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SPECTRAL SEQUENCES FOR COMMUTATIVE LIE ALGEBRAS

FRIEDRICH WAGEMANN

Abstract. We construct some spectral sequences as tools for computing com-
mutative cohomology of commutative Lie algebras in characteristic 2. In a
first part, we focus on a Hochschild-Serre-type spectral sequence, while in a
second part we obtain comparison spectral sequences which mediate between
Chevalley-Eilenberg-, commutative- and Leibniz cohomology. These methods
are illustrated by a few computations.

Introduction

The classification of finite-dimensional simple Lie algebras over a field F of char-
acteristic 2 is still widely open. It is known from the classification of Lie algebras
over a field of characteristic zero that cohomological methods may be powerful al-
lies in the classification quest. In [5], there has been recently introduced a new
cohomology theory for Lie algebras in characteristic 2, called commutative coho-
mology [5]. It is more generally defined on so-called commutative Lie algebras in
characteristic 2, i.e. vector spaces g over F with a bracket which satisfies the usual
Jacobi identity and on top of that [x, y] = [y, x] for all x, y ∈ g. The corresponding
cohomology theory is then based on the symmetric tensor powers of g with the
usual Chevalley-Eilenberg differential.

It has been illustrated in [5] that commutative cocycles and commutative coho-
mology arise in the classification of finite-dimensional simple Lie algebras in charac-
teristic 2, see [5] and references therein. The authors of [5] listed a whole catalogue
of questions concerning commutative cohomology, and we will answer some of them
in the present paper. We hope that the computational methods of the present paper
will serve in future computations of commutative cohomology.

We focus in the present paper on two cohomological tools for the computation
of commutative cohomology. In Sections 1-3, we develop a Hochschild-Serre-type
spectral sequence for commutative cohomology. The construction is very close to
the original construction by Hochschild and Serre [2]. In Section 4, we perform
some cohomology computations with the help of the spectral sequence, notably for
the two dimensional commutative Lie algebraN generated by e and f with the only
relation [f, f ] = e and for the two dimensional Lie algebra a generated by e and h
with the relations [h, e] = [e, h] = e. On the other hand, we obtain a cohomology
vanishing theorem for any commutative Lie algebra g with a 1-dimensional ideal
with values in the 1-dimensional non-trivial g-module F1, see Theorem 4.1.

The second part of the paper in Sections 5-6 concerns three comparison spectral
sequences which mediate between Chevalley-Eilenberg- and Leibniz cohomology,
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2 FRIEDRICH WAGEMANN

between Chevalley-Eilenberg- and commutative cohomology, and between commu-
tative- and Leibniz cohomology, respectively. In order to illustrate the use of these
comparison spectral sequences, we show for example in Theorem 6.4 that for any Lie
algebra g with a 1-dimensional ideal with values in the 1-dimensional non-trivial
g-module F1, the vanishing of commutative cohomology implies the vanishing of
Leibniz- and Chevalley-Eilenberg cohomology as well.

Note that there are more spectral sequences which should transpose easily to
commutative Lie algebras, as for example the Feigin-Fuchs spectral sequence for
N-graded Lie algebras.

1. Commutative Lie algebras and their cohomology

Let F be a field of characteristic 2.

Definition 1. A commutative Lie algebra over F is an F -vector space g with a
bilinear bracket [, ] : g× g → g such that for all x, y, z ∈ g

[x, y] = [y, x], and [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Remark 1. In particular, a commutative Lie algebra is a left and right Leibniz
algebra, i.e. a symmetric Leibniz algebra.

As usual, an F-vector space M together with an F-bilinear map g × M → M ,
denoted (x,m) 7→ x ·m, is called a g-module in case for all x, y ∈ g and all m ∈ M ,
we have

[x, y] ·m = x · (y ·m) + y · (x ·m).

Following [5], we next define a cochain complex for commutative Lie algebras
which will have its applications in the study and classification of Lie algebras in
characteristic 2.

Definition 2. Let g be a commutative Lie algebra and M be a g-module. We set

CSn(g,M) := HomF(S
ng,M),

where Sng denotes the usual symmetric algebra on the vector space g. The graded
vector space CS•(g,M) becomes a cochain complex with the usual Chevalley-Eilenberg
differential

dnf(x1, . . . , xn+1) :=

n+1
∑

i=1

xi · f(x1, . . . , x̂i, . . . , xn+1)

+
∑

1≤i<j≤n+1

f([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn+1)(1.1)

for any f ∈ CSn(g,M) and all elements x1, . . . , xn+1 ∈ g. The corresponding coho-
mology is called commutative cohomology of commutative Lie algebras and denoted
by HS•(g,M).

