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Abstract

The article deals with the stability of discontinuous homogeneous nonlinear systems with aperiodic sampled-data inputs. We
first extend results about robustness of homogeneous nonlinear systems to the discontinuous case. Then, we prove that this
framework is well suited for studying the stability of discontinuous homogeneous nonlinear sampled-data systems. The results
are illustrated on the double integrator.
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1 Introduction

The problem of stability for systems with sampled-data
inputs has been renewed with the development of net-
worked control systems [1]. Due, for instance, to wireless
communications, the quality of the channel between the
controller and the actuator can be insufficient to ensure
a quick updating of the feedback control. This leads to
the problem of knowing if the stability properties per-
tain through sampled-data inputs [2]. Lot of works have
been done to solve this problem such as the input/output
approach [3] or the sum of squares approach [4]. More-
over, several different modeling alternatives as hybrid
systems [1,5], discrete-time systems [6] or time-delay sys-
tems [7–10] have also been used to tackle this problem.
Most of these strategies [3,4,11] are developed under the
emulation method where the controller is first designed
in continuous time and then implemented as a sampled-
data controller [12, 13].

The notion of homogeneity was introduced in [14, 15]
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and developed for instance in [16–18]. Moreover, stabil-
ity theorems for perturbed homogeneous systems were
first studied in [19]. Recently, we have developed in [20]
a new nonlinear emulation strategy based on homogene-
ity which uses the input-to-state stability (ISS) proper-
ties of homogeneous systems in order to preserve their
stability properties when they are subject to aperiodic
sampled-data inputs. This strategy has been developed
in the framework of continuous controllers but we can
wonder if it still works in the case of discontinuous con-
trollers. Homogeneous properties of discontinuous sys-
tems have been developed for instance in [21]. Recently,
the ISS properties of homogeneous systems have been
extended to discontinuous systems in [22]. Some papers
have also stated robustness properties of discontinuous
homogeneous systems (see for instance [23]). However,
no robustness condition allowed us to assess stability
properties for emulated discontinuous homogeneous sys-
tems.

To highlight the contribution of this paper, we would
like to point out that, although systems controlled by
discontinuous control laws are well known to present ro-
bustness properties with respect to exogenous perturba-
tions (like external forces acting on the system), it is also
well known that, when subject to endogenous pertur-
bations (like sampling), these systems may present bad
behaviors, chattering being the most famous. To under-
stand the difference, let us present a simple scalar ex-
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ample showing the difficulties appearing when the con-
tinuity is lost. Consider the system ẋ = −⌊x+ δ⌉α, with
x ∈ R andα ≥ 0, where δ is an unknown disturbance and
⌊z⌉α = sign(z)|z|α. A commonly used technique consists
in writing ⌊x + δ⌉α = ⌊x⌉α + (⌊x + δ⌉α − ⌊x⌉α) which
gives the effect of the nominal system −⌊x⌉α, added to
a perturbative term ∆ = ⌊x+ δ⌉α−⌊x⌉α. We would like
the perturbative part to be dominated by the nominal
part in order to bring the system to 0. When α > 0 the
system is continuous and we can show that |∆| ≤ 2|δ|α,
which implies that ∆ → 0 when δ → 0 uniformly in x.
When α = 0 we reach the discontinuous case and then
∆ = 0 when |δ| < |x| and ±2 elsewhere. We still have
∆ → 0 when δ → 0 but this convergence is not uniform
anymore, leading to a cascade of technical problems to
prove the stability. Obviously, in this very specific and
very simple example, solutions can be found by hand;
but in the general case we need specific techniques to
address the discontinuous case.

In this paper, we prove that, under well chosen technical
assumptions, discontinuous homogeneous systems be-
have nicely when subject to endogenous perturbations,
in particular samplings. The difficulty was to find a con-
dition, namely Assumption 15, that would then allow us
to use the same techniques than in [20], while not be-
ing too constraining to apply to a large set of systems.
Moreover, the results fall into the framework of sliding
mode control which has been used for sampled-data sys-
tems in [24–26]. Homogeneous sliding mode controllers
has been proposed recently in [27].

The article is organized as follows. After some prelimi-
naries stated in Section 2, we develop a new result about
the robustness of homogeneous systems in Section 3.
Then we use this result in the context of homogeneous
sampled-data systems for addressing the main result of
the article in Section 4. A numerical application to the
double integrator is given Section 5. Concluding remarks
appears in Section 6.

2 Preliminaries

2.1 Mathematical notation

Throughout the paper the following notation is used:

• R+ = {x ∈ R : x ≥ 0}, where R is the set of real
numbers.

