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Practical consensus tracking of multi-agent systems with linear
controllers

Fayrouz Isfoula1, Emmanuel Bernuau2, Emmanuel Moulay3, Patrick Coirault1, Qishuai Liu4, and Qing Hui4

Abstract— The second-order practical consensus tracking of
multi-agent systems with a fixed topology and a varying leader’s
velocity is obtained by using a linear control strategy and
the input-to-state stability framework. Then, a new control
protocol is proposed where the leader, called a perceptive
leader, receives information from its followers. Finally, a study is
provided in simulation and on a fleet of mobile robots showing
the effectiveness of non perceptive and perceptive strategies
in terms of speed of convergence, precision and connectivity
maintenance.

I. INTRODUCTION

Since a decade, the consensus problem of multi-agent sys-
tems (MAS) has attracted great attention in many fields, such
as biology, physics, robotics, and control engineering [1]–[3].
This is mainly due to its wide applications in distributed
formation control. Consensus means the agreement of a
group of agents on their common states via local interaction.
A variety of topics related to consensus problems have been
studied such as consensus with switching topology [4]–[9]
or finite-time consensus [10]–[12]. Existing consensus algo-
rithms can be categorized into two classes: consensus without
a leader called leaderless consensus or simply consensus and
consensus with a leader called consensus tracking where
the leader is a special agent whose motion is independent
from other agents [1]–[3]. The leader is followed by all of
other agents which communicate with each other and receive
instructions from the leader. The agents following the leader
are called the followers.

Since the seminal work of Jadbabaie [13], several control
protocols have been proposed to solve the consensus tracking
problem [14]–[22] or the finite time consensus tracking
problem [23]–[28] with a given graph topology and constant
or varying leader’s velocity. In all the previous mention work,
the proposed controllers are discontinuous or nonlinear.
In our article, it is supposed that we have an undirected
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connected graph between the followers, a varying leader’s
velocity and continuous controllers.

All studies done until now consider a non-perceptive
leader being focused only on its motion and whose trajectory
is independent of the states of the followers [16], [17], [20],
[23], [26], [29], [30]. Firstly, we use in this article a non-
perceptive leader which can be real or virtual and which is
supposed to track a given preassigned trajectory. Its control
input is bounded to obtain the practical consensus tracking
of a second-order MAS controlled by a linear controller
adapted from the classical linear controller proposed in [1]
for the consensus. The proof is based on input-to-state
stability notions. The practical consensus means that the
states’ convergence is not exact but in a ball and it has been
studied for instance in [31], [32]. Then, in the second part,
we use a perceptive leader that tracks a given preassigned
trajectory and receives information from its followers and
changes its motion according to the evolution of the fleet.
Hence, the control input of the perceptive leader contains
two components: the first one is its own control objective
ensuring the tracking of a given preassigned trajectory and
the second one is composed by the pinned nodes’ states. A
compromise between the control objective of the perceptive
leader and the connectivity maintenance with the follow-
ers must be found. A study of the speed of convergence,
precision and connectivity maintenance of both strategies
with a non perceptive and a perceptive leader is provided
in simulation and on a fleet of mobile robots.

The article is organized as follows. After some notations
and definitions provided in Section II, the problem statement
is given in Section III. Then, the main results of the paper are
developed in Section IV for a non perceptive and a perceptive
leader. Simulation results are presented in Section V. An
experimental platform of a fleet of four mobile robots is
used in Section VI to show the effectiveness of the proposed
methods. Finally, a conclusion is reached in Section VII.

II. NOTATIONS AND DEFINITIONS

Let us introduce the following notations:

• R+ = {x ∈ R : x ≥ 0}, where R is the set of real
numbers.

• We denote 1n = (1, . . . , 1)T ∈ Rn.
• In denotes the unit matrix of size n.
• |·| denotes the absolute value in R and ‖·‖ the Euclidean

norm on Rn.



• If A is an m×n matrix and B a p× q matrix, then the
Kronecker product A⊗B is the mp×nq block matrix

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

.
• If P is an n× n real symmetric matrix then:

– λmin(P ) is the smallest eigenvalue of the matrix
P ;

– λmax(P ) is the greatest eigenvalue of the matrix
P .

• A continuous function α : R+ → R+ belongs to
the class K if α(0) = 0 and the function is strictly
increasing. A function α : R+ → R+ belongs to the
class K∞ if α ∈ K and it is unbounded.

