
HAL Id: hal-02266750
https://hal.science/hal-02266750

Submitted on 3 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Learning Based Formation Control for the
Multi-Agent Coordination

Qishuai Liu, Emmanuel Moulay, Patrick Coirault, Qing Hui

To cite this version:
Qishuai Liu, Emmanuel Moulay, Patrick Coirault, Qing Hui. Deep Learning Based Formation Control
for the Multi-Agent Coordination. 2019 IEEE 16th International Conference on Networking, Sensing
and Control (ICNSC), May 2019, Banff, Canada. pp.12-17, �10.1109/ICNSC.2019.8743254�. �hal-
02266750�

https://hal.science/hal-02266750
https://hal.archives-ouvertes.fr

Deep Learning Based Formation Control for the
Multi-Agent Coordination

1st Qishuai Liu
Department of Electrical and Computer Engineering

University of Nebraska-Lincoln
Lincoln, USA

qishuai.liu@huskers.unl.edu

2nd Emmanuel Moulay
XLIM (UMR CNRS 7252)

University of Poitiers
Poitiers, France

emmanuel.moulay@univ-poitiers.fr

3rd Patrick Coirault
LIAS (EA 6315)

University of Poitiers
Poitiers, France

patrick.coirault@univ-poitiers.fr

4th Qing Hui
Department of Electrical and Computer Engineering

University of Nebraska-Lincoln
Lincoln, USA

qing.hui@unl.edu

Abstract—Formation control of multi-agent systems has been
an important task in the fields of automatic control and robotics.
The aim of this paper is to develop a deep learning based
formation control strategy for the multi-agent systems by using
the backpropagation algorithm. Specifically, the deep learning
network can be treated as the feedback controller, thus the
multi-agent system can use the network output as its input to
achieve the formation control. The algorithm has been tested on
a multirobot system to verify the effectiveness of the proposed
method.

I. INTRODUCTION

The cooperative control of multi-agent systems (MASs) has
drawn a great attention in recent years in different areas [1]
including reconnaissance, surveillance, and security [2], [3].
In such applications, maintaining the network topology and
connectivity of agents are important for some tasks including
target localization, oceanic search, and undersea oil pipeline
maintenance [4]–[6].

Formation control is one of the most interesting research
topics among cooperative control of MASs [7]. In many
applications, a group of autonomous robots are required
to follow the specified trajectory and maintain the network
topology at the same time because of the system cost,
redundancy, and structure flexibility of the system [8]–[10]. In
formation control, for a group of coordinated agents, different
control topologies can be adopted according to different tasks.
Some of them may need a leader for other agents so that they
can follow the leader in a specified way. Those robots carry
onboard sensing equipment to maintain the relative topologies
between them. Generally speaking, the robots have the limited
communication ability, thus they cannot use all the global
information of the other robots. Given this situation, the design
of the controller for each robot should not be centralized but
be based on the local information.

In order to design the distributed controller for the
multi-agent formation, we need to consider some issues

such as the stability of the controller, controllability of
different formation patterns, and safety and uncertainties in
the formation control. The traditional control approaches to
solve these issues are to develop the leader-follower strategy
[11], virtual structure approach, and behavior-based method.
The formation control is classified as regulation control and
tracking control in some situations. Generally, this may need
to consider the system dynamic and design the controller
carefully. In some cases, this is hard to implementation. In
order to overcome this drawback, some researchers develop
artificial neural network based controllers [12]. Deep learning
(DL), which is based on the nonlinear continuous functions
[13], [14], is part of machine learning [15] and is dedicated
to the modeling of nonlinear behaviors by a learning process
involving deep neural networks (DNN) [16]. In the past several
years, the deep learning method is applied in many aspects
such as pattern recognition [17], speech recognition [18], and
computer vision [19].

One of the machine learning based methods is the
adaptive dynamic programming, which has been used as the
model-based algorithm to design the controller for dynamical
systems [20]. This method uses a cost function to find the
feedback controller named policy by solving the Bellman
equation of the value function [20]. DNN approximations
of value function and policy are used in ADP to stabilize
discrete-time systems. The policy can be obtained from the
value function [21].

