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HYPERBOLICITY OF BASES OF LOG CALABI-YAU FAMILIES

YA DENG

Abstract. We prove that for any maximally varying, log smooth family of Calabi-Yau klt
pairs, its quasi-projective base is both of log general type, and pseudo Kobayashi hyperbolic.
Moreover, such a base is Brody hyperbolic if the family is e�ectively parametrized.
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0. Introduction

0.1. Set-up. Following [Kob05], a complex space X is pseudo Kobayashi hyperbolic, if X is
hyperbolic modulo a proper Zariski closed subset ∆ ( X , that is, the Kobayashi pseudo
distance dX : X × X → [0,+∞[ of X satis�es that dX (p,q) > 0 for every pair of distinct
points p,q ∈ X not both contained in ∆. In particular, any non-constant holomorphic map
γ : C → X has image γ (C) ⊂ ∆. When such ∆ is an empty set, this de�nition reduces to
the usual de�nition of Kobayashi hyperbolicity, and the Kobayashi pseudo distance dX is a
distance. A Kobayashi hyperbolic complex manifoldX is Brody hyperbolic, that is, there are
no non-constant holomorphic maps f : C→ X .
Let X ◦ and Y ◦ be complex quasi-projective manifolds, and let D◦

=

∑m
i=1 aiD

◦
i be a

Kawamata log terminal (klt for short) Q-divisor on X ◦ with simple normal crossing sup-
port. �e morphism f ◦ : (X ◦,D◦) → Y ◦ is a log smooth family if f ◦ : X ◦ → Y ◦ is a smooth
projective morphism with connected �bers, and D◦ is relatively normal crossing over Y ◦,
namely each stratum D◦

i1
∩ · · · ∩ D◦

ik
of D◦ is dominant onto and smooth over Y ◦ under

f ◦. Such log smooth family is of maximal variation if the logarithmic Kodaira-Spencer map
ρ : TY ◦ → R1 f ◦∗

(

TX ◦/Y ◦(− logD◦)
)

is generically injective. Here ρ is de�ned to be the edge
morphism of Rf∗ for the short exact sequence

0 → TX ◦/Y ◦(− logD◦) → TX ◦(− logD◦)
d f ◦

→ (f ◦)∗TY ◦ → 0.

0.2. Main results. �e goal of this paper is to prove the hyperbolicity for bases of log
smooth families of Calabi-Yau pairs with maximal variation.
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2 YA DENG

�eoremA. Let f ◦ : (X ◦,D◦) → Y ◦ be a log smooth family over a quasi-projective manifold
Y ◦. Assume that the family is of maximal variation, each �ber (Xy,Dy) := (f ◦)−1(y) is a klt
pair, and KXy

+ Dy ≡Q 0. �en the base Y ◦

(i) is of log general type, and
(ii) is pseudo Kobayashi hyperbolic.

�eorem A.(i) is o�en referred to Viehweg hyperbolicity in the literature. Although �e-
orem A.(i) and �eorem A.(ii) are conjecturally to be equivalent by the tantalizing Lang’s
conjecture [Lan91, Chapter VIII. Conjecture 1.4], we cannot conclude one from the other
directly at the present time. �eoremA can be seen as some sort of Shafarevich hyperbolicity
conjecture for log smooth families of Calabi-Yau pairs. As �rst formulated by Viehweg and
Kovács, Shafarevich’s conjecture for higher dimensional �bers and parametrizing spaces
states that a family of canonically polarized manifolds of maximal variation has as its base
a variety of log general type. �e Shafarevich hyperbolicity conjecture as well as its gen-
eralized formulations drew a lot of a�ention for a long time, and much progress has been
achieved during the last two decades. We refer the reader to the survey [Keb13,CKT16] for
more details, including references to earlier results that are not mentioned here for lack of
space.
�e log smooth family f ◦ : (X ◦,D◦) → Y ◦ is e�ectively parametrized if the logarithmic

Kodaira-Spencer map

TY ◦,y → H1
(

Xy,TXy
(− logDy)

)

is injective for any y ∈ Y ◦, where (Xy,Dy) := (f ◦)−1(y) is the �ber. As a consequence of
�eorem A, one has the following

�eorem B. In the se�ing of �eorem A, assume additionally that the log smooth family
f ◦ : (X ◦,D◦) → Y ◦ is e�ectively parametrized, then

(i) the base Y ◦ is Brody hyperbolic, and
(ii) every irreducible subvariety of Y ◦ is of log general type.

According to another conjecture of Lang [Lan86, Conjecture 5.6], �eorem B.(ii) and�e-
orem B.(i) are also expected to be equivalent. It is quite natural to ask whether the base Y ◦

in �eorem B is Kobayashi hyperbolic, which we cannot prove at this moment. However,
let us mention that we know the Kobayashi hyperbolicity for the bases of e�ectively para-
metrized smooth families of projective manifolds with big and nef canonical bundle by our
work [DA19, �eorem C].
�e proofs of �eorems A and B are discussed in § 3.2.

0.3. Outline of the proof. Based on the work by Campana-Păun [CP19] and the au-
thor [DA19], the proof of �eorem A is reduced to the construction of certain negatively
twisted Higgs bundles (which is called Viehweg-Zuo Higgs bundles in De�nition 3.1) over
the base Y ◦ (see �eorem 3.2). Indeed, once the Viehweg-Zuo (VZ for short) Higgs bundle
on the base is established, �eorem A.(i) follows from the celebrated theorem of Campana-
Păun [CP19] on the vast generalization of generic semipositivity result of Miyaoka; and
�eorem A.(ii) can be deduced from [DA19, �eorem F and�eorem 2.12] on the construc-
tion of a generically non-degenerate smooth Finsler metric over the base (up to a birational
model) with holomorphic sectional curvature bounded above by a negative constant.
Let us brie�y explain the construction of VZHiggs bundles over the base spaceY ◦ in�e-

oremA.�e starting point is the strong positivity of direct images of log Calabi-Yau families
by Ambro [Amb05] and Cao-Guenancia-Păun [CGP17] (see �eorem 1.6 below). Based on
this theorem, we apply Abramovich’sQ-mild reduction for semi log canonical (slc for short)
families (see �eorem 1.5) as in [DA19], to �nd a smooth projective compacti�cation of Y ◦
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so that a�er replacing the original family by Viehweg’s �ber product, one gains enough
positivity for the relative dualizing sheaves. �is enables us to perform Viehweg’s cyclic
cover technique. To construct the desired negatively twisted Higgs bundles, we mainly fol-
low the general strategy by Viehweg-Zuo [VZ02, VZ03] to extend their Hodge theoretical
methods to the logarithmic se�ing. However, di�erent Higgs bundles de�ned in the proof
of �eorem 3.2 are related in a more direct manner inspired by the recent work of Popa-
Schnell [PS17] on the alternative construction via tautological sections of cyclic coverings.
Our work is also in�uenced by the work [PTW18]. Indeed, we have to perform some “a pri-
ori” birational modi�cation of the base so that certain desingularization of the cyclic cover
is smooth over an open set of the base whose complement is an simple normal crossing
divisor, by applying an important technique in [PTW18, Proposition 4.4].

Convention. �roughout this paper we will work over complex number �eld C. An al-
gebraic �ber space f : X → Y is a surjective projective morphism with connected �bers
between smooth projective manifolds. SNC is the abbreviation for simple normal crossing.
For a normal crossing divisor D on a complex manifold X , we write ΩX (logD) instead of
ΩX (logDred) for simplicity.

1. Preliminary

For the reader’s convenience, we recall some notions and de�nitions in [AT16, KP17]
which are frequently used in this paper.

