption on BBU is not the case a fortiori in C-RAN
due to the usage of cloud. In fact, in the C-RAN context, BBUs
are pooled together to offer a higher processing capability than
a single BBU. In addition, when stored on the cloud, BBUs
leverage easiness of elasticity in cloud computing [4]. Authors
in [11] considered the BBU-RRH problem from quality of
service (QoS) perspective and adopted a genetic algorithm (GA)
and Discrete Particle Swarm Optimization (DPSO) approach to
solve it. However, as opposed to our proposal, the objective
was not to maximize the global throughput. Authors in [12]
considered the problem of BBU-RRH assignment as Multiple
Knapsack Problem (MKP) but assumed one single constraint on
the BBU pool which is not the case in real life where multiple

constraints bound the capacity of the BBUs as elaborated
in next section. Indeed, differently from [12], we considered
multiple constraints on the BBU pool. Papers in the second
category are [13] and [14]. They handled different problems
using k-dimensional MCKP modeling. In fact, authors in [13]
designed a resource aware architecture for adaptable and dis-
tributed systems using k-MCKP. Authors in [14] adopted the
k-dimensional MCKP for cognitive radio applications. Such
papers used the k-MCKP in different context and did not
cover details about the simulation method used. In our work,
thorough details about the simulation are elaborated in the C-
RAN context.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
In this paper, we focus on clustering RRHs together in a

way to maximize the system throughput provided that each
cluster is parented to a BBU pool. For the implementation of
the k-MCKP-based clustering approach, the choice of cluster in
regard to the epoch of time during which the cluster is changed
is not instantaneous. In fact, the cluster is not supposed to
change in a matter of seconds or minutes, otherwise, this would
trigger massive reconfigurations which are costly on the front-
haul interface. Typically, based on current telecommunication
equipments’ suppliers vendors, the performance measurement
Key Performance Indicators (KPI) collected from field radio
nodes (RRHs) are of 15 minutes granularity. Occasionally, the
granularity is re-tuned on demand and for a limited period to 5
minutes resolution in order to avoid overloading the Operation
Support Subsystem (OSS). Also, based on seasonality of traffic
trends, the clustering scheme is typically suggested to be carried
out at a scale of hours. Without loss of generality, we assume
that each BBU capacity is constrained by the following five
constraints [7]:
• Maximum number of RRHs that depends on (nT).(nR)

beam-forming or MIMO configuration, where nT, nR
denote the numbers of transmit and receive antennas
respectively.

• Maximum throughput per RRH that is the downlink data
rate at the Medium Access Control (MAC) layer for the
typical 5/10/20 MHz bandwidth according to the Carrier
Aggregation (CA) scheme.

• Maximum throughput per BBU that is the sum of uplink
and downlink data rates at the MAC layer.

• Maximum number of users in the Radio Resource Control
mode (RRC CONNECTED) in a BBU. A user is in
RRC CONNECTED when an RRC connection is estab-
lished.

• Data Radio Bearer (DRB) per User Equipment (UE).
We model the arrival of user’s equipment (UE) by a Poisson
Point Process (PPP) [15], where UEs are spread and attached to
RRHs. Each user demand is function of its usage represented by
the required bandwidth and is expressed in number of Physical
Resource Blocks (PRBs). A PRB is the smallest element of
resource allocation assigned by the eNB scheduler.

Each RRH is characterized by a certain value contribution
(v) to the throughput. To calculate the throughput, we used the
theorem of Shannon-Hartley that ties the channel capacity to the
bandwidth and Signal-to-Noise-and-Interference Ratio (SINR).

