
HAL Id: hal-02266946
https://hal.science/hal-02266946

Submitted on 17 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A QoS-aware cache replacement policy for Vehicular
Named Data Networks

Hakima Khelifi, Senlin Luo, Boubakr Nour, Hassine Moungla

To cite this version:
Hakima Khelifi, Senlin Luo, Boubakr Nour, Hassine Moungla. A QoS-aware cache replacement policy
for Vehicular Named Data Networks. GLOBECOM 2019: IEEE Global Communications Conference,
Dec 2019, Waikoloa, HI, United States. pp.1-6, �10.1109/GLOBECOM38437.2019.9013461�. �hal-
02266946�

https://hal.science/hal-02266946
https://hal.archives-ouvertes.fr

A QoS-aware Cache Replacement Policy
for Vehicular Named Data Networks

Hakima Khelifi∗, Senlin Luo∗, Boubakr Nour‡, and Hassine Moungla§ ¶
∗School of Information and Electronics, Beijing Institute of Technology, Beijing, China

‡School of Computer Science, Beijing Institute of Technology, Beijing, China
§LIPADE, Paris Descartes University and Sorbonne Paris Cite University, France

¶CNRS, UMR 5157, Mines Telecom Institute, Telecom SudParis, CEA Nano-Innov Saclay, France
Emails: {hakima, luosenlin, n.boubakr}@bit.edu.cn, hassine.moungla@parisdescartes.fr

Abstract—Vehicular Named Data Network (VNDN) uses
Named Data Network (NDN) as a communication enabler. The
communication is achieved using the content name instead of the
host address. NDN integrates content caching at the network level
rather than the application level. Hence, the network becomes
aware of content caching and delivering. The content caching
is a fundamental element in VNDN communication. However,
due to the limitations of the cache store, only the most used
content should be cached while the less used should be evicted.
Traditional caching replacement policies may not work efficiently
in VNDN due to the large and diverse exchanged content. To solve
this issue, we propose an efficient cache replacement policy that
takes the quality of service into consideration. The idea consists
of classifying the traffic into different classes, and split the cache
store into a set of sub-cache stores according to the defined traffic
classes with different storage capacities according to the network
requirements. Each content is assigned a popularity-density value
that balances the content popularity with its size. Content with
the highest popularity-density value is cached while the lowest is
evicted. Simulation results prove the efficiency of the proposed
solution to enhance the overall network quality of service.

I. INTRODUCTION

Vehicular Named Data Network (VNDN) [1] aims to in-
tegrate the next-generation Internet architecture (i.e. Named
Data Networking (NDN) [2]) on top of vehicular network.
The use of NDN on top of vehicles networks has several
advantages such as: simplifying the communication by using
content names instead of host addresses [3], improving the
security and privacy by using content based security [4], [5],
enhancing the mobility support, and improving the content
distribution and availability by using in-network caching.

In-network caching [6], in particular, plays an important
role in content dissemination and delivery in VNDN. Any
node may cache and deliver the content regardless of the
original producer availability. Hence, the network becomes
aware on content delivery; and therefore, improve the content
availability, reduce the overall network load, eliminate single
point of failure, and decrease the network delay. The caching
in NDN may involve two different aspects: cache placement
strategy [7], and cache replacement policy [8]. The former
deals with where to cache the content, the latter deals what
which content to cache and which content to remove in case
the cache store is full.

In this context, several solutions have been proposed, most
of them have been coupled with the forwarding plane. How-
ever, vehicular communication is characterized by the huge,
dynamic, and diverse contents and traffic. Some of contents
are popular and used multiple time in a long period of time
(e.g., video streaming), others are less popular and may be
used in a specific time (e.g., news), while others have a small
period of usage and may be used only once (e.g., warning
messages). The content caching must deal with this different
type of traffic and improve the network/user quality of service
(QoS).

These issues are the main motivation behind this work.
Indeed, we propose a QoS-aware Cache Replacement (QCR)
policy for vehicular networks. The proposed solution aims
to cache not only the popular content, but the content with
higher popularity-density from the cache store perspective
(both content popularity and size are taken into consideration).
Hence, improving the QoS parameters such as the network
delay, cache utilization, and caching operations. Toward this,
we classify the traffic into different classes, and virtually
split the cache store into a set of sub-cache stores according
to traffic classification. We formulate the cache placement
problem as a Knapsack problem, where each sub-cache store
has a predefined capacity according to the used scenario and
caches only content related to its class.

