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ABSTRACT

Context. Interpreting the oscillations of massive and intermediate mass stars remains a challenging task. In fast rotators, the oscillation
spectrum of p-modes is a superposition of sub-spectra which corresponds to different types of modes, among which island modes and
chaotic modes are expected to be the most visible. This paper is focused on chaotic modes, which have not been thoroughly studied
before.
Aims. We study the properties of high frequency chaotic p-modes in a polytropic model. Unexpected peaks appear in the frequency
autocorrelations of the spectra. Our goal is to find a physical interpretation for these peaks and also to provide an overview of the
mode properties.
Methods. We used the 2D oscillation code “TOP” to produce the modes and acoustic ray simulations to explore the wave properties
in the asymptotic regime. Using the tools developed in the field of quantum chaos (or wave chaos), we derived an expression for the
frequency autocorrelation involving the travel time of acoustic rays.
Results. Chaotic mode spectra were previously thought to be irregular, that is, described only through their statistical properties. Our
analysis shows the existence, in chaotic mode spectra, of a pseudo large separation. This means that chaotic modes are organized in
series, such that the modes in each series follow a nearly regular frequency spacing. The pseudo large separation of chaotic modes is
very close to the large separation of island modes. Its value is related to the sound speed averaged over the meridional plane of the
star. In addition to the pseudo large separation, other correlations appear in the numerically calculated spectra. We explain their origin
by the trapping of acoustic rays near the stable islands.

Key words. asteroseismology – waves – chaos – stars: oscillations – stars: rotation

1. Introduction

Despite the many successful advancements made in stellar seis-
mology, we are still unable to unlock most of the information
contained in the acoustic oscillations of typical massive and
intermediate mass stars. The observed pulsational behavior of
these stars in the range of acoustic frequencies is diverse and has
so far resisted a meaningful empirical classification. In addition
to evolutionary effects, both the nonlinear processes that set the
mode amplitudes and the sensitivity of the spectrum organization
to the unknown rotation rate contribute to the observed diversity
(Bowman & Kurtz 2018).

Progress in modeling the rotational effects together with the
flow of high quality data from ultra precise space photometry
missions, nevertheless, revive the interest for the seismology of
massive and intermediate mass stars. An important step was the
detection of regular frequency patterns analogous to the solar-
like large separation in δ Scuti stars (García Hernández et al.
2009, 2013, 2015; Paparó et al. 2016; Michel et al. 2017). These
patterns were predicted from the first oscillation model, that
took realistic centrifugal distortion into account (Lignières et al.
2006), up to the more realistic models to date (Reese et al.
2017). Further progress is expected from TESS and PLATO mis-
sions that will include bright stars that can be better constrained
through spectroscopy.

To model the acoustic spectrum of rapidly rotating stars,
2D oscillation codes that take full account of the effect of

rotation on the oscillations were developed (Reese et al. 2006,
2009; Ouazzani et al. 2012). They can be run for different mod-
els of centrifugally deformed stars, from polytropic models
(Reese et al. 2006) to more sophisticated ones (Reese et al. 2009;
Ouazzani et al. 2015). Exploring the acoustic spectrum as a func-
tion of the star rotation is not a straightforward process, in particu-
lar,becausethedensityoffrequencies increaseswith thenumerical
resolution and the mode classification can be tedious (Ballot et al.
2013). First attempts were restricted to low spherical-harmonic
degree modes, which were followed by progressively increasing
the rotation rate (Lignières et al. 2006; Reese et al. 2006, 2008;
Pasek et al. 2012). More complete spectra have then been obtained
at fixed rotation rates (Lignières & Georgeot 2009; Reese et al.
2009, 2017; Ouazzani et al. 2015). An automatic classification of
the computed mode using neural network methods has recently
been proposed (Mirouh et al. 2019).

Understanding the spectrum organization is key to construct-
ing seismic tools, the detection of regular patterns in δ Scuti stars
being a good example. The structure of the spectrum is expected
to best reveal itself in the asymptotic regime, that is, at high-
frequencies for acoustic modes. This motivates high-frequency
computations even if massive and intermediate mass stars oscil-
late at lower acoustic frequencies. The asymptotic regime is also
amenable to theoretical descriptions. In the short wavelength
“WKB” limit, acoustic waves are described by rays whose prop-
agation obeys Hamiltonian dynamics. In Lignières & Georgeot
(2009), the acoustic ray dynamics of rapidly rotating stars was
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studied and semiclassical concepts and methods developed in
quantum physics were used to infer the asymptotic properties
of the associated acoustic spectrum. Reflecting the phase space
structure, different families of modes were identified. Above
some rotation, two families are most likely to be observed:
the 2-period island modes and the chaotic modes. The first
family was studied in detail through numerical computations
(Lignières et al. 2006; Reese et al. 2008, 2009; Ouazzani et al.
2015) and semi-analytical models (Pasek et al. 2011, 2012).
These modes show regular frequency spacings and should be
the most visible in the observed spectra. They have been cited
to explain the frequency patterns observed in some δ Scuti stars
(García Hernández et al. 2015).