ChannelCapacity = B log2(1 + SINR) (1)



B is channel bandwidth in Hertz. The channel capacity
provides an upper bound to the peak throughput allowed in this
channel in bits per second. The simulation depicted in Fig. 2
shows the achieved throughput in regards to channel capacity.
Our interference model, and its parameters are based on the
3GPP technical specification [15]. The SINR is given by :

SINR
(u)
r,k =

p
(u)
r,k .g

(u)
r,k

N0 +
∑

s6=r

∑
v 6=u p

(u)
s,k .g

(u)
s,k

(2)

Where p is the signal power and g is the channel gain from
RRH r towards UE u on PRB k. The noise power is denoted
as N0. The received power is calculated from the transmitted
power subtracted by the path loss expressed in decibels [15].
The path loss is computed as follows:

LFS = 92.45 + 20 log10(f) + 20 log10(d) (3)

Where LFS is the path loss in free space (in dB). The
frequency f is expressed in gigahertz, and the distance between
transmitter and receiver d is expressed in kilometers.

B. Problem Formulation

Let us first introduce a binary variable xij to indicate whether
the RRH j is assigned to the cluster i or not. We denote by vj
the throughput value of RRH j. Each RRH j is also character-
ized by some weights w

(k)
j that are the consumed portions of

resources from the BBU pool i. Weights are functions of the
traffic profiles being served by these RRHs.The two indexes n
and m denote the number of RRHs and number of BBU pools
respectively. Our objective is to form a cluster of RRHs in such
a way that the total throughput is maximized, while considering
the multiple resource constraints. Each RRH j of cluster i has
the non-negative throughput value vij , and requires resources
from the BBU pool that has limited processing capacities
represented by the weight vector Wij = (w(1)

ij , w(2)
ij , . . . , w(K)

ij ),
where K denotes the number of resource constraints on the
BBU pool. Note that m needs to be lower or equal than the total
number of BBUs in the network, as the trivial mapping of RRH
to BBU is 1 to 1. The k-MCKP is constrained by a constraint
vector C = (C(1), C(2), . . . , C(k), . . . , C(K)) characterizing
the upper bound of available BBU resources. Our clustering
problem is formulated as k-MCKP, as follows:

maximize
x

z =

m∑
i=1

n∑
j=1

vjxij (4a)

subject to
n∑

j=1

w
(k)
j xij ≤ C

(k)
i ; i ∈ {1, . . . ,m}; k ∈ {1, . . . ,K}

(4b)
m∑
i=1

xij ≤ 1; j ∈ {1, . . . , n} (4c)

xij ∈ {0, 1}; i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} (4d)

Equation (4a) is the objective function to maximize. The
set of equations (4b) specifies the K constraints on resources.
Equation (4c) is the exclusivity constraint to make sure that
each RRH is parented to one BBU pool only.

The formulated k-MCKP is a Non-deterministic Polynomial-
time Hard (NP-Hard) combinatorial optimization problem [16]
[17]. We propose a simple yet efficient heuristic to solve the
k-MCKP problem providing values close to optimum ones with
noticeable gain in terms of simplicity and rapidity for realistic
input size. The heuristic listed in Algorithm 1 works as follows:

Sort constraints on BBU pool in increasing order to identify
the first bottleneck. The index for this first bottleneck is denoted
k∗. Disregard any RRH not satisfying all the constraints all
together. Calculate the efficiency that is the throughput value
of each RRH divided by the constraint value in regard with
first priority bottleneck (C(k∗)). Sort Efficiencies in decreasing
order. Get the RRH of biggest efficiency in the cluster. Try to
include additional RRH if they satisfy the constraints. Get the
throughput value of the formed cluster.

Algorithm 1: Heuristic for k-MCKP-based clustering

Data: Set of RRHs, BBUs, and Constraints C(k);
Result: RRHs cluster with max throughput satisfying

C(k)

1 Computation of (vij , w(k)
ij );

2 Initialization of C(k);
3 Sort the constraints on BBU pool in increasing order;
4 Prioritize the bottlenecks (Lowest constraints first);
5 for RRH j ← 1 to n do
6 for constraint k ← 1 to K do
7 if weight(RRHj > C(k)) then
8 disregard this RRH;
9 break;