• | · | denotes the absolute value in R, ‖.‖ denotes the
Euclidean norm on Rn.

• B(y, ε) = {x ∈ Rn : ‖x− y‖ < ε} and B̄(y, ε) is its
closure.

• If r1, . . . , rn ∈ R, we will denote Diag(r1, . . . , rn) the
diagonal matrix of dimension n×n with kth diagonal
entry rk.

• For a (Lebesgue) measurable function d : R+ → Rn,
we denote ‖d‖[a,b] = ess supt∈[a,b] ‖d(t)‖. If for any 0 ≤

a < b we have ‖d‖[a,b] < +∞, the function d is called
locally essentially bounded. We denote L∞

loc
the set of

locally essentially bounded functions d : R+ → Rn.
• A continuous function α : R+ → R+ belongs to the
class K if α(0) = 0 and the function is strictly increas-
ing. A function α : R+ → R+ belongs to the class K∞

if α ∈ K and it is increasing to infinity.
• A continuous function β : R+ × R+ → R+ belongs
to the class KL if β(·, t) ∈ K∞ for each fixed t ∈ R+

and if for each fixed s ∈ R+ the function t 7→ β(s, t)
is decreasing to 0.

• The notation dxV (resp. dxΦ) stands for the differen-
tial of the function V (resp. the diffeomorphism Φ) at
the point x.

2.2 Differential inclusions

In this subsection, we recall the basic concepts of differ-
ential inclusions and the Filippov procedure. For details
and proofs, see [28].

Definition 1 A set-valued map F : Rn
⇒ Rn is upper

semicontinuous (USC) if for any x ∈ Rn and any neigh-
borhood V of F (x), there exists a neighborhood U of x
such that for any y ∈ U , F (y) ⊂ V.

Definition 2 Let F : Rn
⇒ Rn be a set-valued map.

We say that F verifies the standard assumptions if F is
USC and if for any x ∈ R

n, F (x) is a nonempty compact
convex set.

Definition 3 Let g : Rn × Rm → Rn be locally essen-
tially bounded. We denote Fx[g](x,∆) the set

⋂

ε>0

⋂

N∈N

conv{g(y,∆) : y ∈ B(x, ε) \N}, (1)

whereN denotes the set of all Lebesgue-negligible subsets
of Rn. The set-valued map Fx[g] : (x,∆) 7→ Fx[g](x,∆)
is called the Filippov’s regularization of g.

Proposition 4 Let g : Rn × Rm → Rn be locally es-
sentially bounded. For any ∆ ∈ R

m, the set-valued map
G∆ : Rn

⇒ Rn defined by G∆(x) = Fx[g](x,∆) verifies
the standard assumptions.

We refer to [28] for the definitions of a differential inclu-
sion and the corresponding notions of solutions, conver-
gence and stability.

2.3 Input-to-State Stability

Let us consider the following nonlinear system:

ẋ = f(x, d), (2)

2



where x ∈ Rn is the state, d ∈ L∞
loc

is the external input
and f : Rn+m → Rn is continuous. We will also denote
fd(x) = f(x, d) and hence f0(x) = f(x, 0).

Let us introduce the definition of input-to-state stability
given for instance in [29].

Definition 5 The system (2) is called input-to-state
stable (ISS), if for any input d ∈ L∞

loc
and any x0 ∈ Rn

there exist some functions β ∈ KL and γ ∈ K such that
for any solution x(t) of the equation (2) we have:

‖x(t)‖ ≤ β(‖x(0)‖, t) + ess sup[0,t] γ(‖d‖) ∀t ≥ 0.

The function γ is called a nonlinear asymptotic gain.

2.4 Homogeneity

Different notions of homogeneity appear in the littera-
ture. Themost common one is the weighted homogeneity,
based on a particular choice of the coordinates, while the
most generic one is the geometric homogeneity, which
is coordinate free. We shall more use in the sequel the
framework of geometric homogeneity than the frame-
work of weighted homogeneity, so we will introduce the
latter as a particular case of the former.

Definition 6 A vector field ν on Rn is called an Euler
vector field if ν is of class C1, complete (i.e. the maximal
integral curves are defined on R) and if the origin is a
globally asymptotically stable equilibrium of −ν.

Example 7 If we consider a matrixA ∈ Rn×n such that
−A is Hurwitz, the vector field defined by ν(x) = Ax is an
Euler vector field. In particular, if A = Diag(r1, . . . , rn)
with r1, . . . , rn > 0, the vector field ν(x) = Ax is Euler.

