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Logarithmic terms in entropy of Schwarzschild

black holes in higher loops
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Parc de Grandmont, 37200 Tours, France

Abstract

The Bekenstein-Hawking (BH) entropy is expected to be modified by certain correction

terms in the quantum loop expansion. As is well known the logarithmic terms in the

entropy of black holes appear as a one-loop addition to the classical BH entropy. In this

note we study the further modifications of the logarithmic terms in the entropy of the

Schwarzschild black holes due to higher quantum loops: up to three loops in a general

renormalizable theory of gauge fields, scalars and fermions and two loops in quantum

gravity. For a large class of field multiplets (including that of the Standard Model) that

include graviton and for a certain range in the values of the couplings these modifications

manifest themselves in cooling down the black holes at later stages of evaporation and,

respectively, in increasing the life time of the black hole. If this picture persists to even

higher loops, then the small black holes formed in the early stages of the cosmic evolution

do not evaporate completely by now as is predicted in the standard picture. Instead, their

long-lived (Planckian mass) remnants are present in abundance in today’s Universe.
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Since the works of Bekenstein and Hawking [1] it is generally accepted that the black holes,

considered to be exact solutions to General Relativity, are characterized by a certain entropy

proportional to the area of the horizon. The Schwarzschild black hole is a solution that is

described by a single dimensionful parameter, mass M or horizon radius r+ = 2GM . Classically,

it has the entropy

SBH =
A+

4G
= 4π

M2

M2
PL

, (1)

where A+ = 4πr2
+ is horizon area and we introduced the Planck mass, MPL = 1/

√
G , and the

temperature T−1
H = ∂MSBH = 8πM/M2

PL . This temperature becomes unbounded as soon as

mass M of the black hole decreases. So that the evaporation rate

dM

dt
∼ −T 4

HA+ (2)

accelerates for small black holes as dM/dt ∼ −M4
PL/M

2 and the black hole evaporates in finite

time tBH ∼M3
0/M

4
PL , where M0 is the initial mass.

At the quantum level, when matter and/or gravity, are quantized the classical formula (1)

gets modified. One way to think about this is to consider the entanglement entropy of the

quantum fields. This entropy requires a UV regulator ε to be properly defined. The entropy

contains both the area law similar to (1) [2] and a logarithmic term, which for a Schwarzschild

black hole takes a simple form [3] - [6],

Sent =
A+

48πε2
+ s0 ln

r+

ε
, (3)

where the pre-factor in front of the logarithmic term is

s0 =
1

45
(N0 +

7

2
N1/2 − 13N1 −

233

4
N3/2 + 212N2 + 91NA) (4)

for a multiplet of N0 scalars, N1/2 Dirac fermions, N1 vector fields, N2 particles of spin 2

(gravitons), N3/2 fields of spin 3/2 (gravitino) and NA rank 2 antisymmetric tensor fields. It

should be noted that the existing technique allows us to compute only the UV divergent parts

of the entropy. The dependence on r+ in the logarithmic term then comes from the two facts:

that the entropy is a dimensionless quantity and that there is only one dimensionful parameter,

r+ that characterises the geometry. So that the entanglement entropy may only be a function

of the combination (r+/ε). The other remark is that the scalar field contribution in (4) to

logarithmic term is the same for any value of non-minimal coupling ξ provided the latter is

introduced as ξφ2R .

The quantum entropy (3) can be considered as a one-loop correction to the classical en-

tropy (1). In the total entropy, SBH + Sent , the UV divergences then can be absorbed in the
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renormalization1 of the Newton constant, 1/Gren = 1/G + 1/12πε2 , and the R2 couplings in

the gravitational action, see [9]. So that one finds for the total black hole entropy expressed in

terms of the renormalized couplings

S1−loop = 4π
M2

M2
PL

+ s0 lnM/µ , (5)

where MPL is defined with respect to the renormalized Gren and we omitted the irrelevant

constants. Respectively, the temperature is modified,

T−1 = 8πM/M2
PL + s0/M . (6)

The modification becomes important when the mass of the black hole approaches the Planck

mass. Extrapolating this approximation to those masses one finds that the evaporation scenario

depends on the sign of s0 .

If s0 = −q < 0 then there exists a certain mass Mmin =
√

8πqMPL for which the entropy as

function of mass develops a minimum and the temperature becomes infinite (just as for M = 0

in the classical case). The black hole evaporates down to this minimal mass in a finite time

t ∼ (M0 −Mmin)5/(M2
0M

4
PL). Formally extended to region where M < Mmin the temperature

becomes negative there.