De�nition 1.1. A pair (X ,D) consists of an equidimensional demi-normal variety X and
an e�ective Q-divisor D =

∑m
i=1 aiDi on X , such that the Q-divisor KX + D is Q-Cartier on

X . A pair (X ,D) is log smooth if X is smooth, and D has SNC support.

�e slc pair is an extension of the pair with log canonical singularities to non-normal
varieties.

De�nition 1.2 (slc pair). An slc pair (X ,D) consists of a reduced variety X and a Weil
R-divisor D =

∑m
i=1 aiDi on X with KX + D a Q-Cartier divisor so that

(i) �e variety X satis�es Serre’s condition S2,
(ii) X is Gorenstein in codimension 1, and
(iii) if ν : Xν → X is the normalization, then the pair (Xν ,

∑m
i=1 aiν

−1(Di ) + D
∨) is log

canonical, where D∨ denotes the preimage of the double locus on D.

�e slc family arises naturally in the moduli theory of higher dimensional varieties.

De�nition 1.3 (slc family). An slc family over a normal variety consists of a pair (X ,D)
and a �at proper surjective morphism f : (X ,D) → Y such that

(i) each �ber (Xy,Dy) := f −1(y) is an slc pair.

(ii) �em-th re�exive power ω
[m]

X/Y
(D) := OX (mKX/Y +mD) is �at for anym ∈ N.

(iii) �e family f : (X ,D) → Y satis�es the Kollár condition, that is, for any m ∈ N, the

re�exive power ω
[m]

X/Y
(D) commutes with arbitrary base change.

It is easy to see that a log smooth family f ◦ : (X ◦,D◦) → Y ◦ on a quasi-projective
manifold is an slc family.

Notation 1.4. For a log smooth family f ◦ : (X ◦,D◦) → Y ◦, let X ◦r := X ◦ ×Y ◦ · · · ×Y ◦ X ◦

be the r -fold �ber product of f ◦ : X ◦ → Y ◦, and D◦r :=
∑r
j=1 pr

∗
jD

◦, where prj : X
◦r → X ◦

denotes the projection to the j-th factor. �e induced morphism f ◦r : (X ◦r ,D◦r ) → Y ◦ is
also a log smooth family, which we say r -fold �ber product of f ◦ : (X ◦,D◦) → Y ◦.
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�e following Q-mild reduction by Abramovich [DA19, Corollary A.2] is applied to �nd
a “good” compacti�cation of the log smooth family f ◦ : (X ◦,D◦) → Y ◦ in �eorem A.

�eorem 1.5 (Q-mild reduction, Abramovich). Let f ◦ : (X ◦,D◦) → Y ◦ be a log smooth
family with Y ◦ a quasi-projective manifold. Assume that (X ◦,D◦) is a klt pair. �en for any
given �nite subset S ⊂ Y ◦, there exist

(i) a smooth projective compacti�cation Y ◦ ⊂ Y with B := Y \ Y ◦ an SNC divisor,
(ii) an SNC divisor T ⊂ Y containing B and disjoint from S ,
(iii) a �nite morphismW → Y unrami�ed outside T withW a smooth projective manifold,

and
(iv) an slc family д : (XW ,DW ) →W extending the given log smooth family (X ◦,D◦) ×Y W .

While the Q-mild reduction is only stated for the compact se�ing (D◦
= ∅) in [DA19,

Corollary A.2], the proof can be repeated here verbatim, and let us explain it brie�y.

Sketch of the proof of �eorem 1.5. In the same spirit as [DA19, �eorem A.1], one �rst ap-
plies the work of [DR18, �eorem 1.5] on moduli of Alexeev stable maps of slc pairs, to
compati�ty the slc family f ◦ : (X ◦,D◦) → Y ◦ in �eorem 1.5 into a projective morphism
f : (X,D) → Y. HereX andY are Deligne-Mumford stacks with projective coarse moduli
spaces, and D is a Q-divisor on X, such that the �bers of f are slc pairs. �e rest of the
proof is the destacki�cation of f , which completely follows from [DA19, Proof of Corollary
1.2]. �

�e following result on the strong positivity of direct images can be thought as a logar-
ithmic extension of Viehweg’sQn,m-conjecture [Vie83, p. 330-331].

�eorem 1.6 ([Amb05], [CGP17, Corollary D]). In the se�ing of�eorem A, let f : (X ,D) →
Y be any projective compacti�cation of f ◦ : (X ◦,D◦) → Y ◦, so that (X ,D) is a smooth klt pair,
and Y is smooth. �en f∗(mKX/Y +mD)

⋆⋆ is a big line bundle for m su�ciently large and
divisible. �

2. Positivity of direct image sheaves

We will replace the log smooth family f ◦ : (X ◦,D◦) → Y ◦ by its r -fold �ber product
which is still log smooth overY ◦, so that its projective compacti�cation possesses the strong
positivity for direct image sheaves.

�eorem 2.1. For the log Calabi-Yau family f ◦ : (X ◦,D◦) → Y ◦ in �eorem A, there exist a
smooth projective compacti�cation Y ⊃ Y ◦, a smooth klt pair (X ,D =

∑m
i=1 aiDi), an ample

line bundle A on Y , and an algebraic �ber space f : X → Y so that

(i) each irreducible component Di of D is dominant onto Y under f ;
(ii) the restriction (X ,D)↾f −1(Y ◦) → Y ◦ is the r -fold �ber product of f ◦ : (X ◦,D◦) → Y ◦. In

particular, f : (X ,D) → Y is log smooth over Y ◦;
(iii) the complement B := Y \ Y ◦ is an SNC divisor, and ∆ := f ∗B has SNC support, and
(iv) the linear system |mKX/Y+mD−mf ∗A| is non-empty form su�ciently large and divisible.

Proof. By the Q-mild reduction in �eorem 1.5, we can take a projective compacti�cation
Y ⊃ Y ◦ with B := Y \ Y ◦ simple normal crossing, and a �nite morphism τ :W → Y so that
the log smooth family (X ◦,D◦) ×Y W →W0 extends to an slc family д : (Z ,DZ ) →W :

(2.0.1)

(X ◦,D◦) ×Y W (Z ,DZ )

W ◦ W

д
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HereW ◦ := τ−1(Y ◦). We denote by Z r := Z ×W · · · ×W Z the r -th �ber product of Z →W ,
and set prj : Z

r → Z to be the projection to the j-th factor. Write Dr
Z :=

∑r
j=1 pr

∗
jDZ . As

is well-known (see e.g. [BHPS13, Proposition 2.12] or [AT16, Proposition 4.5]), this �ber
product family дr : (Z r ,Dr

Z
) →W is still an slc family.

Claim 2.2. For some su�ciently large and divisiblem,ω
[m]

Z/W
(mDZ ) is invertible,д∗(ω

[m]

Z/W
(mDZ ))

is a big line bundle, and for any r ∈ Z>0, one has

(дr )∗
(

ω
[m]

Z r /W
(mDr

Z )
)

= д∗
(

ω
[m]

Z/W
(mDZ )

)⊗r
.(2.0.2)

Proof of Claim 2.2. By [AT16, Proposition 4.4], (Z ,DZ ) is a log canonical pair, and in partic-
ularKZ +DZ is Q-Cartier. Moreover, it was proved in [WW18, Proposition 4.1] that (Z ,DZ )

is even klt. Take a log resolution µ : Z̃ → Z of (Z ,DZ ) with

µ∗(KZ + DZ ) = KZ̃ + D̃Z − Ẽ,(2.0.3)

where D̃Z and Ẽ are both e�ectiveQ-divisors, such that (D̃Z + Ẽ)red is simple normal cross-

ing, Ẽ is exceptional and the coe�cients of irreducible components of D̃Z are all in (0, 1).