Definition 8 Let ν be an Euler vector field on Rn. We
denote Φs(x) the value of the flow of ν at time s with
initial condition x.

• A function V : Rn → R is ν-homogeneous of de-
gree κ ∈ R if for all x ∈ Rn and all s ∈ R we have
V (Φs(x)) = eκsV (x).

• A vector field f on Rn is ν-homogeneous of degree κ ∈
R if for all x ∈ Rn and all s ∈ R we have f(Φs(x)) =
eκsdxΦ

sf(x).

Remark 9 If we have ν(x) = Ax, with −A Hurwitz,
the flow of ν verifies Φs(x) = exp(As)x. In particular,
if A = Diag(r1, . . . , rn) with r1, . . . , rn > 0, we find
Φs(x) = Diag(er1s, . . . , erns)x. The homogeneity defined
by such an Euler vector field has been the subject of a
lot of works. It is usually referred to as weighted homo-
geneity, the coefficients r1, . . . , rn are called the weights
and r = [r1, . . . , rn] is called the generalized weight [30].
Let us finally mention that homogeneity with respect to
an Euler vector field defined by a generalized weight r is
usually simply referred to as r-homogeneity.

Equivalent conditions for homogeneity exist. Given that
we will not need them below, we just refer to [16,17] for
a complete exposition of the homogeneity theory.

Let us now introduce a tool and two lemmas useful in
the sequel.

Definition 10 Let ν be an Euler vector field on Rn. A
ν-homogeneous norm is a function N : Rn → R such
that:

(1) N is positive definite;
(2) N is ν-homogeneous of degree 1;
(3) N is continuous.

Lemma 11 Let V : Rn → R be a continuous positive
definite ν-homogeneous function of degree κ > 0. There
exist σ− and σ+ two functions of class K∞ such that for
all x ∈ Rn, we have σ−(‖x‖) ≤ V (x) ≤ σ+(‖x‖).

Proof.Denote σ+(r) = sup‖x‖≤r V (x). The function σ+

is clearly continuous, increasing and verifies σ+(0) = 0.
Let us show that σ+ is strictly increasing. It is enough to
prove that for any x0 such that ‖x0‖ ≤ r and V (x0) =
σ+(r) verifies ‖x0‖ = r. Assume by contradiction that
‖x0‖ < r. By continuity of the flow Φ, there exists ε > 0
such that for all s ∈ [0, ε[, we have ‖Φs(x0)‖ < r and
thus V (Φs(x0)) ≤ σ+(r) = V (x0). But V (Φs(x0)) =
eκsV (x0) > V (x0) for s > 0, which is a contradiction.
Hence we get that V (x) ≤ σ+(‖x‖). Now, given that,
for x 6= 0, ‖Φs(x)‖ → +∞ when s → +∞, we see that
eκsV (x) = V (Φs(x)) ≤ σ+(‖Φs(x)‖) and finally by tak-
ing the limit in both sides we get limr→+∞ σ+(r) = +∞,
that is σ+ ∈ K∞.

The function σ− is defined by σ−1
− (r) = supV (x)≤r ‖x‖.

We similarly prove that σ−1
− ∈ K∞. Finally, V (x) ≤

sup‖y‖≤‖x‖ V (y) = σ+(‖x‖) and ‖x‖ ≤ supV (y)≤V (x) ‖y‖ =

σ−1
− (V (x)), that is V (x) ≥ σ−(‖x‖).

Lemma 12 [23] Let σ : R+ → R be an increasing func-
tion such that limx→0+ σ(x) = 0. Then there exists a
class K function σ̄ such that for all x ∈ R+, σ(x) ≤ σ̄(x).

3 Robustness of discontinuous homogeneous
systems

We consider the following differential inclusion, depend-
ing on a parameter ∆:

ẋ ∈ F (x,∆), x ∈ R
n,∆ ∈ R

n. (3)

We make the following assumptions on the system (3).

Assumption 13 The origin is globally asymptotically
stable for the system (3) with ∆ = 0.
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Assumption 14 There exists κ < 0 and a matrix A ∈
Rn×n such that −A is Hurwitz and such that for all x ∈
Rn, all ∆ ∈ Rn and all s ∈ R we have

F (eAsx, eAs∆) = eκseAsF (x,∆).

Assumption 15 For all compact set X ⊂ Rn, there
exists σX ∈ K such that for all x ∈ X and all ∆ ∈ Rn

F (x,∆) ⊂ F (x+∆, 0) + B̄(0, σX(‖∆‖)).

The following result is an extension to discontinuous sys-
tems of Theorem 11 in [31].

