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TOPOLOGICAL EXPANSION IN DYNKIN TYPE ISOMORPHISMS FOR
MATRIX VALUED FIELDS

TITUS LUPU

ABSTRACT. We consider Gaussian fields of symmetric or Hermitian matrices over an electri-
cal network, and describe how Dynkin type isomorphisms with random walks for these fields
make appear topological expansions encoded by ribbon graphs. A particular case of this, in
continuum, is that of a Dyson’s Brownian motion for 8 equal to 1 or 2. We further consider
matrix valued Gaussian fields twisted by an orthogonal or unitary connection. In this case the
isomorphisms make appear traces of holonomies of the connection along random walk loops
parametrized by cycles of ribbon graphs.

1. INTRODUCTION

There is a family of identities, usually referred to as ”isomorphism theorems”, that relate the
square of a Gaussian free field (GFF) to the occupation times of symmetric Markov process
(random walk on an electrical network, Brownian motion, etc.). One usually cites the Dynkin’s
isomorphism [Dyn84al [Dyn84b], who expressed it for

2q

B[ [] ot F(e*/2)],

k=1

¢ being a GFF. Dynkin’s identity is related to earlier works of Symanzik [Sym65, [Sym66} [Sym69]
in Euclidean Quantum Field Theory and of Brydges, Frohlich and Spencer [BES82] on spin
systems. Subsequently, other versions of isomorphism theorems appeared, such as Eisenbaum’s
isomorphism [Eis95], generalized Ray-Knight theorems [EKM™00], Sznitman’s isomorphism for
random interlacements [Sznl2a] and Le Jan’s isomorphism for Markovian loop-soups [LJ11].
We refer to [MROG6, [Szn12b| for a survey on these.

More recently, new directions have been opened in the topic, such as relating the sign of a
scalar free field to Markovian trajectories [Lup16, [Zhal§|, connecting in dimension 2 the isomor-
phism theorems to the Schramm-Loewner Evolution [Lupl9, [QW15| [ALS18| or isomorphisms
relating hyperbolic or spherical fields to interacting random walks [BHSIS| [BHS19] (see also
[DSZ10, [ST15]).

A particular extension that we will use in this paper is that by Kassel and Lévy who considered
vector valued GFF's twisted by an orthogonal or unitary connection [KLI6]. In this setting
isomorphism theorems make appear the holonomy of the connection along the random walks.
Holonomies along random walk or Brownian loops have been also studied in [LJ17, [LJ16].

In this paper we will consider fields of random Gaussian matrices, symmetric or Hermitian,
on an electrical network. These are matrix valued GFFs. The matrix above any vertex of the
network is proportional to a GOE matrix, in the symmetric case, or a GUE matrix, in the
Hermitian case. One context where such fields have been studied is that of Dyson’s Brownian
motion (dimension one, continuum).

2010 Mathematics Subject Classification. 60G15, 81T18, 81T25 (primary), and 60B20, 60J55 (secondary).
Key words and phrases. discrete gauge theory, Dyson’s Brownian motion, Gaussian free field, Gaussian or-
thogonal ensemble, Gaussian unitary ensemble, isomorphism theorems, holonomy, local times, matrix integrals,
matrix models, random matrices, random walks, ribbon graphs, topological expansion.
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Here we will write an isomorphism for

ay+-taog

m(a)
(1.1) <( H Tr( I1 q)(xk)>>F(Tr(<I>2)/2)>ﬁ,n,

k=ai+-+oj_1+1

where @ is the matrix valued GFF, 8 € {1,2}, n is the size of the matrices, ai,. .., Qp(q) are
positive integers with |a| 1= a3 + -+ + Q) €ven, and zi,...,T), vertices on the network.
By taking the xj-s equal inside each of the trace, we get a product of symmetric polynomials
in the eigenvalues. By expanding the traces and the product above, one can write a Dynkin’s
isomorphism for each of the terms of the sum. However, one gets many different terms that give
identical contributions, many terms with contributions that cancel out, being of opposite sign,
and many terms that give zero contribution. By regrouping the terms surviving to cancellation
into powers of n, one gets a combinatorial structure known as topological expansion. The terms
of the expansion correspond to ribbon graphs with m(a) vertices, obtained by pairing and gluing
|| ribbon half-edges. Each gluing may be straight or twisted. The power of n is then given by
the number of cycles formed by the borders of the ribbons. It can be also expressed in terms of
genera of compact surfaces, orientable or not.

The topological expansion has been introduced by 't Hooft for the study of Quantum Chromo-
dynamics [tH74], and further developed by Brézin, Itzykson, Parisi and Zuber [BIPZT7S8, 1Z80).
Nowadays there is a broad, primarily physics literature on this topic. In particular, topological
expansion of one matrix or several matrix integrals is used for the enumeration of maps on
surfaces and other graphical objects [BIZ80, [Zvo97, [LZ04, [Eyn16]. Compared to the case of
one matrix integrals, where each ribbon edge comes only with a scalar weight, in our setting
each ribbon edge will be associated to a measure on random walk paths between two vertices
x and xp on the network. For a gentle introduction to the topological expansion we refer to
Zvonkin [Zvo97], and for a more advanced one to the lecture notes by Eynard, Kimura and
Ribault [EKRIS].

We will further extend our framework and consider matrix valued free fields twisted by a
connection of orthogonal (8 = 1) or unitary (8 = 2) matrices. We rely for this on results of
Kassel and Lévy for twisted vector valued GFFs [KL16]. If ® is the twisted matrix valued GFF

and ()\1, ce /\n) its fields of eigenvalues, then the isomorphism for

m@) Lo
T (S GE0),,

involves a topological expansion where instead of n to the power the number of cycles in a
ribbon graph appears a product of traces of holonomies of the connection, one per each cycle
of the ribbon graph. The holonomies are taken along loops made of concatenated random walk
paths.

This paper is organized as follows. In Section [2| we present our main results and the back-
ground necessary for stating them. The proofs are postponed to Section |3| In Subsection
we recall the original Dynkin’s isomorphism, and in Subsection that of Kassel and Lévy.
In Subsection we introduce the ribbon graphs and the related combinatorial objects. In
Subsection we recall how the moments of the GOE and GUE (one matrix integrals) are
expressed using ribbon graphs. In Subsection we introduce the matrix valued free fields
(without connection). We state our results for these. Theorem gives the isomorphism for
Theorem contains a more general version where one intertwines deterministic matrices
in the product of ®(x)-s. In Subsection we give the isomorphism for matrix valued GFF's
twisted by a connection (Theorem. Sectioncontains the proofs, those of Theorems and
in Subsection that of Theorem [2.8] in Subsection Section [] contains an extension
of Theorem [2.6] to the Dyson’s Brownian motion with 3 € {1,2} (Proposition [4.1).
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2. PRELIMINARIES AND MAIN STATEMENTS

2.1. Dynkin’s isomorphism. Let G = (V, E) be an undirected connected graph, with V finite
or countable, and all vertices z € V of finite degree. We do not allow multiple edges or self-
loops. Edges {z,y} € E are endowed with conductances C(z,y) = C(y,z) > 0. There also
may be a killing measure (k(z))zey, with (z) = 0. G will be further referred to as electrical
network. Let X; be the Markov jump process to nearest neighbors with jump rates given by
the conductances. X; is also killed by x. We assume that X; is transient, which implies in case
V is finite that & is not uniformly zero. Let ¢ € (0,40] be the first time X; explodes to +o0 or
gets killed by «. If this does not happen in finite time, ( = +o0.
Let (G(z,y))zyev be the Green’s function:

G(z,y) = G(y,z) = IEJXO_,L«[LC lxtzydt].

Let pi(x,y) be the transition probabilities of (X;)o<t<¢. Then pi(x,y) = p¢(y, ) and

+00

G(xvy) = J;) pt(ﬂ?,y)dt.

Let ;Y be the bridge probability measure from z to y, where one conditions by ¢ < ¢. Let My
be the following measure on paths from x to y in finite time:

+o0
(2.1) ) = | B @i

u*Y has total mass G(z,y). The image of ™Y by time reversal is p¥7.
In general, for a path v and x € V', L(y) will denote the occupation field of =,

where T'(v) is the life-time of the path.
The Gaussian free field (GFF) (¢(x))ev will denote here the centered Gaussian process with
covariance

Elp(x)o(y)] = G(z,y).
If V is finite, the distribution of (¢(x))zev is given by
1 1 1

ex —_ = KR\ X 2— — X — X 2 xZ).
22) e »( 29; ()p() 2{%@@*( ) (y) — (@) )gdsO( )

The Dynkin’s isomorphism [Dyn84a), [Dyn84b| relates the square of the GFF (¢(z)?)zey and
the measures on paths p®¥. This is related to earlier works of Symanzik [Sym65], [Sym66, [Sym69]
and Brydges, Frohlich and Spencer [BFS82]. For more on isomorphism theorems, see [MR0G),
Szn12b].