Chaotic modes are called chaotic because they result from
the constructive interference of waves which, in the short wave-
length limit, have chaotic trajectories. They were first studied in
quantum physics, showing distinctive features, such as ergodic-
ity or the universality of the nearest neighbor statistics of their
spectrum. Lignières & Georgeot (2009) identify ∼200 axisym-
metric chaotic modes at a given rotation rate and verify that they
follow the expected statistics.

In this paper the asymptotic properties of chaotic acous-
tic modes in rapidly rotating stars is investigated in detail. We
construct a large set of high-frequency chaotic modes, com-
puted at various rotation rates and azimuthal numbers m, ana-
lyze the mode properties, and interpret them using semiclassical
methods.

Among these properties, the presence of peaks in the auto-
correlation of the chaotic mode spectrum had not been reported
in the experimental or modeled wave systems considered in the
fields of quantum chaos. This justified a publication dedicated to
this particular point in a physics journal (Evano et al. 2019). The
present paper complements and adds to this publication, putting
emphasis on the asteroseismic applications.

The paper is organized as follows: we first introduce the for-
malism and numerical methods, then present the properties of
high frequency chaotic modes (Sect. 3), and develop the semi-
classical theory which explains the features observed (Sect. 4).
The appendix presents detailed derivations needed for Sect. 4.

2. Formalism and numerical methods

In this section, we first introduce the equations and tools used to
study propagating pressure waves in stars. Then we present the
range of numerically computed high-frequency pressure modes
and finally the method used to classify the modes and obtain a
set of high-frequency chaotic modes for different rotation rates.

2.1. Pressure waves and their ray limit in rapidly rotating
stars

We consider adiabatic pressure perturbations in a self-gravitating
gas. We are focusing on p-modes in the high-frequency regime,
and as is usual in this case we apply the Cowling approximation,
neglecting the perturbations of the gravitational potential.
This approximation is known to be valid for high-frequency
perturbations in non rotating stars (Aerts et al. 2010). We also
neglect the Coriolis force since its influence on the pulsation
frequencies is known to be weak in the high-frequency regime,
see Reese et al. (2006). Finally, we can discard the gravity waves
since the Brunt-Väisälä frequency is very small compared to
the high p-mode frequencies. With all these approximations
taken into account, the adiabatic pressure perturbations obey a
Helmholtz-like equation derived in Lignières & Georgeot

(2009):

∆Ψ +
ω2 − ω2

c

c2
s

Ψ = 0, (1)

where Ψ = P̂/ f , with P̂ the complex amplitude associated with
the time-harmonic pressure perturbation P = Re[P̂ exp(−iωt)],
f a function of the background model, ωc is a cut-off frequency
of the model and cs is the inhomogeneous sound velocity.

The short-wavelength approximation of Eq. (1) leads to the
eikonal equation

ω2 = c2
s k2 + ω2

c . (2)

This equation can be put in the form of a Hamiltonian system
describing the propagation of acoustic rays (Ott 1993), by setting
H = ω = (c2

s k2 + ω2
c)1/2. The motion takes place in a meridional

plane rotating with the ray at an angular velocity dφ/dt = L̃z/d2,
where L̃z = r sin θ kφ/ω is a constant of motion and d is the dis-
tance to the axis of rotation. To compute the ray paths we use an
alternative Hamiltonian form derived in Lignières & Georgeot
(2009) as:

H′ =
k̃2

p

2
+ W, (3)

W = −
1

2c2
s

(
1 −

ω2
c

ω2

)
+

L̃2
z

2d2 , (4)

where k̃p is the frequency-scaled wave vector k̃ = k/ω projected
onto the meridional plane and W is the potential. The corre-
sponding dynamical system is

dx
dt

= k̃p,
d k̃p

dt
= −∇W, (5)

where dt = csds/
(
1 − ω2

c
ω2

)1/2
, is a time-like variable, s being the

curvilinear coordinate along the ray. This system is then inte-
grated using a fifth order Runge-Kutta method. To simplify the
notation, we now refer to k̃p as simply k̃.