• A continuous function β : R+ × R+ → R+ belongs to
the class KL if β(·, t) ∈ K∞ for each fixed t ∈ R+

and if for each fixed s ∈ R+ the function t 7→ β(s, t)
is decreasing to 0.

A. Graph theory

Let us recall some basic definitions about graph theory
given for instance in [1, Appendix B].

Definition 1: An undirected graph G = (V, E) consists
of a set of vertices V = {1, . . . , N} and a set of edges
E ⊂ V × V such that (i, j) ∈ E iff (j, i) ∈ E . An edge
(i, j) ∈ E in an undirected graph G represents that vertices
i and j obtain information from each other.

Remark 2: An undirected path is a sequence of edges in
an undirected graph of the form (i1, i2), (i2, i3), . . .

Remark 3: An undirected graph is connected if there is
an undirected path between every pair of distinct vertices.

Definition 4: The adjacency matrix of an undirected graph
(V, E) is defined byA = [aij ] ∈ RN×N where aij = aji = 1
if (i, j) ∈ E and aij = 0 otherwise.

Definition 5: The Laplacian matrix of an undirected graph
associated with adjacency matrix A is given as L = [`ij ] ∈

RN×N where `ii =
N∑

j=1,j 6=i
aij and `ij = −aij if i 6= j.

It is clear that the matrices L and A are symmetric.
Lemma 6 ([33]): All of the nonzero eigenvalues of the

Laplacian matrix L are real and positive for an undirected
graph. Zero is a simple eigenvalue of L and the associated
eigenvector is 1N if and only if the undirected graph is
connected.

B. Input-to-state stability

Consider the following system

ẋ = f(x, u) (1)

where f : Rn×Rm → Rn is continuously differentiable and
satisfies f(0, 0) = 0. Let us denote L∞loc the set of locally
essentially bounded functions u : R→ Rm.

Let us recall the definition of input-to-state stability (ISS)
and the definition of ISS Lyapunov function.

Definition 7 ([34]): The system (1) is (globally) input-to-
state stable (ISS) if there exist a KL function β : R+×R+ →
R and a class K function γ such that, for each input u ∈ L∞loc
and each x0 ∈ Rn, the following inequality holds

|x(t)| ≤ β(‖x0‖, t) + γ(ess sup
s∈[0,t]

‖u(s)‖), ∀t ≥ 0. (2)

III. PROBLEM STATEMENT

Consider a MAS of N agents labeled 1, 2, . . . , N that
communicate with each other. We consider a graph G where
the vertices are the agents and two agents are linked by
an edge when the communication between them is possible.
Through the whole of the paper, the communication topology
between the agents satisfies the following assumption.

Assumption 8: The graph G is undirected and connected.
The dynamics of each agent is given by{

q̇i = pi i = 1, . . . , N
ṗi = ui

(3)

where qi ∈ Rm is the position, pi ∈ Rm is the velocity
and ui is the control input of the agent i. The agents are
called followers and track the trajectory of a special agent
called the leader labeled by 0 which has its own control
objective. In general, only a small fraction of the followers
can communicate with the leader.

Definition 9: The matrix D of a graph (V, E) with a leader
denoted 0 is defined by D = Diag{a10, . . . , aN0}, where
ai0 = 1 if the agent i communicate with the leader and
ai0 = 0 otherwise. If ai0 = 1 then the node i is called a
pinned node.
We suppose that we have the following assumption

Assumption 10: The matrix D has at least one non-zero
entry.
The dynamics of the leader is given by{

q̇0 = p0
ṗ0 = u0

(4)

where q0 ∈ Rm is the position of the leader, p0 ∈ Rm is
its velocity and u0 is the time varying leader’s acceleration.
The leader tries to track a preassigned trajectory (qref , pref)
which dynamics is given by q̇ref = pref , ṗref = uref . Let
us stress that this reference trajectory is only known by the
leader. The state (qref , pref) is also defined as the state of a
virtual leader.

Let us now define the practical consensus tracking.
Definition 11 (Practical consensus tracking): The MAS

(3) is said to solve the practical consensus tracking problem
if there exists ε ≥ 0 such that for all i ∈ {0, . . . , N}

lim sup
t→+∞

‖qi(t)− qref(t)‖ ≤ ε,

lim sup
t→+∞

‖pi(t)− pref(t)‖ ≤ ε,
Remark 12: If ε = 0, we recover the consensus tracking

problem.
The aim of this paper is to design controls ui, i ∈

{0, . . . , N} such that the system (3)–(4) achieves practical
consensus tracking.