QCR can scale without affecting the network performance.
Indeed, by splitting the cache store and assigning to each
content a popularity-density value, we can efficiency distribute
and cache data over the network. For example, the near cache
store to a group of consumers caches the most popular content
according to its defined classes. Other cache stores that are
far away may cache content with less popularity and so one.
Hence, we can ensure that not only the popular content is
cached near to consumers but also less-popular content is
cached at the core network with trade-off between popularity,
content size, and network delay. Another scenario can cache
the critical information in a sub-cache store with large caching
capacity at the edge node, and other traffic at the second level
of cache stores. Thus, the dissemination of critical information
can be guaranteed much faster than downloading a video or
map, which may help to prevent attacks in the road. On
the other hand, QCR enhances the impact of mobility by

caching only the important contents regardless of producer
or consumer mobility, the splitting feature also improves the
cache diversity and distribution by minimizing the impact of
re-issuing lost requests during the mobility.

II. BACKGROUND & RELATED WORK

This section provides background about NDN forwarding
plane and review of existing caching solutions emphasizing
on quality of service support.

A. NDN Forwarding Plane

Before diving into NDN caching, it is very important to
understand the forwarding plane in NDN and how the caching
is involved. The NDN forwarding plane is divided into two
phases, as illustrated in Figure 1: (i) Interest Forwarding:
consists of forwarding the requests in form of Interest packet
upstream. When an intermediate node receives an Interest
packet, it checks the Cache Store (CS) if the data is locally
cached, if so, it forwards the data directly to the same received
interface and drops the Interest packet. Otherwise, it checks
the Pending Interest Table (PIT) if a similar request has been
already forwarded, if so, it appends the received interface ID
to the PIT entry and drops the Interest packet. Otherwise, it
checks the Forwarding Information Base (FIB) table to find
the forwarding interface; and (ii) Data Forwarding: consists
of forwarding the content in form of Data packet downstream.
After receiving a Data packet, the node checks its PIT if the
request has been forwarded via the node or not, if not the
packet will be dropped immediately, otherwise it is forwarded
to all interfaces listed in PIT table, at the same time, the
caching plane decides to cache the content in CS or not.

Interest Content
exists in CS ?

No

Yes
Data

Name
exists in PIT ?

Yes

 Add incoming

interface

No
Prefix

exists in FIB ?

Yes
Forward

No
 Drop or

NACK

Data
Yes

Name
Exists in PIT ?

No

 Discard
Data

Forward

Free memoryYes

No

Content
Cache

Content
Replacement

 Add entry PIT

 Downstream Upstream

Fig. 1: NDN Forwarding Plane.

B. NDN In-Network Caching

In-network caching is a fundamental element in NDN that
aims to cache content at different places in the network without
involving any application layer decisions. Thus, the content
is available at any-time from any-place, which may reduce
the network load and latency. We distinguish two caching
aspects [9]:

Cache Placement Strategy: This strategy tends to decide
where to cache the content, or if the content should be cached
at the node level or not. The most cache placement strategies in

NDN are: Leave Copy Everywhere (LCE), Leave Copy Down
(LCD), Edge Caching (EC), and Consumer Cache (CC) [10].
LCE places the content at every node in the communication
path between the consumer and the producer, hence increases
the content availability, but causes a lot of redundancy. LCD
stores the content in one node after the producer. EC places the
content in consumers’ edge node, and CC caches the content
in the node that is directly connected to the consumers.

Cache Replacement Policy: This policy decides which
content should be evicted from the cache store to cache the
new content if the CS is full. Most of the existing policies
in NDN are: Least Recently Used (LRU), Least Frequently
Used (LFU), First In First Out (FIFO), Random Replacement
(RR), and Time-to-Live (TTL) [6]. LRU evicts the content
that is rarely requested and prefers the most frequently one to
cache. LFU evicts the content with the lowest usage frequency
and selects the content with the highest usage frequency to
cache. FIFO replaces the oldest content with the newly arrived
one. RR removes a random content from the cache store and
replaces it with the arrived one. Finally, TTL assigns to each
cached content a timestamp, if a content reaches a predefined
threshold, it will be removed from the CS.