On the other hand, if s0 > 0 then the entropy is monotonic function of mass while the

temperature develops a maximum at M2
∗ = s0M

2
PL/8π , Tmax = MPL/

√
32πs0 . Extrapolating

the formulas below this mass the temperature decreases and the black hole cools down so that

T ∼M for small M . The evaporation rate (2) then slows down and the black hole evaporates

in infinite time. Notice that in the case when s0 � 1 the critical mass M∗ can be well above

the Planck scale. For masses M > M∗ the specific heat is negative in a similar way as it follows

from the Bekenstein-Hawking entropy [1] and, irrespectively of black holes, is in fact valid for

a wide class of gravitationally coupled systems [12]. However, for smaller masses M < M∗ the

specific heat becomes positive2.

The entropy (5) is not automatically positive function of mass that may signal of the break-

down of the one-loop approximation in the region where the entropy becomes negative. The

entropy is positive (and the approximation is reliable) for M > µ . For sufficiently small µ

(or large values of s0 ) the threshold point lies well below the critical point M∗ so that the

most of the interesting modifications discussed above happen well above the point where the

approximation breaks down.

1There are certain subtleties [10] due to the presence of the non-minimal coupling [11]. These are not,

however, essential in the present discussion.
2In the critical point M = M∗ the specific heat diverges that makes it quite attractive to interpret this point

as a second order phase transition (for a discussion of singular behavior of specific heat in the second order

transition see, for instance, [13]). This is an interesting direction to explore that we leave for a separate study.
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The other way to obtain entropy (5) is to consider the effective gravitational action,

Wgr = − 1

16πG

∫
R +WQ (7)

where the quantum part WQ is represented as an expansion in powers of the Riemann curva-

ture and its covariant derivatives. It contains both local and non-local terms. In the one-loop

approximation WQ = 1
2

ln detD , where D is the operator that governs the quadratic perturba-

tions. The entropy then arises as a response of the gravitational action to a small angle deficit

δ = 2π(1 − α) at the horizon Σ, S = (α∂α − 1)Wgr|α=1 , see [4] for more details on this for-

malism. The conical singularity manifests itself in the singular terms in the Riemann curvature

concentrated at the horizon Σ, see [14],

Rµναβ = 2π(1− α)((nµnα)(nνnβ)− (nµnβ)(nνnα)δΣ + . . . , (8)

where . . . stand for the regular terms in the curvature and naµ , a = 1, 2 is a pair of vectors

normal to Σ, (nµnν) =
∑2

a=1 n
a
µn

a
ν .

Discussing the entropy of the Schwarzschild black holes, for which the Ricci tensor identically

vanishes, we need to look only at the terms that contain the Riemann tensor. Focusing on the

quadratic terms one finds

WQ =
s0

64π2

∫
RµναβR

µναβ ln ε+ . . . . (9)

Applying formula (8) to (9) and using that
∫

Σ
Rµναβnaµn

b
νn

a
αn

b
β = 8π one arrives at (3). Notice

that ln r+ term is then restored by the dimensionality arguments. This term, in fact, comes

from the non-local (UV finite) part of the quantum action WQ .

Notice that formula (5) is valid for any, not necessarily conformal, massless field. However,

if computed in a 4d CFT the logarithmic term takes the form [8]

s0 = 64π2(C − A) (10)

and is, thus, related to the conformal charges A and C that appear in the conformal anomaly,

< T >= AE4 −CW 2 , where E4 is the Euler density and W 2 is the square of the Weyl tensor.

Notice that in certain theories s0 vanishes. This is so, for instance, for N = 4 super-Yang-Mills

theory.

In the entanglement entropy of massive fields there appear new terms, both UV divergent and

finite, that are due to mass m . However, most of them go away in the total entropy expressed

in terms of the renormalized Newton constant. Such terms appear already in Minkowski space-

time, see [10],

Sent = cs
A+

48π

∫
ε2

ds

s2
e−ms

2

, (11)
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where for a scalar c0 = 1 and for a Dirac fermion c1/2 = 2. The respective renormalization of

the Newton constant goes as

1

Gren

=
1

G
+ cs

A+

12π

∫
ε2

ds

s2
e−ms

2

. (12)

In a curved space-time there appear more terms in the entropy that depend on m . However,

the logarithmic term in the entropy remains unchanged. This is due to the fact that in the

logarithmically UV divergent terms the mass m may appear only in a combination m2R that

contributes to the renormalization of the Newton constant that is already taken into account

in (12). There, however, may appear new UV finite terms in the entropy of the form f(r+m)

which grow slower than logarithm3. Exact form of those terms is not yet known and is to be

determined. In our analysis we shall ignore these terms concentrating our attention on the

logarithmic terms only.