IV. MAIN RESULTS

We consider the following control protocol of the MAS (3)
proposed in [1]

ui = −k1
N∑
j=0

aij(qi − qj)− k2
N∑
j=0

aij(pi − pj), (5)

for i ∈ {1, . . . , N}, where k1 > 0 and k2 > 0 are positive
constants, aij are the components of the adjacency matrix A
and ai0 are the diagonal components of the matrix D.

In the sequel, we propose two control laws for the leader.
The first one is based only on the leader’s state and the
reference trajectory (and therefore not on the followers’
state), which justifies the terminology of non-perceptive
leader used below. On the contrary, the second one takes
into consideration the followers’ state, hence the name of
perceptive leader.

A. The non-perceptive leader case

In this section, the leader’s acceleration is given by

u0 = uref − k1(q0 − qref )− k2(p0 − pref ) (6)

where k1 > 0 and k2 > 0 are the same constants than in (5).
Remark that, if q0(0) = qref(0) and p0(0) = pref(0), and
in absence of external disturbances, we have q0(t) = qref(t)
and p0(t) = pref(t) for all t ≥ 0. We have the following
result.

Theorem 13: Consider a MAS with dynamics (3) un-
der the control protocol (5) and the non-perceptive leader
(4) with control (6). Suppose that Assumption 8 and As-
sumption 10 hold. If there exists umax > 0 such that
supt≥0 |uref(t)| ≤ umax, then the MAS solves the practical
consensus tracking problem.

Proof: We define the vectors eq and
ep ∈ Rn, n = m(N + 1) by eq =(
(q0 − qref)T , (q1 − qref)T , . . . , (qN − qref)T

)T
and

ep =
(
(p0 − pref)T , (p1 − pref)T , . . . , (pN − pref)T

)T
.

We also define the matrix M ∈ Rn×n by blocks:

M =

(
−Im 0m×(Nm)

a⊗ Im −S

)
,

where a = (a10, . . . , aN0)T and S = (Lf + D) ⊗ Im. We
obtain {

ėq = ep
ėp = k1Meq + k2Mep − buref

(7)

with b = (0Tm, 1
T
mN )T ∈ Rn and Lf the Laplacian matrix

of the graph of the followers. If we denote e = (eTq , e
T
p )T ∈

R2n, B = −(0Tn , b
T )T and A =

[
0n In
k1M k2M

]
, then the

system (7) is equivalent to

ė = Ae+Buref . (8)

Let us show that all the real parts of the eigenvalues of A are
strictly negative. Denoting χA the characteristic polynomial
of the matrix A, we find

χA(λ) = det(λ2In − k2λM − k1M)

and then

χA(λ) =

det

(
λ2Im + k2λIm + k1Im 0m×(mN)

−k2λa⊗ Im − k1a⊗ Im λ2ImN + k2λS + k1S

)
.

We know that Im and S commute. Then, expanding this
determinant by minors we get

χA(λ) = (λ2 + k2λ+ k1)m det
(
λ2ImN + (k1 + k2λ)S

)
.

We see that the eigenvalues of A are the roots of the
polynomial λ2 + k2λ + k1, which are of negative real part
provided that k1 > 0 and k2 > 0, and the roots of π(λ) =
det
(
λ2ImN + (1 + λ)S

)
. Note that π(−k1/k2) = 1 thus

−k1/k2 is not a root of π. Therefore we can write that

π(λ) = (k1 + k2λ)mN det

(
S +

λ2

k1 + k2λ
In

)
= (k1 + k2λ)mNχS

(
λ2

k1 + k2λ

)
.

Under Assumption 8 and from Lemma 6, the matrix Lf is
symmetric positive-definite and D is diagonal with positive
entries. Hence S is a symmetric, positive-definite matrix and
thus the eigenvalues of S are positive. Let µ > 0 be an
eigenvalue of S. By computing the solutions of the equation
µ = − λ2

k1+k2λ
, it follows that the real part of λ is always

negative and we conclude that A is Hurwitz. It follows
that there exist P and Q, two symmetric, positive-definite
matrices, such that PA + ATP = −Q. Consider now the
candidate Lyapunov function

V (e) = eTPe.

The time derivative of V is given by

V̇ = ėTPe+ eTP ė

= (Ae+Buref)
TPe+ eTP (Ae+Buref)

= eTATPe+ eTPAe+ (BTPe+ eTPB)uref

= −eTQe+ 2eTPBuref .