Another machine learning based method is reinforcement
learning, which is used to develop the model-free algorithms
of controllers for dynamical systems [22]. The main aim of this
method is to learn from experiments on what to do in different
situations so that it can maximize a reward function [23].
By using this method, the designed controller is a model-free
strategy that can be obtained by solving the Bellman equation
of the value function. This method can be used for both
stochastic processes using MDP and deterministic processes.
By incorporating the DNN into the reinforcement learning,

978-1-7281-0084- 5/19/$31.00 c©2018 IEEE

a new method named deep reinforcement learning (DRL) has
been proposed for the control of dynamical systems [24], [25].
The value function and the policy are approximated by DNN
in the DRL approach.

The main drawback of these two methods is that the
Bellman equation is hard to solve. Thus, the neural network
can be used as a controller to ensure the control of dynamical
systems [26]. In our paper, we extend the neural network to
use the DNN as the controller for discrete-time dynamical
systems and use it for the formation control. This method, first
developed in [27] for shallow neural networks and in [28] for
DNN under a restrictive assumption on the system, is based
on the ability of a DNN for self-tuning its weights by using a
backpropagation algorithm. Thus, it can avoid the solving the
Bellman equation in ADP or DRL. Also, this method can be
used if the vector field of the discrete-time nonlinear system
is differentiable. Thus if the discrete-time nonlinear system is
unknown, it is still possible to use numerical differentiation
methods for backpropagation.

This paper is organized as follows: Section II gives some
preliminaries and Section III introduces the deep learning
based controller design. In Section IV, we introduce how to
transform the formation control problem into the feedback
control so that we can use the proposed algorithm to solve
it. We also have done the experiment to verify the proposed
algorithm in Section V. Finally, we give a conclusion in
Section VI.

II. PRELIMINARY

The notation used in here is fairly standard. Specifically,
R denotes the set of real numbers, N denotes the set of
nonnegative integers, Rn denotes the set of n-dimensional real
column vectors, Rn×m denotes the set of n-by-m matrices,
(·)T denotes transpose, and (·)−1 denotes inverse, respectively.
‖·‖ denotes the Euclidean norm. diag(x) denotes a square
diagonal matrix with the elements of vector x on the main
diagonal. Let G = (V, E) denote a dynamic directed graph
with the set of vertices V = {v1, v2, . . . , vN} and E ⊂ V × V
representing the set of edges. A graph with the property that
(vi, vj) ∈ E implies (vj , vi) ∈ E is said to be undirected.
The adjacent matrix A ∈ RN×N associated with the directed
graph G is defined by nonnegative adjacency elements aij as
A(t) = [aij(t)]. We assume (vi, vj) ∈ E(t) if and only if
aij = 1, (vi, vj) 6∈ E(t) if and only if aij = 0, and aii = 1 for
all i ∈ N , where N = {1, 2, . . . , N} denotes the node index
of G(t). The set of neighbors of the node vi is denoted by
N i(t) = {vj ∈ V : (vi, vj) ∈ E(t), j = 1, 2, . . . , |N |, j 6= i},
where |N | denotes the cardinality of N . The degree matrix
of a dynamic graph G(t) is defined by δ(t) = [dij(t)], where
i, j ∈ {1, 2, . . . , |N |} and

dij(t) =

{ ∑|N |
j=1 aij(t), if i = j,

0, if i 6= j.

Moreover, we can define Laplacian matrix of the dynamic
graph G as L(t) = δ(t)−A(t). If the graph is called strongly

connected if there exists a path from any node to any other
node in the dynamic graph.

Next, let K ⊂ Rn be a compact set such that 0 ∈ K and
called the learning state space. Consider the following system:

x(k + 1) = f(x(k), u(k)), k ∈ N, x(0) = x0 ∈ Rn (1)

where x(k) = (x1(k), . . . , xn(k)) ∈ K is the state vector,
u(k) = (u1(k), . . . , um(k)) ∈ Rm is the control input with
m ≤ n, and f : Rn × Rm → Rn a continuous function such
that f(0, 0) = 0 and f = (f1, . . . , fn) with fi : Rn×Rm → R.
The objective is to ensure that the solutions of system (1)
converge to the origin by using a DNN as a controller. To this
end, we consider the extended system