Remark 2. Observe that this cohomology is different from the usual Lie algebra
cohomology in characteristic 2, where one takes cochain spaces Cq(g,M) which
vanish in case q exceeds the dimension of g.

We next show that we have the usual Cartan relation for the symmetric coho-
mology of commutative Lie algebras.
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Proposition 1.1. Let g be a commutative Lie algebra over F. Then we have for
all x ∈ g

Lx = d ◦ ix + ix ◦ d,

where Lx is the Lie derivative, i.e. for all f ∈ CSn(g,M) and all x1, . . . , xn ∈ g,
we have

(Lxf)(x1, . . . , xn) := x · f(x1, . . . , xn) +

n
∑

i=1

f(x1, . . . , [x, xi], . . . , xn),

and ix is the usual insertion operator, i.e. for all f ∈ CSn(g,M) and all x1, . . . , xn−1 ∈
g, we have

(ixf)(x1, . . . , xn−1) := f(x, x1, . . . , xn−1).

Proof. Let f ∈ CSn(g,M) and x, x1, . . . , xn ∈ g. When computing

(ix(df))(x1, . . . , xn) = df(x, x1, . . . , xn),

there are the terms involving x in the bracket terms or in the action term of the
coboundary operator, and there are the terms where x is simply inserted as the first
argument of f . These last terms constitute exactly d(ixf)(x1, . . . , xn), because
in d(ixf), the element x is never involved in the action or in the bracket. The
remaining terms constitute (Lxf)(x1, . . . , xn). �

2. The spectral sequence associated to a subalgebra

In this section, we construct a Hochschild-Serre-type spectral sequence, closely
inspired by [2], which is designed to compute the commutative cohomology of a
commutative Lie algebra g which admits a subalgebra h.

The filtration leading to the spectral sequence is defined as follows.

FpCSn(g,M) := {c ∈ CSn(g,M) | c(x1, . . . , xn) = 0 if n−p+1 elements xi belong to h}.

Lemma 2.1. The filtration is compatible with the Chevalley-Eilenberg coboundary
operator (1.1), i.e.

dFpCSn(g,M) ⊂ FpCSn+1(g,M).

Proof. Consider Equation (1.1) with n+ 1 − p+ 1 = n− p+ 2 elements in h. We
have to show that all terms in this equation are zero in case the cochain f vanishes
on n− p + 1 elements of h. The action terms vanish when n− p+ 2 elements are
in h, because there always remain at least n− p+ 1 elements in h as arguments of
f . The situation is similar for the bracket terms, because even if both xi and xj

are in h, the bracket will also be in h as h is a subalgebra, thus also in this case the
corresponding term vanishes. �

The next step in the construction of the spectral sequence is the computation of
the term E0 which is by definition the associated graded space to the filtration, i.e.

Ep,q
0 := FpCSp+q(g,M) /Fp+1CSp+q(g,M).

Lemma 2.2. The vector space Ep,q
0 is isomorphic to

Ep,q
0

∼= Hom(Sqh,Hom(Sp(g/h),M)).
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Proof. The isomorphism is induced by the restriction map

r : CSp+q(g,M) → Hom(Sqh,Hom(Sp(g/h),M))

which restricts the first q arguments of the cochain f to elements of h. Clearly, the
kernel of r|FpCSp+q(g,M) is F

p+1CSp+q(g,M). It remains to show that r|FpCSp+q(g,M)

is surjective. This follows as in the proof of Theorem 1 (p.593) of [2]: Denote by
π : g → g/h the natural quotient map and by p : g → h a linear projection onto

the subspace h →֒ g. For a given f̃ ∈ Hom(Sqh,Hom(Sp(g/h),M)), we define a

preimage f ∈ FpCSp+q(g,M) of f̃ by

f(x1, . . . , xn) :=
∑

σ∈Sh(p,q)

f̃(p(xσ(1)), . . . , p(xσ(q)))(π(xσ(q+1)), . . . , π(xσ(p+q))),

where the sum extends over all (p, q)-shuffles. Observe that only one term of the sum
contributes to r(f), because, as the shuffles keep the order in the first q arguments,
only one term has all its elements in h and for the other terms, there is π applied to
at least one element of h which gives zero. Thus r(f) = f̃ as had to be shown. �

Now we identify the differential d1 which is by definition induced from the
Chevalley-Eilenberg coboundary operator (1.1) on E0. Observe for this that the
quotient g/h (which is in general not a Lie algebra !) becomes naturally an h-module
using the adjoint action, because h is a subalgebra.