C. Content Caching in NDN-based VANET

Existing caching placement schemes in VNDN can be
grouped into: (a) Probabilistic-based Caching [11], [12],
which is based on probabilistic estimation in order to permit
nodes to decide whether to cache content or not in order to
improve the content diversity in the network. However, this
random cache decisions may affect the content popularity
by caching the non-popular content; (b) Popularity-based
Caching [13] that consists to cache the most frequently used
and popular content instead of non-popular content, hence
reduce the content access delay. However, deciding which
content is popular is an open question especially in highly
dynamic network; and (c) Cooperative Caching [14] that
aims to enhance and improve content sharing, where the
caching decision is applied under more than one administrative
authority.

D. Quality of Service Support

Vehicular communication includes various types of content
and traffic on top of dynamic and heterogeneity links. This
communication requires a careful quality of service support
to improve data delivery, optimize the resource utilization,
and enhance network performance. Hence, some researchers
are trying to enhance QoS support in VNDN. For instance,
work in [15] proposes a data lifetime enhancement scheme to
improve QoS, by adding a tag in data header, and classifying
content into different types with different lifetime. This tag-
ging and classification decrease the load on producer level and
reduce memory construction cost. Works in [16], [17], and [18]
design forwarding strategies that use in-network caching to
improve the QoS and reduce the energy consumption. The
idea consists of monitoring and estimating the bandwidth and
other metrics and thus select the forwarding path to satisfy all

demands. Moreover, work in [19] proposes a differentiated
QoS mechanism on top of an existing congestion control
shaping solution as a format of QoS. Four levels of priority
have been defined, where each packet is assigned to one level.
Even if these schemes account the QoS in the forwarding
process, they didn’t take in consideration the diversity and
heterogeneity of VANET traffic, that plays an important role
in the selection of optimal and efficient forwarding and caching
scheme.

III. NETWORK MODEL & PROBLEM FORMULATION

A. Network Model

We model a multi-hop vehicular network by a graph G =
(N, L), where N = {C ∪ P ∪ I} represents a set of nodes, and
L a set of links between nodes. Each vehicle in the network
can be a consumer C, a producer P, or intermediate nodes I
that can cache content.

For a given cache store x, we denote Wx the maximum
caching capacity. We split virtually the cache store x into κ
sub-cache stores xi : x = {x1, x2, . . . , xκ}. For each sub-cache
store xi , we denote ϕi the list of cached data, ki = |ϕi | the
number of cached data, and wi the maximum caching capacity.

For each cached data c, we denote sc the content size, qc the
total number of issued demands, τc the required time before
expiring the content from the cache, pc the content popularity,
and σc the content popularity-density value. Table I summaries
some of the used notation across the paper.

TABLE I: Summary of notations

Notation Meaning

N List of nodes
L Set of links
C List of consumer nodes
I List of intermediate nodes
P List of producer nodes
Wx Maximum caching capacity
κ Number of sub-cache stores
xi ith sub-cache store
wi Maximum caching capacity of xi
ϕi List of cached data in xi
ki Number of cached content
sc Size of content c
qc Total number of issued demands
pc Popularity value
σc Popularity-density value
τc Time to cache
vc Profit of content c
αc Cache decision parameter

B. Problem Formulation

Due to the diversity of exchanged traffic in a vehicular
network, deciding where to cache, which content to cache,
which one to evict to keep room for other important content
is a challenging task, especially when taking the cache store
capacity and quality of service factors into consideration. Here,
we formulate the caching problem as a Knapsack problem. The
knapsack problem is a combinatorial optimization problem
that aims to maximize (or minimize) some quantity while
satisfying some constraints. For example, maximize the profit
without passing the knapsack capacity, which is an NP-hard
problem.

The objective function (1) aims to maximize the caching
profit (ν) for all contents to cache. αc is a binary parameter
to indicate if a content should be cached or not.

max
k∑

c=1
αcνc (1)

Subject to:

ki∑
c=1

αcsc ≤ wi, ∀i ∈ {1, κ} (2)

κ∑
i=1

wi ≤ Wx (3)

αc ∈ {0, 1} (4)

Constraint (2) enforces that the size of all cached contents
should not exceed the maximum caching capacity xi for the
sub-cache store ci , while constraint (3) indicates the total of
caching capacities for all sub-cache stores must be less or
equal to the whole cache store caching capacity Wx . Finally,
(4) is a non-negativity constraint that indicates the content
selection:

αc =

{
1, if the content c is selected.
0, otherwise.