Theorem 16 Under Assumptions 13, 14 and 15, the
system (3) is ISS w.r.t. the input ∆. Moreover, if we
denote ν(x) = Ax and if N is any ν-homogeneous norm,
then there exists constants α > 0, b > 0 and C > 0 such
that for any solution x(t) of (3):

N(x(t)) ≤ αmax
{

β
(

N
(

x(0)
)

, t
)

; CN(∆)
}

, (4)

where

β(r, t) = max{r−κ − bt, 0}−
1
κ . (5)

Proof.Given Assumption 13, Theorem 3.22 in [32] gives
us a Lyapunov pair (V,W ) of class C1, ν-homogeneous
functions of degree µ > 0 and µ + κ > 0 respectively
such that for all x 6= 0 we have V (x) > 0, W (x) > 0 and
for all v ∈ F (z, 0) we have dxV v ≤ −W (x). Let x 6= 0
be fixed and, given ∆ ∈ Rn, let us pick v ∈ F (x,∆).
We denote N = V 1/µ, S = {N = 1} and s = ln(N(x)),
i.e. N(x) = es. It yields that x̄ = e−Asx ∈ S. We define
∆̄ = e−As∆ and v̄ = e−κse−Asv. Assumption 14 gives
us that v̄ ∈ e−κse−AsF (x,∆) = F (x̄, ∆̄). Hence we get
dxV v =

(

eµsdx̄V e−As
) (

eκseAsv̄
)

= e(µ+κ)sdx̄V v̄. Fol-
lowing Assumption 15 with X = S, there exists w ∈
F (x̄+∆̄, 0) and r ∈ B̄(0, σS(‖∆̄‖)) such that v̄ = w+ r.
It yields

dxV v = e(µ+κ)s
[

dx̄+∆̄V w+(dx̄V − dx̄+∆̄V )w+ dx̄V r
]

.

(6)
Now, defining

K(ρ) = {̟ ∈ R
n : ∃δ ∈ B̄(0, ρ), ∃z ∈ S, ̟ ∈ F (z+δ, 0)}

and M(ρ) = sup{‖̟‖ : ̟ ∈ K(ρ)} we find that, since
F (·, 0) is USC, M(ρ) is finite for any ρ ≥ 0. Moreover,
M is increasing. Upper bounding the three parts of the

right-hand side of (6) yields

dx̄+∆̄V w≤−W (x̄+ ∆̄)

≤− inf
K(‖∆̄‖)

W

(dx̄V − dx̄+∆̄V )w≤M(‖∆̄‖) sup
z∈S

∣

∣

∣

∣

∣

∣dzV − dz+∆̄V
∣

∣

∣

∣

∣

∣

dx̄V r≤ sup
z∈S

|||dzV |||σS(‖∆̄‖))

For ∆̄ small enough, we have K(‖∆̄‖) ⊂ Rn \ {0} and
hence infK(‖∆̄‖)W > 0. Moreover, ρ 7→ − infK(ρ) W is
increasing and therefore there exists a > 0 and η1 > 0
such that if ‖∆̄‖ < η1 then − infK(‖∆̄‖) W < −a.
The continuity of dV shows that there exists η2 > 0 such
that if ‖∆̄‖ < η2, thenM(‖∆̄‖) supz∈S

∣

∣

∣

∣

∣

∣dzV − dz+∆̄V
∣

∣

∣

∣

∣

∣ <
a
4 . The continuity of σS shows that there exists η3 > 0

such that if ‖∆̄‖ < η3, then supz∈S |||dzV |||σS(‖∆̄‖)) < a
4 .

Finally we find that, denoting η = min{η1, η2, η3}, if
‖∆̄‖ < η then dxV v < −e(µ+κ)s a

2 < 0. Thus, fol-
lowing Lemma 11, there exists C > 0 such that if
CN(∆̄) < 1 we have dxV v < 0. But ∆̄ = e−As∆ and

hence N(∆̄) = e−sN(∆) = N(∆)
N(x) . We conclude that

dxV v < −a
2V (x)

µ+κ

µ when N(x) > CN(∆) which leads
to (4) and (5) with b = −aκ

2µ . Finally, the constant α > 0

appears when taking another homogeneous norm.

Among the assumptions on which relies the Theorem 16,
Assumption 13 is necessary when looking at ISS prop-
erties, Assumption 14 is a homogeneity-related assump-
tion and Assumption 15 is a weak continuity assump-
tion. Assumption 15 arises naturally when a continuous
control system is controlled by a discontinuous feedback
law as shown in the following lemma.