Lemma 2.3. The differential d0 on E0 identifies to the Chevalley-Eilenberg cobound-
ary operator on CS•(h,Hom(Sp(g/h),M)), the commutative cohomology of the
commutative Lie algebra h with values in the h-module Hom(Sp(g/h),M).

Proof. The differential

d0 : FpCSp+q(g,M) /Fp+1CSp+q(g,M) → FpCSp+q+1(g,M) /Fp+1CSp+q+1(g,M)

is by definition induced by the Chevalley-Eilenberg coboundary operator (1.1). For
the identification of d0, we consider again Equation (1.1), but now with p + q +
1 − (p + 1) + 1 = q + 1 elements in h, because we want to see which terms lie in
Fp+1CSp+q+1(g,M), and with a cochain f which vanishes on p+ q− p+1 = q+1
elements of h.

The action terms do not vanish exactly if xi is extracted from the first q elements
(under the identification of E0 with Hom(Sqh,Hom(Sp(g/h),M))), otherwise q+1
elements in h stay as arguments of f and the resulting term is zero. Similarly for the
bracket terms, they do not vanish exactly in case xi and xj are both in h, because
the number of elements in h is then reduced by one. This shows the claim. �

3. The spectral sequence associated to an ideal

One can go further in the identification of the terms in the spectral sequence in
case h is not only a subalgebra, but an ideal in g. Suppose now we have a short
exact sequence of commutative Lie algebras

0 → h → g → q → 0.

We have seen in the previous section that

Ep,q
1

∼= Hom(Sp(g/h), HSq(h,M)) ∼= Hom(Spq, HSq(h,M)),

where we have exchanged arguments in order to express the cohomology with re-
spect to h.
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Lemma 3.1. The differential d1 on E1 identifies with the Chevalley-Eilenberg dif-
ferential of q with values in HSq(h,M).

Proof. Note that the action of q on HS•(h,M) is well-defined, because the Lie
algebra h acts trivially on its cohomology by the Cartan relation, see Proposition
1.1.

It is clear (noting also that h acts trivially on q) that the differential d1 is given
by the remaining terms of the Chevalley-Eilenberg coboundary operator (1.1), thus
the claim. �

Corollary 3.2. The E2-term of the spectral sequence associated to an ideal reads

Ep,q
2 = HSp(q, HSq(h,M)).

4. Applications of the spectral sequence

Example D in [1] is the 2-dimensional commutative Lie algebra N := Fe ⊕ Ff
generated by e and f with the relations [f, f ] = e. The subalgebra h = 〈e〉F is
an ideal. Example E in [1] is the 2-dimensional Lie algebra a := Fh ⊕ Fe with
the bracket determined by [h, e] = −[e, h] = e which becomes commutative over
F of characteristic 2. The subalgebra h = 〈e〉F is an ideal in a. Observe that in
these examples, the bracket on the subalgebra is zero, thus the coboundary op-
erator on the complex CS•(h,F) for cohomology with trivial coefficients is zero.
Thus for these examples and trivial coefficients, it will be not simply an easy ar-
gument of cohomology vanishing which computes the Hochschild-Serre spectral
sequence, because HSq(h,F) = Sq(h,F) is non-zero for all q ≥ 0. Note however
that all the spaces Sq(h,F) are 1-dimensional as h is 1-dimensional. We then have
HSp(N/h, HSq(h,F)) = HSp(N/h, Sq(h,F)) and the coboundary operator com-
puting the latter cohomology is still zero, because N/h = 〈f〉F is a trivial quotient
Lie algebra and the action is also zero. Thus

Ep,q
2 = Sp(N/h,F)⊗ Sq(h,F)

is 1-dimensional in this case, and the computation of the spectral sequence has to
continue with the computation of

dp,q2 : Sp(N/h,F)⊗ Sq(h,F) → Sp+2(N/h,F)⊗ Sq−1(h,F),

which is induced by the bracket [f, f ] = e. For the latter coboundary operator, it
matters only whether there is an even or an odd number of bracket terms. But

for n = p + q, the coboundary operator has n(n+1)
2 bracket terms, which gives

zero bracket terms for n = 0, one bracket term for n = 1, three bracket terms
for n = 2, six terms for n = 4 and so on. It follows that dp,q2 = 0 if and only if
(p+q)(p+q+1)