Set Z ◦ := (д ◦ µ)−1(W ◦), and D◦
Z := Z ◦ ∩ D̃Z . �en (Z ◦,D◦

Z ) → W ◦ is isomorphic to
(X ◦,D◦) ×Y W → W ◦. Set τ ◦ := τ↾W ◦ . �en the logarithmic Kodaira-Spencer map associ-
ated to (Z ◦,D◦

Z ) →W ◦ is equal to

ρ′ : TW ◦
dτ ◦

−−→ (τ ◦)∗TY ◦

(τ ◦)∗ρ
−−−−→ (τ ◦)∗R1 f ◦∗

(

TX ◦/Y ◦(− logD◦)
)

where ρ : TY ◦ → R1 f ◦∗
(

TX ◦/Y ◦(− logD◦)
)

is the logarithmic Kodaira-Spencermap of (X ◦,D◦) →

Y ◦, which is generically injective by the assumption. Since τ : W → Y is �nite to one,
ρ′ is also generically injective. By �eorem 1.6, for m ≫ 0 large and divisible enough,

д̃∗(mKZ̃/W +mD̃Z )
⋆⋆ is a big line bundle. On the other hand, by (2.0.3) one has

д̃∗(mKZ̃/W +mD̃Z ) = д∗(mKZ/W +mDZ ),

which is a re�exive sheaf of rank 1, and thus invertible. �erefore, д∗(mKZ/W +mDZ ) is a
big line bundle as well.
Finally, note that if m(KZ/W + DZ ) is Cartier, then using De�nition 1.3 the line bundle

OZ (m(KZ/W + DZ )) = ω
[m]

Z/W
(mDZ ) is compatible with base-change, and thus

ω
[m]

Z r /W
(mDr

Z ) = (pr1)
∗ω

[m]

Z/W
(mDZ ) ⊗ · · · ⊗ (prr )

∗ω
[m]

Z/W
(mDZ ).

(2.0.2) then follows from the projection formula. �

By the above claim, д∗
(

ω
[m]

Z/W
(mDZ )

)⊗r
⊗τ ∗

(

OW (−2mA−mB)
)

is e�ective for some r ≫ 0.

Combining (2.0.2), there is a morphism

τ ∗Am → (дr )∗
(

ω
[m]

Z r /W
(mDr

Z )
)

⊗ τ ∗
(

OW (−mA −mB)
)

(2.0.4)

which is generically isomorphic. To keepnotation as simple as possible, we replace (X ◦,D◦) →

Y ◦ by its r -folded �ber product (X ◦r ,D◦r ) → Y ◦, which is still a log smooth family. �en
(Z ,DZ ) → W is replaced by its r -folded �ber product (Z r ,Dr

Z
) → W so that (2.0.1) still

holds. Hence (2.0.4) is renamed as

τ ∗Am → д∗
(

ω
[m]

Z/W
(mDZ )

)

⊗ τ ∗
(

OW (−mA −mB)
)

(2.0.5)

which is generically isomorphic. Pushing forward (2.0.4) by τ∗, by the projection formula
(2.0.5) induces a morphism

Am ⊗ τ∗OW → τ∗д∗
(

ω
[m]

Z/W
(mDZ )

)

⊗ OY (−mA −mB)(2.0.6)
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which is also generically isomorphic. Form ≫ 0 su�ciently large such that Am ⊗ τ∗OW is

generated by global sections everywhere, (2.0.6) shows that τ∗д∗
(

ω
[m]

Z/W
(mDZ )

)

⊗OY (−mA−

mB) is generated by global sections at general points of Y .
Take a smooth projective compacti�cation X ⊃ X ◦, and de�ne D to be the closure of

D◦ in X . A�er passing to a blow-up of X with the center in X \ X ◦, we can assume that
f ◦ : (X ◦,D◦) → Y ◦ can be compacti�ed into is a surjective morphism f : (X ,D) → Y

(2.0.7)

(X ◦,D◦) (X ,D)

Y ◦ Y

f ◦ f

so that f ∗B + D has SNC support. In particular, (X ,D) is a log smooth klt pair, which is
log smooth over Y ◦. Set Z1 := X ×Y W , and Z2 denotes to be its normalization. Since Z2 is

birational to Z , one can take a log resolution Z̃ → Z of (Z ,DZ ), so that it also resolves the
birational map Z d Z2, and д̃

∗(W \W ◦) is normal crossing.

(2.0.8)

X Z1 Z̃ Z

Y W W W

f

h

д1

ν

ϕ

д̃

µ

д

τ ==

Since τ :W → Y is �at, by [Vie83, Proof of Lemma 3.3] or [Mor87, (4.10)], Z1 is irreducible
Gorenstein, h∗ωX/Y = ωZ1/W and ν∗ω

m

Z̃/W
⊂ ωm

Z1/W
. By �at base change and the projection

formula, one has

д̃∗

(

OZ

(

mKZ̃/W +mϕ
∗(D + f ∗B)

)

)

֒→ (д1)∗
(

ωmZ1/W
⊗ h∗OX (mD +mf ∗B)

)

= (д1)∗

(

h∗
(

ωmX/Y ⊗ OX (mD +mf ∗B)
)

)

≃
→ τ ∗ f∗

(

OX (mKX/Y +mD +mf ∗B)
)

,

which is an isomorphism overW ◦. Note that д̃−1(W ◦) ≃ X0 ×Y W for µ : д̃−1(W ◦) → Z0 is

an isomorphism, and thus ϕ∗(D + f ∗B) − D̃Z is supported on д̃∗(W \W ◦). Since D̃Z is klt,

and ϕ∗ f ∗B = д̃∗τ ∗B > д̃∗(W \W ◦), ϕ∗(D+ f ∗B)−D̃Z is thus e�ective. One has the following
morphism

д∗
(

OZ (mKZ/W +mDZ )
)

= д̃∗

(

OZ̃

(

mKZ̃/W +mD̃Z

)

)

→

д̃∗

(

OZ̃

(

mKZ̃/W +mϕ
∗(D + f ∗B)

)

)

→ τ ∗ f∗
(

OX (mKX/Y +mD +mf ∗B)
)

which is an isomorphic overW ◦
= τ−1(Y ◦). Hence the morphism

τ∗д∗
(

ω
[m]

Z/W
(mDZ )

)

→ τ∗τ
∗ f∗

(

OX (mKX/Y +mD +mf ∗B)
)

(2.0.9)

= f∗
(

OX (mKX/Y +mD +mf ∗B)
)

⊗ τ∗OW .

is isomorphic over Y ◦. �e (surjective) trace map τ∗OW → OY as well as (2.0.9) induces a
generically surjective morphism

Ψ : τ∗д∗
(

ω
[m]

Z/W
(mDZ )

)

⊗ OY (−mA −mB) → f∗
(

OX (mKX/Y +mD)
)

⊗ OY (−mA).(2.0.10)

We denoted by

Φ : H0
(

Z ,OZ

(

mKZ/W +mDZ − д∗τ ∗(mA +mB)
)

)

→ H0 (X ,OX (mKX/Y +mD −mf ∗A)
)

(2.0.11)
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the injective C-linear map induced by Ψ, which indeed does not depend on the choice of

the intermediate birational model Z̃ of Z in (2.0.8). Recall that form ≫ 0, the le� hand side
of (2.0.11) is non-empty. Hence the linear system |mKX/Y +mD −mf ∗A| is non-empty.

�

As we mentioned in the end of § 0, since we require the discriminant locus of the the
new family obtained by the desingularization of certain cyclic cover to be simple normal
crossing, we need some sort of “base change property” of direct images. �e following
proposition follows the ideas in [PTW18, Proposition 4.4], and it can be seen as the log
version of [DA19, �eorem 1.24].

