N
N

N

HAL

open science

Inference for continuous-time long memory randomly

sampled processes
Mohamedou Ould Haye, Anne Philippe, Caroline Robet

» To cite this version:

Mohamedou Ould Haye, Anne Philippe, Caroline Robet. Inference for continuous-time long memory
randomly sampled processes. 2021. hal-02266684v2

HAL Id: hal-02266684
https://hal.science/hal-02266684v2

Preprint submitted on 8 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02266684v2
https://hal.archives-ouvertes.fr

Inference for continuous-time long memory randomly sampled
processes

Mohamedou Ould Haye!, Anne Philippe**and Caroline Robet?

1School of Mathematics and Statistics.
Carleton University, 1125 Colonel By Dr. Ottawa, ON, Canada, K1S 5B6
2 Laboratoire de Mathématiques Jean Leray,

2 rue de la Houssiniere, Université de Nantes, 44 322 Nantes France.

Abstract

From a continuous-time long memory stochastic process, a discrete-time randomly sampled one
is drawn using a renewal sampling process. We establish the existence of the spectral density of
the sampled process, and we give its expression in terms of that of the initial process. We also
investigate different aspects of the statistical inference on the sampled process. In particular, we
obtain asymptotic results for the periodogram, the local Whittle estimator of the memory parameter
and the long run variance of partial sums. We mainly focus on Gaussian continuous-time process.
The challenge being that the randomly sampled process will no longer be jointly Gaussian.

Keywords : Long memory, sampled process, Whittle estimator, periodogram, spectral density, limit
theorems, Poisson process, continuous-time Gaussian processes.

1 Introduction

Irregularly observed time series occur in many fields such as astronomy, finance, environmental, and
biomedical sciences. Discretization of a continuous time process can produce unevenly time series. For
example, physiological signals such as electromyography (EMG), electrocardiogram (ECG), as well as
heartbeats (see e.g. Bardet and Bertrand (2010)) are measured at non regularly spaced times. In
finance, market prices are tick-by-tick data; a tick being happening randomly, depending for instance
on transaction prices. Such data constitute an other example of irregularly spaced time series (see e.g.
Dacorogna (2001)).

Irregular sampling interval is also used whenever one has some uncertainty surounding actual dates
such as paleoclimatic time series (see e.g. Thomson (2009)), temperature and CO2 measurements
data studied by Nieto-Barajas and Sinha (2015). In these instances, we do not control the way data
are observed, as they are recorded at irregular time points. A common approach consists in fitting a
continuous time process to discrete data (see for instance Jones (1985)).

Statistical tools available to handle unevenly time series are essentially developed for short range
dependence (see e.g. Li (2014) and references therein). We can also refer to numerous papers in
astronomy, that focus on spectrum estimation (see e.g. Thiebaut and Roques (2005)).

*corresponding author : anne.philippe@univ-nantes.fr



To the best of our knowledge, few results are available when the continuous-time embedding process

has a long memory. Actually, long memory statistical inference for continuous-time models is generally
built upon a deterministically sampled process (see Tsai and Chan (2005a,b); Chambers (1996); Comte
(1996)). However, as in the examples previously cited, in several applied contexts one has to deal with
random sampling from a continuous process. Philippe et al. (2021) studied randomly-spaced observa-
tions, using a renewal process as a sampling tool. They showed that the intensity of the long memory is
preserved when the distribution of sampling intervals has a finite moment, but there are also situations
where a reduction of the long memory is observed. Consequently, the continuous time memory parameter
cannot be estimated without a prior information on the sampling process. Bardet and Bertrand (2010)
studied spectral density estimation of continuous-time Gaussian processes with stationary increments
observed at random times.
In this paper, we describe the spectral properties of the resulting discrete-time-indexed randomly sam-
pled process and we provide more explicit expressions for the spectral density of the sampled process.
We mention that Philippe and Viano (2010) addressed resampling from a discrete-time process and
obtained the existence of the spectral density. However, their spectral density expression is less explicit
since it is expressed as a non explicit limit of an integral.

Most of existing long memory inferential techniques assume that the process is a subordinated Gaus-
sian/linear one. Philippe et al. (2021) established a rather surprising characteristic consisting in the loss
of the joint-Gaussianity of the sampled process when the original process was Gaussian. Therefore we
cannot apply such results to our sampled processes that are neither Gaussian nor strongly linear. We
study some aspects of the inference via spectral approaches. In particular, to establish the consistency
of long memory parameter’s local Whittle estimator using Dalla et al. (2006)’s assumptions for nonlinear
long memory processes.