(5)

IV. QCR: A QOS-AWARE CACHE REPLACEMENT POLICY

In the following section, we introduce QCR, a QoS-aware
Cache Replacement policy for vehicular networks. QCR aims
to cache not only the popular content closer to consumers,
but also the most important and long-term useful data that
may not be expired in a short time. Consequently, improving
the content retrieval, enhancing the overall user and network
quality of service, and reducing the caching replacement
operations. QCR, as illustrated in Figure 2, is based on two
main steps: content classification and cache splitting, and
content caching and replacing based on content popularity-
density value.

A. Traffic Prioritization Scheme

Vehicular traffic can be categorized broadly into two types:
traffic that is used only once or for a very short period
of time (e.g., warning messages), and traffic that can be
used multiple times (e.g., video streaming). Thus, the cache
placement schemes and replacement policies must take content
type into consideration.

Toward this, we propose a traffic prioritization scheme that
aims to classify the traffic based on its type (cf. Figure 2). The
type of content is a parameter that must be specified by the
original content producer and added in the naming scheme [7]:

/Application-Type/Service-Type/Data-Name/Location/Time/Seq
Based on VANET scenarios and types of traffic, we define
three Application-Type classes:
• CLASS A: This class covers safety applications such as

emergency warnings messages, lane changing informa-
tion, and collision avoidance information, etc. The content

Fig. 2: QCR Working Mechanism.

in this type has a small time for freshness, and can be
expired a short period of time.

• CLASS B: This class represents road traffic information
that provides updated traffic information for drivers, road
congestion information, and traffic map. The content of
this class has a long lifetime before expired compared to
the previous class.

• CLASS C: This class includes comfort applications traf-
fics such as information about weather, gas stations,
restaurants location, commercial advertisements, and in-
teractive communications like Internet-on-the-move. The
content of this class is characterized by larger lifetime
before expired.

The content producer can specify the type of the content
that will be included in the data packet under the field C-
tag. This tag helps other nodes in the caching placement and
replacement. Moreover, and as shown in Figure 2, we extend
both data packet and CS table by adding P-tag to indicate how
much the content is popular.

Cache Store Splitting: Based on the previous traffic
classes, we divide the cache store into three sub-cache stores
(κ = 3). However, the network administrator may define more
classes according to their use case. Each data will be cached
according to its C-tag to the appropriate sub-cache store. It
is important to highlight that the caching capacity of each
class may be different and defined according to the network
conditions and memory resources. Here, we provide more
space to CLASS C (comfort applications), then CLASS B (road
traffic information), because its data has a long lifetime, and
highly relevant for many vehicles. Moreover, CLASS A (safety
applications) has a small caching space because it has a small
size and a short time to expire. In addition, we add the P-tag

in CS to indicate the content popularity-density value.
Data Packet Tagging: we extend the data packet with

additional two fields: where the first one is C-tag contains
the type of content class (i.e. A, B, or C), P-tag: represents
the popularity-density of content which is the pillar factor to
decide the caching replacement.

B. Content Replacement Policy

The proposed schemes are based on content popularity-
density value, and have two phases:

PHASE 1 - Calculate Content Popularity-Density Value:
In the first phase, the content provider (or replica node)
calculates the content popularity-density value, which is also
included in the cache store and updated periodically based on
the total number of issued demands for the content qc and the
remaining time to cache τc . The content popularity-density
value is also sent in the data packet to inform other replica
nodes about it. The content popularity is calculated as shown in
Eq. 6, while the content popularity-density value is calculated
as shown in Eq. 7 depending on content popularity and size.
We calculate the content popularity-density in order to take the
maximum number of contents that have high popularity value,
whereby maximizing the cache profit. Some of the contents
may have a big size and high popularity value, this may take
all the space, which ends up with one content in the cache
store. However, by taking both of size and the popularity of
the content, the store may contain a lot of popular content.

pc =
qc ∗ τc∑k
i=1 qi ∗ τi

(6)

σc =
pc
sc

(7)

 20

 40

 60

 80

 100

 120

 140

200 400 600 800 1000

N
o.

 o
f

C
ac

he
d

D
at

a

No. of Received Data

Class A
Class B
Class C

(a)

 0

 50

 100

 150

 200

 250

200 400 600 800 1000

N
o.

 o
f

Ig
no

re
d

D
at

a

No. of Received Data

Class A
Class B
Class C

(b)

 0

 5

 10

 15

 20

 25

 30

 35

10 20 30 40 50 60 70 80 90 100

N
o.

 o
f

R
ep

la
ce

m
en

t O
pe

ra
tio

n

Popularity-Density Value

Class A
Class B
Class C

(c)

Fig. 3: QCR Measurement Results.

qc is the total number of issued demands for content c, τc the
time to cache. k is the number of the contents in the cache
store, and sc is the size of the content c.