The story described up to this point is what we have at the level of one loop, when only

the interaction of the matter with the background gravitational field is taken into account. The

sign of the logarithmic term in (5) is essential when we discuss the evaporation of the black

hole since the logarithmic term becomes important at the later stages of the evaporation when

mass of the black hole becomes comparable to the Planck mass. For negative values of s0 the

evaporating black hole reaches, in a finite time, the stage of infinite temperature, just as in the

classical case. The further evolution is difficult to predict within the present analysis. Since

this configuration corresponds to the minimum of the entropy the system would probably tend

to absorb the energy rather than emit it. Conceptually, this situation is not an improvement

over the classical case.

On the other hand, in the case of positive s0 the black hole evaporation is much less violent.

As soon as the black hole reaches some maximal temperature its mass then further decreases and

the hole starts to quickly cool down. As a result, in this case, the black holes never evaporate

completely, at the later times they are present as the long-lived sub-Planckian remnants.

As we see it from (4) the sign of s0 is not a priori definite, it depends on the multiplet of

fields existing in Nature. Although many fields contribute positively to s0 some of them, as

vector fields, contribute negatively. s0 can be computed in the Standard Model which contains

24 fermions, 12 gauge bosons and 4 scalars (a complex doublet). Provided one graviton is added

to this multiplet eq. (4) gives us a positive value, s0,SM = 16/5. Note that without the graviton

this value would be negative, −68/45.

The goal of this note is to investigate how the one-loop approximation (5) is modified when

the interactions are turned on and the respective higher quantum loops are taken into account.

3 For instance, one anticipates an exponential term of the form e−r2+m2

which for a large range of parameters

(M,m) leads to smaller effects than the logarithmic term.
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By interactions here we mean both the interaction of the matter fields and the purely gravita-

tional interaction when particles of spin 2 are considered. In the case of gravity the coupling

constant is dimensionful and we expect there to appear corrections to (5) of the form M2
PL/M

2 .

Identifying those correction terms one expands the domain of validity of the approximation.

Our strategy is first to look at the logarithmic UV divergent terms in the effective action, then

compute the respective UV terms in the entropy using (8) and finally restore the dependence on

r+ using the dimensionality arguments, in the same line as in one loop, (3) and (5). We base our

further analysis on the results available in the literature: the instrumental works of Jack and

Osborn [20] and Jack [21] - [22] (see also a recent paper [24] where some typos in the previous

publications have been corrected) for the matter fields and the classical papers by Goroff and

Sagnotti and by van de Ven [29] for gravity. (In the case of gravity the one-loop UV terms

were computed in [28] that results in the graviton contribution in (4).) We use these earlier

results and compute the corresponding modifications in the entropy. Earlier, it was suggested

by Sen [7] that the logarithmic term is a one-loop effect and it does not get renormalized in

higher loops. This is valid for a theory with a dimensionful coupling constant such as quantum

gravity. In the interacting quantum field theories with dimensionless couplings one expects the

possible corrections to the one-loop result and, indeed, as we show below these corrections do

appear in the higher loops.

Before proceeding one technical remark is that we use here a regularisation, such as heat

kernel or Pauli-Villars, in which the UV regulator ε is dimensionful. In the literature one quite

often uses the dimensional regularisation, εd = (4 − d). The conversion rule between the two

regularisations is the following: 1
εd

= − ln ε . Earlier works on entanglement entropy in the

interacting field systems include [15] - [19].

Below we consider some examples of interacting quantum field theories.

General renormalizable scalar field theories. Consider a multi-component scalar field φi , i =

1, . . . , N0 with a general Lagrangian

L =
1

2
(∇φ)2 + V (φ) , (13)

where the potential takes the form

V (φ) =
1

4!
λijklφ

iφjφkφl +
1

3!
gijkφ

iφjφk +
1

2
mijφ

iφj +
1

2
ξijφ

iφjR + . . . . (14)

The corresponding UV divergences up to 3 loops in this theory have been calculated by Jack

and Osborn [20] in 1984. Leaving aside the terms linear in Ricci scalar R , that as we discussed

above will contribute to the renormalization of the Newton constant we are interested in terms

which are quadratic in the Riemann tensor. Those terms in the theory (13) appear in one loop,
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the corresponding contribution to the entropy is given by the scalar field part in (5) and in three

loops4, as was shown by Jack and Osborn5,

W
(3)
Q =

1

(4π)6

µ−εd

εd

1

2592

∫
λijklλijkl(RαβµνR

αβµν − 2RµνR
µν +

1

3
R2) + . . . , (15)

where we keep only terms quadratic in curvature. Notice that (15) represents the renormaliza-

tion of the Weyl-square term. Applying (8) we compute the corresponding contribution to the

entropy of the Schwarzschild black hole and find that s0 in the three loop approximation reads

s0(λ) =
N0

45
− 1

(4π)4

1

648
λijklλijkl . (16)

This value of s0 is smaller than the one for the free scalar fields.