Lemma 17 Consider the following disturbed system

ẋ = f(x, u(x+∆)) (7)

with f : Rn × Rm → Rn continuous, u : Rn → Rm a lo-
cally essentially bounded state feedback and∆ ∈ L∞

loc
. The

set-valued map F = Fx[g], where g(x,∆) = f(x, u(x +
∆)), verifies Assumption 15.

Proof. The function f is continuous, therefore for any
compact set X ⊂ Rn the function ϕ : R+ → R+ defined
by

ϕ(ρ) = sup{‖f(y +∆, u(y +∆))− f(y, u(y +∆))‖,

y ∈ X + B̄(0, 1), ‖∆‖ ≤ ρ}
(8)

is increasing and ϕ(0) = 0. The continuous function f is
uniformly continuous on the compact set (X+B̄(0, 1))×
B̄(0, 1) and thus ϕ is continuous at 0. Lemma 12 yields
that there exists a function σX ∈ K such that for all
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ρ ≥ 0, ϕ(ρ) ≤ σX(ρ). Hence, for all x ∈ X and all
y ∈ B̄(x, 1):

f(y, u(y +∆)) = f(y +∆, u(y +∆))

+f(y, u(y +∆))− f(y +∆, u(y +∆))

∈ f(y +∆, u(y +∆)) + B̄(0, σX(‖∆‖))

which leads to F (x,∆) ⊂ F (x+∆, 0)+ B̄(0, σX(‖∆‖)).

Example 18 Consider the double integrator

{

ẋ1 = x2

ẋ2 = u
(9)

We define the control law

u(x) = −k1 signx1 − k2 signx2 (10)

with k1 > k2 > 0. It is well-known that the origin is a
globally finite-time stable equilibrium of the closed-loop
system (9)-(10) [33], which yields Assumption 13. Taking
A = Diag(2, 1) we can easily check that Assumption 14
holds for the following disturbed system with κ = −1

{

ẋ1 = x2

ẋ2 = −k1 sign(x1 +∆1)− k2 sign(x2 +∆2)
(11)

Finally, from Lemma 17, Assumption 15 holds as well
for the system (11) and finally Theorem 16 shows that
there exists b < 0 and C > 0 such that, for any solution
x(t) of (11) and any [2, 1]-homogeneous norm N :

N(x(t)) ≤ max
{

β
(

N
(

x(0)
)

, t
)

; CN(∆)
}

,

where
β(r, t) = max{r + bt, 0}.

4 Sampled-data systems

Consider the following control system

ẋ = f(x, u) (12)

with x ∈ Rn, u ∈ Rm and f continuous. We suppose
known a locally essentially bounded state feedback u(x)
such that the origin is a globally asymptotically stable
equilibrium for the closed-loop system

ẋ = f(x, u(x)). (13)

We want to know how the system (13) reacts when sub-
ject to the sampling of the control law u(x), that is when

u(x(t)) is replaced by u(x(tk)) for a given sequence of
instants (tk)k∈N

ẋ(t) = f(x(t), u(x(tk))), t ∈ [tk, tk+1). (14)

Denoting, for t ∈ [tk, tk+1), ∆(t) = x(tk)− x(t), we find
that the system (14) is equivalent to

ẋ = f(x, u(x+∆)). (15)

Given that u is discontinuous, the vector field defined
in (15) is discontinuous and we shall replace it with the
differential inclusion coming from the Filippov’s pro-
cedure. Hence defining F = Fx[g], where g(x,∆) =
f(x, u(x+∆)), we reformulate (15) by

ẋ ∈ F (x,∆). (16)

Let us see now the consequences of Theorem 16 on the
sampling effects.

Theorem 19 Consider a sequence of sampling times
(tk)k∈N for which there exists η, h ∈ R such that 0 <
η ≤ tk+1 − tk ≤ h < +∞. Assume that the reformu-
lated sampled differential inclusion (16) is such that As-
sumptions 13 and 14 hold. Consider ν(x) = Ax and N
any ν-homogeneous norm. Then, there exists ξ > 0 such
that the set N = {x ∈ Rn : N(x) ≤ ξh−1/κ} is globally
asymptotically stable w.r.t. the system (14).

The proof of Theorem 19 is largely inspired by the proof
of Theorem 12 in [20]. A couple of technical details are
however different, given the discontinuous nature of the
system (13). For the sake of clarity, a complete proof is
thus provided below.

Proof. The proof of the theorem is divided into 4 steps.

I. We show that it is sufficient to prove the result for
a given h when κ 6= 0.

II. We show that we can apply Theorem 16.
III. We prove a preliminary fact on the increase rate of

N(x(t)).
IV. We prove the theorem for κ < 0.