10 end
11 end
12 end
13 //We get the shortlisted set of eligible RRHs (n’)
14 for RRH j ← 1 to n′ do
15 efficiency(RRHj)=vj /C(k∗);
16 end
17 Sort RRH by decreasing efficiency per 1st bottleneck;
18 for j ← 1 to n′ do
19 if (RRHj fits in the cluster) then
20 Consider it in the cluster;
21 end
22 end
23 Return RRHs Cluster with Max value;

C. Complexity of Optimal and Heuristic solutions
The k-MCKP is one of the hardest variants of the Knapsack

problem [6]. When input parameters are large (number of
RRHs, number of BBU pools and number of weights dimen-
sions), the problem becomes intractable. We used dynamic
programming with tabulation method described in [6] to get
the optimal solution. However, the order of complexity of the
running time depends on the number of dimensions. For ex-
ample, for K=2, it is of order O(K.(C[1])2.maxi≥2C[i].n.m)
where n is the number of items (that is the number of RRHs)
and m is the maximum number of knapsacks (i.e., number of
BBU pools), C[1] is the upper bound of the first constraint
(i.e., outstanding bottleneck). For our heuristic, given that K is
≤ n, the sorting process is the time dominant task and its time
complexity is O(n.m.log(n.m)).



TABLE I
SIMULATION PARAMETERS

Parameter Value
Number of simulated RRHs 12
C1: Max No. of RRHs per BBU 18
C2: Max throughput per RRH 130 Mbps
C3: Max throughput per BBU 1500 Mbps
C4: Max No. of UE in an BBU 10800
C5: Data radio bearer per UE 8
White Noise Power density (N0) -174 dBm/Hz
Bandwidth (B) 10 MHz
Physical Resource Blocks 50
Cyclic Prefix Normal
eNB Duplex Mode TDD
PDSCH Tx Scheme Tx Diversity
PDSCH Modulation QPSK
Channel Delay Profile Extended Vehicular A (EVA)
Path loss Model 92.45+20 log10(f)+20 log10(d)
Fading Model Normal distribution N (0, 1) .
Transmit Antenna Gain 8 dBi
Poisson Parameter λ = 1
PRB demand for UE U(1, 10)

IV. PERFORMANCE EVALUATION

In this section, we report the performance of our k-MCKP
based clustering approach by running Monte-Carlo simulation
using Matlab. We start by describing the environment setup.
Then, we analyze the results and discuss the effectiveness of
our proposal compared to the basic strategies in C-RAN and
the optimal solution. Two main scenarios are considered:
• No clustering versus k-MCKP RRHs Clustering.
• RRHs Clustering using our proposed heuristic and optimal

solutions.
The simulation parameters are shown in Table I. Values of

the constraints are chosen according to vendors’ dimensioning
rules in [7]. Without loss of generality; for the BBU pool,
we consider m to be “5”. Indeed, C(1) to C(5) correspond to
the five constraints values on the BBU 3900 as per Huawei
Datasheets of BBU 3900 [7]. The noise power density is
assumed as constant with fixed value N0. The rest of the
parameters are for initializing the channel parameters for sub-
frames simulation based on LTE channel model. They have
unique effects on the values of the throughput and weights that
are calculated in the first phase of our simulation.

Fig. 2 illustrates the effect of interference on the Physical
Downlink Shared Channel (PDSCH) throughput for different
values of interference expressed in term of SINR. In our
setup, for an SINR bigger than 6dB, we see that the effect
of interference on throughput is minimal and the throughput
is barely affected, as depicted in Fig. 2(a). Such effect on
throughput is expected as shown in equation (1). Consequently,
we consider the SINR variation range from −6dB to 6dB. The
channel capacity range is expected to be from 1 to 23 Mbps
according to this SINR range. When SINR increases, the effect
of interference decreases and the achieved throughput increases.

Fig. 2(b) shows the Cumulative Distribution Function (CDF)
of the normalized throughput. As anticipated, for a particular
probability, normalized throughput is higher with SINR.