2 is even, and dp,q2 is injective otherwise. But (p+q)(p+q+1)
2 is even if and

only if 4 | (p + q)(p + q + 1). As only one of the numbers p + q or p + q + 1 can
be even, there are thus two cases: Either 4 | (p + q) or 4 | (p + q + 1). In the first

case, 2 | (p+q)(p+q−1)
2 , thus furthermore dp−2,q+1

2 = 0. In the second case dp−2,q+1
2

is injective. This permits to compute

Ep,q
3 =







Sp(N/h,F)⊗ Sq(h,F) if 4 | (p+ q)
{0} if 4 | (p+ q + 1)
{0} else

.
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Observe that in the case 4 | (p+ q + 1), it is the quotient space

(Sp(N/h,F)⊗ Sq(h,F)) / (Sp−2(N/h,F)⊗ Sq+1(h,F))

which is zero. The spectral sequences has vanishing higher differentials dr for r ≥ 3
and the E3-term thus computes the commutative cohomology of N with trivial
coefficients. We obtain

dimF(HSn(N,F)) = number of k ∈ {0, 1, . . . , n} such that 4 | k.

For the Lie algebra a and trivial coefficients, the situation is similar: HSq(h,F) =
Sq(h,F) is non-zero for all q ≥ 0. But here it is already the coboundary operator
computing the cohomology HSp(a/h, Sq(h,F)) which involves the original bracket
[h, e] = −[e, h] = e in its action terms. As all these action terms are non-zero, it
again depends only on the parity of the number of terms whether the coboundary
operator is zero or injective. We obtain as before

Ep,q
2 =







Sp(a/h,F)⊗ Sq(h,F)) if 4 | (p+ q)
{0} if 4 | (p+ q + 1)
{0} else

.

Again, all higher differentials dr for r ≥ 2 are zero and the E2-term computes the
commutative cohomology of a with trivial values. We obtain again

dimF(HSn(a,F)) = number of k ∈ {0, 1, . . . , n} such that 4 | k.

In order to have an easier example, let us consider the following. Let h = F be
the 1-dimensional abelian Lie algebra generated by x ∈ h. Let us take as a module
the 1-dimensional h-module Fλ generated by v ∈ Fλ such that the action is given
by x · v = λv for a fixed λ ∈ F. Then all symmetric or Leibniz cohomology of h
with values in (the symmetric h-bimodule) F1 is zero. Indeed, the complexes are
1-dimensional in every degree with a coboundary operator having zero bracket part,
but the action part is the identity in even degree and zero in odd degree. This gives
zero cohomology.

Therefore, we obtain the following theorem.

Theorem 4.1. Let g be commutative Lie algebra which has a 1-dimensional ideal
h. Suppose that h acts non-trivially on the module F1. Then

HS•(g,F1) = 0.

Proof. By the discussion before the statement of the theorem, we haveHS•(h,F1) =
0. Inserting this in the formula of Corollary 3.2 shows the theorem. �

Using again the formula of Corollary 3.2, one can formulate conditions on a
commutative Lie algebra g with an ideal h such that the 1-dimensional quotient
g/h acts non-trivially on HSq(h,M) ∼= F1. In this case, we have also cohomology
vanishing.

5. Comparison to Lie- and Leibniz cohomology

5.1. Leibniz algebras and bimodules. As already observed, a commutative Lie
algebra is in particular a left- and right Leibniz algebra.

A left Leibniz algebra is an algebra L such that every left bracket operator Lx :
L → L, y 7→ [x, y] is a derivation. This is equivalent to the identity

(5.1) [x, [y, z]] = [[x, y], z] + [y, [x, z]]
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for all x, y, z ∈ L. There is a similar definition of a right Leibniz algebra. Leibniz
algebras have been studied by Loday and Pirashvili, see [3], [4] and [6].

Every left Leibniz algebra has an important ideal, its Leibniz kernel, that mea-
sures how much the Leibniz algebra deviates from being a Lie algebra. Namely, let
L be a left Leibniz algebra over F. Then

Leib(L) := 〈[x, x] | x ∈ L〉F

is called the Leibniz kernel of L. The Leibniz kernel Leib(L) is an abelian ideal of
L. By definition of the Leibniz kernel, LLie := L/Leib(L) is a Lie algebra which
we call the canonical Lie algebra associated to L. In fact, the Leibniz kernel is
the smallest ideal such that the corresponding factor algebra is a Lie algebra. As
alternativity (i.e. [x, x] = 0 for all x ∈ g) and anticommutativity ([x, y] = −[y, x]
for all x, y ∈ g) are not equivalent in characteristic two, we see that commutative
Lie algebras are a class lying properly in between Leibniz algebras and Lie algebras:

Leib ⊃ CommLie ⊃ Lie.