Theorem 2.1 (Dynkin’s isomorphism [Dyn84a, Dyn84b]). Let ¢ € N\{0}, z1,22,...,22 € V
and F a bounded measurable function RV — R. Then

2q q
B[ [[o@or@]= % | E[F@ e Lon e+ Lon)] [ L ),
k=1 partitions of V1Y i=1
ey

{{alzbl}f"'v{aq’bq}}

where the sum runs over the (2q)!/(29q!) partitions of {1,...,2q} in pairs.
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2.2. Dynkin’s isomorphism for the Gaussian free field twisted by a connection. In
[KL16] Kassel and Lévy introduced the vector valued GFF twisted by an orthogonal/unitary
connection, and generalized the Dynkin’s isomorphism to this case. Here we will do a less
abstract, more computational presentation of the same object.

For simplicity, we will assume that the graph G is finite and that the killing measure (£(x))zev
is not uniformly zero. Let d € N, d > 2. We consider that each undirected edge in F consists
of two directed edges of opposite direction. We consider a family of d x d orthogonal matrices

(L{(x, y)){x,y}eEa with
Uly,z) =U(z,y)" =U(z,y)"", V{z,y} € E,

MT denoting the transpose of a matrix M. (U(m,y)){xvy}eE is our connection on the vector
bundle with base space G and fiber R4,

Given a nearest neighbor oriented discrete path v = (y1,¥2,...,¥;), the holonomy of U along
v is the product

hol“ (v) = U(y1, y2)U (y2, y3) - . . U(yj—1,1;)-

If the path « is a nearest neighbor path parametrized by continuous time, and does only a finite
number of jumps, the holonomy hol* (7) is defined as the holonomy along the discrete skeleton
of v. % will denote the time-reversal of a path v. We have that

(2.3) hol (57) = hol(y)T = hol“(~)~!

A connection is said flat, if for any closed path ~ (i.e. loop, i.e. path having the same starting
and endpoint), hol¥(y) = I (the d x d identity matrix).

The Green’s function associated to the connection U, GY is a function from V x V to R¢@RY
(i.e. the d x d matrices with real entries), with the entries given by

Gi(x,y) = f holi(V)u™¥(dy), w,yeV, i,jefl,... d},
gl

where the measure on paths p™¥(dy) is given by (2.1). Since the image of ™Y by time reversal
is p¥*, and because of (2.3]), we have that

U U U U
Gij(x’y) = Gji(y7x)a Gij(xaﬂc) = sz‘(JUal‘)'

ie. GY(z,y)T = GY(y,z) and GY(x,z) is symmetric. GY can be seen as a symmetric linear
operator on (R?)V. It is positive definite (see Proposition 3.14 in [KL16]). det GY we will denote
the determinant of this operator.

The Re-valued Gaussian free field on G twisted by the connection i/ is a random Gaussian
function $ .V - R? (qg(m) = ($1 (x),... ,$d(x))) with the distribution given by

d
7o (- ;x;“w () - {%EEC e )P UG pwl’) [T a6
where | - | is the usual L2 norm on R¢ and
ZY8pp = (2m det GU)zdCard(V),
Note that if {z,y} € E,
|G(z) = Uz, »)eW)I* = [8(y) — Uly, 2)5 ().

Remark 2.2. The free field ¢ above is the same object as the covariant Gaussain free field in
Section 5 in [KL16]. Our construction is more concrete but less intrinsic than that of [KL16].
Indeed, we implicitly made a choice of an orthonormal basis on each fiber of the vector bundle.
However, in a continuum setting, on manifolds, such a choice (called section) cannot be in
general done in a continuous way.
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We have that E[¢] = 0. As for the covariance structure, we have (see Proposition 5.1 in
[KL16]):

E[¢i(x)0;(y)] = G3j(, y)-
Remark 2.3. If the connection U is flat, the field gg can be reduced to d i.i.d. scalar GFFs as
follows. Fix g € V. For x € V, choose y*°* a nearest neighbor path from xy to x. Define
Y% (z) = hol(y%0%), z e V.
Since the connection U is flat, 4*° does not depend on the particular choice of (y%0%) ey . It is
the only function satisfying %0 (xg) = I; and
Vz,y e V such that {z,y} € B, U (z) U (y) = U(z,y).

~

Then the coordinates of the field (U*(z)¢p(x))zey are d ii.d. copies of the scalar GFF with
distribution ([2.2]).

In [KL16], Theorems 6.1 and 8.3, Kassel and Lévy gave a Dynkin-type isomorphism for GFF's
twisted by connections.

Theorem 2.4 (Kassel-Lévy [KLI16]). Let g € N\{0}, z1,22,...,290€ V, J(1),J(2),...,J(2q) €
{1,...,d} and F a bounded measurable function RV — R. Then

2q R .
E[ [0 (=) F(I317/2)]
k=1

q
= > J E[F(\|¢\|2/2 + L)+ + L(’yq))] [ 00 0y ()i (di),
partitions of i1
(L..2g) 0
n pairs

{{alﬂbl}v“'v{ambq}}

where the sum runs over the (2q)!/(29q!) partitions of {1,...,2q} in pairs.

2.3. Ribbon graphs and surfaces. Here we describe the ribbon graphs and the related two-
dimensional surfaces. For more details, we refer to [Eynl6], Sections 2.2 and 2.3, [EKR1S],
Chapter 2, [LZ04], Sections 3.2 and 3.3, [Zvo97], and [MTO0I], Section 3.3.

Let be o = (a1, 9,..., ), where m > 1, and for all [ € {1,2,...,m}, oy € N\{0}. We will
denote

m(a)
m(a) =m, la] = Z Q.
=1

We will assume that |« is even.

Given «a as above, we consider m(«) vertices, where each vertex has adjacent unoriented
half-edges. The first vertex has a; half-edges, the second s, etc. The half-edges are numbered
from 1 to |«|. See the next picture for an example with o = (4,3,1).

2 6

. 4 —e

4 7

FIGURE 1. The case of a = (4,3,1). Three vertices with in total eight half-edges.
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Since the total number of half-edges, |a/, is even, one can pair them to obtain an unoriented
graph (not necessarily connected), with m(a) vertices and |a|/2 edges. See the picture below
for an example. Since the half-edges are enumerated, the total number of different possible
pairings is

jalf!
2112 (|al/2)!

EnYow

FIGURE 2. A pairing of half-edges in the case of a = (4,3, 1).

Now, instead of considering the half-edges just as lines, we see them as two-dimensional
ribbons, and call them ribbon half-edges. The ribbons are considered to be oriented. Also, the
ribbon half-edges around each vertex are ordered in a cyclic way. See the picture below.

2y A
— <+ 3 8
> — >
144 '

FIGURE 3. Ribbon half-edges in the case of a = (4,3, 1).

Each time we pair two half-edges, we can glue the corresponding ribbons in two different
ways. Either the orientations of the two ribbon half-edges match, or are opposite. In the first
case we get a straight ribbon edge, in the second a twisted ribbon edge. See the illustration below.

< ' —
> ——

«
-
FIGURE 4. A straight ribbon edge on the left and a twisted ribbon edge on the right.
A ribbon pairing is a pairing of ribbon edges with a choice of straight or twisted pairing each
time. The result is a ribbon graph. Below is an example of a ribbon pairing, with two straight

edges and two twisted edges.
6



FIGURE 5. A ribbon pairing in the case of a = (4,3, 1).

Let R, be the set of all possible ribbon pairings associated to . The number of different
ribbon pairings is

_ |ov|! a2 _ ot
Crd(Ra) = ga(a2n® ~ (al/2r

Given a pairing p € R4, one can see the corresponding ribbon graph as a two-dimensional
compact bordered surface (not necessarily connected). We will denote it 3o (p). On the example
of Figure 3o (p) has two connected components. The border of 34(p), denoted 34 (p) is given
by the borders of the ribbon. Topologically it is a disjoint union of circles. f,(p) will denote
the number of connected components of 8ia(p), that is to say the number of distinct cycles
formed by the borders of ribbons in the pairing p. On the example of Figure |5, fo(p) = 3.

Given p € Rq, on can glue along each connected component of 034(p) a disk (fa(p) disks
in total), an obtained this way a two-dimensional compact surface (not necessarily connected)
without border. We will denote it ig(p), and consider it up to diffeomorphisms. On the
example of Figure i:; (p) has two connected components. On the left we get topologically
a Klein bottle and on the right topologically a sphere. The connected components of f];:(p)
can be orientable or non-orientable. The condition for orientability is that in the corresponding
connected component of the ribbon graph, each closed path crosses twisted edges an even
number of times (an edge can be crossed multiple times and one has to count the multiplicity).
In particular, if there are no twisted edges, the connected component is orientable.