STEP 2 - Caching Replacement Policy: In the second
phase, the node may cache and/or replace the content based
on its popularity-density value and the available caching
capacity. The content with the highest popularity-density value
is preferable to be cached to the appropriate sub-cache store.
When a node receives a data packet, it checks first the C-
tag. If there is a room in the associated sub-cache store,
the content will be cached directly; otherwise, the algorithm
extracts the received content’s popularity-density value P-tag,
then removes content with the lowest popularity-density value
from the sub-cache store, and caches the received data without
exceeding the allowed caching capacity. In case the received
content’s popularity-density value is the lowest value in the
sub-cache store, the algorithm ignores the caching operation.
Algorithm 1 represents the replacement policy.

V. IMPLEMENTATION & EVALUATION

We have implemented QCR policy using Python program-
ming language and evaluated it against existing NDN re-
placement policies including FIFO, LRU, and LFU in terms
of the number of the cached data in the cache store, the
number of ignored data due to the storage capacity, and
the number of replacement operations. The overall scenario

Algorithm 1: QCR Replacement Policy.
Input: d: received content;

1 σd := extract the content P-tag;
2 i := extract the content C-tag;
3 for (c ∈ ϕi) do
4 if (σc 6 σd) and (sum(wi, sd)) 6 wi) then
5 Replace c with d;
6 end
7 end

consists of defining three traffic classes (i.e. CLASS A, CLASS
B, and CLASS C), as presented in subsection IV/A, hence
splitting the cache store into three sub-cache stores. CLASS
C has the largest storage capacity, followed by CLASS B,
while CLASS A has the smallest storage. The distribution of
demands follows the Zipf distribution. The evaluation has been
performed on an Intel Core 5 Duo CPU at 2.4 GHz and DDR3
SDRAM of 8 GB.

Figure 3 shows QCR measurement results. In particular,
Figure 3a represents the number of cached data in each class
per number of received data. We can observe that the number
of received data increases proportionally with the number of
received data. Indeed, CLASS C has the largest number of
cached data, this can be argued as its associated sub-cache
store has the largest storage. Similarly, CLASS A has a small
number of cached data because of the nature of content under
such a class. Figure 3b shows the number of ignored data from
the cache stores. CLASS A has a largest number of ignored
data as most of traffic has sort lifetime and being cached
is waste of storage. However, CLASS B and C respectively
have less ignored data. This is argued by the fact that these
data has a smaller popularity-density value compared to the
cached one. Hence, caching them is pointless and may affect
the overall quality of service. Finally, Figure 3c shows the
number of cache replacement operation in the context of
popularity-density value. As long as the popularity-density
value increases the content must be cached. Hence, we notice
that the behavior is growing exponentially.

Figure 4 shows comparison results against FIFO, LRU, and
LFU. Figure 4a shows the number of cached data in each
caching replacement policy, we can notice that FIFO, LRU,
and LFU cache most of received contents (regardless of its
popularity or class). However, QCR caches only the popular
and most useful contents according to its class. The highest
popular contents are cached where the non-popular and less
frequently used contents are ignored. This result is proved in
Figure 4b. When the popularity-density value increases, QCR
is growing exponentially. However, FIFP, LRU, and LFU are

 50

 100

 150

 200

 250

 300

 350

QCR FIFO LRU LFU

N
o.

 o
f

C
ac

he
d

D
at

a

Cache Replacement Policies

Class A
Class B
Class C

(a)

 0

 20

 40

 60

 80

 100

10 20 30 40 50 60 70 80 90 100

N
o.

 o
f

R
ep

la
ce

m
en

t O
pe

ra
tio

n

Popularity-Density Value

QCR
FIFO

LRU
LFU

(b)

Fig. 4: QCR Comparison Results.

near to constant because they cache data without focusing on
its popularity.