Observe that in this notation, commutative algebras are not a special case of Lie
algebras !

Next, we will briefly discuss bimodules of left Leibniz algebras. Let L be a left
Leibniz algebra over a field F. An L-bimodule is an F-vector space M with F-
bilinear left and right L-operations L×M → M , (x,m) 7→ x ·m and M ×L → M ,
(m,x) 7→ m · x such that

(LLM) [x, y] ·m = x · (y ·m) + y · (x ·m),
(LML) x · (m · y) = (x ·m) · y +m · [x, y],
(MLL) m · [x, y] = (m · x) · y + x · (m · y).

are satisfied for every m ∈ M and all x, y ∈ L. Observe that all this makes sense
over the field F of characteristic 2 and gives a notion of bimodules for commutative
Lie algebras which goes beyond the usual notion of modules.

5.2. The three relative complexes. In [6] (see also Section 2 of [1]), Pirashvili
constructs a comparison spectral sequence between Chevalley-Eilenberg cohomol-
ogy and Leibniz cohomology of a Lie algebra. Here, we can use the same construc-
tion to have three comparison spectral sequences: There is a comparison spectral
sequence between Chevalley-Eilenberg cohomology and commutative cohomology
for a Lie algebra (passage from Λ• to S•), then a comparison spectral sequence from
commutative cohomology to Leibniz cohomology (passage from S• to ⊗•) and also
the usual Pirashvili comparison spectral sequence from Chevalley-Eilenberg coho-
mology to Leibniz cohomology (passage from Λ• to ⊗•). Observe that all cohomolo-
gies involving the Chevalley-Eilenberg complex make only sense for Lie algebras,
while the comparison spectral sequence from S• to ⊗• makes sense for the broader
class of commutative Lie algebras.

Let us first of all describe the different complexes which lead to these comparison
spectral sequences. In characteristic 2, there are two ways of expressing the idea of
alternating cochains which are not equivalent (corresponding to alternativity and
antisymmetry as above mentioned). The first one is:

(5.2) ∀x ∈ g : f(. . . , x, . . . , x, . . .) = 0.

This condition is equivalent to saying that f(x1, . . . , xn) vanishes in case the inserted
elements x1, . . . , xn of g are linearly dependent and describes cochains as maps on
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the usual exterior algebra Λng. These cochains have the property that if g is finite-
dimensional of dimension n and f has n + 1 arguments, then f is zero. We will
denote the quotient space of the vector space ⊗ng with respect to the subspace

In := 〈x1 ⊗ . . .⊗ x⊗ . . .⊗ x⊗ . . .⊗ xn−2 |x, x1, . . . , xn−2 ∈ g〉F

by Λng := ⊗ng/In and the corresponding Chevalley-Eilenberg cochain spaces by
Cn(g,M) := HomF(Λ

ng,M).
On the other hand, the condition

(5.3) ∀x1, x2 ∈ g : f(. . . , x1, x2, . . .) = f(. . . , x2, x1, . . .)

describes cochains on the usual symmetric algebra and such a cochain does not
have the vanishing property (5.2) in general. Observe that condition (5.2) implies
condition (5.3) by replacing x = x1 + x2. Here the n-th graded component Sng of
the symmetric algebra S•g is defined as the quotient of ⊗ng by the subspace

Jn := 〈x1⊗. . .⊗x⊗y⊗. . .⊗xn−2+x1⊗. . .⊗y⊗x⊗. . .⊗xn−2 |x, y, x1, . . . , xn−2 ∈ g〉F

(and not as the invariants with respect to the symmetric group). We had already
introduced CSn(g,M) = HomF(S

ng,M). The fact that condition (5.2) implies
condition (5.3) can also be understood as the inclusion Jn ⊂ In.