A ribbon pairing can be represented in a dual way as a paring of edges of a family of polygons
(a1-gone, ag-gome, ..., Qyy(q)-gone). This is shown on the next picture. This gluing of polygons

also gives 37 (p).

<<

/
A A 7a) v/
AN

P)-
FIGURE 6. The gluing of polygons dual to the pairing of ribbon edges on Figure [5]
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The connected compact surfaces without border, 3, are classified by their orientability and
their genus g(3), an non-negative integer. The orientable genus zero surface is a sphere. The
orientable genus one surface is a torus. Orientable surfaces of higher genera are ”bretzels” with
g(2) handles. There are no non-orientable surfaces genus 0. A non-orientable surfaces of genus
one is the real projective plane, of genus two - a Klein bottle, etc. A non-orientable surfaces
of genus k is a connected sum of k real projective planes. Its orientation double cover is an
orientable surface of genus k — 1. For more on the classification of surfaces, we refer to [MT01],
Chapter 3.

¢(S4 (p)) will denote the set of connected components of 3} (p). fa(p) can be expressed in
terms of connected components of i;r (p) as follows:

(24) fa(p) = 5 m(a> + Z (2 - (1 + 1g orientable)g(z))-
Dee(E4 (p))
This can be shown using Euler’s formula, as the Euler’s characteristic of a connected compact

surface without border is
X(Z) =2~ (1 + 12 orientable>g(2)'

Now let be N and (Y, Ykk:’)1<k<k’<|a| be abstract formal commuting variables. We will

also use the convention Y/, = Y and Yk/k = Ykk/ Given a ribbon pairing p € R, we will
associate to it a monomial in the variables (N, (Ygz, Ykk')1<k<k'<|a\)3

(2.5) Pop(N, (Yo, Yiwiaherrcla) = N TT Yoo [ Yow
(Ob)eBar(e) {0 W }eBuw(p)

where Eg,(p) denotes the set of straight edges of p, and Eiw(p) the set of twisted edges
of p. The monomial P, , is of degree fo(p) + |a|/2, and of degree |a|/2 in the variables
(Y, Yer ) i<k<i'<|a|- In the example of Figure

P, = N?Y13Y67Yas Y58

We will associate to « the following polynomial in the variables (N, (Ykk',\?kk’)lgkk/g\aﬂi

(2.6) Py= )] Pay

PER
The degree in N of P, is

degy P = |g + Card({l € {1,...,m(a)}|a; even}).

It is attained by the ribbon pairings with only straight edges, which isolate the vertices with
ay even and partition in pairs the vertices with «; odd, and that create only surfaces which are
topologically spheres by respecting the cyclic order of the half-edges.

Next we give two tractable examples of polynomials P,. Consider a = (4) (one vertex with
four half-edges). Consider the half-edges numbered from 1 to 4 in a cyclic order. If we pair 1
with 2 and 3 with 4, or 1 with 4 and 2 with 3, in a straight way, we get a sphere (fo(p) = 3). If
one of the edge is twisted, we get a real projective plane (f,(p) = 2). If both edges are twisted,
we get a Klein bottle (fo(p) = 1). If we pair 1 with 3 and 2 with 4 and use only straight
edges, we get a torus (fo(p) = 1). If one of the edges is twisted, we get a Klein bottle again
(fa(p) = 1). If both edges are twisted, we get again a real projective plane (f,(p) = 2). So,

(2.7) P(4) = N3(Y12Y34 + Y14Y23)
+ N2(Y12Yss + Yi2¥aa + Y1aYas + YiaYas + Y13Yos)

+ N(\?12\?34 + Y14Yo3 + Y13Yos + Yi3Yoy + \?13Y24)-
8



Further, for a = (2,2), we get

(2.8) P 2) N*Y12Ys4

N3 (Y12Ya4 + Y12Y34)

N2(Y12Y31 + Yi3Yos + Y1aYas + Yi3Yaq + Y14Yo3)
N(Y13Y21 + Yi3¥as + Y1aYoz + Y14Ya3).

+ o+ o+

Next we introduce more combinatorial objects related to the ribbon pairings. We will consider
tuples (k1,s1, k2, s2,...,kj,s;), where j € N\{0}, each of the k; is in N\{0}, and each of the s;
is one of the three abstract symbols —, < or =. We will endow such tuples by an equivalence
relation ~ generated by the following rules.

e Cyclic permutation: foranyi e {2,...,j}, (ki,si,...,kj,s5,k1,81,...,ki—1,s;-1) is iden-
tified to (kl, Sq, kg, S92,..., kj, Sj).
¢ Reversal of the direction: (kj,r(s;),...,k2,r(s2),k1,r(s1)) is identified to
(k1,s1,k2,892,...,kj,s;), where r(—) is «, r(«) is —, and r(=) is =.
For the lack of a better name, we will call ¢rails the equivalence classes of ~.

Given a ribbon pairing p € R,, we will associate to p a set 7, (p) made of f,(p) trails, one
per each border cycle in the ribbon pairing. One starts on such a border cycle in an arbitrary
place, and travels along it in any of the two directions. Then one successively visits ribbon
half-edges with labels k1, ka2, ..., k; and then returns to the half-edge k1. One can go from the
half-edge k; to the half-edge k;,1 either by following a gluing, and we will denote this k; = k;11,
or by going through a vertex. In the latter case, one either does a turn clockwise, and we will
denote this k; — k;1, or counterclockwise, and we will denote this k; < k;11. A special rule
is applied if the vertex has only one outgoing half-edge, one just makes the arrows in the trail
and on the picture match, as in the example below. This is how a trial is obtained. Note that
by construction, there is an alternation between on one hand =, and on the other hand — or
<. In the example of Figure [5| there are three trails:

(17_)’27£747(_737£717(_747£727_)737£)7 (57—)767£777—>757£787(_787£)7 (67_)777 :)'

Further, to each trail t, we will associate an abstract formal variable Zy. We will consider
polynomials in the commuting variables ((Zt ) trails (Yik's Yk ) 1<k < K< a|). Given a ribbon pair-
ing p € Ry, we will associate to it the monomial

(2.9)  Qap((Zt)s trail, (Ykk/,\?kk/)lgkk/g\aﬁ = H Zy H Yab H Yoy
te7alp)  {ab}eEsu(p) {a’ b }eEow (p)
We define the polynomial Q. as
(2.10) Qo= Y, Qap-
PER

Note that if in ), one substitutes each variable Z; with the variable N, one gets the polynomial
P,.

2.4. One matrix integrals and topological expansion. S, (R) will denote the set of n x n
real symmetric matrices and H,(C) the Hermitian matrices. An inner product on S,(R) and
on H,(C) is given by

(M, M') — Tr(MM').
Eg ,, will denote S,,(R) for 8 =1 and H,(C) for 5 = 2.

(n+1)n
2 Y
The Gaussian Orthogonal Ensemble GOE(n) and the Gaussian Unitary Ensemble GUE(n)

are Gaussian probability measures on Eg,,, with 8 = 1 for the GOE(n) and g = 2 for the
9
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GUE(n). The density with respect to the Lebesgue measure on Eg, is given by

L i)
Z.n
The distribution of the ordered family of eigenvalues A\; = Ao = -+ = A\, of GOE(n) and
GUE(n) is given by
1

1
Zor Luzdez- 20 [T = x)Pe 20020 an . d,.
/B7n

I<i<j<n

For more on random matrices see [Meh04].
Let be a = (a1, a2,...,p)), where for all [ € {1,2,...,m(a)}, a; € N\{0}, and

m(a)
o = Z o
=1

is even. Next we recall the expressions for the matrix integrals

m(o) m(a)
2.11 Te(MOY)yg, = — Te(M®) e 2 Mg ge{1,2).
187 Z
=1 Bn JEgn N 27

Note that if |« is odd, the above integrals are zero. The expression for is known since
the works of 't Hooft [tH74] and Brézin, Itzykson, Parisi and Zuber [BIPZ78]. It makes appear
a polynomial in n, with powers nfe(?) where p € R, are ribbon pairings associated to a. Since
fa(p) can be expressed using genera and orientabilities of surfaces as in , the expression
for is often referred to as topological expansion. For details on how it is obtained, we
refer to [Eynl6|, Chapter 2, [EKR1§|, Chapter 2, [LZ04], Chapter 3, and [Zvo97]. We con-
sider the polynomial P, defined by and . We will also need the following weights

(wstr (B), wew (B)) geg1,2y:

wstr(l) = wtw(l) =% wstr(Q) =1, wtw(2) = 0.
Note that in both cases, wg;(8) + wiw(5) = 1.