We now describe our sampling model. We start with X = (X;);cp+, & continuous time process and
a renewal process (1,)n>0. We study the discrete-time indexed process Y = (¥,),,>1 defined by

Y,=Xr, n=12,.... (1)

We want to emphasise that the sampling process T}, is not observed. Throughout this paper, we will
assume that, and refer to

Hx : X is second-order stationary continuous time process with auto-covariance function ox and having
a spectral density fx: for all t € R

oo
ox(t) = / M i (A)dA. 2)
—0oQ
Hr : (Tn)n>o independent of X and of ii.d. increments Tj;1 —7; = A; > 0 non degenerate with
cumulative distribution function S and we let Ty = 0.

We impose this specific initialization 7y = 0 only to simplify our notations since it implies that A; =
T;4+1 — 1T} for all j € N. However, all the results remain true if we take Tp = Ag and A; =T — T4, for
i>1

The rest of the paper is organized as follows. Section 2 presents results on the existence of a spectral
density for the process Y when the spectrum of X is absolutely continuous. We also provide an integral
representation of such density. In Section 3, we establish the asymptotic distribution of the normalized
periodogram of the sampled process. In Section 4, we show the consistency of Y-based local Whittle
memory estimator. We also study the estimation of the so-called long-run variance.



2 Spectral density function of sampled process

Under the assumptions Hx and Hp, Philippe et al. (2021) show that if X is stationary then so is Y.
Moreover, its covariance function is of the following form

oy (j) = Cov(Y1,Yj11) = E(ox(Tj)). (3)

Note that the independence of X and the renewal process imposed in Hr, is required to get (3). In the
next proposition, we prove that the existence of the spectral density is preserved by random sampling
and we establish the link between the spectral densities of processes X and Y.

Proposition 1. Assume that the continuous-time process X satisfies Hx and that Hp holds. Then, the
discrete-time process Y admits a spectral density and it is given by the following formula

Fr@) =5 [ pla B0 (1)

2 J_ s

where Wg is the characteristic function of the cumulative distribution function S defined in Hr and

1— 2|2
Pl = 12 2 <1

1—e iwz[2’
1s the well known Poisson kernel.

Proof. According to the stationarity property and (3) proved in Philippe et al. (2021) and the existence
of the spectral density fx in (2), the covariance function of Y can be computed via Fubini’s theorem as
follows:

oy () = Blox() =B [~ M)
= [ (B(e")) s = [ sy xan (5)

To prove (4), it will suffice to show that for every j > 0,

s

() = [ e pyoyia, (©
—T

as fy defined by (4) is clearly an even function. For this, we will use the following Poisson integral

formula for the disk: if u is an analytic function on the disk |z| < 1 and continuous on |z| = 1 then its

real and imaginary parts are harmonic and therefore for |z| < 1, we have

u(z) ! /7r u(e®)p(x, z)dz.

Applying the above with u(z) = 2/, where j is a fixed nonnegative integer, we get

. 1 a
2 = — e

5 Urp(x, 2)dx, for all |z] < 1, (7)

—T



and since for Lebesgue a.e. A\, [¥g(A)| < 1 (S being non degenerated), then for a.e. A,

(s = = / " (e, Ws())d. (8)

2 J_,
Also taking j =0 in (7), we get

1 s
— p(x,z)de =1 for all |z| < 1.
27

—T

Hence, by Fubini’s theorem, we see that fy, as given in (4), is integrable on [—m, 7]. Applying Fubini’s
theorem once again and substituting (8) in (5), we immediately get (6). O

The following corollary gives a precise expression of the spectral density of Y in the most common
case of Poisson renewal process.

Corollary 1. Assume that the continuous-time process X satisfies Hx and that (T,,) is a Poisson

renewal process with rate 1, independent of X. If N2 fx()\) is bounded and continuous on the real line

then

u(sinz, 1 — cosx)
2(1 —cosz)

fr(z) =

for a.e. x in the interval (—m, ), 9)

where u(x,y) is the harmonic function on the upper half plane with boundary condition u(z,0) =
22 fx(x). In particular, both spectral densities are equivalent near zero, i.e., fy(x) ~ fx(z) as z — 0.

Proof. The exponential distribution has characteristic function (1 —i\)~! and hence from Proposition
1, we can easily derive that

=5 [ ¥ ) £ (10

T or —oo V(A =sinz)2 + (1 — cosz)?