Proposition 2.3. Let f : (X ,D) → Y be the surjective morphism in �eorem 2.1, which is log

smooth overY ◦. �en there exists a birational morphism µ : Ỹ → Y from a projective manifold

Ỹ , a new birational model f̃ : (X̃ , D̃) → Ỹ

(X̃ , D̃) (X ,D)

Ỹ Y

f̃

ϕ

f

µ

where (X̃ , D̃) is a log smooth klt pair, and a Zariski open set V ⊂ Y ◦ so that one has the
following:

(1) every irreducible component of D̃ is dominant onto Ỹ ;

(2) the morphism Ṽ := µ−1(V )
µ
→ V is an isomorphism;

(3) the complementT := Ỹ \ Ṽ is an SNC divisor;

(4) the restriction (X̃ , D̃)↾µ−1(Y ◦) → µ−1(Y ◦) is isomorphic to (X ◦,D◦) ×Y Ỹ . In particular,

ϕ
↾ f̃ −1(Ṽ ) : (X̃ , D̃)↾ f̃ −1(Ṽ ) → (X ,D)↾f −1(V ) is an isomorphism;

(5) the divisor f̃ ∗(T ) + D̃ has SNC support, and

(6) there exists a divisor Γ ∈ |mKX̃ /Ỹ+mD̃+mẼ−mµ
∗A

�

� supported on f̃ −1(T ) form su�ciently

large and divisible, where A is an ample line bundle on Y , and Ẽ is an e�ective and f̃ -

exceptional divisor with f̃ (Ẽ) ⊂ T . Moreover, Γ contains one irreducible component P with

multiplicity one, and Γ ≥ f̃ ∗(B̃), where B̃ := µ−1(Y \ Y ◦).

Proof. By �eorem 2.1 one can pick a σ ∈ H0
(

Z ,mKZ/W +mDZ − д∗τ ∗(2mA +mB)
)

so that
s := Φ(σ ) ∈ H0

(

X ,OX (mKX/Y +mD − 2mf ∗A)
)

is non-zero, where Φ is de�ned in (2.0.11).
LetU ⊂ Y ◦ be the Zariski open set so that the zero divisor of s is supported on f −1(Y \U ).

Take a birational morphism µ : Ỹ → Y so that Ũ := µ−1(U )
µ
→ U is an isomorphism, and

S := Ỹ \ Ũ is an SNC divisor. Write Ỹ ◦ := µ−1(Y ◦), B := Y \ Y ◦, and B̃ = Ỹ \ Ỹ ◦. Let

(X ×Y Ỹ )
∼ be the normalization of main component of �ber product X ×Y Ỹ dominating Ỹ ,

and let X̃ → (X ×Y Ỹ )
∼ be a blow-up so that f̃ ∗B̃ + ϕ∗D has SNC support. Set D̃ to be the

strict transform of D under ϕ, and (1) is satis�ed. Hence (X̃ , D̃) is also a log smooth klt pair,

which is log smooth over Ỹ ◦. Write X̃ ◦ := f̃ −1(Ỹ ◦), and D̃◦ := D̃ ∩ X̃ ◦. One can easily see

that (4) is satis�ed automatically, and X̃ ◦ ∩ f̃ ∗(S) is SNC.
Let τ : W → Y be the surjective �nite morphism in the proof of �eorem 2.1 so that

there is an slc family (Z ,DZ ) →W extends the log smooth family (X ◦,D◦) ×Y W →W0 as

in (2.0.1). Take a desingularization W̃ → W ×Y Ỹ , and τ̃ : W̃ → Ỹ is a generically �nite

to one surjective morphism, which is �nite over Ṽ . Hence we can leave out a codimension
at least two closed subvariety on Ỹ \ Ṽ so that τ̃ is �nite (and thus �at). Set (Z̃ , D̃Z̃ ) :=



8 YA DENG

(Z ,DZ ) ×W W̃
д̃
→ W̃ , which is also an slc family, and extends (X̃ ◦, D̃◦) ×Ỹ W̃ :

(2.0.12)

(X̃ ◦, D̃◦) ×Ỹ W̃ (Z̃ , D̃Z̃ )

W̃ ◦ W̃

д̃

where W̃ ◦ := τ̃−1(Ỹ ◦). By the base change property in De�nition 1.3, one has

δ ∗σ ∈ H0
(

Z̃ ,OZ̃

(

mKZ̃/W̃ +mD̃Z̃ − (τ ◦ δ ◦ д̃)∗(2mA +mB)
)

)

where δ : W̃ →W . Since µ∗B > B̃, and τ ◦ δ = µ ◦ τ̃ , then δ ∗σ induces a section

σ̃ ∈ H0
(

Z̃ ,OZ̃

(

mKZ̃/W̃ +mD̃Z̃ − 2mд̃∗τ̃ ∗(µ∗A) −mд̃∗τ̃ ∗B̃
)

)

which is isomorphic to itself when restricted to τ̃−1(Ũ ). Being similar to the C-linear map
Φ de�ned in (2.0.11), σ̃ gives rise to a section

s̃ ∈ H0
(

X̃ ,OX̃

(

(mKX̃/Ỹ +mD̃) ⊗ f̃ ∗µ∗A−2m )
)

,

which is isomorphic to s when restricted on Ũ ≃ U . Note that s̃ is only de�ned over a big

open set of Ỹ for we leave out a codimension at least two subvariety contained inT = Ỹ \Ũ .
It therefore gives rise to the zero divisor

Γ0 ∈ |mKX̃ /Ỹ +mD̃ +mẼ − 2mf̃ ∗µ∗A
�

�

where Ẽ is an e�ective and f̃ -exceptional divisor with f̃ (Ẽ) ⊂ S . Note that Γ0 is supported

on f̃ −1(S) for the zero divisor of s is supported on f −1(Y \U ).

Nowwe take a general smooth hypersurfaceH ∈ |mµ∗A| so thatH∩Ũ , ∅ andT := H+S

has SNC support. �en for Ṽ := Ỹ \T and V := µ(Ṽ ), one has Ṽ = µ−1(V ) and µ : Ṽ → V
is an isomorphism. Hence (2) and (3) are satis�ed. Blowing up a bit more with centers in

Supp( f̃ ∗B̃), one can assume that f̃ ∗T + D̃ has SNC support and (5) is satis�ed. Set

Γ := Γ0 + f̃
∗H ∈ |mKX̃ /Ỹ +mD̃ +mẼ −mf̃ ∗µ∗A

�

�.

By this construction, Γ is supported on f̃ −1(T ). Since f̃ : X̃ → Ỹ is smooth over Ỹ ◦ ⊃ Ũ ,

Γ↾Ũ = f̃ ∗H↾Ũ is smooth, and thus Γ contains one irreducible component P with multiplicity

one, where P is the closure of f̃ ∗H↾Ũ in X̃ . To show the last statement, one might assume

that A − B is also ample. �en we replace Γ by

Γ +mf̃ ∗µ∗B := Γ0 + f̃
∗H ∈ |mKX̃/Ỹ +mD̃ +mẼ −mf̃ ∗µ∗(A − B)

�

�

and the claim follows from the fact f̃ ∗µ∗B ≥ f̃ ∗B̃. �

3. Construction of Viehweg-Zuo Higgs bundles

3.1. De�nition of Viehweg-ZuoHiggs bundles. Following Hitchin and Simpson, a log-
arithmic Higgs bundle (resp. sheaf) over a log pair (Y ,B) consists of a vector bundle (resp.
torsion free sheaf) E and a morphism θ : E → E ⊗ΩY (logB) so that θ ∧θ = 0. �is section
is devoted to the construction of certain negatively curved Higgs bundles on the base in
�eorem A.�is type of Higgs bundles, �rst introduced by Viehweg-Zuo [VZ02,VZ03] and
later developed by Popa-Taji-Wu [PTW18], has proven to be a powerful tool in studying
the hyperbolicity of moduli spaces. Let us give the de�nition in an abstract way, follow-
ing [DA19, De�nition 2.1].
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De�nition 3.1 (Abstract Viehweg-Zuo Higgs bundles). Let Y ◦ be a quasi-projective mani-
fold, and let Y ⊃ Y ◦ be a projective compacti�cation of Y ◦ with the boundary B := Y \ Y ◦

simple normal crossing. A Viehweg-Zuo Higgs bundle on Y ◦ is a logarithmic Higgs bundle