Theorem 2.5 ('t Hooft [tH74], Brézin-Itzykson-Parisi-Zuber [BIPZ78]). For |a| even, the value
of the matriz integral <]_[;1(1a ) Tr(M®))sn (2.11) is given by evaluating the polynomial P, in
N =n, Yir = ws:(8) and Ygp = wiw(B):

m(e)

(2.12) T o)) g0 = Pa(N = n, (Y = we(8), Yiwr = Wi (B))1<hekr<lal)-
-1

The consistency of the identity (2.12) can be tested by computing (Tr(M?))s,. We have
that

P(g) = N2Y12 + NQH.
So ([2.12)) gives us
1 1
<Tr(M2)>B:1,n = 5”2 + §Tl, <T1“(M2)>5:2,n = n2.

In both cases one gets dim Eg,,.
Let us continue the examples with o = (4) and a = (2,2), as we computed the corresponding

polynomials P, (2.7),(2.8). We get

1, 5, 5 1, 14 5
(Tr(M*)) -1, = §n3 + ZnQ + i UTr(M*)?y g1 = En‘l + §n3 + ZnQ +n,
(T(M"))p=2.n = 2 +n, (T (M2)ponn = nt + 202,

10



2.5. Matrix valued free fields, isomorphisms and topological expansion. Let G =
(V,E) be an electrical network as in Section For € {1,2}, ®#™ will be a random
Gaussian function from V' to Eg,,. If V is finite, the distribution of oBn) ig

(213) —gexp (=3 X @) TM@H) =5 3 Clay) T ()~ M@)®) [ b

Bn zeV {z,y}eE zeV

In general, if V is finite or not, one can take an i.i.d. family of n? scalar Gaussian free fields
(97 )1<i<j<ns (@ij)1<i<j<n, and define the matrix valued field @5, by its entries:

I‘ r

lfl—], i le:]7

(214) @7 = /\F if i< 7, QU= = & (¢ +igl)) V2 if i<,
/\f if i > j, (9% — 1¢;z)/\/§ if > j.

For any x € V, ®@7)(z)/\/G(x, ) is distributed as a GOE(n) matrix (8 = 1) or a GUE(n)

matrix (8 = 2). {-)gn Wlll denote the expectation with respect to the law of ®(%™ In the sequel
we will drop the subscripts (3,n) in ®#") and just write ®.

Let be a = (a1, @2, ..., Qp(q)), where for all [ € {1,2,...,m(a)}, oy € N\{0}, and |a| even. Let
T1,T2,...,T|q e Vertlces in V', not necessarily dlstlnct and F a bounded measurable function
RY — R. By applying Theorem n, one can a priori write an isomorphism for

m(a) al++ag
<( I1 Tr( I1 q)(xk)))F(Tr(q)2)/2)>
=1 k=ai+-+oy_1+1 "

However, if one expands the traces and the product, one gets many terms that give identical
contributions, many terms with contributions that compensate, and many terms that do not
contribute at all. For instance, if a = (1,1),

(P11(x1) 11 (w2) F(Te(@%)/2) ), = {ha(a1)dhy(a2) F(Te(2%)/2) ),
(b1 (21 ¢22(952)F(Tr(‘1’2)/2)>5’n = 0.

Here we will be interested in the exact combinatorics that appear. What emerges is a topological
expansion, generalizing that of Theorem

Let be Mzg’?~--,w\a|7 the positive measure on families of |a|/2 nearest neighbor paths on G
obtained by substituting in the polynomial P, . . the variable N by n, the variables Yy

by the measures wsi,(38)u™ "+, and the variables Ykk/ by wiw (B) ™+ . The product on the
measures is the usual tensor product ®. We will not need to distinguish between ,ux’“xk’ and

wk Tk and between pte @ pFa’ e and pte’ @ pre*t. The total mass of ,ua B, Z el equals

Po(N = n, (Yiw = weee(B)G (ks 1), Vi = Wi (B)G (s 1)) 1 <<t <))

Next we give examples.

1 1
x1,T2 _ 2 s 1,22 _ ,
f%imxﬁﬂm“<§”‘+§”>“mx% HoZ (1), g1 = T

L o

1 1 1 1 1
T1,22,T3,T4 _ x1,T2 T3,T4 -3 -2 - T1,T4 T2,T3
,ua:(4)”8:1m = (4n +2n +4n> X u + (4n +2n +4n>,u (S0

1 3
+ (ZnQ + Zn)/ﬁhms ® Mm,ﬂm7

1 1 1 1 1
T1,T2,T3,T o 4 3 2 , 3, 2 ; VL3
'u’alz(;,Q)g,ﬁil,n = <Zn + 3" +n )/ﬂl 2 QuthT + (in + §n)/f1 @ prrs

1 1
2
+ (—n + fn> [ U T
2 2
1,22 2 271,272 x1,T2 1,22
)

He, =(2),8=2,n =np ’u'oz=(1,1)75=2,n =np

1,22,73,T4 3, x1,T2 3,4 3, x1,T4 T2,T3 1,73 2,74
Ho (1) gmgm = H T @R +np @ p +npTtT @ p,
11



Mzzg;;vigizn — n4lum1,mz ® Pt 4 n2um,x4 ® P2 4 n2ua317333 ® p2e,
In the example of Section [2.3 the term in Mz;n(cz?)la)csﬁn corresponding to the pairing displayed
on Figure [p|is 0 for 8 = 2, because of the twisted edges, and for 8 =1 it is
1 3, @
—n 1,23 X2,T4 T5,T8 x(},ﬁ?.
16 M @ p X p Qp
The topological expansion is as follows.

Theorem 2.6. For 8 € {1,2} and F a bounded measurable function RY — R, one has the
following equality:

ap+-tog

m(a)
<< I1 Tr< I1 <I>(mk)>>F(Tr(<IJQ)/2)>
=1

n
k=ay+-+aj_1+1 A,

= J <F(TT(‘I)2)/2 + L(m) + -+ L(’7|o¢|/2))>ﬂ nui{iﬁ"'””'“'(dm, s dYja)s2)s
ViV e|/2

where <>,3npzlﬁx2x‘a'() is a product measure. As for the moments, we have

2
2

ap+-tog

(T T se)),,

=1 k=ai+-+og_1+1

= Pa(N =n, (chk’ = wstr(B)G(-rkvxk’)ank’ = wtw(B)G(xkawk’))1<k<k’<|o¢\)'
In particular, if A\i(x) = Aa(z) = ... A\p(x) is the family of eigenvalues of ®(z), x € V, and

1 =" ==Ta, LTaj+1 = " = Taj+ass ) $‘a|fam(a)+1:'”:x‘a|v
then
m(a) n 1 n
CIT (S nGea) P (5 2%))
=1 i=1 23 Bin

1 " IQ 7a PR x « 7am «@
- f (PG Ll e L) ) sl )
i=1 "
T15-Val/2

where the notation (Ta,+4-..4a;, ) means that To, +...4q, is repeated oy times.

Now, let be a family of |a| square matrices with complex entries of size n x n:
A(1,2),..., A(q — 1, a1), A1, 1),
Alar + 1,00 4+ 2),..., Alag + ag — 1,01 + ), A(ag + g, 1 + 1),
s Allal = am) + 1 lal = apa) +2), -5, Allel = 1 lal), A(lal, [al = @y + 1).

Note that by convention, for each [ € {1,...,m(«)} such that a; = 1, we have a single matrix
Al + -+ a0 +---+ap). Forle {1,... , m(a)}, I, (P, A) will denote the product
(2.15)

]._.[aJ(q),A) = <I>(33Q1+...+al71+1)A(041 =+ -+ (7] + ]., aq + -+ aj_q1 + 2)®($a1+...+al71+2)
.. .A(a1 +-+o—-—1a+-+ al)q)(xalJr...Jral)A(al +- - to,o01+ 0+ o1+ 1).
In case a; = 1, I (@, A) = ®(za) 4+ tay)A(1 + - + o, 1 + -+ + ).
Next we will write an isomorphism for

m(a)
<< [ (Hal(@, A)))F(Tr(@Q)/2)>M

=1
12



For this we introduce the (complex valued) measure uzlgi’;"’x‘a‘ on |a|/2 nearest neighbor paths

in G, constructed as follows. In the polynomial Q. (2.9)), (2.10) we substitute the variables Y/

by the measures wg, (8)u®*** | and the variables Yy by wiy (8)p®**+ . This part is similar to
the construction of “Zléxi’m’z'a‘

We replace Z; by the trace of a product of matrices of form A(k, k') or A(K’,k)T. For each
sequence k — k' in the trail t we add the factor A(k,k’) to the product, and for each sequence
k < k', we add the factor A(K’, k)T, all by respecting cyclic order of the trail. We will denote
this product II;(A), and its trace Tr(II;(A)) is substituted for Z,. For instance, if

t= (57 > 6, i) 77 > 57 i) 87 A 87 i)a
which is one of the trails on Figure , then
I, (A) = A(5,6)A(7,5)A(8,8)T.