x(k−s+1) = f(x(k−s), u(k−s)), k ∈ N, 0 ≤ s ≤ r (2)

where (x(k− r+ 1), . . . , x(k+ 1)) ∈ Kr+1 is the state vector
with x(k− s+ 1) = (x1(k− s+ 1), . . . , xn(k− s+ 1)) ∈ K,
(u(k−r), . . . , u(k)) ∈ Rm(r+1) the control input with m ≤ n
and u(k− s) = (u1(k− s), . . . , um(k− s)) ∈ Rm, and r ≥ 0
such that the following assumption holds:
Assumption 1. Let

E(k) =
1

2
‖x(k + 1)‖2 (3)

if

lim
k→∞

(∂E(k)
∂u1(k−r) , . . . ,

∂E(k)
∂um(k−r) , . . . ,

∂E(k)
∂u1(k)

, . . . , ∂E(k)
∂um(k)) = 0

then we have limk→∞ x(k) = 0.
Next, let us recall the definition of a trajectory of the system

(1) given in [29, p. 13].
Definition 1. Given an initial value x0 ∈ K and a control
sequence u(k), we define a trajectory xu(k, x0) of the system
(1) by xu(0, x0) = x0 and

xu(k + 1, x0) = f(xu(k, x0), u(k)), k ∈ N

The classical feedback control aims at finding u(x(k)) to
stabilize the system (1), as shown by the Lyapunov based
methods in [30], the model predictive control in [31] or the
neural-network-based ADP algorithm in [32], following the
framework illustrated in Figure 1.

Fig. 1. Classical feedback control.

III. METHOD

In this section, we will introduce the backpropagation
algorithms used in the DNN. The DL feedback control aims
at finding a feedback control U : K → Rm as a DNN to
ensure the convergence of the state of the system (1) toward
zero by using the backpropagation algorithm and without using
classical feedback control theory or the Bellman equation.

Let us denote U(k − s) = (U1(k − s), . . . , Um(k − s)) ∈
Rm the output of the DNN with the input x(k − s) ∈ K
where 0 ≤ s ≤ r. It means that the DNN as the r + 1 inputs
x(k − s) ∈ Rn and the r + 1 outputs U(k − s) ∈ Rm where
0 ≤ s ≤ r. We are facing problems for backpropagation due
to the fact that we have no target for the output U(k−s) of the
DL feedback control and moreover U(k − s) ∈ Rm whereas
x(k + 1 − s) ∈ Rn with m ≤ n. The main goal is to make
x(k) converge to zero, so we consider the backpropagation
error (3) for the input x(k−s) of the DNN. The tuning of the
weights wij(k) between neurons i and j for the input x(k−s)
of the DNN is done by using the backpropagation algorithm

wij(k − s+ 1) = wij(k − s)− λδwij(k − s)

= wij(k − s)− λ
∂E(k)

∂wij(k − s)
(4)

with λ > 0 being the learning rate and the chain rule:

∂E(k)

∂wij(k − s)
=

∂E(k)

∂σj(k − s)
∂σj(k − s)
∂zj(k − s)

∂zj(k − s)
∂wij(k − s)

where k ∈ N, 0 ≤ s ≤ r, and

σj(k − s) = ϕj(zj(k − s)) = ϕj

(∑
l

wljσl(k − s)
)

in which k ∈ N and 0 ≤ s ≤ r. The only difference with usual
backpropagation is the first term ∂E(k)

∂Uj(k−s) due to the fact that
the backpropagation error E(k) does not depend directly on
Uj(k − s). Consider the following assumption for f :
Assumption 2. The function (x, u)→ f(x, u) is differentiable
on K × Rm.

By using the system (2) and Assumption 2, we can obtain
the following derivative for the backpropagation error (3) with
respect to the output Uj(k − s), k ∈ N and 0 ≤ s ≤ r

∂E(k)

∂Uj(k − s)
=

n∑
i=1

xi(k + 1)
∂fi(x(k), U(k))

∂Uj(k − s)
. (5)

In order for the backpropagation algorithm (3)–(5) to
converge, we must add the following assumption:
Assumption 3. The function (x, u) → fi(x, u)2 is convex on
K × Rm.