By common manipulations, we get

V̇ ≤
√
eTPe

(
−c
√
eTPe+ 2umax

√
BTPB

)
,

with c = λmin(P−1/2QP−1/2). Fix ε ∈ (0, 1). As long
as
√
eTPe ≥ 2umax

√
BTPB

c(1−ε) , we have V̇ ≤ −εcV (e) and
thus V (e) ≤ exp(−εct)V (e(0)). Therefore we have either

V (e) ≤ exp(−εct)V (e(0)) or V (e) ≤
(

2umax

√
BTPB

c(1−ε)

)2
,

that is

V (e) ≤ max

exp(−εct)V (e(0));

(
2umax

√
BTPB

c(1− ε)

)2
 .

Using λmin(P )‖e‖2 ≤ V (e) ≤ λmax(P )‖e‖2 we finally get

‖e‖ ≤ max

{√
λmax(P )√
λmin(P )

exp(−εct
2

)‖e(0)‖; γ umax

}



with γ = 2
√
BTPB

c(1−ε)
√
λmin(P )

. Therefore, the system error (8) is

ISS with respect to the input uref . It leads to

lim sup
t→+∞

‖e(t)‖ ≤ γ umax, (9)

i.e. the MAS solves the practical consensus tracking problem.

B. The perceptive leader case

Consider the following assumption on the communication
topology between the leader and its followers.

Assumption 14: The paths between the leader and its
followers are undirected.
Due to Assumption 14, the MAS (3) can be controlled by a
perceptive leader with the following control

u0 =− k1(q0 − qref)− k2(p0 − pref)

− k1
N∑
i=1

ai0(q0 − qi)− k2
N∑
i=1

ai0(p0 − pi). (10)

The first part of the controller ensures the tracking after
the predefined trajectory and the second part ensures the
connectivity between the followers and the leader.

Theorem 15: Consider a MAS with dynamics (3) under
the control protocol (5) and the perceptive leader (4) with
control (10). Suppose that Assumption 8, Assumption 10 and
Assumption 14 hold. If there exists umax > 0 such that
supt≥0 |uref(t)| ≤ umax, then the MAS solves the practical
consensus tracking problem.

Proof: Consider the graph (V̄ , Ē) obtained by adding
the leader to the followers’ graph. Given Assumption 14,
the graph (V̄ , Ē) verifies Assumption 8. We will now add
a “virtual leader” to this MAS. This virtual leader is only
linked to the real leader. Hence the D matrix associated
with this virtual leader has exactly one non-zero entry at the
first line, first column; this yields that Assumption 10 holds.
Now, assume that the virtual leader follows the dynamics and
control rule defined by (4) and (6) but with initial condition
qref(0) and pref(0). As we already pointed out, this means
that the trajectory of the virtual leader will stick to the
reference trajectory. Therefore, we see that the control law
of the leader (10) corresponds the control law of a follower
(5) that is linked with the leader. This means that we can
apply Theorem 13 and we conclude that the MAS solves the
practical consensus tracking problem.

Remark 16: In the proof of Theorem 15, the dynamics of
the virtual leader is only known by the leader. Using this
virtual leader is just a technique to prove the theorem and
does not need additional online simulations. Moreover, the
eventual practical consensus can be improved by considering
the following more general control law of the leader

u0 =uref − `1(q0 − qref)− `2(p0 − pref)

− k1
N∑
i=1

ai0(q0 − qi)− k2
N∑
i=1

ai0(p0 − pi). (11)

The proof of this fact is similar to the proof of Theorem
13. The gains `1 and `2 > 0 allow the leader to change

the balance between following the reference trajectory and
waiting for the followers.

V. SIMULATIONS

In this section, we demonstrate in simulations the effec-
tiveness of the proposed linear controllers for the practical
consensus of MAS with both perceptive and non-perceptive
leaders. We consider a second-order MAS with N = 10
agents. All agents are moving in the plane (m = 2) with
the dynamics given by (3). The leader is denoted by 0 and
the graph between the agents is undirected. The network
topology is given by Fig. 1. It can be noted that the
undirected graph G is connected and the leader is in the
neighborhood of agents 1, 2 and 6.

0

F1F6 F2

F3 F7F5

F4 F9 F8

F10

Fig. 1: Topology of the MAS of 10 followers with a leader
denoted 0.