Note that while the product II;(A) depends on the particular representative of the equivalence
class t, its trace does not. Indeed, the trace is invariant by a cyclic permutation of the factors.
Moreover, reversing the direction of a representative of t amounts to taking the transpose of
the product, which has the same trace.

. T1,22,.,T|q|
Next we give examples of measures 1, BnA
b b k)

. The difference comes from what is substituted for Z, t trail.

Nalz’(;)ﬁ:LmA = (5 Tr(A(1,2)) Tr(A(2,1)) + 3 Tr(A(1,2)A(2, 1)T))H L
x1,T 1 1 .

Mol pona = (AL DAR2) + 5 THAL DAR2)D))u
Mol ) peama = Tr(A(1,2)) Tr(A(2,1))p™ ",

Nil:’fil)76=27n7l4 = TT(A(17 ]')A(Q; 2))MZE17$2.

In the example of Section [2.3] the term in lezﬁ 317)”85 .4 corresponding to the pairing displayed

on Figure [p|is 0 for 8 = 2, because of the twisted edges, and for 8 =1 it is

1
6 Tr(A(1,2)A(3,4)TA4,1)TA(2,3)) Tr(A(5,6)A(7,5)A(8,8)T) Tr(A(6,7))

Ml"l,l“s ® M$27$4 ® M$57$8 ® ,U,xG’x7.
Note that if all of the matrices A(k,k’) are equal to I, the n x n identity matrix, then

T1,L25-,T | T15X25eeey

Py A is just i, 5., “lol because all of the traces Tr(Ily(A)) equal then n.

Theorem 2.7. For 8 € {1,2} and F a bounded measurable function RY — R, one has the
following equality:

m(a)
<< [T (Ha,l@,A)))F(Tr(qﬂ)/z)%m

2 T1,T2,..,% |
_ j (F(Te(@)/24 LOn) +-o+ Ljaip)) ), stotgs™ @0,
V15V al/2

where <->5,nuzlgi’xm‘al(-) is a product measure.
2.6. Isomorphisms and topological expansion for matrix valued fields twisted by a
connection. In this section we assume that the electrical network G is finite. Ug, will denote
the Lie group of n x n orthogonal, if 8 = 1, or unitary, if 5 = 2, matrices. Given a square
matrix M, M* will denote its adjoint (i.e. conjugate transpose), which in the case of matrices
with real entries is the transpose.

We consider a connection on G, (U(2,9))(zy1eE, With U(x,y) € Ug,, and

U(y,:z:) = U(:‘Uay)* = U(ZL‘,y)_l.
13



If v is a nearest neighbor path with finitely many jumps, (y1,y2,...,y;) the sequence of succes-
sively visited vertices by -, the holonomy of U along ~ is

hol” (v) = U(y1,y2)U (y2,43) - - - U1, 4;)-

For % the time reversal of ~,
hol” () = holY (v)* = holV (y) 7.

Let be <>gn the following probability measure on (Eg,,)", defined by the density

(2.16)

e (— 3 D A@OTME@) 5 ¥ Cln) T(M) - Ul a) M@V ()
B zeV {zyleE

Note that if {z,y} € E , then
Te((M(x) — Uz, y) M (y)U(y, 2))*) = Te((M(y) — Uy, 2) M (2)U (2, 9))?).

® will denote the field under the measure <>gn It is the matrix valued (symmetric if 8 = 1,
Hermitian if § = 2) Gaussian free field twisted by the connection U.

As in Section we take a = (1,02, .., Qp(q)), Where for all I € {1,2,...,m(a)}, o €
N\{0}, and |a| even. Let x1,x2,...,7|4 be vertices in V, not necessarily distinct. We also
consider a family of |a| square matrices with complex entries of size n x n:

A(l, 2), NN ,A(Oél - 1,0(1), A(Oq, 1),
A(a1 + 1,01 + 2), ... ,A(Oq +as— 1,00 + Oéz),A(Ozl + a9, 1 + 1),
s aA(|O‘| — Qm(a) +1, |a| — Om(a) + 2)7 s A(|a| -1, |Oé|), A(’Ox|, |a| — Om(a) + 1)'
By convention, for each [ € {1,...,m(«)} such that oy = 1, we have a single matrix
Alar + -+ aj,0q + -+ ap). TI,;(P, A) will denote the product (2.15) defined similarly to
I, (P, A), with ® instead of ®.

Next we will write an isomorphism for

m(a) U

<( S (na,l@,A)))F(Tr(&>2)/2)>ﬁ,n.

We introduce the (complex valued) measure H?gz’;{@a‘ on |a|/2 nearest neighbor paths in G,

constructed as follows. In the polynomial Q4 , , we substitute the variables Yy,
k < k' by the measures wg, (8)pu™ "+, and the variables Yy, k < k', by wiw (8) ™ *+'. This
part is similar to the construction of uzlgi’""x'a'. Next we explain what is substituted for Z¢, t
trail. We replace Zy by a density functio’n7depending on the nearest neighbor paths, which is the
trace of a product of matrices of form A(k, k') or A(K', k)T, and holY (v) or holY (v)*, v being one
of the paths. For each sequence k — k' in the trail t we add the factor A(k, k") to the product,
and for each sequence k < k', we add the factor A(k, k)T, as in the construction of ,u,zlﬁmeAz‘o"
Moreover, for each sequence k = k' with k < k’, a measure p"* %% (d~;) is present, and we add
to the product the factor holV (7;). For each sequence k = k' with k > k', a measure %+ (d-;)
is present, and we add to the product the factor hoIU(%)*. In the product the factors respect
the cyclic order on the trail. We will denote this product Il¢ (U, A)(71, . - -, 7|q)/2), and its trace
Tr(Ie (U, A) (71, - - - V|a/2)) 18 substituted for Zs.
T1,22,...,T8

In the example of Section the term in loZ(131) 8.4 corresponding to the pairing dis-
played on Figure [5]is 0 for 8 = 2, because of the twisted edges, and for 8 =1 it is

1716Tr(A(l’2)h0|U(W)A(3,4)ThoIU(71)*A(4,1)Th0IU(72)*A(2,3)ho|U(71)*)
x Tr(A(5, 6)hol” (v4) A(7, 5)hol” (v3) A(8,8) Thol” (73)*) x Tr(A(6, T)hol” (74)*)
,uxl’xs (dvl),um’“ (d,m),urs,mg (d’Yg)/L%’x? (d’}/4)-

14



1,22, %|al
Next are more examples of measures f,, B, A

Xr1,T ]‘
W smvman = (5 TH(A(L2)hol” (7)) x Te(A(2, Dhol” (7))

% Tr(A(L 2)hol” () A2, 1) Thol” (7)) 7% (dy),

B aar = (5 THAQ Dol () A(2,2)hol” (3)")

b5 TH(AQL Dhol” (1) A(2,2)Thol” (1)) ) 571 (),
B an = AL 2)hol” (7)%) x Te(A(2, hol” (3))u 72 (),
BTy = TH(A(L Dhol” () A(2, 2)hol” (7)) 72 ().

Theorem 2.8. For 8 € {1,2} and F a bounded measurable function RY — R, one has the
following equality:

m(a)
(2.17) <( [ (Ha,z(cﬁ,A)))F(Tr($2)/2)>zn
=1 ’
J <F( TI‘((/I\)2)/2 + L(Vl) +-+ L(’7|oc|/2)) Y /’Lzlb’x:A’;l (d’)/la e 7d’7|a\/2)a
Moo Val/2

T1,22, T .
where <->gnualﬁ2AU‘ '(\) is a product measure.

L2555 (

Remark 2.9. Note that in the measure MaBnA
path ~; appears twice.

di, ..., dYq|2, the holonomy along each

Remark 2.10. Consider the particular case when the connection U is flat, i.e. for any close path
(loop) 7, holY(y) = I,,. Fix 29 € V and let 4% : V — Ug,, be the unique function satisfying
U*0(xg) = I,, and
Vz,y € V such that {z,y} € E, 4% (x)" 4 (y) = U(z,y).
See also Remark Then for any x,y,€ V and 7 nearest neighbor path from z to vy,
hol” () = 40 (2) "1™ (y).