—11/00 <(A ! —cosz 2>A2fx()\)d)\. (11)

T 2(1—cosz)m ) o —sinz)? 4+ (1 — cosx)

In the above we recognise the well known Poisson integral formula for the upper half plane for the
function: z +— 22 fx(z): if g is continuous and bounded on the real line then the function defined by

is harmonic on the upper half plane and satisfies u(z,0) = g(z) (see for example the result 7.3 on page

147 of Axler et al. (2000)) and % — 1 uniformly in x as y — 0. Combining (11) and (12) we get the
stated result. O

The next proposition precises the behaviour of the spectral density of sampled process Y near zero, given

in the previous corollary, under mild semi parametric conditions on the spectral density of the original
process X.

Proposition 2. Assume that T, is a Poisson process independent of X with rate 1 and that X satisfies
Hx with spectral density of the form

Fx(\) = N7 (N), (13)



with 0 < d < 1/2, $(0) # 0 and ¢ is continuous on [—1,1] and differentiable on (—1,1). Then
fy (@) = [a] 7' fy () (14)
with fy is positive continuous on [—m, | and

ox(0)

5 |2 + o(|z[*), as x — 0. (15)
m

fy (@) = ¢(0) +

Proof. Since fy is even, we will consider x € (0,7]. From (10), we have

1 o0 )\2 1 e8] /\2
frlw) = 2 /0 (A —sinx)? + (1 — cos x)2fX()\)d/\ T on /0 (A +sinz)? + (1 — cosx)? Jx(A)dA. (16)

We study both integrals in (16) near x = 0.

)\2

/OO ox(0)
0 (A+sinz)?2+ (1 —cosxz)

2

(17)

S Fx(Vdx = / h Fx(\)dA =
0

since for fixed A, as x — 0, the integrand (in the left-hand side) clearly increases towards fx (). Let us
deal with the first integral in (16).

e8] )\2 sinz )\2
/0 (A —sinz)? + (1 — cos x)? Jx(NdA = /0 (A —sinz)? + (1 — cos x)2fX(>\>d)\+

2sinx 2 e ) 2
/ A Shxax+ [ A SFx(Vax (18)

ing (A —sinz)?+ (1 —cosx) 2sing (A —sinz)? 4+ (1 — cosx)

Using the fact that fx(A) = A72¢¢()\) and sin?(x/2) = (1 — cosx)/2 and putting A\ = tsinz, we obtain
for the first integral in the right hand side above, with some u(t) € (0,1) and v(¢t) € (0,1),

e z? . _9d ! 2724 sin 1 .
/0 (N —sinz)? + 4(sin(z/2))* fx(N)dA = (sinx) /0 =02+ tanQ(x/2)¢(t sin z)dt

o lag [P =) sing .
= (sinx) /0 7T tan’(2)2) d((1 —t)sinz)dt

sin
2 + tan?(x/2)

1 : 1 1 -
— (i ) —2d ¢(0)sinz : / t , / sinz
= (sinx) {/0 7+ tan’(2)2) dt + O <sm:1; Tt tan’(2)2) dt +sinx | tan(@/2) dt)|.

Putting ¢ = utan(z/2) the right-hand-side of the last equation is equal to

1
— (sinz)2 /O (1— (2 — 2d)(1 — u(t))=2%) ($(0) + ¢/ (v(t)) sinz(1 — t))dt

1
u? +1

. ! t . ! sinz
(0] (smx/o 7+ tan(/2) dt + smac/O 7 tan2(2/2) tanz(x/Q)dt> ]
= (sinz) 2% [26(0) cos®(z/2) arctan(1/ tan(z/2)) + O (z(log(1 + 2*) — log z) + 2z arctan(2/z))]

du +

1/ tan(z/2)
(sin z) 24 [2(]5(0) cos?(z/2) /0



Then

sin x 2
/0 O —sna)? i TG x WA =2 (@O)r + O(elogz)),  asz =0 (19)

Similarly, we have

2sinx )\2 . Y 2 t272d sin .
fue O G O = (v [ et s

o4 LA+t 2ging .
= (sinx) /0 71 tan’(2)2) o((1+t)sinz)dt

! sinx
= (sin x)—Qd/O (1+(2—2d)(1 + u(t))l—“t)m(gém) + ¢/ (v(t)) sinz(1 + t))dt
=272 (¢(0)7 + O(zlogz)) . (20)