By using Assumption 3 and the fact that

E(k) =
1

2

n∑
i=1

fi(x(k), U(k))2

we can deduce that Uj(k − s) 7→ E(k) is convex for all 1 ≤
j ≤ m and 0 ≤ s ≤ r. So the backpropagation algorithm
converges and

lim
k→∞

(∂E(k)
∂U1(k−r) , . . . ,

∂E(k)
∂Um(k−r) , . . . ,

∂E(k)
∂U1(k)

, . . . , ∂E(k)
∂Um(k)) = 0.

Finally, Assumption 1 implies that limk→∞ x(k) = 0. This
can explain why the backpropagation algorithm is applied on
the extended system (2) and not on the system (1). Thus, we
have the following result:

Theorem 1. Under Assumptions 1–3, the solutions of the
closed-loop system (1) with the DL feedback control given
by the backpropagation algorithm (3)–(5) on the system (2)
converge to the origin.

The DL feedback control approach is illustrated in Figure 2.

Fig. 2. DL feedback control.

Remark 1. If the derivatives ∂fi(x(k),U(k))
∂Uj(k−s) are not available

due to the fact that f is unknown, then we can use numerical
differentiation methods for obtaining an approximate value of
these derivatives [33]. Moreover, if r = 0, then Assumption 2
is replaced by the one that uj → fi(x, u)2 is convex for all
1 ≤ i ≤ n and 1 ≤ j ≤ m.

If the system (1) is affine, i.e.,

x(k + 1) = φ(x(k)) +

m∑
j=1

gj(x(k))uj(k) (6)

with φ : Rn → Rn being continuous such that gj(x) =
(g1j(x), . . . , gnj(x)), then we have

∂E(k)

∂Uj(k)
=

n∑
i=1

xi(k + 1)gij(x(k)) (7)

for all 1 ≤ j ≤ m. Note that affine systems are very common
in applications [34]. Finally, consider the very special case of
linear systems of the form:

x(k + 1) = Ax(k) +Bu

with A ∈ Rn×n and B = [bij] ∈ Rn×m, then we have

∂E(k)

∂Uj(k)
=

n∑
i=1

bijxi(k + 1)

for all 1 ≤ j ≤ m.
These results ensure that the backpropagation algorithms

converge for the system (1) and the fundamental
approximation theorem ensures that a DNN can approximate
any continuous function on a compact set K. Now we can
present how to implement the DL control algorithm.

Algorithm 1 explains how the backpropagation algorithm
presented in Section III is used for building a DNN called
DL feedback control. It stops when the draw of new random
states in K does not make evolve the weights of the DNN.
The learning process on the system (2) allows to find a DL
feedback control for the system (1). If Algorithm 1 uses only
the states {x(k) ∈ K : k ∈ N} of a solution of the system (1)
without using random states, it will learn badly with too few
states in K and therefore too little information. It is possible

Algorithm 1: DL feedback control algorithm on K
Input: x(k − r) ∈ K and ε > 0
Output: DNN U on K for the system (1)

1 Apply the backpropagation algorithm (3)–(5) to the
system (2) with the input x(k − s) of the DNN where
0 ≤ s ≤ r.

2 if ‖δw(k − s)‖2 =
∑

i,j(k − s)2 ≥ ε then
3 wij(k − s)← wij(k − s+ 1)
4 if E(k) < E(k − 1) then
5 x(k − s)← x(k − s+ 1) for all 0 ≤ s ≤ r
6 if x(k − s+ 1) ∈ K for all 0 ≤ s ≤ r then
7 go to 1
8 else
9 Choose randomly x ∈ K

10 x(k − r)← x
11 go to 1
12 end
13 else
14 go to 1
15 end
16 else
17 Choose randomly x ∈ K
18 x(k − r)← x
19 go to 1
20 end

to improve the convergence speed of the DL feedback control
by replacing Step 4 of Algorithm 1 with E(k) < λE(k − 1)
where 0 < λ < 1.