(Ẽ , θ̃ ) on Y consisting of the following data:

(i) an SNC divisor T on Y so that T ≥ B,
(ii) a big and nef line bundle B over Y with the augmented base locus B+(B) ⊂ T ,
(iii) a logarithmic Higgs bundle (E ,θ ) :=

(⊕n
q=0 E

n−q,q,
⊕n

q=0 θn−q,q
)

induced by the grad-

ing of Deligne extension of a Z-variation of polarized Hodge structure de�ned over
Y \T with eigenvalues of residues lying in [0, 1) ∩ Q, and

(iv) a sub-Higgs sheaf (F ,η) ⊂ (Ẽ , θ̃)

so that one has the following:

(1) (Ẽ , θ̃) := (B−1 ⊗ E , 1 ⊗ θ ). In particular, θ̃ : Ẽ → Ẽ ⊗ ΩY (logT ), and θ̃ ∧ θ̃ = 0.
(2) (F ,η) has log poles only on the boundary B, that is, η : F → F ⊗ ΩY (logB).

(3) Write Ẽk :=B−1 ⊗ En−k ,k , and denote by Fk := Ẽk ∩F . �en the �rst stage F0 of F is
an e�ective line bundle. In other words, there exists a non-trivial morphism OY → F0.

Let us recall that, the augmented base locus of a big line bundle L on a projectivemanifold
Y , denoted by B+(L), is de�ned to be

B+(L) :=

∞
⋂

m=1

B(mL −A),

where A is any ample line bundle on Y , and B(•) is the stable base locus for a line bundle.

3.2. Hyperbolicity via VZ Higgs bundles. We are able to state our main result in this
section.

�eorem 3.2. For the log smooth family (X ◦,D◦) → Y ◦ in �eoremA, a�er replacingY ◦ by a
birational model, there exists a VZ Higgs bundle over some smooth projective compacti�cation
Y ⊃ Y ◦.

Let us �rst show how the above theorem implies �eorem A.

Proof of �eorem A. Once the VZ Higgs bundle is constructed, the proof of �eorem A.(i)
should be well-known to the experts, and we brie�y recall the proof for completeness sake.
�e �rst step is the construction of Viehweg-Zuo (big) sheaf, which is due to Viehweg-Zuo

in [VZ02]. Since
(⊕n

q=0 Fq,
⊕n

q=0 ηq
)

is a sub-Higgs sheaf of
(

Ẽ , θ̃
)

, as initiated in [VZ02],

for any q = 1, . . . ,n, the morphism ηq : F → F ⊗
⊗q

ΩY (log B) de�ned by iterating
η : F → F ⊗ ΩY (logB) q-times induces

F0 → Fq ⊗
⊗q

ΩY (logB).(3.2.1)

(3.2.1) factors through Fq ⊗ SqΩY (logB) by η ∧ η = 0. Recall that F0 is e�ective, one thus
has a morphism

OY → F0 → Fq ⊗ SqΩY (logB).(3.2.2)

We denote by Nq and Kq the kernels of ηq : Fq → Fq+1 ⊗ ΩY (log B) and θn−q,q : En−q,q →

En−q+1,q+1 ⊗ΩY (logT ) respectively, which are both torsion free sheaves. �en Nq = (B−1 ⊗

Kq) ∩ Fq . By the work of Zuo [Zuo00] (see also [PW16, Bru17, FF17, Bru18] for various
generalizations) on the negativity of kernels of Kodaira-Spencer maps of Hodge bundles,
K∗
q isweakly positive in the sense of Viehweg

1, cf. [VZ02, Lemma 4.4.(v)]. Hence there exists

1By [Bru17], one can even prove that theHodgemetric induces a semi-negatively curved singular hermitian
metric for Kq in the sense of Rau� [Rau15] and Păun-Takayama [PT18] (cf. also [HPS16]).
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a morphism

B ⊗ K∗
q → N ∗

q

which is generically surjective. Letk ∈ Z>0 the minimal non-negative integer so thatηk , 0
and ηk+1 = 0. As proved in [VZ02, Corollary 4.5], k must be positive. Indeed, if this is not
the case, one has OY ⊂ K0 ⊗ B−1, which is not possible. Hence there exists a non-trivial
morphism

OY → F0 → Nk ⊗ SkΩY (logB).

In other words, there exists a non-trivial morphism

B ⊗ K∗
k → N ∗

k → SkΩY (log B).(3.2.3)

Since B is big and nef, B ⊗K∗
k
is big in the sense of Viehweg [VZ02, De�nition 1.1.(c)], and

thus for any ample line bundle A on Y there exists α ≫ 0 so that Sα (B ⊗ K∗
k
) ⊗ A −1 is

generated by global sections over a Zariski open set. By (3.2.3) there is a non-zeromorphism

A → SαkΩY (logB).

Such A is called the Viehweg-Zuo big sheaf in literatures.
Once the Viehweg-Zuo sheaf A is constructed, it follows from [CP15, �eorem 4.1] that

KY + B is big. �eorem A.(i) is thus proved.
�e proof of�eorem A.(ii) is exactly the same as [DA19, Proof of�eorem A]. In [DA19,

§2] we establish an algorithm to construct a Finsler metric whose holomorphic sectional
curvature is bounded above by a negative constant via VZ Higgs bundles. By proving some
sort of in�nitesimal generic Torelli theorem (cf. [DA19, �eorem F]) for VZ Higgs bundles,
in [DA19, �eorem B] we show that this Finsler metric is generically non-degenerate. �e
pseudo Kobayashi hyperbolicity of Y ◦ follows from a bimeromorphic criteria in [DA19,
Lemma 2.10]. �

Remark 3.3. Let us mention that although the Lang conjecture [Lan91, Chapter VIII. Con-
jecture 1.4] on the equivalence between pseudo Kobayashi hyperbolicity and being of log
general type is quite open at the present time, we know that it holds for Hilbert modular
varieties by [Rou16,CRT17] and subvarities of Abelian varieties [Yam19].

We show how�eorem A implies �eorem B, whose proof is quite standard.

Proof of �eorem B. We �rst prove (ii). Pick any positively dimensional irreducible closed

subvariety Z ⊂ Y ◦. We take a desingularization Z̃ → Z , which is positively dimensional,

connected quasi-projective manifold. De�ne a base change fZ̃ : (X ◦,D◦) ×Y ◦ Z̃ → Z̃ , which
is also a log smooth family of Calabi-Yau klt pairs. Since the logarithmic Kodaira-Spencer
map is functorial under the base change, by the assumption of e�ective parametrization for

f ◦, the logarithmic Kodaira-Spencer map of fZ̃ is generically injective. Hence Z̃ is of log
general type by �eorem A.(i), and (i) is proved.
We will prove (i) by contradiction. Suppose that there exists a non-constant holomorphic

map γ : C → Y ◦. Set Z to be the Zariski closure of the image γ (C), and take a desingu-

larization Z̃ → Z , which is positively dimensional, connected quasi-projective manifold.

�en γ : C → Z li�s to a Zariski dense entire curve γ̃ : C → Z̃ . By the above arguments,

Z̃ can be realized as the base of a log smooth family of Calabi-Yau klt pairs with maximal

variation. �is is a contradiction, since by �eorem A.(ii), Z̃ cannot have any Zariski dense
entire curve. �
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3.3. Construction of VZ Higgs bundles. In this subsection we construct the VZ Higgs
bundles on some birational modi�cation of the base Y ◦ in �eorem A.