Then, we have as ¢ — 0

/OO ¥ Fx(A)dA — /OO Fxax = 2XO) (21)
osing (A —sina)? + tan2(z/2)" "~ 0 X 2

since the integrand is bounded uniformly in = by 4fx(A) and converges (as  — 0) to fx(A) and hence
we can apply Lebesgue’s theorem. Combining (17) and (21) as well as (19) and (20), we obtain that

fy () = 27205 (2), fy(z) = ¢(0) + (Déf:))xw +o <a:2d> as © — 0.
Moreover, fy is continuous and positive on [—,,7|. Indeed, the continuity of f;- follows from the fact
that the 2nd integrand in the right hand side of (16) is continuous and uniformly bounded in z by
4fx(X) which is integrable. As for the first integral in the right hand side of (16), after splitting it into
three terms as in (18) and multiplying it by 22¢, we see that Lebesgue’s dominated convergence theorem
still applies. This completes the proof of Proposition 2. O

We now present a lemma that gives a quite precise expression of the covariance function of X from
its spectral density. We will be imposing the following condition on fx.

Condition H;: fx(\) = ¢[A|72(1 — h()\)), 0 < d < 1/2, where h is a nondecreasing function with
h(0) = 0 and h(x) — 1 as © — oo and h is differentiable at 0. We notice that condition Hy is not one
of the usual slowly varying type conditions for Tauberian and Abelian theorems in the context of long
range dependence (see Leonenko and Olenko (2013)). However, it guarantees a uniform control of the
remainder g(z) in (22) rather than at infinity only.

Remark 1. If the spectral density fx satisfies Hy instead of (13), then Proposition 2 still holds with
¢ := c(d) instead of $(0). The proof is essentially the same and is omitted.

Lemma 1. Assume that condition Hy is satisfied. Then, there exist positive constants C(d) and c(d)
such that for all x > 0,
ox(z) = c(d)z* " + g(x), (22)

with |g(x)|] < SO

|| -



Proof. Let x > 0 be fixed. Since fx is even we have,

ox(z) =2 /000 cos(zA) fx (N)dA.

Without loss of generality, we take 2¢ = 1 in Hy and by the formula 3.761.9 of Gradshteyn and Ryzhik
(2015)

/ cos(zA)A 2%\ = (1 — 2d) sin(7d)2z?? 1 =: ¢(d)z?L.
0

Therefore, it remains to show that for some C(d) > 0,

< C(d)z™!

/ h cos(Az)A"22h(N\)dA
0

The rest of the proof relies on applying integration by parts for Stieltjes integrals.
Let dU()\) = cos(Az)A~2¢. We have (by one integration by parts)

U(t) = /Ot cos(Az)A~24d\

A=t t
_! [A—M sin(Ax)} 42 / A2 Lgin(\x)d\
x A=0 x Jo

1 t
== <t_2d sin(tx) + 2d/ A~2d-1 sin()\x)d)\) ,
x

0

clearly U is bounded and
: 2d [ aq-1
IimU(t) = — A sin(Ax)dA.
t—o00 T Jo
Using the fact that h is nondecreasing, h(A) — 1, as A — oo, and h(0) = 0, we obtain (via integration

by parts at some steps in the calculation below

b b b
/ cos(Az)A2Th(N\)d\ = / h(A) AU (A) = [UA)AN)]2 - / U(N)dh(N), (23)
with
TR =2 b:O Qj / A2 L gin(\z)d),
— / ’ UNdh(\) = ! / ’ <>\2d sin(\z) + 2d / ’ u2dlsin(ux)du> dh(\)
a T Ja 0
f_l ' —2d gin(\x —% ' Au_Qd_lsin uzx)du
— m/ A (Az)dh(\) x/ (/0 (uz)d >dh(k),
also

2 ab < /0 g sin(ux)du) dh()\)

X

2d b 2d 2d
= —"h(b) / A~2d- 1s1n()\x)d)\+—h( ) / A2 sin(A\z)d\ + — / A2 L gin(\z)h(N\)dA.
0 0 a

T



Since
2d b 2d a a 2d [
——h(b) / A2 gin(\x)d\ + —h(a) / A2 gin(Az)dh 228 22 [ A 24-Tgin(Ag)d),
x 0 x 0 b—o0 x Jo

f: U(X)dh()) has the same limit as

1P o 2d " oy
- A" sin(Ax)dh(A) + —~ A sin(Az)h(\)dA,

as a — 0 and b — .