Step I. When κ 6= 0, assume that the results of Theo-
rem 19 hold for a givenmaximal sampling period h0 > 0.
Let us prove that the results then hold for any h > 0.
Indeed, consider s ∈ R such that h = e−κsh0. Con-
sider a solution x(t) of (16) with (tk)k∈N the sequence of
sampling times. Then consider z(t) = exp(As)x(eκst).
If tk ≤ eκst < tk+1, we have

ż(t) ∈ eκs exp(As)F (x(eκst), x(tk)− x(eκst)).

From Assumption 14, it follows that

ż(t) ∈ F (exp(As)x(eκst), exp(As)(x(tk)− x(eκst)))

∈ F (z(t), z(e−κstk)− z(t)).
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Hence the curve z(t) = exp(As)x(eκst) is a solution of
(16) with sampling times (e−κstk)k∈N. It follows that the
mapping x(t) 7→ exp(As)x(eκst) is a bijection between
the solutions of (16) with sampling times (tk)k∈N and the
solutions of (16) with sampling times (e−κstk)k∈N. Now,
the local asymptotic stability for the maximal sampling
period h0 ensures the existence of β0 ∈ KL such that

N(x(t)) ≤ β0(N(x0), t) + ξh
−1/κ
0 , ∀t ≥ 0.

By the point (2) of Definition 8 , we have

N(z(t)) = esN(x(eκst))

≤ esβ0(N(x0), e
κst) + esξh

−1/κ
0

≤ esβ0(e
−sN(z0), e

κst) + ξ(e−κsh0)
−1/κ

≤ βs(N(z0), t) + ξh−1/κ,

with βs(r, t) = esβ0(e
−sr, eκst) ∈ KL.

Step II. The signal ∆ is piecewise continuous and verifies
∆̇ = −f(x,∆) and ∆(tk) = 0. It is straightforward to
check that Assumptions 13 and 14 hold. Assumption 15
also holds from Lemma 17. The origin being a globally
asymptotically stable equilibrium of the ν-homogeneous
system ẋ ∈ F (x, 0) of degree κ, by virtue of Theorem
3.22 in [32], there exists a ν-homogeneous smooth Lya-
punov function V of degree µ > 0 with µ+κ > 0. Let us
define N(x) = V (x)1/µ. We will prove the theorem for
this particular homogeneous norm N , but Proposition
10 from [20] implies that the theorem then holds for all
homogeneous norms.

Step III. Step II and Theorem 16 lead to

N(x(t)) ≤ max{β(N(x(0)), t); C ess supτ∈[0,t]N(∆(τ))}
(17)

with C > 0 and β(r, t) = max{r−κ − bt, 0}−1/κ (see the
proof of Theorem 16). We define S = {z ∈ Rn : N(z) =
1} and for any ε > 0

α(ε) = sup{‖dzV v‖ : V (z) ≤ ε
µ
, y ∈ S and v ∈ F (y − z, z)}

and H = sup0<ε<1/C
εµ

α(ε) ∈ (0,+∞], where C comes

from (17). Let us mention that for any finite ε > 0,
α(ε) is finite, being the supremum of a USC multivalued
function on a compact set. Fix h ∈ (0, H). There exists

ε ∈ (0, 1/C) such that h ≤ εµ

α(ε) . With this couple (h, ε)

we shall now prove the following fact.
Fact. For any sampling time tk such that N(x(tk))

−κ ≥
α(ε)h
εµ , we have

N(x(t)) ≤ max {β(N(x(tk)), t− tk); CεN(x(tk))}
(18)

for all t ∈ [tk, tk+1].
Remark first that if x(tk) = 0, then the asymptotic
stability of the origin for the closed-loop system ẋ ∈
F (x,∆) implies that x(t) = 0 for all t ∈ [tk, tk+1] and
the fact is proved. Now, to prove the fact when x(tk) 6=
0, let us study the variations of ∆(t). We denote s =
ln(N(x(tk))). Consider

t∗ = inf{t ≥ tk : N(∆(t)) > εN(x(tk))}

= inf{t ≥ tk : V (∆(t)) > εµV (x(tk))}.