Remark 2. We use all the states (x(k), . . . , x(k − r)) in
the input of the DNN for tuning its weights contrary
to what is done in [27], [28] where only both states
(x(k), x(k − r)) are used under the restrictive assumption that
the system (2) is uniquely invertible. Moreover an algorithm,
namely Algorithm 1, is provided explaining how tuning the
weights of the DNN which is not the case in [27], [28].

IV. FORMATION CONTROL OF MULTI-AGENT SYSTEMS

In this part, we will present the formation control problem
of multi-agent systems and show how to use Algorithm 1 to
solve it. The formation control problem we consider here is
based on the consensus protocol, which means each agent
will have a copy of its own understanding consensus state
xci. However, the real state of each agent will differ from its
understanding consensus state that the formation topology can
be maintained. Here we consider the real state of the agent
as xi(t) and each agent has its own understanding consensus
state xci. The relationship between xci and xi can be written
as:

xi(t) = xci(t) + pi (8)

where pi is the vector denoting the real state of each
agent xi(t) deviating its understanding consensus state xci.

Moreover, the dynamic of the understanding consensus state
can be written as follows:

xci(t+ 1) = xci(t) + ui(t) (9)

for each agent.
The goal of the consensus protocol is to reach

lim
t→∞

xc1(t) = · · · = lim
t→∞

xcN (t) (10)

for all N agents.
Next, we need to define the error dynamic for each agent i

as:

ei(t) = xci(t)− 1/N

N∑
j=1

xcj(t)

= 1/N

(N∑
j=1

(xci(t)− xcj(t))
) (11)

Then, we have

ei(t+ 1) = xci(t+ 1)− 1/N

N∑
j=1

xcj(t+ 1)

= 1/N

(N∑
j=1

(xci(t)− xcj(t))
)

= 1/N

N∑
j=1

(
xci(t)− xcj(t)

)

+ 1/N

N∑
j=1

(
ui(t)− uj(t)

)
(12)

which means:

ei(t+ 1) = ei(t) + 1/N

N∑
j=1

(
ui(t)− uj(t)

)
(13)

Equation (13) can be written as:

e(t+ 1) = e(t) + 1/N(IN − 1N1T
N)u(t) (14)

where e(t) = (e1(t), . . . , eN (t))T , u(t) =
(u1(t), . . . , uN (t))T , 1N is a column vector witch has N
elements with each element equals 1. The system error (14)
can be seen as the specific form of the dynamical system (2)
with the function f = e(t) + 1/N(IN − 1N1T

N)u(t). Thus,
our goal has become to design a DNN controller based on
Algorithm 1 to force the error state e(t) to converge to 0.

V. EXPERIMENT

In this part, we will implement an experiment to show the
effectiveness of the Algorithm 1 on our multirobot platform.
We first use the Gazebo simulation environment to train the
DNN controller to obtain the network model. After that we
could use the trained network in the real robot to show the
effectiveness of Algorithm 1. The multirobot system used here
is 4 Pioneer 3dx robots. Each robot is with a Nvidia TX1
so that they can communicate with each other by the Robot
Operating System (ROS). The DNN we used here has 6 hidden

layers and each layer is composed of 100 neurons. We choose
the ReLU function as the activation function. After training the
network, the robot system can achieve the formation control
by walking along the path generated by the algorithm.

Let (rxi, ryi), θi denote the Cartesian position and
orientation of the ith robot, respectively. Thus, we can denote
the state of the robot xi = [rxi, ryi, θi]

T . The linear and
angular speed of the robot can be denoted by (vi, wi). Thus,
we have the kinematic equation of the ith robot as follows:

ṙxi = vi cos(θi), ṙyi = vi sin(θi), θ̇i = wi (15)

Then, by linearizing (15) around a fixed point off the center
of the wheel axis (x̄i, ȳi) of the robot, where x̄i = rxi +
di cos(θi), ȳi = ryi + di sin(θi), and d = 0.15m, we have the
equation[

vi
wi

]
=

[
cos(θi) sin(θi)

−(1/d) sin(θi) (1/d) cos(θi)

] [
axi
ayi

]
.

This equation is a simple kinematic one that can transfer the
action of each robot to the velocity command.