The field ® twisted by the connection U has same law as (40 (2) LD (2)U% (z)) gev, where @ is
the field with density (2.13]). So, in the particular case of a flat connection, T heorem follows
from Theorem 2.7} since

( al((I) A)) ( al((I) A))
with A(k, k') = 470 () A(k, k)40 (25,) L.
Remark 2.11. A special case of particular interest in Theorem is when all the matrices
A(k, k') equal I, and
L1 = = Zay, Laj+1 = " = Tag+az; RE) Lla|—amay+l = = Lol

Then, on the left-hand side of (2.17)), we have
Vie{l,....m(a)}, Tr(Tla (P, 4) = Y Ai(wa,)*,

where 3\1(33) > Xg(x) > Xn(x) is the family of eigenvalues of ®. On the right-hand side of

appears a product of traces of holonomies along loops (i.e. closed paths). Indeed, each

e (U, A)(71, - - -5 V]ay/2) 18 then a holonomy along a loop formed by concatenating some of the

paths . Note that if v is a loop, the trace of the holonomy along ~ does not depend on where
15



the loop is rooted. If (y1,...,y;,y1) is the sequence of vertices visited by ~, and ¥ is the loop
visiting (yi, .-, Yj, Y1, -, ¥i—1,¥:) (1 €{2,...,7}), and if o/ is the path visiting (y1,...,¥;) then

holV (3) = holV (/) tholY (y)holY (') and ~ Tr(holY (%)) = Tr(holV (v)).

3. PROOFS

3.1. Proof of Theorems and Our proof of Theorem will use an elementary
approach, similar to that of [Zvo97] for one matrix integrals. From now on we will consider fixed
the integer n € N\{0} and the tuple a = (a1, a2, ..., Qnp(q)), Where for all I € {1,2,...,m(a)},
oy € N\{0}, and |a| even. We also fix z1,..., || vertices in V, not necessarily all distinct. We
will use the notation (®;;(x))1<i j<n for the entries of the matrix ®(x), z € V.

We consider a family of abstract formal commuting variables (M;;(k))1<i j<n,, and the space

1<k<|al
of multivariate polynomials in these variables, with complex coefficients, C[(Mij(k’))lgi’jgn’].
1<k<|al

For a given k € {1,...,|a|}, we will see the variables (M;;(k))1<i j<n as entries of a matrix M(k).
In this way, for any sequence (ki,...,kq) of integers in {1, ..., ||},

Tr (lﬁ M(m)

is a polynomial in C[(Mij(k))lgi,jgn,]. We would like emphasize the difference between the
abstract variables M;;(k) and tllif Sc|c())ér‘nplex entries M;; of a generic matrix M. M;;(k) are not
complex numbers, but can be evaluated into complex numbers. R

We consider another family of abstract formal commuting variables (Ypx/, Yir)1<k<i/'<|a|-
This variables have been already introduced in Section except for (Ykka?kk)lgksm\- For
k > k', we will identify Y to Yy and Y, to Yy, We also consider the space of multivariate

polynomials C[(Ykk/,?kk/)lgkgklgla|:|. We also consider the C-linear map

& C[(Mij(k‘))lgidgn,] — C[(Ykk/,\?kk’)lgkgk’gmd

1<k<|al

defined by the following rules.

(1) £(1) =1.
(2) For any monomial R of odd total degree, £(R) = 0.
(3) For any monomial of form M;;(k)M; ('),

0 if (z,5) # (i',4) and (i,5) # (5, 1"),
Ykk:’ if (’L,j) = (],,Z/) and 7 # 75
.. ) / — ~
8(Mz](k)Mz] (k )) Yk‘k:’ if ('l,j) — (7//7 /) and 1 £ 7
Yep + Y ifi=7= i = j/.

(4) For any monomial of even total degree of form M;, j, (k1) Miyj,(k2) . .. Miy, o, (K2g),

q
E(Miy g, (k1) Miyjy (K2) -« Miyy s, (k2g)) = > [ [€Mi, s, (o, )M, 5, (R,),
partitions of =1
{17’2(1}

in pairs
{{alrbl}a"'r{aq’bq}}

where the sum runs over the (2¢)!/(2%¢!) partitions of {1,...,2q¢} in pairs.
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One can recognize in (4) the Wick’s rule for Gaussian random variables. Next we give an
example:

E(TMa,3(1) My 1 (3)2 M3 2(5)+ My 2(2) Ma2(5) Mo (6)+3My 1 (3)My,1(5)+2i My 4(3) Mya(5)+9)
= 7Y1,5\?3,3 + (34 2i)(Y35 + \73,5) +9

We need one more piece of formalism. ; will denote the space of nearest neighbor cadlag
paths on the graph G, parametrized by continuous time, of finite total duration, that do a finite
number of jumps. F; will denote the natural o-algebra on ©; (we do not detail the construction).
For g e N, ¢ > 2, €}, will denote the space of collection of ¢ paths in €2, not necessarily distinct,
considered up to permutation. In other words, €2, is the quotient of (21)? by the action of the
symmetric group &,. We endow (2, with the o-algebra F, = (F1)®?. A function F(vy1,...,7,)
is measurable with respect F; if and only if it is measurable with respect the product o-algebra
(F1)®4 and is symmetric, i.e. for any o € Sy, F(Y5(1),- - - Yo(q)) = F(71,---,7)- Qo will denote
the space of no-paths, endowed with the trivial o-algebra Fy = {J, Qo}. As a set, one may take
for Qg just a singleton. Finally, 2 will denote the disjoint union

(3.1) 0= ]_[ 0.
q=0
We endow  with the o-algebra F generated by (F;)g=0. A generic element of Q will be denoted
w. It is a finite unordered collection of paths on the graph G, not all necessary distinct.
Given a polynomial P € C[(Ykk/, Yk )1<k<k'<|a| |, ON€ can construct out of it two complex-
valued measures with finite total variation on (€2, F), one for 8 = 1 and one for § = 2, by

replacing in P each variable Yy by the measure wg, (58)p® %+ (2.1)) and each variable ?kk’ by
the measure wiy (3)u™* "+ :

P((Yir = wstr(B) ™, Yipr = Wing (B) ™5™ )1 <<l ) (dw).
This substitution is a C-linear operation, at the monomials of degree ¢ in P are sent to measures
supported on €.

Lemma 3.1. Let be a polynomial P € C[(Mij(k:))lgi,jgn,]. For B € {1,2} and F a bounded

1<k<|al
measurable function RV — R, one has the following equality:

(3.2) <P((Mij(k7) = ‘I)ij(xk))1<ivj<”7>F(Tr(q)2)/2)> -

1<k<]a n

[ (P (@2 3 £0) ), EPI(Virr = B Faas = i (™) 1) (),
Q

YEW K'<|af
where (-)5,E(P) (Y = Wetr (B) ™ Y ey = Wiy (B) ™7+ ) 1 << ) (dw) is a product measure.
k' <|al

Proof. By linearity of the identity , it is enough to check it on the four rules, (1) to (4),
defining £.

(1): This is trivial. If P = 1, we have on both sides of the quantity <F(Tr(<1>2)/2)>5 .

(2): Assume P is a monomial of odd total degree. —® has same law as ®. Moreovér,
P(~®) = —=P(2). Thus, (P(2)F(Te(2%)/2)),, = —(P(®)F(Tx(2%)/2) ), = 0.

(3): Assume P = M;;(k)Myj(k"). Without loss of generality, i < j. If (i,5) # (i,j') and
(i,7) # (j',4'), then ®;; and ®;j are independent fields. By replacing ®;; by —®;;, we neither
change the law of ® nor change Tr(®2). Thus

(Pij () Riryr () F (Te(2%)/2) ) = = @i (i) iy () F (Te(27)/2)) 5 = 0.

In other cases, ®;;j(x) Py (x)) equals:

o SO (@G (a) i B =1, # j, and (i,5) = (7,7) or (i,4) = (7.);
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o ¢h(xp)oh(ap)ifi=7=4d=j,and B=1o0r f =2;
1 1 ; : ) . . .
* 5 :;(xk) gj(afk') + §¢§j(ﬂfk> ;j(mk’) if 8=2,1+#j,and (i,5) = (j/,7');

2
1 1 . : . . . g
d Qébgj(fk)ﬁsgj(fk/) ) ;j(xks)?b;j(l“k/) if =2,i#j,and (i,5) = (i, 7).
Then one applies the Dynkin’s isomorphism (Theorem [2.1) to the GFF's ¢;; and qb;j, and sees
that the coefficients obtained match with wsey(5), Wiw(8) or wser(B) + wiw ().
(4): This is a simple application of the Wick’s rule. O

We move to the proof of Theorem [2.6
Proof of Theorem[2.6. Let P, be the polynomial

m(a) a1+
Pa = ( E Tr <k_a1+..l_+[al_l+1 M(k)) ) € c[(Mij(k))lézflg,].