The initial positions of the followers (qi(0) are randomly
chosen from the box [−10, 10]

2 while the initial veloci-
ties are pi(0) = (0, 0). The initial position of the leader
q0(0) is randomly chosen from the square box [−10, 10]

2

and its initial velocity is p0(0) = (0, 0). The simulations
are computed with a sampling rate of 0.01s. We define
the barycenter G of the N follower’s position qi(t) by
qG(t) = 1

N

∑N
i=1 qi(t). Fig. 2 presents the trajectory of the

barycenter G and the reference trajectory qref(t) of the virtual
leader for a non-perceptive leader. The reference trajectory
qref(t) is chosen as qrefx(t) = Qx cos(ωxt) + q0,refx and
qrefy (t) = Qy sin(ωyt) + q0,refy with ωx = 0.005(2π)rd/s,
ωy = 0.03(2π)rd/s, Qx = 5 and Qy = 10. It can be seen
from Fig. 2 and Fig. 3 that the practical consensus is reached,
i.e. the followers remain in a closed neighborhood of the
virtual leader.

Fig. 4 (resp. Fig. 5) presents the barycenter position(
qGx

(t), qGy
(t)
)

(resp. barycenter speed) and the leader
position

(
q0x(t), q0y (t)

)
for a perceptive leader with qref =

(5, 5) and pref = (0, 0). At t = 0, the perceptive leader
and the virtual leader are at the same position. Due to the
perceptive part in the control of the leader, the leader leaves
its initial position and tends to reach the agents, while these
ones tend to reach the leader. Once the leader is in the
neighborhood of the agents, the followers and the leader
ultimately converge in the vicinity of qref .
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Fig. 2: Barycenter position (blue line) and reference trajec-
tory (red line) for a non-perceptive leader
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Fig. 3: Position tracking error between the barycenter of the
N agents and the position of the virtual leader
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Fig. 4: Barycenter position (blue line) and leader position
(red line) for a perceptive leader

VI. EXPERIMENTS

In this section, we show the effectiveness of the practical
consensus of a MAS with both perceptive and non-perceptive
leaders via an experimental platform of a fleet of four Pioneer
3-DX mobile robots that use odometer to record their own
positions. Their initial positions are given by Fig. 6. The
robots can communicate with each other through ethernet
with TCP/IP protocols. The control algorithm is written
in C++ language and executed at 0.01s sampling rate. A
PC is used to generate the desired trajectory and acts as
a virtual leader wheel mobile robot. We approximate the
modelling of the robots with a double integrator dynamics
(3). Assumption 8 is maintained for this experiment. The

0 5 10 15 20 25

time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5: x−barycenter speed (blue line) and y−barycenter
speed (red line) for a perceptive leader

Fig. 6: Initial position of a fleet of four Pioneer 3-DX mobile
robots

coordinate of the initial positions of the robots are chosen as
q1x = −0.915m, q1y = 0.915m; q2x = 2.205m, q2y = 0m;
q3x = 1.22m, q3y = 1.22m; q4x = −0.62m, q4y = 2.44m
and all the velocities are initiated by zero. Moreover, we set
qref = pref = (0, 0). In practical applications, robots have
limited speed so gains must be chosen small enough so that
the speed limit does not exceed. We take k1, k2, l1, l2 = 0.3.

The evolution of the x−position of the fleet with controller
(5) and the non-perceptive leader (4) is given by Fig. 7.
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Fig. 7: The evolution of the x−position of the fleet with a
non-perceptive leader

The evolution of the x−position of the fleet with controller
(5) and the perceptive leader (10) is given by Fig. 8.

The practical consensus tracking is said to be achieved
when the robots are 1m away from the leader and the
deviation between the leader and the followers is the angle
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Fig. 8: The evolution of the x−position of the fleet with a
perceptive leader

of π
4 . As in simulations, we observe that the use of a non

perceptive and perceptive leader can ensure the practical
consensus with interesting results in terms of speed of
convergence, precision and connectivity maintenance.

VII. CONCLUSION

In this article, the practical consensus tracking of second-
order multi-agent systems under a fixed topology and a vary-
ing leader’s velocity has been studied. Two cases of practical
consensus tracking were investigated, with a non-perceptive
leader and with a perceptive leader. It was proved that the
practical consensus tracking can be achieved in simulation
and on a fleet of mobile robots for both approaches. The case
of switching topology has been anticipated as future work.
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