The motion of acoustic rays inside the meridional plane
corresponds to a dynamical system with Nd = 2 degrees of
freedom. Because the wave frequency is a conserved quantity,
the phase space trajectories evolve on a 2Nd − 1 surface. To
reveal the properties of a dynamical system, it is customary to
define a surface of lower dimension, called a Poincaré Surface
of section (PSS), by fixing an additional parameter (Gutzwiller
1990; Ott 1993). There are multiple possible choices of PSS,
the recommendations for a faithful representation are given in
(Ott 1993). We have chosen a surface at constant radial dis-
tance z from the star surface rs(θ): rp(θ) = rs(θ) − z, where
rp(θ) is the radial coordinate of the PSS. An example of such
a PSS is shown in Fig. 1. Each dot on this figure corresponds
to the crossing of the PSS with a ray approaching the sur-
face. Chaotic zones correspond to trajectories filling densely an
area, whereas regular trajectories are constrained to remain on a
closed curve. The chaotic dynamics implies ergodicity in a cer-
tain phase space zone, and exponential separation of nearby tra-
jectories, whose rate is measured by the Lyapunov exponents
(Ott 1993).

The system undergoes a KAM-like transition (named from a
famous theorem from Kolmogorov, Arnold and Moser describ-
ing the typical transition to chaos, see for example Ott 1993),
with the rotation rate Ω playing the role of the perturbation. It is
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Fig. 1. PSS at rotation rate Ω/Ωk = 0.589 with L̃z = 0, where θ is the
colatitude and kθ the projection of the wave vector on the line tangent
to the rp(θ) = rs(θ) − z curve. Two stable islands are embedded in a
chaotic region, which is itself surrounded by whispering gallery rays.
The different types of rays are color coded, blue: whispering gallery,
green: 6-period island, yellow: 2-period island and red: ergodic.

known that in this case the phase space contains chaotic zones,
island orbits around stable periodic orbits and KAM tori reminis-
cent of the Ω = 0 system. This is represented in Fig. 1. We did
not draw the small island structures in the domain where |kθ/ω|
is high. Ergodic trajectories appear as soon as the spherical sym-
metry is broken. At low rotation rates the chaotic zone is very
small. However, it expands considerably as the star is flattened
by rotation. The rotation rate of the model of star will be given in
terms of the Keplerian break-up rotation rate Ωk = (GM/R3

eq)1/2,
where G is Newton’s constant, M is the mass of the star and
Req the equatorial radius. Near Ω/Ωk ' 0.32 the chaotic zone
is comparable in size to the main stable island and continues to
grow afterward (see Fig. 2). The ratio VI/VII, where VI is the
volume occupied by the main stable island and VII is the vol-
ume of the main chaotic zone, is a relevant quantity as it indi-
cates (as we shall see) the proportion of island modes to chaotic
modes. Measuring the areasAI andAII on the PSS, correspond-
ing respectively to the main island and chaotic zones, we found
out that the function AI(Ω)/AII(Ω) is not monotonic. In fact,
the ratio of the 2-period island over the chaotic zone shrinks
beyond Ω/Ωk = 0.658, reaches a minimum around Ω/Ωk =
0.682, then increases again from this point onward. This non-
monotonic behavior was not detected in Lignières & Georgeot
(2009) as rotation rates around Ω/Ωk = 0.682 were not
considered.

The non axisymmetric ray dynamics L̃z , 0, shown in Fig. 3,
is qualitatively similar, but the expansion of the chaotic zone
is retarded. Moreover, the domain of propagation is reduced.
Indeed, the ray has azimuthal velocity and, as a result, cannot
come arbitrarily close to the rotation axis. In the meridional plane,
this phenomenon translates into a condition on the colatitude
(Lignières & Georgeot 2009) − arcsin(|L̃z|/L̃) < θ < arcsin
(|L̃z|/L̃), L̃ being the frequency-scaled angular momentum norm.

The semiclassical theory of such a mixed phase space
with both regular and chaotic zones, due to Berry and Robnik
(Berry & Robnik 1984), indicates that regular and chaotic
modes can be associated to the different phase space areas
and form independent subspectra. This prediction was verified
in Lignières & Georgeot (2009) by computing high-frequency
modesandclassifying themaccording to thephasespacestructure.

Fig. 2. Chaotic zone of the PSS at increasing values of the rotation rate.
The chaotic zone grows monotonically, which is not the case for the
main island zone.

Fig. 3. PSS at Ω/Ωk = 0.589 with L̃z = 0.16/ωp, where θ is the colati-
tude and kθ the projection of the wave vector on the line tangent to the
rp(θ) = rs(θ) − z curve. The phase space structures are similar to those
presented in Fig. 1.