Let P, be the polynomial in C[(Ykk’ank’)lgksk’g\M] obtained by partially evaluating P, in

N = n. In view of Lemma it is enough to show that £(Py) = B.
For p € R, a ribbon pairing, we will denote by ), the polynomial

yp = Pa,p(N = 1) = H Ya7b H Qal7b/ S (C[(Ykk’,?kk’)lgkgk’gmd~
{a.b}eEse(p) {a’ ./ }eErw (p)

Note that unlike P, ,, the polynomial Y, depends on « only through |a|. Let Z denote the set
of multi-indices

T = {1,102, 20+ ol af) € {1, nf 70
We will use 77 as a short notation for a generic element of Z, and R@ will denote the monomial

Rz = Miyj (1)Miyj (2) - iy i ([]) for (i1, 51,42, 42, - -5 djals dja) = 7

Given 7j € Z, it is easy to see with the rules (3) and (4) defining £ that

S(RU) = Z 13 (P)y,m

PER

with

Vp € Ras Cﬁ(p) € {0,1}.
For p € R, denote

I(—~ p) = {1J € Zlegz(p) = 1}.
A multi-index 77 = (i1, j1,12, 2, - - -, |, Jjo|) 18 in Z(— p) if and only if the following conditions
are satisfied:
(33)  V{k K} € Esulp),in = g di = ir, Yk K} € Bow(p), ik = inrs i = Jiv-
Now, denote Z(O «) the subset of Z defined by the following cyclic conditions:

(34) jl :Z.Qw"ajal*l :ia17ja1 :ilw"
w5 o= (e +1 = ol —apm(a)+27 1 Jlal—1 = Hafs Jja] = Fa|—apa)+1°

For possible oy = 1, the condition is simply jo,+..a; = tai+..a;- We have that

7] eZ(Ce)
Thus,
E(Po) = . Card(Z(C a) N I(— p))Yp.
PER
It only remains to count Card(Z(O «) nZ(— p)), which the number of multi-indexes satisfying
both the condition (3.4) and (3.3). This conditions can be represented in a graphical way
18



as follows. Given a ribbon pairing p € R, for each ribbon half-edge of p, with a label k €
{1,..., ||}, write on each side of the half-edge the index iy, respectively ji, with i on the side
of the out-going arrow and ji on the side of the in-going arrow. This is displayed on the picture
below.

FIGURE 7. A ribbon pairing in the case of o = (4,3, 1), with indices iy, and ji
displayed on both sides of the half-edges.

The conditions (3.4)) and (3.3) simply says that on each cycle formed by the ribbon graph p,
i.e. on each connected component of 0%, (p), all the indices are equal. For each cycle, there are
n possible common values for the indices, and since there are f,(p) cycles,

Card(Z(O o) n Z(— p)) = nfa(?).
So, £(Pa) = Pa. O
We continue with the proof of Theorem As in Section we consider the matrices
A(1,2),..., A — 1,01), A(ag, 1),
Alar + 1,1 +2),..., Alar + g — 1,1 + ao), A1 + ag, a1 + 1),
o Alal = ama) + 1 lal = apa) +2)s -0, Allal = 1 al), A(lal, [af = apey + 1)
Forle {1,...,m(a)}, IIo (M, A) will denote the following product of matrices:
Iy (M, A) = M(a+- - - +ag_ 1+ D) Alaq +- -+ + 1, a1+ a1 +2)M(ag +- -4+ +2)
A+ oy —lag+ oM + -+ a)Alag + - F o + -+ + 1),
Tr (1,4 (M, A)) is a polynomial of (C[(Mij(k:))lfz jgﬁ,], Let Pa_4 be the polynomial
<k<|o

m(a

)
(3.5) Poa =[] Tr (Mas(M, 4)).
=1

For p € R, a ribbon pairing, let be
Qapa= || TM(4) [ Yao [ Yow-= ( [] ™ (Ht(A)))yp.
teTa(p) {a,b}eBstx(p) {a/,b'}eEw (p) teTa(p)

Denote

Qa,a = Z Qa,pA € C[(Ykk’aYkk’)1<k<k<|a|]-

PER
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Proof of Theorem [2.77 We will use the notations of the proof of Theorem We only need to
check that

S(PQ7A) = C>~204,14-

= Z( > Ha,Z—j(A))yp,

PR TFeT(~p)

We have that

where IT z_j(A) denotes

art+tag—1

o
H ( H Ajkik+1 (kak+1))Aja1+-»<+alia1+-~-+al,1+1 (a1+' oo+ ’+O‘l*1+1)>
=1 k=ait-tog_1+1

By construction, if Aj,;,, (k, k") appears in the product above, then the indices jj. and iy are
on the same trail t € 7,(p) and adjacent (see Figure . Thus, instead of writing II | z_j’(A) as
a product of m(«) factors, one per each ribbon vertex, one can refactorize it as a product of

fa(p) factors, one for each trail t € T, (p),
= ] gy

teTa(p)

where in II ﬁ(A) are gathered the Aj,; ,(k, k") with ji and i on the trail t. The condition
(3.3)) ensures that for 77 € Z(—~ p), IT, Ty’(A) is a term in the expansion of the trace Tr (I (A)).

Thus
> M@= [] ).
TJ€T(—~p) teTa(p)
It follows that £(P ( ) Qa A O

3.2. Proof of Theorem We will prove Theorem As in Section we assume that
the electrical network G is finite. (U(2,9))z1er Will be a connection with values in Ugp,

B e {1,2}. ® will denote the matrix valued GFF twisted by the connection U, with density
(2.16]). We start by computing the two-point function of .

Lemma 3.2. Letxz,yeV,i,4,i,5 € {1,...,n} and F a bounded measurable function RV — R.
Then

(@i () Py (y) F(Te(2%)/2) )4,

§,(F(Tr Tr(92)/2 + L( )>ﬁn(hoIU )hol% (7)/2 + hol, (y)hol%, (v)/2) ¥ (dvy) if B = 1;

§., (F(Tx( (92)/2 + L( )>ﬁ holl ( hoIU( Y=Y (dry) if B =2.
Proof. For x and y neighbor vertices in G, let U(x,y) be the linear endomorphism of Ej3 ,, defined
by

Uz, y)(M) = U(z,y) MU (y, x) = U(z,y) MU (z,y)".
U(x,y) is orthogonal for the inner product (M, M') — Tr(MM’), and

Z/I(y, .T) = Z/[(ZE, y)_l'

So, we see (U(z,Y)){z,yjer as an orthogonal connection over a vector bundle with fiber Eg,,.
For a path vy on G and M € Eg,

(hol (7)) (M) = hol¥ () Mhol" ()*.
20



According to Theorern for any M, M' € Eg,,, x,y € V and F a bounded measurable function
RY - R,

<Tr (B(2) M) Tr (@(@M’)F(ﬁ(@)p)in

= [ (B(re(@)/2+ L)) ), T (hob () (M) ()
= f <F( Tr(®?)/2 + L(’Y))>Zn Tr(Mhol” () M'hol” (7)*) ¥ (dy).
i ,

Fori,j e {1,...,n}, let DY be the matrix with all entries zero, except the entry ij, which equals
1. Then the following holds.
e In the case 5 = 1, ®;;(x) = Tr (<f>( )(DY /2 + D7t/2)),
By (y) = T (B(y)(D'V /2 + DI 2)). and

Tr((DY /24 D7 /2)holV (v) (D7 /24 D' 2)holV (v)*) = holZ, (v)hol% (v)/2+ holl, (7 )hol ¥ () /2.

This includes the case i = j or i/ = j'.
e In the case g = 2,

& (z) = Tr (B(z) (DY /2 + DI/2)) +iTr (i®(x)(DY /2 — iD?*/2)) = Tr (®(x) D??),

B0 (y) = Tr (B(y) (D™ /2 + DI'¥/2)) +iTr (id(y) (D™ /2 — iD7¥ /2)) = Tr (B(y) D77,
and
jiy, U iy U U U
Tr(D’*hol” () D7 hol™ ()*) = hol; ()hol (7).
This includes the case i = j or ¢/ = j'.
U

In what follows, we will give a detailed proof of Theorem only in the case
B8 = 1. The case 8 = 2 is similar, and actually simpler, since no twisted ribbon edges
are involved.

As in Section we will consider the space of formal polynomials C[(Mij(k))lgi’jgnl.

1<k<|o]
We will also use the formal variables (Ykk’aYkk')lgksk’<\a|- In addition to the latter, we

will also introduce formal commuting variables (Xjj(k,k’)) 1<ij<n, , also commuting with
1<k<k/<|al

(Ykk’a Qkk’)lskgk’g\od' For k > k‘/ we will identify Xij(k‘ /{/) to in(k/ k’) We will see ( ij(k, k/))léi,jsn
as a formal matrix X (k, k’). We will use the space of formal polynomials C [( UN AR \A(kk/) 1<ij<n, ]

1<k<k' <o
We also consider the C-linear map

&+ €[ (M) jen | — C[ (X5 (h K), i Yia) 1<z, |
1<k<|a 1<k<K'<|a|
defined by the following rules.
(1) E(1) = 1.
(2) For any monomial R of odd total degree, £(R) = 0.
(3) For any monomial of form M;;(k)M;;/(k'), with k < &/,

g(Mij(k)Mi/j/(k/» = Xz’j’ jz"(k k/)Ykk/ + Xii/ij/(k k/)Qkk/.