Proof of �eorem 3.2. We �rst apply Proposition 2.3 to make the following set-up. Changing

the smooth birational model, we may replace Y ◦ by Ỹ ◦ := µ−1(Y ◦) in Proposition 2.3, and

by abuse of notation we rename Ỹ ◦ as Y ◦. �ere exist a smooth projective compacti�cation
Y ⊃ Y ◦, a log smooth klt pair (X ,D) and a surjective morphism f : (X ,D) → Y which is
log smooth over Y ◦. Set n to be the relative dimension of X → Y . Form su�ciently large
and divisible one can �nd an e�ective divisor

Γ ∈ |mKX/Y +mD +mE −mf ∗A
�

�

which is supported on f −1(T ), contains one irreducible component with multiplicity one
and Γ ≥ ∆ := f ∗B by (6). Here T is an SNC divisor on Y containing B := Y \ Y ◦ by (3), E
is an e�ective and exceptional divisor with f (E) ⊂ T , and the line bundles A and A − B on
Y are both big and nef with the augmented base locus B+(A) = B+(A − B) ⊂ B. Γ + D has
SNC support by (5), and each irreducible component of D dominates onto Y by (1).
Set

H := Γ +m⌈D⌉ −mD ∈ |mKX/Y +m⌈D⌉ +mE −mf ∗A|(3.3.1)

which has SNC support, and contains an irreducible component with multiplicity one. Let
Zcyc be the cyclic cover of X obtained by taking them-th roots along H , and let Znor be the
normalization of Zcyc, which is irreducible by [EV92, Lemma 3.15.(a)]. Write π : Znor → Y .
Since H is relatively normal crossing over V := Y \ T , Znor↾π−1(V ) → V is a locally trivial
family. Let Z → Znor be a functorial resolution of singularities, which is a simultaneous
resolution for Znor↾π−1(V ) → V . Write д : Z → Y . �en Z↾д−1(V ) → V is smooth. Blowing up

Z a bit more with centers in д−1(T ), one can assume that Π := д−1(T ) is an SNC divisor.
Write ∆ := f ∗B and Σ := f ∗T . Leaving out a codimension at least two subvariety of Y ,

one can assume that

(1) bot B and T are smooth;
(2) both f : X → Y and д : Z → Y are �at; in particular, the f -exceptional divisor E in

(3.3.1) disappears;
(3) ∆ (resp. Π) is relatively normal crossing over B (resp. T );
(4) for any I = {i1, . . . , iℓ} ⊂ {1, . . . , r }, the surjective morphism DI → Y is also �at, and

DI ∩ ∆ is relatively normal crossing over B. Here we denote DI := Di1 ∩ · · · ∩ Diℓ .

Claim 3.4 (good partial compacti�cation). Write ΩX/Y

(

log(∆ + ⌈D⌉)
)

:= ΩX

(

log(∆ +
⌈D⌉)

)

/f ∗ΩY (logB), ΩZ/Y (logΠ) := ΩZ (logΠ)/д
∗
ΩY (logT ). �en they are all locally free.

In other words, one has the following short exact sequences of locally free sheaves

0 → f ∗ΩY (logB) → ΩX

(

log(∆ + ⌈D⌉)
)

→ ΩX/Y

(

log(∆ + ⌈D⌉)
)

→ 0(3.3.2)

0 → д∗ΩY (logT ) → ΩZ (logΠ) → ΩZ/Y (logΠ) → 0.(3.3.3)

Proof of Claim 3.4. As is well-know, the morphism h : (Z ,Π) → (Y ,T ) is a “good partial
compacti�cation” of the smooth morphism Z \Π → Y \T in the sense of [VZ02, De�nition
2.1.(c)], and one can easily show that ΩZ/Y (logΠ) is locally free.
To prove the local freeness of ΩX/Y

(

log(∆+ ⌈D⌉)
)

, it su�ces to show that for any y0 ∈ Y
and σ ∈ ΩY (logB)(U ), where U ∋ y0 is some open set with σ (y0) , 0, f ∗σ (x0) , 0 for any
x0 ∈ f −1(y0).

Note that there is a unique I ⊂ {1, . . . , r } so that x0 ∈ DI and x0 < D J for any other J ) I .
A�er reordering, we can assume that I = {ℓ + 1, . . . ,p}. Take a local coordinate system
(x1, . . . ,xm) centering at x0 so that ∆red = (x1 · · ·xℓ = 0) and Di = (xi = 0) for i ∈ I . Since
∆ = f ∗B, the morphism f ∗ΩY (logB) → ΩX

(

log(∆+ ⌈D⌉)
)

factors through ΩX (log∆). Note
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that d logx1, . . . ,d logxp ,dxp+1, . . . ,dxm and d logx1, . . . ,d logxℓ,dxℓ+1, . . . ,dxm form the

local basis forΩX

(

log(∆+⌈D⌉)
)

andΩX (log∆). Hence f
∗σ =

∑ℓ
j=1 aj(x)d logxj+

∑m
i=ℓ+1 ai(x)dxi ,

where ai(x) are local holomorphic functions. When we write f ∗σ in terms of the basis of
ΩX

(

log(∆ + ⌈D⌉)
)

, one has

f ∗σ =

ℓ
∑

j=1

aj (x)d logxj +

p
∑

i=ℓ+1

ai(x)xid logxi +

m
∑

k=p+1

ak (x)dxk .

Since x0 ∈ DI = (xℓ+1 = · · · = xp = 0), one has

f ∗σ (x0) =

ℓ
∑

j=1

aj(x0)d logxj +

m
∑

k=p+1

ak (x0)dxk .(3.3.4)

When f ∗σ is seen as the local section in ΩX

(

log(∆ + ⌈D⌉)
)

, f ∗σ (x0) = 0 if and only if
a1(x0) = · · · = aℓ(x0) = ap+1(x0) = · · · = am(x0) = 0. On the other hand, since the projective
morphism fI : (DI ,DI ∩∆) → (Y ,B) satis�es that fI is �at, DI ∩∆ → B is relatively normal
crossing, we thus conclude that f ∗I σ (x0) , 0. Since d logx1, . . . ,d logxℓ,dxp+1, . . . ,dxm
form the local basis for ΩDI

(logDI ∩∆), by (3.3.4), f ∗σ (x0) = f ∗I σ (x0) , 0, and we conclude

that ΩX/Y

(

log(∆ + ⌈D⌉)
)

is also locally free. �

By the above claim, such a partial compacti�cation of the log smooth family f ◦ : (X ◦,D◦) →

Y ◦ can thus be seen as the “good partial compacti�cation” in the log se�ing.

For any p ∈ Z>0, let

Ω
p

X

(

log(∆ + ⌈D⌉)
)

⊗ L
−1
= F

0 ⊃ F
1 ⊃ · · · ⊃ F

p ⊃ F
p+1
= 0(3.3.5)

be the Koszul �ltration associated to (3.3.2) twisted with L −1 := −KX/Y −⌈D⌉+ f ∗A, de�ned
by

F
i := Im

(

f ∗Ωi
Y (logB) ⊗ Ω

p−i

X

(

log(∆ + ⌈D⌉)
)

⊗ L
−1 → Ω

p

X

(

log(∆ + ⌈D⌉)
)

⊗ L
−1
)

(3.3.6)

so that the associated graded objects are given by

gr
i
F

• :=F
i/F i+1

= f ∗Ωi
Y (logB) ⊗ Ω

p−i

X/Y

(

log(∆ + ⌈D⌉)
)

⊗ L
−1

�e tautological exact sequence associated to (3.3.5) is de�ned by

(3.3.7)

f ∗ΩY (log B) ⊗ Ω
p−1

X/Y

(

log(∆ + ⌈D⌉)
)

⊗ L −1
Ω
p

X/Y

(

log(∆ + ⌈D⌉)
)

⊗ L −1

0 gr
1F • F 0/F 2

gr
0F • 0

By taking higher direct images Rf∗ of (3.3.7), the connecting morphisms of the associated

long exact sequences induce Fp,q
τp,q
−−→ Fp−1,q+1 ⊗ ΩY (logB), where we denote

Fp,q := Rq f∗

(

Ω
p

X/Y

(

log(∆ + ⌈D⌉)
)

⊗ L
−1
)/

torsion.