We thus have three inclusions of subcomplexes (in case g is a Lie algebra and
the bimodule M is symmetric)

i1 : C•(g,M) →֒ CL•(g,M),

i2 : C•(g,M) →֒ CS•(g,M)

because condition (5.2) implies condition (5.3), and also

i3 : CS•(g,M) →֒ CL•(g,M)

which works for general commutative Lie algebras g.
All three give rise to cokernel complexes

C•
rel,Λ(g,M) := Coker(i1)[−2],

C•
rel,Λ,S(g,M) := Coker(i2)[−2],

and

C•
rel,S(g,M) := Coker(i3)[−2]

respectively (up to a degree shift), and we have the corresponding long exact se-
quences (like in Proposition 2.2 in [1]) induced by the short exact sequences of com-
plexes. In each case, the relative cohomology (i.e. the cohomology of the quotient
complex C•

rel,Λ(g,M), C•
rel,S(g,M) or C•

rel,Λ,S(g,M)) measures the discrepancy be-

tween H•(g,M) and HL•(g,M), resp. HS•(g,M) and HL•(g,M), resp. H•(g,M)
and HS•(g,M) in the sense that if all relative cohomology vanishes, then the two
cohomologies coincide.
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5.3. Comparison Lie- to Leibniz cohomology. In this subsection, g is a Lie
algebra (i.e. [x, x] = 0 for all x ∈ g). In order to obtain the comparison spec-
tral sequences, we now introduce filtrations in these three complexes C•

rel,Λ(g,M),

C•
rel,S(g,M) and C•

rel,Λ,S(g,M) according to the condition of being alternating or

symmetric (in the first p arguments).
Observe that due to the degree shift, a representative of a class in Cn

rel,Λ(g,M),

Cn
rel,S(g,M) or Cn

rel,Λ,S(g,M) has n + 2 arguments. On the quotient complex

C•
rel,Λ(g,M), there is the following filtration

FpCn
rel,Λ(g,M) = {[c] ∈ Cn

rel,Λ(g,M) | c(x1, . . . , xn+2) = 0 if ∃ j ≤ p+1 : xj−1 = xj} .

Note that the condition is independent of the representative c of the class [c]. This
defines a finite decreasing filtration

F0Cn
rel,Λ(g,M) = Cn

rel,Λ(g,M) ⊃ F1Cn
rel,Λ(g,M) ⊃ · · · ⊃ Fn+1Cn

rel,Λ(g,M) = {0} ,

whose associated spectral sequence converges thus in the strong (i.e., finite) sense
to Hn

rel,Λ(g,M).

Like in Section 2 of [1] (due to Pirashvili [6] !), we have a product map

m1 : Λng⊗ g → Λn+1g, x1 ∧ . . . ∧ xn ⊗ x 7→ x1 ∧ . . . ∧ xn ∧ x.

The map m1 induces a monomorphism

m•
1 : C

•
(g,F) →֒ C•(g, g∗),

where C
•
(g,F) is the truncated cochain complex

C
0
(g,F) := 0 and C

n
(g,F) := Cn(g,F) for every integer n〉0 .

Accordingly, we have a cochain complex

CR•
Λ(g) := Coker(m•

1)[−1],

the cokernel of m•
1 (up to a degree shift). We then have a long exact sequence in

cohomology from the short exact sequence of complexes like in Proposition 2.1 in
[1].

For this filtration/spectral sequence associated to C•
rel,Λ(g,M), the arguments of

Section 2 in [1] go through word by word in order to show the following theorem
(this is Theorem A of Pirashvili [6]):

Theorem 5.1. Let g be a Lie algebra, and let M be a left g-module considered as
a symmetric Leibniz g-bimodule Ms. Then there is a spectral sequence converging
to H•

rel,Λ(g,M) with second term

Ep,q
2 = HRp

Λ(g)⊗HLq(g,Ms) .

5.4. Comparison Lie- to commutative cohomology. In this subsection, g is
still a Lie algebra (i.e. [x, x] = 0 for all x ∈ g). The next step is to alter the
arguments in Section 2 in [1] to apply to the filtration/spectral sequence associated
to C•

rel,Λ,S(g,M). We introduce a filtration as follows. In addition to

In = 〈x1 ⊗ . . .⊗ xi ⊗ . . .⊗ xj ⊗ . . .⊗ xn |xi = xj ∀x1, . . . , xn ∈ g, ∀1 ≤ i < j ≤ n〉F,

we introduce

In,p := 〈x1⊗ . . .⊗xi⊗ . . .⊗xj⊗ . . .⊗xn |xi = xj ∀x1, . . . , xn ∈ g, ∀1 ≤ i < j ≤ p〉F.

We have then
Jn ⊂ (Jn + In,p),
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and denoting

Λpg ∨ Sn−pg := ⊗ng / (In,p + Jn),

we have

FpCSn(g,M) := HomF(Λ
pg ∨ Sn−pg,M) ⊂ CSn(g,M) = HomF(S

ng,M).