-

b 2 b
—= / A2 sin(Az)dh(\) + — / )\lesin()\x)h()\)d)\’
a x a

1 b 2d
gx/ A2 dn(\) + - / A2 Ip () dA

a

1 2 2d [*
S (h(b)b_mfh(a)a_%) n d/ A~2d- 1h()\)d)\+d/ A~24=1h(\)dA
€ a € a

X
_1 —2d —2d 4d 2d—1 a—0 47d *—2d-1 o
=~ (h(b)b h(a)a ) = e AOJAX <=0 5 [ AR =

C(d)

We note that the integral above is indeed finite since h is a bounded function, ~(0) = 0, and is differen-

tiable at zero.
The proof of Lemma 1 is now complete.

Corollary 2. If T}, is a Poisson process and fx satisfies condition Hy then
Var(ox(T;)) = O (r=?), as r — oo,
where « = min(2,3 — 4d).
Proof. We have from the previous lemma,
Var (ox (1)) = Var (e(d)T2"~" + 9(T))

= A(d)Var (T2 + Var (g(T;)) + 2¢(d)Cov (T2, o(T;))

A (d)Var (TX) + CHA)E (T;72) + 20(d)C(d) | Var (T R (1)),

For r > 3, as T, has Gamma distribution with parameters (r, 1), we have

oy °°x7“*2*16_$$:r(r—2): 1 -
B() = [ ey = iy = ey =00

Also,

v (127) =2 1) - (1)) = R ()

O



We know that as r — oo,

and therefore we obtain that
Var (TTQd_1> =(1- 2(1)27"_2(1_2‘”_1 +o0 (?”_2(1_2‘1)_1> =0 (n_a) )

which completes the proof of the corollary. O

3 Asymptotic theory of the periodogram

We consider in this section a stationary long memory zero-mean Gaussian process X = (X¢);cr+ having
a spectral density of the form (13). Let Y = (X7, )nen, where (T3,)nen is a Poisson process with rate
equal 1 (actually any rate will do). As shown in Philippe et al. (2021) and in contrast with the original
process X, while Y remains marginally normally distributed, it is no longer jointly Gaussian and, as a
result, Y is not a linear process.

In this section, we extend some well-known facts about periodogram properties to the randomly
sampled processes Y. In particular, our main result will be to establish that the normalized periodogram
of Y will asymptotically converge to a weighted x? distribution.

Theorem 1. Assume that X is a stationary Gaussian process satisfying Hy and let Y = (X7, )nen
where (T, )nen is a Poisson process with rate equal 1. Let

n
§ Ykeik)\j
k=1

. 2
In(Xj) = 5

)

be the periodogram of Yi,...,Y, at Fourier frequency \j = 2mj/n for j € {1, ... ,[n/2]}. Then, we
have for any fized number of Fourier frequencies v > 1, and any j1,...,75, € {1,...,|n/2|} all distinct
integers
In(Aj)) In(A )) D 20 20 2/ 2/
AR | = (L (d)][Z +Z v L ()21 (3w) + Z5(50)]) s 24
(5 155 ) B (@2 + G+ L @16 + 2360 (20

where (Z1(1), Z2(1),. .., Z1([n/2]), Z2([n/2]) is a zero-mean Gaussian vector, with Z1(j), Z2(k) are in-
dependent for all j,k=1,...,[n/2] and

Varz1() = 5 - 243 (25)
and o 1 Rj(d)
Var(Z(7)) = 5 + 7,(d)’ (26)
and for j # k,
Con(Z4 (). Zu(k)) = LaE DTl (27)
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Lj(d) + R;i(d)

Coo(Za(j), Za(k)) = , (28)
Lj(d)Li(d)
with ) 0
2 (% sin®(A\/2) -
Li(d)=— — = — dA 29
() W/OO(27rj—)\)2 2] ’ (29)
1 [ sin?(\/2) A |
(d) = = — dA
R;(d) w/oo (2mj — N)(27j + A) | 27) ' (30)
(R /00 sin2(\/2) A |
Lir(d) = T o 27k = XN)(27j = N) |27 X (31)
and . ) od
(jk) /°° sin“(\/2) AT
R;(d) = dA. 32
3(d) T Joo Crk+N)(275 —N) |27 (32)
Proof. We will prove the broader result
1 = 1 =
Ly = — cos(r\j, ) X1, ——— sin(rA;, ) X1, (33)
< 210 fy (Aj,) ; 7 2mnfy (Aj,) Z_; 7
(rA; T O (rA;
mey Zcos rAj,) 27mfy Zsm rA;j,) >
D . . . .
2 (i@, 260, Ljy<d><zluy>,zz<jy>>) .
Conditionally on T1, ..., T, the vector (X, ..., X7, ) is Gaussian, and hence so is Z,. Its covariance

matrix ¥ = Var(Z,|T1,...,T,) has (i, k) entry of the form

1 n n
ox(Ty = Ts)hig(r, s
271N fY()‘ji)fY()\jk)rz:;; x( Vhig(r, s)

where
hi i;(r, s) = cos(rAj;) cos(sA;, ), or cos(rAj,)sin(sA;, ), or sin(rA;;)sin(sA;, ).