Recall that Zcyc is the cyclic cover of X by takingm-th root along a normal crossing divisor
H ∈ |mL | on X , and δ : Z → Znor is a desingularization of the normalization Znor of Zcyc.

Denote byψ : Z
δ
−→ Znor

ϕ
−→ X the composition map.

Claim 3.5. For any i = 1, . . . ,n, one has a natural morphism

Ξ : ψ ∗
(

Ω
i
X

(

log(∆ + ⌈D⌉)
)

⊗ L
−1
)

→ Ω
i
Z (logΠ).(3.3.8)
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Proof of Claim 3.5. Note that ϕ : Znor → X is a surjective and �nite morphism, which is
étale over X \ Hred, and non-singular over X0 := X \ Sing(Hred). For the Z

◦
nor := ϕ−1(X0),

Znor \ Z
◦
nor has codimension at least two for Sing(Hred) is a subvariety in X of codimension

at least two. Write H0 := H↾X0
, and ϕ0 : Z ◦

nor → X0 for the restriction of ϕ on Z ◦
nor. As

observed by Popa-Schnell [PS17] and Wei-Wu [WW18], there is a natural morphism

ϕ∗0
(

Ω
i
X0
(logH0) ⊗ L

−1
↾X0

)

→ Ω
i
Z 0
nor
,

and a�er taking the re�exive hull, one has

ϕ∗
(

Ω
i
X (logH) ⊗ L

−1) → Ω
[i]
Znor
,(3.3.9)

where Ω
[i]
Znor

is the re�exive di�erential form de�ned in [GKKP11, Notation 2.17]. Note that

Znor is normal and has quotient singularities, it thus has klt singularities. It then follows

from [GKKP11,�eorem 4.3] that, there is a sheaf morphism δ ∗Ω
[i]
Znor

→ Ω
i
Z , and combining

(3.3.9) one has

ψ ∗
(

Ω
i
X (logH) ⊗ L

−1) → Ω
i
Z .

Note that Γ ≥ ∆, and (m⌈D⌉ −mD)red = Dred for D is klt. Hence we have the inclusion

Ω
i
X

(

log(∆ + ⌈D⌉)
)

⊂ Ω
i
X (logH)

and the lemma follows from the obvious inclusion Ω
i
Z
⊂ Ω

i
Z
(logΠ). �

Pulling back (3.3.2) byψ ∗, we have a short exact sequence of locally free sheaves

(3.3.10) 0 → д∗ΩY (logB) → ψ ∗
ΩX

(

log(∆ + ⌈D⌉)
)

→ ψ ∗
ΩX/Y

(

log(∆ + ⌈D⌉)
)

→ 0

In a similar way as (3.3.5), we associate (3.3.3) and (3.3.10) with two �ltrations

Ω
p

Z
(logΠ) = G

0 ⊃ G
1 ⊃ · · · ⊃ G

p ⊃ G
p+1
= 0(3.3.11)

ψ ∗
(

Ω
p

X

(

log(∆ + ⌈D⌉)
)

⊗ L
−1
)

= F̃
0 ⊃ F̃

1 ⊃ · · · ⊃ F̃
p ⊃ F̃

p+1
= 0(3.3.12)

de�ned by

G
i := Im

(

д∗Ωi
Y (logT ) ⊗ Ω

p−i

Z (logΠ) → Ω
p

Z (logΠ)
)

,

F̃
i := Im

(

д∗Ωi
Y (logB) ⊗ψ

∗
(

Ω
p−i

X

(

log(∆ + ⌈D⌉)
)

⊗ L
−1
)

→ ψ ∗
(

Ω
p

X

(

log(∆ + ⌈D⌉)
)

⊗ L
−1
)

)

.

�eir associated graded objects are thus given by

gr
i
G

• := G
i/G i+1

= д∗Ωi
Y (logT ) ⊗ Ω

p−i

Z/Y
(logΠ)

gr
i
F̃

• := F̃
i/F̃ i+1

= д∗Ωi
Y (logB) ⊗ ψ

∗
(

Ω
p−i

X/Y

(

log(∆ + ⌈D⌉)
)

⊗ L
−1
)

= ψ ∗
gr
i
F

•
.

(3.3.13)

One can easily show that Ξ de�ned in (3.3.8) is compatible with the �ltration structures

Ξ : F̃ • → G • in (3.3.11) and (3.3.12). It thus induces a morphism between their graded

terms griF̃ • → gr
iG •, and in particular, a morphism between the following short exact
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sequences
(3.3.14)

д∗ΩY (logB) ⊗ψ
∗
(

Ω
p−1

X/Y

(

log(∆ + ⌈D⌉)
)

⊗ L −1
)

ψ ∗
(

Ω
p

X/Y

(

log(∆ + ⌈D⌉)
)

⊗ L −1
)

0 gr
1F̃ • F̃ 0/F̃ 2

gr
0F̃ • 0

0 gr
1G • G 0/G 2

gr
0G • 0

д∗ΩY (logT ) ⊗ Ω
p−1

Z/Y
(logΠ) Ω

p

Z/Y
(logΠ)

Pushing forward (3.3.14) by Rд∗, the edge morphisms induce

(3.3.15)

F̃p,q F̃p−1,q+1 ⊗ ΩY (log B)

E
p,q
0 E

p−1,q+1
0 ⊗ ΩY (logT )

ρp,q

φp,q

ρp−1,q+1⊗ι

θ ′p,q

where ι : ΩY (logB) ֒→ ΩY (logT ) denotes the natural inclusion, E
p,q
0 := Rqд∗

(

Ω
p

Z/Y
(logΠ)

)

,

which is locally free by a theorem of Steenbrink [Ste77] (see also [Zuc84, Kol86, Kaw02,
KMN02] for various generalizations), and

F̃p,q := Rqд∗

(

ψ ∗
(

Ω
p

X/Y

(

log(∆ + ⌈D⌉)
)

⊗ L
−1
)

)

/

torsion.

Let us mention that the similar construction as
(⊕

p+q=ℓ F̃
p,q,

⊕

p+q=ℓ φp,q
)

is made by Taji

in his work [Taj18] on a conjecture of Kebekus-Kovács [KK08, Conjecture 1.6].