Finally, it is important to highlight that the caching decision
is done during the content forwarding in an off-line manner.
Which means that the content is forwarded downstream based
on the PIT information (see Figure 1) and the caching oper-
ation is taking place. Hence, the time impact and complexity
(depending on the number of cached contents) is not a critical
issue.

VI. CONCLUSION

Traditional cache replacement policies may not work effi-
ciently in VNDN networks due to the diversity of exchanged
contents and traffic. Therefore, we proposed a QoS-aware
Cache Replacement (QCR) policy. QCR assigns to each con-
tent a class, and splits the cache store into a set of sub-cache
stores. Each sub-cache store handles one class of content. We
modeled the problem as a Knapsack problem, and proposed
a content popularity-diversity replacement policy that aims
to select the content with the highest popularity-density to
be cached and the lowest density to be evicted. A trade-
off between content popularity and its size is taken into
consideration to improve network quality of service. Extensive
simulations prove the efficiency and scalability of the proposed
solution.

ACKNOWLEDGEMENTS

The work of S. Luo was supported by the National 242
Project under Grant No. 2017A149. Dr. Luo is corresponding
author.

REFERENCES

[1] H. Khelifi et al., “Named Data Networking in Vehicular Ad hoc Net-
works: State-of-the-Art and Challenges,” IEEE Communications Surveys
and Tutorials, 2019.

[2] B. Nour et al., “A Survey of Internet of Things Communication using
ICN: A Use Case Perspective,” Computer Communications, 2019.

[3] H. Khelifi et al., “A Name-to-Hash Encoding Scheme for Vehicular
Named Data Networks,” in International Wireless Communications &
Mobile Computing Conference (IWCMC), 2019.

[4] H. Khelifi et al., “Security and Privacy Issues in Vehicular Named Data
Networks: An Overview,” Mobile Information Systems, 2018.

[5] B. Nour et al., “Security and Privacy Challenges in Information Centric
Wireless IoT Networks,” IEEE Security & Privacy, 2019.

[6] I. U. Din et al., “Caching in Information-Centric Networking: Strategies,
Challenges, and Future Research Directions,” IEEE Communications
Surveys & Tutorials, 2018.

[7] H. Khelifi et al., “An Optimized Proactive Caching Scheme based on
Mobility Prediction for Vehicular Networks,” in IEEE GLOBECOM,
2018.

[8] S. Ostrovskaya et al., “Towards Multi-metric Cache Replacement Poli-
cies in Vehicular Named Data Networks,” in IEEE PIMRC, 2018.

[9] A. Seetharam, “On caching and routing in information-centric net-
works,” IEEE Communications Magazine, 2018.

[10] A. Ioannou et al., “A survey of caching policies and forwarding
mechanisms in information-centric networking,” IEEE Communications
Surveys & Tutorials, 2016.

[11] G. Deng et al., “Distributed Probabilistic Caching strategy in VANETs
through Named Data Networking,” in IEEE INFOCOM WKSHPS, 2016.

[12] G. Mauri et al., “Optimal Content Prefetching in NDN Vehicle-to-
Infrastructure Scenario,” IEEE Transactions on Vehicular Technology,
2017.

[13] W. Zhao et al., “An Efficient Cache Strategy in Information Centric
Networking Vehicle-to-Vehicle Scenario,” IEEE Access, 2017.

[14] L. C. Liu et al., “CCN-based cooperative caching in VANET,” in IEEE
ICCVE, 2015.

[15] T.-Y. Wu et al., “Data lifetime enhancement for improving QoS in
NDN,” Procedia Computer Science, 2014.

[16] Q. Huang et al., “Ant-colony optimization based QoS routing in named
data networking,” Journal of Computational Methods in Sciences and
Engineering, 2016.

[17] C. Li et al., “Energy-efficient quality of service aware forwarding
scheme for Content-Centric Networking,” Journal of Network and
Computer Applications, 2015.

[18] A. Kerrouche et al., “QoS-FS: A new forwarding strategy with QoS for
routing in Named Data Networking,” in IEEE ICC, 2016.

[19] A. Alshahrani et al., “A QoS Solution for NDN in the Presence of
Congestion Control Mechanism,” International Journal of Advanced
Computer Science and Applications, 2016.