We prove (33) using the characteristic function: since X and T are independent, for v € R? | and with

1/ being the transpose of u,
1,
Tl,...,Tn)):IE exp —§uETu .

As the characteristic function is bounded, it will suffice to show that

E(eiu/Zn) —F (E <eiu/Zn

zr 5 x, (34)

where ¥ is the variance-covariance matrix of (\/L1(j1)(Z1(j1), Z2(j1))s -+ s /Lu(Gu)(Z1(Jv), Z2(4v)))-



11

When ¢ and k are fixed, the form of h; (7, s) is the same for all 7 and s and hence E (X7) will have
entries of the form

1 & 1
o OO ;;E(UX(TT —T))hi(r,s) = e TR O O] ;;UY )hi g (r, s)

by (3), and therefore E(X7) — X by virtue of Theorem 5 of Hurvich and Beltrao (1993) (the only
condition required is second order stationarity of the process Y; and the behaviour (14) of its spectral
density). To complete the proof of (34), it will then suffice to show that

Var (X7) — 0, (35)

i.e. the variances of the entries of %7 converge to zero. By Cauchy-Schwarz inequality, it will be enough
to focus on the diagonals. We will treat those diagonals with cosine, as those with sine treat the same
way. For some constant C' (that may change from one expression to another), we obtain

Var (27‘(an ZZO’X (T — Ts) cos(rAj) cos(sA; ))

r=1 s=1
C , /
~ Z Cov (ox (T, — Ts) cos(rA;j) cos(sA;), ox (T — Ty) cos(r' ;) cos(s'A;))
r,s,r’ s’ =1
n n 2 n 2

<~ V'V T, —T. <’ VVar (ox(T1)) | < and 0 36

_w Tzlszl al‘(UX< r s)) _W }; ar(aX( h)) < W_) , ( )
using Corollary 2. [l

4 Inference for the long-memory parameter

We still assume in this section that X = (X;);cp+ is a stationary long memory zero-mean Gaussian
process having a spectral density satisfying Hy condition. Periodogram-based approaches to estimate
the long memory parameter d are very popular. Often one requires that the underlying process is linear
or at least is built on martingale difference innovations. The reader is referred to Beran et al. (2013);
Giraitis et al. (2012) for reviews of some recent works on this issue, as well as the book edited by
Doukhan et al. (2003). The next lemma and its proof show that although it is not a linear process with
i.i.d. innovations, the sampled process still satisfies important long memory 4th cumulant conditions.
These 4th cumulant conditions will allow us to show both the convergence of an estimator of the memory
parameter d and the estimation of the asymptotic variance, necessary for example in the inference about
the mean of the original continuous time process X.

Lemma 2. Assume that X is a zero mean stationary Gaussian process satisfying Hy and let Y =
(X1, )nen, where (Ty)nen is a Poisson process. Then for all d € (0,1/2), we have

sup Z lcum(Yp, Vs, Y7, Ya)| = O(n??). (37)
heNrs =0

and .
D Jeum(Y5, Y3, ¥, Y5)| = O(n*log(n)). (38)

h,r,s=0
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Proof. The proof is postponed in Appendix. Note that the term log(n) in the right hand side of (38)
is needed only in the particular case d = 1/4, known to be borderline between weak long memory and
strong long memory, as will be seen in the proof. O

4.1 Consistency of Local Whittle estimator
We consider local Whittle estimator of the memory parameter d defined by

~

dy, = argmin U,(pB)

Be[-1/2,1/2]
where the contrast function U, is defined by
mMn 2 2/@ Mn
Un(B) = log | — > AP L) —m—ZIng\J,
j=1 "=l

and the bandwidth parameter m = m,, satisfies m,, — oo and m,, = o(n).