For illustration purpose, we considered a small network with
12 RRHs. Monte Carlo simulation is done with big number of
experiments (10K). Performance is measured, displayed and
plotted along to median and mean values. Estimation of the

Fig. 2. Effect of Interference on PDSCH throughput for different SINR

Fig. 3. Spectral Efficiency comparison (10K Experiments)

mean is done with 95% confidence level. Fig. 3 compares the
spectral efficiency value contribution of our k-MCKP clustering
approach with two No-Clustering approaches: Upper-bound
(NC-Upper) and Lower-bound (NC-Lower). We can see that
clustering provides higher spectral efficiency thanks to the use
of joint transmission, where user data is received from multiple
RRHs simultaneously in coherent manner. Specifically, we can
observe from Fig. 3, that our k-MCKP approach enhances the
spectral efficiency compared to the NC-Upper scheme.

Fig. 4 depicts the normalized frequency of occurrence of
achieved throughput in (bit/s)/Hz for the three schemes:
k-MCKP, NC-Upper and NC-Lower. We can observe that
the single RRH values are almost distributed from 1 to 2
(bit/sec)/Hz, whereas, considering our k-MCKP clustering
approach, almost 80% of the throughput values lies between
4 and 8 (bit/s)/Hz. This gain is due to the joint transmission
effect within the RRHs cluster.

Fig. 5 further shows the gain of our proposed approach in
terms of achieved throughput compared to the optimal solution
as well as NC-Upper and NC-Lower schemes. We can see that
our heuristic provides near optimal solutions. Indeed, as shown
in Fig. 5, the gap is at most 10%. This result is anticipated
as our heuristic is a customized version of a greedy search
approach that is known to be occasionally sub-optimal but
much faster than the dynamic programming optimal solution
as will be reported in Table II. In addition, we can see that our
approach outperforms both NC-Upper and NC-Lower schemes.
Specifically, the gain is at most 2 (bit/s)/Hz and 12 (bit/s)/Hz,
compared to NC-Upper and NC-Lower, respectively. Fig. 6
shows the impact of the number of RRHs on the average
throughput for all the tested schemes. We can observe that
the k-MCKP outperforms the no-clustering schemes, especially
whenever the number of RRHs increases.

Finally, Table II reports the average computation times for



Fig. 4. Histogram of the throughput for both Cluster-RRH and Single-RRH

Fig. 5. Throughput in Mbps for optimal, heuristic and No-Clustering solutions

Fig. 6. Average throughput for all schemes

TABLE II
AVERAGE COMPUTATION TIME (IN MILLISECONDS) FOR THE OPTIMAL

AND THE PROPOSED HEURISTIC

Nb. of RRH 5 10 15 20 25 30
Optimal scheme 8.2 12.6 1390 14400 18650 24560
k-MCKP Clustering 2.87 3.32 13.2 21.63 54.23 96.2

the optimal and the proposed heuristic scheme. These mea-
surements are performed on a PC with i7-7500U core with
2.7 GHz and 16 GB RAM. The reported results show that our
proposed k-MCKP clustering approach takes a very short time
to solve the problem (up to 96 Milliseconds when the number
of RRHs is equal to 30), compared to the optimal one, which
can reach 24,5 Seconds. This latter value is expected to increase
in large-sized networks. Hence, according to Fig. 5 and Table

II, we can see that our proposed approach converges to the
optimal solution and within a short time period, which makes
it a feasible and efficient solution for C-RAN.

V. CONCLUSION

In this paper, we have addressed the throughput aware
clustering of RRHs in C-RAN. We have formulated it as k-
MCKP and proposed a simple yet efficient heuristic to solve
it. Results show that our proposal performs well compared
to the optimal solution as well as the basic strategy in C-
RAN with no-clustering scenarios with obvious savings in
terms of achieved throughput, spectral efficiency and processing
time. As future work, we think of handling the problem using
machine learning techniques.
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