Recall that ψ : Z
δ
−→ Znor

ϕ
−→ X . As is well-known, Znor has rational singularities (see

e.g. [EV92, §3]), and one thus has Rqδ∗OZ = 0 for any q > 0. By the projection formula
and the degeneration of relative Leray spectral sequences, for any locally free sheaf E on
X , one has

Rqψ∗(ψ
∗
E ) = E ⊗ Rqψ∗OZ = E ⊗ Rqϕ∗(δ∗OZ ) = 0, ∀q > 0(3.3.16)

thanks to the �niteness ofϕ. Applying (3.3.16) to (3.3.13), for anyq > 0, we haveRqψ∗(gr
iF̃ •) =

0, and therefore, the exactness of the tautological short exact sequence of F̃ • is preserved
under the direct imagesψ∗ as follows:
(3.3.17)

0 ψ∗(gr
1F̃ •) ψ∗(F̃

0/F̃ 2) ψ∗(gr
0F̃ •) 0

0 gr
1F • ⊗ ψ∗OZ F 0/F 2 ⊗ ψ∗OZ gr

0F • ⊗ ψ∗OZ 0

By the collapse of relative Leray spectral sequences, one has

Rqд∗(gr
i
F̃

•)
(3.3.13)
= Rqд∗(ψ

∗
gr
i
F

•)
(3.3.16)
= Rq f∗

(

ψ∗(ψ
∗
gr
i
F

•)
)

= Rq f∗(gr
i
F

• ⊗ψ∗OZ )

= Ω
i
Y (logB) ⊗ Rq f∗

(

Ω
p−i

X/Y

(

log(∆ + ⌈D⌉)
)

⊗ L
−1 ⊗ψ∗OZ

)

.
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�erefore,
(⊕

p+q=ℓ F̃
p,q,

⊕

p+q=ℓ φp,q
)

can also be de�ned alternatively by pushing forward

(3.3.17) via Rf∗, with φp,q the edge morphisms.
By [EV92, Corollary 3.11], the cyclic group G := Z/mZ acts onψ∗OZ = ϕ∗OZnor , and one

has the decomposition

ψ∗OZ = OX ⊕

m−1
⊕

i=1

(L (i))−1, where L
(i) := L

i ⊗ OX (−⌊
iH

m
⌋).

In particular, theG-invariant part (ψ∗OZ )
G
= OX . Hence one can easily show that the cyclic

groupG acts on (3.3.17), whoseG-invariant part is

0 ψ∗(gr
1F̃ •)G ψ∗(F̃

0/F̃ 2)G ψ∗(gr
0F̃ •)G 0

0 gr
1F • F 0/F 2

gr
0F • 0

�erefore,
(⊕

p+q=ℓ F
p,q,

⊕

p+q=ℓ τp,q
)

is a direct factor of
(⊕

p+q=ℓ F̃
p,q,

⊕

p+q=ℓ φp,q
)

. Comb-

ing (3.3.15), we have

(3.3.18)

E
p,q
0 E

p−1,q+1
0 ⊗ ΩY (logT )

F̃p,q F̃p−1,q+1 ⊗ ΩY (log B)

Fp,q Fp−1,q+1 ⊗ ΩY (log B)

θ ′p,q

ρp,q

φp,q

ρp−1,q+1⊗ι

τp,q

Note that f∗OX = OY for f : X → Y is an algebraic �ber space of relative dimension n.
Hence

Fn,0 = f∗(KX/Y − ∆ + ∆red + ⌈D⌉ +L
−1) = f∗

(

∆red + f
∗(A − B)

)

⊃ B,(3.3.19)

whereB := A−B is a big and nef line bundle withB+(B) ⊂ B. De�ne F
n−q,q
0 :=B−1⊗Fn−q,q ,

and

τ ′n−q,q : B
−1 ⊗ Fn−q,q

1⊗τn−q,q
−−−−−−→ B

−1 ⊗ Fn−q−1,q+1 ⊗ ΩY (logB)

By (3.3.18), one has the following diagram:

B−1 ⊗ E
n−q,q
0

1⊗θ ′n−q,q
// B−1 ⊗ E

n−q−1,q+1
0 ⊗ ΩY (logT )

F
n−q,q
0

ρ ′n−q,q

OO

τ ′n−q,q
// F
n−q−1,q+1
0 ⊗ ΩY (logB)

ρ ′n−q−1,q+1⊗ι

OO

(3.3.20)

where Fn,00 is an e�ective line bundle by (3.3.19). Note that all the objects in (3.3.20) are only
de�ned over a big open set Y ′ of Y .
Write Z0 := д

−1(V ), which is smooth over V = Y \T . �e local system Rnд∗C↾Z0 extends
to a locally free sheafV on Y (here Y is projective rather than the big open set!) equipped
with the logarithmic connection

∇ : V → V ⊗ ΩY (logT ),

whose eigenvalues of the residues lie in [0, 1) ∩ Q (the so-called lower canonical extension
in [Kol86]). By [Sch73,CKS86,Kol86], the Hodge �ltration of Rnд∗C↾Z0

extends to a �ltration
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V := F 0 ⊃ F 1 ⊃ · · · ⊃ F n ⊃ F n+1
= 0 of vector bundles so that their graded sheaves

En−q,q := F n−q/F n−q+1 are also locally free, and there exists

θn−q,q : E
n−q,q → En−q−1,q+1 ⊗ ΩY (logT )

for each q = 0, . . . ,n. As mentioned above, E
n−q,q
0 is locally free by Steenbrink’s theorem.

By a theorem of Steenbrink-Zucker [Zuc84], we know that (
⊕n

q=0 E
n−q,q
0 ,

⊕n
q=0 θ

′
n−q,q) =

(
⊕n

q=0 E
n−q,q,

⊕n
q=0 θn−q,q)↾Y ′ , hence it can be extended to the whole projective manifold

Y de�ned by (
⊕n

q=0 E
n−q,q,

⊕n
q=0 θn−q,q). For every q = 0, . . . ,n, we replace F

n−q,q
0 by its

re�exive hull and thus the morphisms τ ′n−q,q, ρ
′
n−q,q and the diagram (3.3.20) extends to the

whole Y .
To �nish the construction, we have to introduce the sub-Higgs sheaf of

(⊕n
q=0 B−1 ⊗

En−q,q,
⊕n

q=0 1 ⊗ θn−q,q
)

in De�nition 3.1. For each q = 0, . . . ,n, we de�ne a coherent

torsion-free sheaf Fq := ρ′n−q,q(F
n−q,q
0 ) ⊂ B−1 ⊗ En−q,q , and denote ηq by the restriction of

1 ⊗ θn−q,q to Fq . By (3.3.20), one has

ηq : Fq → Fq+1 ⊗ ΩY (logB).

�en
(⊕n

q=0 Fq,
⊕n

q=0 ηq
)

is a sub-Higgs sheaf of
(⊕n

q=0 B−1 ⊗ En−q,q,
⊕n

q=0 1 ⊗ θn−q,q
)

.

By (3.3.19), there exists a morphism OY → F0 which is an isomorphism over V . �e VZ
Higgs bundle is therefore constructed. �

Remark 3.6. �e morphism Ξ de�ned in (3.3.8) was �rst observed by Popa-Schnell [PS17],
and was later generalized to the log se�ing in [Wei17, WW18]. �is morphism inspires

us to construct an intermediate Higgs bundle
(⊕n

q=0 F̃
n−q,q,

⊕n
q=0 φn−q,q

)

, which relates
(⊕n

q=0 F
n−q,q,

⊕n
q=0 τn−q,q

)

with
(⊕n

q=0 E
n−q,q
0 ,

⊕n
q=0 θ

′
n−q,q

)

in a more direct manner. In

the above proof, we do not require the divisor H for cyclic cover to be generically smooth
over the base2, which is more �exible than the original construction in [VZ02,VZ03].
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[CP15] Frédéric Campana and Mihai Păun, Orbifold generic semi-positivity: an application to famil-

ies of canonically polarized manifolds, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 2, 835–861,
http://aif.cedram.org/item?id=AIF 2015 65 2 835 0. ↑ 10

[CP19] , Foliations with positive slopes and birational stability of orbifold co-

tangent bundles, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 1–49,
https://doi.org/10.1007/s10240-019-00105-w . ↑ 2

[CRT17] Benoit Cadorel, Erwan Rousseau, and Behrouz Taji,Hyperbolicity of singular spaces, arXiv e-prints
(2017), arXiv:1710.08832. ↑ 10

[DA19] Ya Deng and Dan Abramovich, On the hyperbolicity of base spaces

for maximally variational families of smooth projective varieties,
https://hal.archives-ouvertes.fr/hal-01874489 , HAL pré-publication,
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