Theorem 2. Suppose X is a stationary Gaussian process satisfying condition Hy and that Y, = X,
where T, is a Poisson process with rate 1. Then,

dn —— d. (39)

In addition, for my, =n®, 0 < a < 1, we have

Jn—d:op( ! ) (40)

logn

Proof. According to our result (15) and Dalla et al. (2006) (Corollary 1), we have
. 2d
d—d=0p (m—m logm + (=) +rn> ,

for some remainder r,, which we will be controlling as in what follows, depending on the convergence
rate of m/n to zero. To prove (39) it will suffice to show that r, — 0.

Case 1 : /n(logn)*1-24 = O(m). From part (iv) of Corollary 1 of Dalla et al. (2006), the
remainder 7, can be written as

DAY 12
T = < n > (E> log3n — 0,
m

n
where n
D = sup Z\cum(Yo,Yh,Yr,Ys)‘-
hreN
We have

n
D:L* g sup Z ‘Cum(Y(),th)/T)}/s)‘a

heN r,s=0

so that by (37) we get D* = O(n??) and hence r,, = O(1/logn).
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Case 2 : m = O(y/n(logn)¥/(1-2d), We use (iii) of Corollary 1 of Dalla et al. (2006),

D*\ /2 2d
Ty = <”> (@) log?n — 0,
n n

where
n

D= Y |eum(Yp,Yh, Yy, V).

n
h,r,s=0

According to (38), D} = O(n*?logn), and therefore
=0 (nd—1/2 (log n)2(1+2d)/(1—2d)) .

This concludes proof of (39).
To prove (40), we show that r, = o(1/logn). This is immediate in case (2) above. Since m = n?,
0 <a <1, wewill be in case (1) if @ > 1/2 and then

rn =0 (n1/2_d_“(1_2d)> /logn =o(1/logn).

4.2 Long run variance

The 4th cumulant condition (37) is needed to estimate the long run variance of the sampled process.
Such estimation plays a crucial role in many aspects of statistical inference. For example, when it comes
to estimating the mean p of the original process X, as we have from Philippe et al. (2021)

(Var (nl/Q_d?n>>_1/2 n'2 (Y, — ) 5 N(0,1)

and hence, it is important to obtain a consistent estimator of the variance above. Also such estimator is
important in testing for short memory versus long memory or for stationarity versus unit root as such
tests involve V/S type statistics and require estimating the long run variance (see Giraitis et al. (2006)
and references therein for details). Let us write the spectral density of ¥; under the form f(\) ~ ¢|\|~%¢
as A — 0. Let

1 n—h

o) = = 3% = V) (¥an =)

be the sample covariance function of Y;. Let the asymptotic variance of the normalized sum be
. * (sin()/2))
S2(d) = lim (Var(n1/2—dY)) = 4c / <Sm(/>> I\~
n—00 — 0 A

Let

a2 — 2|5 ! _ﬁ &
S%(d) = q ((0)+2hzl<1 q) (h)).
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Proposition 3. Let d be a consistent estimator for memory parameter d such that log(n)(d—d) = op(1).
Let ¢ — 00 as n — oo such that ¢ = O(y/n). Then we have

S2(d) 5 s2(d).

Proof. Referring to Theorem 2.2. of Abadir et al. (2009) we just need to verify the cumulant condition

n
sup »  [Cum(Yp, V3, ¥r, Y5)| < én®,

r,s=1
for some positive constant ¢. This is the case according to Lemma 2. O

Remark 2. A readily available candidate for d above is the Whittle estimator for which the log(n)
consistency was established in Theorem 2.

Appendix : Proof of Lemma 2

Proof. The proof is essentially based on Corollary 2 and a well known cumulant formula.

Without loss of generality, we can assume that the Poisson rate is 1. The process Y is 4th order
stationary as the conditional joint distribution of (Yy, Yiin, Yayr, Yirs) given (T, ..., Tipmax(h,rs)) 1S @
multivariate normal with variance-covariance matrix M (Ty, T+, Tkir, Tirs) given by

ax(0) ox(Tpen—Tr) ox(Tprr—Tr) 0x(Thys—Tk)
| ox(Thrn—Tx) ax(0) X (Thgr—Thtn) ox (Thgs—Thtn)
M(Te, Tict s Trs Thotes) = X (Thtr—Tk) ox (Thtr—Thtn) ax(0) 0x (Thys—Thtr) (41)
ox (Trts—Tx) ox (Thys—Thtn) 0x Thts—Thir) ox(0)

which is k free. Hence it is enough to establish the lemma when k = 0. We apply the total law of
cumulance formula, (Brillinger (1969)), which for the sake of clarity, we remind here: for all random
vectors Z = (Zy,...,7Z,) and W, we have

cum(”2) = Z cum [cum (X, [W), ..., cum(Xy, |W)] (42)

where X = (X;,i € m;), and 71,...,m, (b =1,...,n) are the blocks of the permutation 7, and the
sum is over all permutations 7 of the set {1,2,...,n}.