Thus on the interval [tk, t
∗] we have V (∆(t)) ≤

εµV (x(tk)), which implies V (exp(−As)∆(t)) ≤ εµ and
exp(−As)x(tk) ∈ S given that N(x(tk)) = es. We have

V (∆(t∗)) =

∫ t∗

tk

d

dt
V (∆(t))dt

≤ (t∗ − tk) sup
t∈[tk,t∗]

sup
v∈−F (x,∆)

‖d∆(t)V v‖

≤ (t∗ − tk) sup{‖dz̃V v‖ : V (exp(−As)z̃) ≤ εµ,

exp(−As)ỹ ∈ S and v ∈ F (ỹ − z̃, z̃)}

and from Assumption 14, it follows that

V (∆(t∗))≤ e(κ+µ)s(t∗ − tk) sup{‖dzV v‖ :

V (z) ≤ εµ, y ∈ S and v ∈ F (y − z, z)}

≤N(x(tk))
κ+µ(t∗ − tk)α(ε).

By continuity, we have V (∆(t∗)) = εµV (x(tk)) =
εµN(x(tk))

µ which leads to

εµN(x(tk))
µ ≤ N(x(tk))

κ+µ(t∗ − tk)α(ε)

and then t∗ − tk ≥ εµN(x(tk))
−κ

α(ε) ≥ h that is t∗ ≥ tk+1.

Thus, for all t ∈ [tk, tk+1] we haveN(∆(t)) ≤ εN(x(tk)).
Finally, inserting this inequality into (17) yields (18) and
the fact is proved.

Step IV.The conditionN(x(tk))
−κ ≥ α(ε)h

εµ is equivalent

to N(x(tk)) ≥
(

α(ε)h
εµ

)− 1
κ

= ρ. Hence N(x(tk)) ≥ ρ

ensures that N(x(tk+1)) ≤ N(x(t)) < N(x(tk)) for all
t ∈ (tk, tk+1]. However, the set {x ∈ Rn : N(x) < ρ} is
not necessarily positively invariant. We therefore need
to prove that, starting with N(x(tk)) < ρ, a trajectory
cannot go “too far” from the origin. Let us define, for
ω ≥ 0

θ(ω) = sup{‖dzV v‖ : V (z) ≤ 1 + ω,

V (y) ≤ 1 , v ∈ F (z, y − z)}.
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Denoting s = ln(1+ω)
µ , we get

θ(ω) = sup{‖dzV v)‖ : V (exp(−As)z) ≤ 1,

V (exp(−As)y) ≤ (1 + ω)−1 and v ∈ F (z, y − z)}

= sup{‖dexp(As)z̃V v‖ : V (z̃) ≤ 1, V (ỹ) ≤ 1/(1 + ω)

and v ∈ F (exp(As)z̃, exp(As)(ỹ − z̃))}

and from Assumption 14 it follows that

θ(ω) = e(κ+µ)s sup{‖dz̃V v‖ : V (z̃) ≤ 1,

V (ỹ) ≤ (1 + ω)−1 and v ∈ F (z̃, ỹ − z̃)}

= (1 + ω)
κ+µ
µ sup{‖dz̃V v‖ : V (z̃) ≤ 1,

V (ỹ) ≤ 1/(1 + ω) and v ∈ F (z̃, ỹ − z̃)}.

Hence when ω → +∞ we have θ(ω) ∼ Ω ω
κ+µ

µ , with
Ω = sup{‖dz̃V v‖ : V (z̃) ≤ 1, v ∈ F (z̃,−z̃)} and there-
fore ω

θ(ω) → +∞, given that κ+µ
µ < 1 since κ < 0.

Since the function ω 7→ ω
θ(ω) vanishes at ω = 0, there

exists ω0 > 0 such that ω0

θ(ω0)
= εµ

α(ε) . Assume that

N(x(tk)) < ρ, i.e. V (x(tk)) < ρµ. Let us denote t∗ =
inf {t ≥ tk : V (x(t)) ≥ (1 + ω0)ρ

µ} > tk. Hence for all
t ∈ [tk, t

∗] we have V (x(t)) ≤ (1 + ω0)ρ
µ. Therefore, we

obtain

V (x(t∗)) = V (x(tk)) +

∫ t∗

tk

d

dt
V (x(t))dt

≤ ρµ + (t∗ − tk) sup{‖dx(t)V v‖ :

t ∈ [tk, t
∗], v ∈ F (x(t), x(tk)− x(t))}

≤ ρµ + (t∗ − tk) sup {‖dzV v‖ : V (y) ≤ ρµ,

V (z) ≤ (1 + ω0)ρ
µ and v ∈ F (z, y − z)}

≤ ρµ + (t∗ − tk)ρ
κ+µθ(ω0).