(4) For any monomial of even total degree of form M;, j, (k1) Miyj,(k2) ... Miy,j,, (K2g),
q
g(Mu]l (k1) M, 22 (k2) .. l2q]2q(k2(J)) = Z Hg(Mialjal (kaz)Mibljbl (kbz))v
partitions of =1
in pairs

{{alvbl}f'“v{aqubq}}
21



where the sum runs over the (2¢)!/(2%¢!) partitions of {1,...,2q} in pairs.

Let Vy v be the linear subspace of C[( i (R, k), Y g \?kk/) 1<ij<n, ] spanned by the mono-
1<k<k'<|a
mials R satisfying the following conditions:

oV 1 <k<k
oV 1<k<kK

< |af, degy,,, R+ deg\?kk,R <1

< o, if 21<; j<n d€8x, (ka) B < 1, then degy, , R+ deg\?kk,R =1,
where the notation deg with a variable in subscript means the partial degree in this variable.
If P € Vyy, one can construct out of P a real valued measure on the space of multi-path 2
. 3.1]) by substituting each variable Y and \?kk/ with & < k' by the measure %/ﬂ’k’xk’ (dvgr)s
and each variable Xj;(k, k) by the density hollj (Vkk). Indeed, on Vy y there is no ambiguity to
which path the holonomy refers, so the measure actually makes sense. We will denote by Vy the

linear subspace of C[(Mij(k))1<i7jgn7] spanned by the monomials R such that Vk € {1,..., |a|},

1<k< (o
Di<ij<n 9€8m,; (k) < 1. It is easy to see that £(Vm) < Vay. For polynomials P € Vi, one has
the analogue of Lemma We state it without proof, as it is a straightforward consequence
of Lemma and of the definition of £.

Lemma 3.3. Let be a polynomial P € V. For F a bounded measurable function RV — R, one
has the following equality:

<P((Mij(k’) = (/I\)ij(xk))lgi,jgn,)F(Tr((i>2)/2)> _

1<k<|al B=1n
F(Tx(3%)2 Ly >
f< r( / + Z le,nx
YEW

~ 1
x E(P)((Xij(k, k') = holl (vew ), Yo = Yiw = 5#”’%' (dvr)) 1<ijen ) (dw).

1<k<k'<|o]

We can now prove Theorem

Proof of Theorem [2.8, case 5 = 1. We will use the notations of the proofs of Theorems and
217

For p € R, a ribbon pairing and t € T,(p) a trail, we will associated to t a product of
matrices A(k,k’) or A(K', k)T, and X(k,k’). For each sequence k — k' in the trail t we add
the factor A(k, k') to the product, and for each sequence k « k/, we add the factor A(k’,k)T.
Moreover, for each sequence k = &/, we add to the product the factor X'(k, k’). In the product the
factors respect the cyclic order on the trail. We will denote this product Il (X, A). Although
the product itself depends not only on the trail t, but on the specific representative of the
equivalence class of t, the trace Tr (Ht(X ,A)) does not depend on the specific representative
chosen. R

L%C%AbeﬂwpdwmmmhﬁC“Zﬂkk)Y%gﬁW)KMQL]OMMMﬂbyﬂwpmﬁﬂ

1<k<k'<|al
substitution

QO&,A = ch ((Zt =Tr (Ht(X A)))t trail’ (Ykk’7 Qkk’)1<k<k‘/<|0¢‘)

> H (M (X, 4)) ),

peRa ten

The polynomial P, 4 (3.5) is in V. So, Lemma ensures that we only need to show that
E(Pa,a) = Qa,a-
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We have that

E(PQ,A) =
Z ( Z 1T, 73 (4) H Xi.j, (@, ) Xj,i, (a,b) H X iy, (d' U)X 5, (a, b))yp-
PER ﬁez {a,b}eEstr(p) {a’,b'}eEww (p)

Each time a factor Aj; ,(k,k), &j,j (a,b), X}, (a,b), & i, (a',V'), respectively &; j,,(a,b)
appears in the product above, the corresponding pair of indices jriwr, 1ajb, Jalb, ta'iy , respectively
Jarju lies on the same trail of p (see Figure @ Thus, one can refactorize the product

Hmﬁ (A) 1_[ Xiajb (CL, b)Xjaib (a> b) H Xia/ib/ (a,a b/>Xja/jb/ (a7 b)
{a,b}eEstr (p) {a’ b} B (p)
trail by trail:
11 L, 73 (X, A).
t€Ta(p)
Each factor II, z_j(X7 A) is a term in the expansion of the trace Tr (ILy (X, 4)). O

4. THE CASE OF DYSON’S BROWNIAN MOTION

In this section we explain how Theorem extends to the continuous one-dimensional case
and the so-called Dyson’s Brownian motion.
Our space will be R. Let (B;);>0 denote a standard Brownian motion on R, and ng the first
hitting time of 0. p?(z,y) will denote the heat kernel
2

P (,y) = \/%exp(_(y;t‘r)>'

Pf’y’B will denote the standard Brownian bridge probability measure from x to y in time ¢. Fix
x> 0 a constant. pz" will be the following measure on Brownian paths from z to y:

+00
12V (dy) = fo B2 (dy)pP (2, y)e .

We see kdz as a uniform killing measure on R, and 'Y (d7) as a measure on massive Brownian
paths, using the Quantum Field Theory terminology, the mass being given by k. Given a
Brownian path 7, one can define its family of Brownian local times (see [RY99], Chapter VI):

If y is a Brownian path of total duration T'(7), we will denote

L (y)(2) = €5y (1) ().
1.d?

The Green’s function of —5,z TrRonRis
L arly—a| B ¢
Ge(z,y) = —e V"V =K, [KJ £7(B)(y)e " dt].
(z,y) o ;b (B)(v)

Gy (x,y) is the total mass of the measure py”.

Consider now that (¢};(2))zer 1<i<j<n: (gb;j (2))zeRr,1<i<j<n are n? ii.d. stochastic processes,
with (¢7; (x))zer a stationary Ornstein-Uhlenbeck process, solution to the stochastic differential
equation

dg¥;(x) = V2dW () — V2 ¢%; (x)dx,
dW (z) being the white noise. The covariances of (¢};(7))zer are given by the massive Green’s
function G.. For 8 € {1,2}, let (&) (x)),cr be the matrix valued stochastic process, with

values in Eg, defined as in (2.14). Its family of eigenvalues /\55 ) () = )\gﬁ ) () = -+ =
23



A (x) is the Dyson’s Brownian motion (see [Meh04], Chapter 9). It is stationary and satisfies
the SDE

AP (2) = V2dWi(z) - VZEATT (@) de + BV2R Y :

1<j<n )‘z(‘ﬁ’n) (z) — >\§'ﬂ’n) (v)

dzx,

J#i
where dW;(x) are independent white noises. The invariant distribution of ()\gﬁ ’n), )\éﬁ ’n), e A ’n))
is proportional to
Lyizhe=20n H (i — /\j)’Bef\/g(/\ierH%)d)\l o dAp.
I<i<j<n
Let be o = (1,2, ..., Qp(q)), where for all [ € {1,2,...,m(a)}, oy € N\{0}, and |a| even.
Let be @1, 22, ..., 7)o € R with
Ty =+ "= Tay, Taj+1 = = Tag+asz SRR x\a|—am(a)+1 == Lal-

So there are at most m(«) distinct points, and we use multiple indices for the same point for

commodity of notations. Let ugg%&;)’""(ft'a"am(a)) be the measure on families of |«|/2 Brownian

paths obtained by replacing in the polynomial P, the variable N by n, the variables Yy b
the measures wg (8) ™", and the variables Yy by the measures wiy (8)un’"* . Theorem [2.6

generalizes in the continuous one-dimensional setting in a straightforward way as follows.

Proposition 4.1. For 3 € {1,2} and F a bounded measurable function RV — R, one has the
following equality:

m(a) n n
@) e\ (L B2\ _
{11 (5367w 0607
=1 i=1 =1
1& n Ty 01 )seees (Tl s (o
J E[F(§ Z(/\z(ﬂ’ ))2+LB(’71)+'"+LB(7\a|/2))]Mi,gfn,;) (Bletom( ))(d’h,---,d’na\p),
V1o Yal/2 =1
where E[ - ]uzlﬁzznxla‘ () is a product measure. In particular, the moments are given by
T & e
o[ 1 (307 )]
=1 i=1

= Pa(N = n, (Yo = weir (8) G (@h, 2p), Vi = Wiw (B)Gr(Tk, Thr ) ) 1<k<ir<|al])-
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