The successive inclusions (In,p + Jn) ⊂ (In,p+1 + Jn) lead to a finite decreasing
filtration

F1Cn
rel,Λ,S(g,M) = Cn

rel,Λ,S(g,M) ⊃ F2Cn
rel,Λ(g,M) ⊃ · · · ⊃ FnCn

rel,Λ,S(g,M) = {0} ,

whose associated spectral sequence converges thus in the strong (i.e., finite) sense
to Hn

rel,Λ,S(g,M).

Again like in Section 2 of [1], we have a product map

m2 : Λng ∨ g → Λn+1g, x1 ∧ . . . ∧ xn ∨ x 7→ x1 ∧ . . . ∧ xn ∧ x.

Here Λng ∨ g ⊂ Sn+1g is the quotient space of ⊗n+1g by the sum In+1,n + Jn+1.
The map m2 induces a monomorphism

m•
2 : C

•
(g,F) →֒ C•

Λ,S(g, g
∗).

Thus we have a cochain complex

CR•
Λ,S(g) := Coker(m•

2)[−1],

the cokernel of m2 (up to a degree shift). We then have a long exact sequence in
cohomology from the short exact sequence of complexes like in Proposition 2.1 in
[1].

For this filtration/spectral sequence associated to C•
rel,Λ,S(g,M), the arguments

of Section 2 in [1] still go through in order to show the following theorem:

Theorem 5.2. Let g be a Lie algebra, and let M be a left g-module considered as
a symmetric Leibniz g-bimodule Ms. Then there is a spectral sequence converging
to H•

rel,Λ,S(g,M) with second term

Ep,q
2 = HRp

Λ,S(g)⊗HSq(g,M) .

5.5. Comparison commutative- to Leibniz cohomology. In this subsection,
g is now an arbitrary commutative Lie algebra (i.e. we have only [x, y] = [y, x] for
all x, y ∈ g). For the comparison between commutative cohomology and Leibniz
cohomology, we reason as follows. The version of Jn which concerns only the first
p tensor factors is

Jn,p := 〈x1 ⊗ . . .⊗ xi ⊗ xi+1 ⊗ . . .⊗ xn + x1 ⊗ . . .⊗ xi+1 ⊗ xi ⊗ . . .⊗ xn |

x1, . . . , xn ∈ g and i ≤ p− 1〉F.

The sequence of inclusions

{0} ⊂ Jn,2 ⊂ Jn,3 ⊂ . . . ⊂ Jn,n = Jn

induces a sequence of surjections

⊗ng ։ S2g⊗⊗n−2g ։ . . . ։ Sng,

where we identify Spg⊗ ⊗n−pg = ⊗ng / Jn,p, which induces in turn a sequence of
monomorphisms

FnCLn(g,M) = CSn(g,M) ⊂ Fn−1CLn(g,M) ⊂ · · · ⊂ F1CLn(g,M) = CLn(g,M),
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where by definition FpCLn(g,M) := HomF(S
pg ⊗ ⊗n−pg,M). We interpret this

sequence of monomorphisms as a finite decreasing filtration of the quotient complex

F1Cn
rel,S(g,M) = Cn

rel,S(g,M) ⊃ F2Cn
rel,S(g,M) ⊃ · · · ⊃ FnCn

rel,S(g,M) = {0},

which arises from dividing the above sequence of monomorphisms by CSn(g,M).
We need to show that this filtration is compatible with the Chevalley-Eilenberg
differential, i.e.

dFpCn
rel,S(g,M) ⊂ FpCn+1

rel,S(g,M).

Indeed, given a cochain f ∈ HomF(S
pg ⊗ ⊗n−pg,M), representing a class in

FpCn
rel,S(g,M), we have to show that df , given by Equation (1.1), is still sym-

metric in the first p entries. But this is clear from the symmetry of the bracket of g
together with the symmetry of the terms of (1.1). In conclusion, we have a spectral
sequence converging finitely to H•

rel,S(g,M).

Again like in Section 2 of [1], we have a product map

m3 : Sng⊗ g → Sn+1g, x1 ∨ . . . ∨ xn ⊗ x 7→ x1 ∨ . . . ∨ xn ∨ x,

The map m3 induces a monomorphism

m•
3 : CS

•
(g,F) →֒ CS•(g, g∗).

Accordingly, we have a cochain complex

CR•
S(g) := Coker(m•

3)[−1]

the cokernel of m•
3 (up to a degree shift). We then have a long exact sequence in

cohomology from the short exact sequence of complexes like in Proposition 2.1 in
[1].