Next, we can define the understanding consensus state
for each robot as xci = [xrci, y

r
ci, θ

r
ci]

T . The [xrci, y
r
ci] and

θrci denote the reference position and orientation of the
understanding formation center of the robots team for each
robot i, respectively. Since the formation center of the robots
team is changing dynamically, each robot would maintain a
local variable xci, which is the sensing value of the state sr

by each robot i.
Moreover, there is a relationship (8) that we should clarify

between the real state xi and the understanding consensus state
xci: [

x̄i
ȳi

]
=

[
xrci
yrci

]
+

[
cos(θrci) − sin(θrci)
sin(θrci) cos(θrci)

] [
x̃if
ỹif

]
, (16)

where [x̃if , ỹif]T represents the desired deviation vector of the
ith robot relative to the geometric center of the formation. The
initial positions for the robots are x1 = 0.935m, y1 = 0.935m,
x2 = 2.205m, y2 = 0m, x3 = 1.46m, y3 = 1.46m, and
x4 = −0.81m, y4 = 2.32m. Also, we add a virtual leader
for the robots team and its initial position is x0 = 0m and
y0 = 0m. Its velocity is v0x = 0.01m/s and v0y = 0.01m/s.
Also, x̃1f = 1.5m, ỹ1f = 1.5m, x̃2f = −1.5m, ỹ2f = 1.5m,
x̃3f = 1.5m, ỹ3f = −1.5m, and x̃4f = −1.5m, ỹ4f = −1.5m.
Figures 3 and 4 show the trajectory of each robot moving in x
and y direction, respectively. Moreover, Figures 5 and 6 show
the velocity of each robot in x and y direction, respectively.

Next, we will perform the experiment on the real robot by
using the trained DNN before. Figure 7 shows the robots are in
the initial position, Figure 8 shows that the robots are running,
and Figure 9 shows that they have achieved the formation
finally.

VI. CONCLUSION

In this paper, we consider the formation control problem
by using a deep learning based feedback control method. The
backpropagation algorithm is used to train the DNN to obtain

0 10 20 30 40 50

time

-1

0

1

2

3

4

5

6

7

8

p
o

s
it
io

n
 i
n

 x
 d

ir
e

c
ti
o

n

robot1

robot2

robot3

robot4

Fig. 3. The x direction trajectory of each robot.

0 10 20 30 40 50

time

-1

0

1

2

3

4

5

6

7

8

p
o

s
it
io

n
 i
n

 y
 d

ir
e

c
ti
o

n

robot1

robot2

robot3

robot4

Fig. 4. The y direction trajectory of each robot.

the controller. In order to implement this method, we transfer
the formation control problem into a general problem (2)
that can be solved by Algorithm 1. Finally, we verified the
effectiveness of the algorithm on our multirobot platform.

REFERENCES

[1] X. Ge, A. Han, D. Ding, X. Zhang, and B. Ning. A survey on recent
advances in distributed sampled-data cooperative control of multi-agent
systems. Neurocomputing, 275:1684–1701, 2018.

[2] M. Fields, E. Haas, S. Hill, C. Stachowiak, and L. Barnes. Effective robot
team control methodologies for battlefield applications. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
5862–5867, 2009.

[3] J. Ding, J. Gillula, H. Huang, M. Vitus, W. Zhang, and C. Tomlin.
Hybrid systems in robotics. IEEE Robotics & Automation Magazine,
18(3):33–43, 2011.

[4] H. Rezaee and F. Abdollahi. Pursuit formation of double-integrator
dynamics using consensus control approach. IEEE Transactions on
Industrial Electronics, 62(7):4249–4256, 2015.

[5] Z. Lin, L. Wang, Z. Han, and M. Fu. Distributed formation control
of multi-agent systems using complex laplacian. IEEE Transactions on
Automatic Control, 59(7):1765–1777, 2014.

[6] H. Li, P. Xie, and W. Yan. Receding horizon formation tracking control
of constrained underactuated autonomous underwater vehicles. IEEE
Transactions on Industrial Electronics, 64(6):5004–5013, 2017.

[7] Y.-Q. Chen and Z. Wang. Formation control: a review and a new
consideration. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3181–3186, 2005.

[8] D. Stilwell and B. Bishop. Platoons of underwater vehicles. IEEE
Control Systems Magazine, 20(6):45–52, 2000.