Gauge theory coupled to fermions and scalars. A system of a non-abelian gauge field A = Aaµt
a

coupled to Dirac fermions ψ and real scalars φ carrying the representations of a simple gauge

group G is described by the Lagrangian

L =
1

4g2
Tr(FµνF

µν) +
1

2
(Dφ)TDφ+ ψ̄D/ψ +

1

2
ψ̄Yiψφ

i , (17)

where Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] and one included the Yukawa couplings Yi . The two loop

computation in this theory was performed in [21], [22], [23] (some typos have been corrected

in [24], see also [25] for further developments and [26] for a non-perturbative CFT consideration).

As in (15) the appropriate UV divergence comes from the renormalization of Weyl-square term,

W
(2)
Q =

1

(4π)4

µ−εd

εd

∫ (
g2(

2

9
CA

2 −
7

72
Cψ

2 −
1

18
Cφ

2 )N1 +
1

96
TrY 2

)
RαβµνR

αβµν + . . . , (18)

where CA
2 (Cψ

2 and Cφ
2 ) is Casimir operator for gauge fields (respectively for fermions and

scalars). In these notations the beta-function for the gauge coupling, βg = g3

(4π)2
(−11

3
CA

2 +
2
3
Cψ

2 + 1
6
Cφ

2 ) [27].

So that one finds in the two loop approximation that

s0(g, Y ) = sfree0 − 1

16π2

(
g2(

2

9
CA

2 −
7

72
Cψ

2 −
1

18
Cφ

2 )N1 +
1

96
TrY 2

)
. (19)

We see that the contributions of the gauge fields and of the Yukawa couplings tend to decrease

the value of s0 while the contributions of the matter fields (fermions and scalars) increase it.

In the QCD sector CA
2 = 3 and Cψ

2 = nF (number of flavors) and no scalars one has that
2
9
CA

2 − 7
72
Cψ

2 = 48−7nF
72

. It is negative if nF ≥ 7. In the Standard Model nF = 6 and, hence,

4In two loops the UV term W
(2)
Q contains terms at most linear in R ,

∫
gijkgijkR , that contributes to the

renormalization of the Newton constant and does not effect the logarithmic term.
5Notice that our definition for WQ differs by sign from the one used in [20].
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s0(g) < sfree0 . This observation and that the Yukawa couplings and λ-couplings in (16) make

the negative contributions to s0 appear to indicate that in the Standard Model the value of

s0 is smaller than in the free theory. To see whether this value remains positive (provided we

included the graviton’s contribution in one loop) requires a more careful analysis including the

actual values of all couplings involved6.

Quantum Gravity. The one-loop calculation of UV divergences in quantum gravity has been

first performed by ’t Hooft and Veltman and later confirmed by various authors [28]. For pure

gravity the divergent term in the effective action is

W
(1)
Q = − 1

(4π)2

µ−εd

εd

∫
(
53

45
E4 +

7

20
R2
µν +

1

120
R2) , (20)

where E4 is the Euler density. This term results in graviton’s contribution to logarithmic term

s0 presented in (5).

The two loop computation in quantum gravity was performed by Goroff and Sagnotti and

later by van de Ven [29],

W
(2)
Q = − 209

2880

µ−εd

εd

κ

(4π)4

∫
RµναβRαβσρR

σρ
µν , (21)

where κ = 32π2G . We keep here the term that contains only the Riemann tensor. This term is

gauge independent and not vanishes on-shell. In fact, in two loops there may appear more terms

than just (21), in particular the products of two Riemann tensors and either Ricci tensor or Ricci

scalar (see paper of Goroff and Sagnotti for some of such terms). The complete information on

the exact numerical factors with which those terms appear in the effective action is not available

in the literature. These terms, however, appear to depend on the gauge and are unlikely to make

any contributions to physical quantities such as the entropy.