Now the reasoning of Section 2 in [1] goes through (mutatis mutandis) in order
to show the following theorem.

Theorem 5.3. Let g be a commutative Lie algebra, and let M be a left g-module
considered as a symmetric Leibniz g-bimodule Ms. Then there is a spectral sequence
converging to H•

rel,S(g,M) with second term

Ep,q
2 = HRp

S(g)⊗HLq(g,M) .

6. Applications of the comparison spectral sequences

By general homological algebra, the spectral sequences of Theorems 5.1, 5.2, 5.3
imply (using the long exact sequences arising from the definitions of H•

rel,Λ(g,M),

H•
rel,Λ,S(g,M) and H•

rel,S(g,M) resp.) lead (exactly as in the proof of Theorem 2.6

in [1]) to the following three theorems.

Theorem 6.1. Let g be a Lie algebra, let M be a left g-module considered as a sym-
metric Leibniz g-bimodule Ms, and let n be a non-negative integer. If Hk(g,M) = 0
for every integer k with 0 ≤ k ≤ n, then HLk(g,Ms) = 0 for every integer k
with 0 ≤ k ≤ n and HLn+1(g,Ms) ∼= Hn+1(g,M) as well as HLn+2(g,Ms) ∼=
Hn+2(g,M). In particular, H•(g,M) = 0 implies that HL•(g,Ms) = 0.

This is exactly Theorem 2.6 in [1]. It has a converse stated in the Remark after
its proof in [1].
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Theorem 6.2. Let g be a Lie algebra, let M be a left g-module considered as a sym-
metric Leibniz g-bimodule Ms, and let n be a non-negative integer. If Hk(g,M) = 0
for every integer k with 0 ≤ k ≤ n, then HSk(g,Ms) = 0 for every integer k
with 0 ≤ k ≤ n and HSn+1(g,Ms) ∼= Hn+1(g,M) as well as HSn+2(g,Ms) ∼=
Hn+2(g,M). In particular, H•(g,M) = 0 implies that HS•(g,Ms) = 0.

And for the more general case of commutative Lie algebras:

Theorem 6.3. Let g be a commutative Lie algebra, let M be a left g-module con-
sidered as a symmetric Leibniz g-bimodule Ms, and let n be a non-negative integer.
If HSk(g,M) = 0 for every integer k with 0 ≤ k ≤ n, then HLk(g,Ms) = 0
for every integer k with 0 ≤ k ≤ n and HLn+1(g,Ms) ∼= HSn+1(g,M) as well
as HLn+2(g,Ms) ∼= HSn+2(g,M). In particular, HS•(g,M) = 0 implies that
HL•(g,Ms) = 0.

The analogous converse statements (like in the Remark after Theorem 2.6 in
[1]) are obviously also true. Indeed, suppose for example that HL•(g,Ms) = 0.

Then by the long exact sequence Hp−2
rel,S(g,M) = HSp(g,M) for all p ≥ 2 (while

HS0(g,M) = HS1(g,M) = 0). On the other hand, the spectral sequence in
Theorem 5.3 shows that the E2-term, and thus the relative cohomologyHp

rel,S(g,M)

is zero for all p ≥ 0. Therefore all cohomology HS•(g,M) = 0.
One may also formulate conditions relying on a vanishing of the tensor factor

HRk
Λ(g,M) for 0 ≤ k ≤ n in order to obtain from the spectral sequence (together

with the long exact sequence linking H•(g,M) and HL•(g,M)) the isomorphy
between H•(g,M) and HL•(g,M). For example, the isomorphy of H2(g,F) and
HL1(g, g) on the one hand and H3(g,F) and HL2(g, g) on the other hand imply
the vanishing of HR0

Λ(g) which then can be reported into the spectral sequence
of Theorem 5.1 to yield H0

rel,Λ(g,M) = 0 and thus (by the long exact sequence)

H2(g,M) ∼= HL2(g,M). Obviously, this can be done with a vanishing of the first
n spaces HRk

Λ(g). Similar methods can be applied to the situations in Theorems
5.2 and 5.3, too. We refrain form stating all the consequences as theorems.

As a concrete computation, we may consider similarly to Section 4a Lie algebra
g which has a 1-dimensional ideal h, and consider cohomology with values in the
1-dimensional module F1. By the above theorems, we obtain directly with Theorem
4.1:

Theorem 6.4. Let g be a Lie algebra which has a 1-dimensional ideal h. Suppose
that h acts non-trivially on the module F1. Then

HS•(g,F1) = HL•(g,F1) = H•(g,F1) = 0.
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