Also, by continuity, V (x(t∗)) = (1+ω0)ρ
µ and therefore

after simplification and using ρ =
(

α(ε)h
εµ

)− 1
κ

we get

ω0 ≤ (t∗ − tk)
(

α(ε)h
εµ

)−1

θ(ω0) and given that ω0

θ(ω0)
=

εµ

α(ε) we find t∗ − tk ≥ h. Finally, t∗ ≥ tk+1 and then for

all t ∈ [tk, tk+1] we have V (x(t)) ≤ (1 + ω0)ρ
µ, which

implies N(x(t)) ≤ (1 + ω0)
1/µρ.

Let us summarize. We have three cases:

• if N(x(tk)) < ρ then we have N(x(t)) ≤ (1 + ω0)
1/µρ

for all t ∈ [tk, tk+1];

• if ρ ≤ N(x(tk)) ≤ (1 + ω0)
1/µρ then we still have

N(x(t)) ≤ (1 + ω0)
1/µρ for all t ∈ [tk, tk+1];

• if N(x(tk)) ≥ (1 + ω0)
1/µρ then N(x(tk))

−κ ≥ α(ε)h
εµ

and by the Fact of Step III we have

N(x(t)) ≤ max {β(N(x(tk)), t− tk) ; CεN(x(tk))}

for all t ∈ [tk, tk+1].

We get from the first two points that the set {N(x) ≤
(1 + ω0)

1/µρ} is positively invariant. Hence, if N(x0) >
(1 + ω0)

1/µρ, denoting k∗ = maxk≥0{N(x(tk)) ≥ (1 +

ω0)
1/µρ}, for all 0 ≤ k ≤ k∗, we have N(x(tk)) ≥

(1 + ω0)
1/µρ. Therefore the third point gives us that

N(x(tk+1)) ≤ N(x(tk)) for all 0 ≤ k ≤ k∗ and thus
N(x(tk)) < N(x0) for all 0 < k ≤ k∗. Using again the
shape of the function β, for 0 ≤ k < k∗ and t ∈ [tk, tk+1]
we get

N(x(t))≤max{β(N(x(tk)), η) ; CεN(x(tk))}

≤N(x(tk))max{β(1, ηN(x(tk))
κ) ; Cε}

≤N(x(tk))max{β(1, ηN(x0)
κ) ; Cε}

≤N(x(tk))q

where q = max{β(1, ηN(x0)
κ) ; Cε} < 1, given that

β ∈ KL and β(r, 0) = r. Therefore

N(x(t)) ≤ max{N(x0)q
k ; (1 + ω0)

1/µρ}, t ∈ [tk, tk+1]

and we get the global asymptotical stability of the set
{x ∈ Rn : N(x) ≤ (1 + ω0)

1/µρ} = {x ∈ Rn : N(x) ≤
ξh−1/κ}.

Remark 20 The assumptions taken on the sampling se-
quence (tk) imply that (tk) is monotonously increasing
and does not admit an accumulation point.
Note that the result holds for any homogeneous norm.
Changing the homogeneous norm would only change the
number ξ in the definition of the asymptotically set N .

5 Application to the double integrator

Consider the double integrator (9) and for t ∈ [tk, tk+1),
we select the control law to be

u(x(tk)) = −k1 sign(x1(tk))− k2 sign(x2(tk)) (19)

with k1 > k2. For the simulations, we take k1 = 5 and
k2 = 2.5. We choose a constant sampling period

tk = kT, T > 0, k ∈ N (20)

in order to use well known results about linear systems
having a constant sampling period. Indeed, we know
that the closed-loop linear sampled-data system (9) un-
der the linear controller u(x(tk)) = −k1x1(tk)−k2x2(tk)
with the samplings (20) is asymptotically stable if and
only if the matrix Λ(T ) of its associated linear differ-
ence equation is Schur [34,35]. For the double integrator
with k1 = 5 and k2 = 2.5, Λ(T ) is Schur if and only if
T < TSchur = 0.8s. However, Theorem 19 yields that,
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for any [2, 1]-homogeneous norm, there exists ξ > 0 such
that the set {x ∈ Rn : N(x) ≤ ξT } is globally asymp-
totically stable for the nonlinear closed-loop system (9)–
(19)–(20). In Figure 1, the asymptotically stable sets
are drawn for different constant samplings T larger than
TSchur = 0.8s.
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Fig. 1. Asymptotically stable sets for different values of T

6 Conclusion

In this article, we have extended the results about sta-
bility of homogeneous sampled-data systems to discon-
tinuous systems. In particular, we have designed a dis-
continuous sampled controller for the double integrator.
The robustness with respect to model uncertainties of
discontinuous controllers compared with the continuous
ones in the sampled-data context is an interesting issue
for futures works.
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