Concentrating our attention only on the Riemann tensor we see that the one-loop and two-

loop results (20) and (21) have the same sign. So that the two-loop correction due to gravitons

to s0 comes with the same sign as the one-loop result. Using (8) one finds that on a conical

manifold

κ

∫
Mα

RµναβRαβσρR
σρ

µν = 12κπ(1− α)

∫
Σ

RabσρR
σρ
ab + · · · = 192π2(1− α)

κ

r2
+

+ . . . , (22)

where . . . stands for terms quadratic in (1 − α) and r+ = 2GM is the horizon radius. With

this relation we find

S(M) = 4π
M2

M2
PL

+ s(M) ln
M

µ
, s(M) = s0 + σ

M2
PL

M2
, σ =

209

480
(23)

6 In N = 4 SU(N) SYM the C -charge is not expected to renormalise and, hence, the shift in s0 (19) is

expected to vanish. I thank K. Skenderis for this remark.
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for the entropy of the Schwarzschild black hole in the two-loop approximation. In agreement

with the arguments of [7] there is no higher loop gravity corrections to value of s0 . However, the

two loop computation results in a new σ -term which is negligible for masses much larger than

the Planck mass but it gives an important positive contribution for M ∼ MPL . This σ -term,

combined with the standard s0 -term, can still be regarded as a “logarithmic term” keeping in

mind that the coefficient in front of the logarithm now becomes a function of the mass. In the

higher gravitational loops there will appear higher powers of M2
PL/M

2 in the function s(M).

Modified temperature and evaporation. With the entropy as function of the mass given by eq.(23)

one finds the modified temperature

MPLT
−1 =

1

x3/2
(8πx2 + s0x− σ ln

x

λ
) , x = M2/M2

PL , λ =
µ2e

M2
PL

(24)

In the complete analysis of the temperature one should study the dependence on three parame-

ters: s0 , σ and λ . Here we just mention that the presence of the σ -term with σ > 0 makes the

temperature positive for any M even if s0 is negative. Indeed, for −s0 = q > 0 one finds that

the function in the right hand side of (24) is everywhere positive if two conditions are satisfied:

1) q < 16πλ and 2) q2

32π2 ln (16πλ/q)
< σ . Thus, for sufficiently small values of q the temperature

remains positive function of M and it develops a maximum below which the evaporating black

hole cools down as soon as its mass decreases. Extrapolating (2) to the process of evaporation

with the temperature (24) one finds that at later times the mass of the evaporating black hole

falls off as t−1/13 that is a much slower rate compared to t−1/5 in the case of vanishing σ .

We conclude with some remarks.

1. Strictly speaking, the extrapolation of the 1- and 2-loop results for the entropy to values

of mass M approaching the Planck mass goes beyond the validity of the loop approximation

and, thus, is outside the domain of applicability. However, the same and even for more reasons

could (and should) be said about the applicability of the classical BH formula for the entropy.

BH formula is not valid for small black holes of mass M ∼ MPL and should be replaced with

a better one. We believe that the higher loop results, presented here and yet approximative,

show us a certain tendency in the behaviour of S(M) for small M which, likely, will become

even stronger in the higher loops when more terms in the function s(M) will be available.

The higher loop contributions will appear as the higher order terms in the series with respect

to M2
PL/M

2 . It is possible that, provided all loops are included, these terms will sum up to

something non-analytic at M = 0.

2. The other limitation of our results comes from the fact that here the quantum corrections

to the entropy are computed in a (still classical) Ricci flat geometry. In a fully consistent

consideration one would have to also analyse the modification of the geometry itself due to the
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quantum corrections. On one hand, this is a more difficult problem. On the other, in a non-

perturbative analysis of the quantum corrected Einstein equations the black hole may appear

to be replaced with a rather different (and yet longer-lived) object as the consideration of [30]

shows. These are different indications that the existence of the long-lived compact objects in

the complete theory is a likely possibility.

3. The analysis based on the use of the BH entropy plays an important role in the story of

primordial black holes (for a review see, for instance, [31]). Namely, it imposes a lower limit

on the mass of the primordial black holes since the small ones have enough time to evaporate

completely until the present days. Provided one uses the modified version of the entropy with

the logarithmic terms present this conclusion is no more in place: the black hole evaporation

slows down as soon as mass decreases below the critical mass M∗ ∼
√
s0MPL that leads to

much longer life time of the black holes. In this picture the small primordial black holes do not

evaporate completely. Instead, all of them are present in today’s Universe as some long-lived

Planckian compact objects. From a phenomenological point of view this is a particular case of

a more general conclusion of [32] about the much longer life time of black holes for a wide class

of possible modifications of the Hawking’s formula for the temperature as function of mass M .
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