But condition on 7', the process Y; is jointly zero-mean Gaussian and therefore E(Y;|T) = 0 as well as
cum(Y;, Y;, Y5, Yi|T) = cum(Y;, Y}, Yy |T) = O for all 4,5, k,¢. Hence applying (42) to Y; with W = T,
only the two-by-two partitions of {0, h,r, s} will survive. and since cum(U, V') = Cov(U, V'), we get from
(41)

Cum(Yo7 Yh, Y}, Y;) :COV(Jx(Th), Ux(Tr — Ts)) + COV(Jx(Tr), Ux(Th — TS))
+ Cov(ox(Ts),ox (T, — T)). (43)



Note that for h < min(r, s), Cov(ox(Th),ox (T, — Ts)) = 0. Moreover
> [Cov(ox(Th),ox (T =T < > Var(ox(Ty))/*Var(ox(Ts — T;,))"/?

1<r<h<s<n 1<r<h<s<n
< Z =21 45 — r)~/2
1<r<h<s<n
n
<ot Y 3
1<r<h t=1
< pl-a2 nl=e/2 = =12 if g < 1/4
- log(n) ifd>1/4

- nid-1 ifd < 1/4
~ |log(n) ifd>1/4
<Cn* forall 0<d<1/2.

The last configuration is

h h
> |Cov(ox (Th), ox (T, — To))| = Y _ [Var(ox (Th))/*Var(ox (Ts — Tp))'/?

r,s=1 r,s=1
h
t=1

— Chl=e/2 = CR24=12 if d < 1/4
- log(h) if d>1/4
<COn® forall 0<d<1/2.

Therefore uniformly in A we have

n

> [Cov(ox (Th), ox (T, — T))| < Cn*.

r,s=1

For the remaining two terms in the right hand side of (43) we have, for fixed h,

NE

S [Cov(ox(T),ox(Th — T)| = 3 [Covlox (L), ox (Th — T)))|

r,s=1

=
)
Il
—

Var(ox (1)) 2Var(ox (T, - T))?

NE

=
%
Il
—_

sT2(1+ |h—r[)7/?

NE

<

3
)
I
—

n?~* =pid-l ifd < 1/4
log(n)? ifd>1/4
<Cn* forall 0<d<1/2.

Q

<
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This concludes the proof of (37).
Let us now prove (38). Note that

n

> eum(Yp, V4, Y, Ye) =3 Y Cov(ox(Th), ox (T, — Ty))
h,r,s=0 h,r,s=1

=6> Y Cov(ox(Th),ox (T, — T)). (44)
h=1r<s=l1

Moreover, we have

n

> [Cov(ox(Th),ox(Tr = T) < C > h™2(14|r —s|)=/2
h,r,s=1 h,r,s=1

<CZh a/zz o2

nnz_o‘ = n4d ifd<1/4
<C 9 ,
nlog(n) ifd>1/4
S Cn4d
In the particular case d = 1/4 (where we still have o = 2), a supplementary term log(n) is needed in
the bound. Indeed we split the sum in the right hand side of (44) into 3 configurations. when 1 < h <

r < s < n the covariance Cov(ox(1}),0x (T, — Ts)) is zero. When the sum is over 1 <r < h < s <mn,
we get

n s h—1
> 1Cov(ox(Th),ox(Tr =T <CY D> A (s—h+h—1)""

1<r<h<s<n s=1h=1 r=1
~ CZZh (log(s) —log(s — h))
s=1h=1
=—CY > (h/s) " log(1 = h/s)(1/s)
s=1h=1

N_cz</ Los( 1_5”) da;) :C'z;n.
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For the last sum over 1 <r < s < h <n (where we will need the log term) we have

h s—1
Z |Cov(ox(Th),ox (T, —Ts))| < C’Zh IZZ s—T)
1<r<s<h<n s=1r=1
n h
=> hy (bt
h=1 t=1
n h
=> ) @-t/nt!
h=1t=1

~C» (log(h) — 1) ~ Cnlog(n).

This completes the proof of (38) in Lemma 2. O
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