[9] D. Scharf, F. Hadaegh, and S. Ploen. A survey of spacecraft formation
flying guidance and control (part ii): Control. In IEEE American Control
Conference, Boston, USA, 2004.

0 10 20 30 40 50

time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

v
e

lo
c
it
y
 i
n

 x
 d

ir
e

c
ti
o

n

robot1

robot2

robot3

robot4

Fig. 5. The velocity of x direction trajectory of each robot.

0 10 20 30 40 50

time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

v
e

lo
c
it
y
 i
n

 y
 d

ir
e

c
ti
o

n

robot1

robot2

robot3

robot4

Fig. 6. The velocity of y direction trajectory of each robot.

[10] A. Robertson, T. Corazzini, and J. P. How. Formation sensing and control
technologies for a separated spacecraft interferometer. In IEEE American
Control Conference, pages 1574–1579, Philadelphia, USA, 1998.

[11] N. Cowan, O. Shakerina, R. Vidal, and S. Sastry. Vision-based
follow-the-leader. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, volume 2, pages 1796–1801, 2003.

[12] Z. Cai. Intelligent Control: Principles, Techniques and Applications,
volume 7. World Scientific, 1997.

[13] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2(4):303–314, 1989.

[14] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366,
1989.

[15] S. Ao, B. Rieger B, and M. Amouzegar. Machine Learning and Systems
Engineering, volume 68. Springer Science & Business Media, 2010.

[16] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436, 2015.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[18] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury.
Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups. IEEE Signal Processing Magazine,
29(6):82–97, 2012.

[19] J. Janai, F. Güney, A. Behl, and A. Geiger. Computer vision for
autonomous vehicles: Problems, datasets and state-of-the-art. arXiv
preprint arXiv:1704.05519, 2017.

[20] D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li. Adaptive Dynamic
Programming with Applications in Optimal Control. Springer, 2017.

[21] H. Jiang, H. Zhang, K. Zhang, and X. Cui. Data-driven adaptive
dynamic programming schemes for non-zero-sum games of unknown
discrete-time nonlinear systems. Neurocomputing, 275:649–658, 2018.

[22] F. Fourati, M. Chtourou, and M. Kamoun. Stabilization of unknown

Fig. 7. The initial position for all robots.

Fig. 8. The robots are running.

Fig. 9. The final position for all robots.

nonlinear systems using neural networks. Applied Soft Computing,
8:1121–1130, 2008.

[23] L. Panait and S. Luke. Cooperative multi-agent learning: The state of
the art. Autonomous Agents and Multi-Agent Systems, 11(3):387–434,
2005.

[24] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel.
Benchmarking deep reinforcement learning for continuous control. In
International Conference on Machine Learning, pages 1329–1338, 2016.

[25] R. Hafner and M. Riedmiller. Reinforcement learning in feedback
control. Machine Learning, 84(1-2):137–169, 2011.

[26] Demetri Psaltis, Athanasios Sideris, and Alan A Yamamura. A
multilayered neural network controller. IEEE Control Systems Magazine,
8(2):17–21, 1988.

[27] W. Li and J-J. Slotine. Neural network control of unknown nonlinear
systems. In IEEE American Control Conference, pages 1136–1141,
1989.

[28] F. Fourati, M. Chtourou, and M. Kamoun. Stabilization of unknown
nonlinear systems using neural networks. Applied Soft Computing,
8(2):1121–1130, 2008.

[29] L. Grüne and J. Pannek. Nonlinear Model Predictive Control: Theory
and Algorithms. Springer, 2011.

[30] W. Lin. Feedback stabilization of general nonlinear control systems:
A passive system approach. Systems & Control Letters, 25(1):41–52,
1995.

[31] F. Allgöwer and A. Zheng. Nonlinear Model Predictive Control.
Birkhäuser, 2012.

[32] J. Sarangapani. Neural Network Control of Nonlinear Discrete-Time
Systems. CRC Press, 2006.

[33] J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Pearson, 2016.

[34] Y. Hasegawa. Control Problems of Discrete-Time Dynamical Systems,
volume 19 of Studies in Systems, Decision and Control. Springer, 2015.