2.2. The set of numerically computed high-frequency
p-modes

As for the ray dynamics, the star is modeled by a uniformly rotat-
ing, self-gravitating monoatomic perfect gaz of adiabatic expo-
nent Γ = 5/3. We impose that the pressure and density sat-
isfy a polytropic relation P ∝ ρ1+1/µ, with µ= 3 (Hansen et al.
2004). As we are interested in high-frequency, and thus small-
wavelength, p-modes, attention has to be paid to numerical res-
olution. The stellar model is calculated using spectral meth-
ods with Chebyshev polynomials in a pseudo radial direction
and Legendre polynomial in latitude, corresponding to N j =
96, 128, 140 radial points and Nt ≤ 185 latitudinal points. To
compute its oscillation modes, we use the code TOP described
in (Reese et al. 2006, 2009). Modes are computed using N j
Chebyshev polynomials T j and Nl spherical harmonics Ym

l ,
through the decomposition:

Ψ(r, θ, φ) =

Nl∑
l=0

 N j∑
j=0

al,m
j T j(2r − 1)

 Ym
l (θ, φ), (6)

where the degrees l are either odd or even integers (Reese et al.
2006). The needed resolution is determined by the smallest
scale on which the mode amplitude varies. Physically, it is
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directly related to the highest values taken by the components
of the wave vector kθ and kr. Using the PSS of a given stel-
lar model, we can determine the upper limit of the wave vec-
tor components k̃max

θ or k̃max
r associated with a particular phase

space structure. The chaotic zone growth seen in Fig. 2 indi-
cates that the required angular resolution to compute chaotic
modes increases rapidly with rotation. Therefore, computing
high-frequency chaotic modes is more and more demanding as
the model approaches Ωk. The central chaotic zone is bounded
by whispering gallery rays in the full phase space. Thus we know
that, in a given frequency domain, the required resolution to
compute all chaotic modes is attained if we are able to produce
a few well resolved whispering gallery modes. With these con-
straints, we produced spectra at six different rotations: Ω/Ωk =
0.481, 0.545, 0.589, 0.658, 0.706 and 0.809 with frequencies
ranging from ∼23ωp to ∼47ωp, with ωp = (GM/R3

p)1/2, where
Rp is the polar radius. A typical example of each kind of mode
is shown in Fig. 4: a whispering gallery mode corresponding to
a KAM torus, a 6-period island mode corresponding to the 6-
period island chain, a 2-period island mode corresponding to the
2-period island chain and a chaotic mode corresponding to the
chaotic zone. To construct a large set of chaotic modes requires
to identify them among all the computed modes.

2.3. Mode identification

In this section we explain our methodology to isolate chaotic
modes. To achieve this goal we proceed by elimination. The
basic idea is to identify all regular modes and remove them from
the dataset until only chaotic modes remain.

To begin with, we identify 2-period island modes using the
fact that their frequency spectrum is regular and of the form
ωn,l,m = nδn(m) + `δ`(m) + α, where n (resp. `) is the num-
ber of nodes along (resp. transverse to) the central orbit γ of
the island, shown in Fig. 4, and α is a constant (Pasek et al.
2012). Thus the frequency spectrum is completely determined
by the regular spacings δn and δ`, with the half large separation
δn(m) = 2π/

∮
γ
(ds/c̃s)1. However, the regularity of the 2-period

island modes may be altered by two aspects: first the deviations
from asymptotic theory, expected at finite frequency, and sec-
ondly the occurrence of avoided crossings between an island
mode and a chaotic mode. In practice, the island mode spac-
ing is rigid enough to identify them. In the case of an avoided
crossing, we choose arbitrarily one of the two modes as being an
island mode and discard the other one. The impact of this choice
on the spectrum is weak since the frequencies of two modes in
the process of an avoided crossing are very close. In the same
way, 6-period island modes are identified on the basis of their
regularity (Lignières & Georgeot 2009).

Then we remove the whispering gallery modes automati-
cally. The PSS shows that the k̃max

θ of any whispering gallery
ray is higher than the k̃max

θ of the chaotic zone. This means
that whispering gallery modes vary on smaller latitudinal scales
than chaotic modes, meaning that they have more angular
nodes. Therefore, we expect their spherical harmonic expansion,
Eq. (6), to be dominated by the high degree components.

For a given m, we sum over j to get the averaged coefficients
āl ≡ 1

N j

∑N j

j=0 |a
l
j|. Thus the dominant degree lmax corresponds to

the value of l where āl is the greatest. In the bottom panel of

1 The large separation is expressed as ∆i = 2π/
∫
γ
(ds/c̃s), where the

integral is calculated along the path γ between two points on the surface,
which is half the full period of the orbit.

Fig. 4. Four odd axisymmetric modes at rotation Ω/Ωk = 0.589:
(a) chaotic mode, (b) whispering gallery mode, (c) 2-period island mode
(` = 0), with a black line indicating the central periodic orbit, and
(d) 6-period island mode. The figure shows the scaled pressure ampli-
tude Ψ = P

√
d/ρ0, with d the distance to the rotation axis and ρ0 the

equilibrium density.
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Fig. 5. Histograms showing the distribution of three types of odd modes
as a function of their dominant degree lmax, at Ω/Ωk = 0.589 in the
frequency domain 25.6ωp to 33.5ωp. The existence of a gap between
the highest value of lmax for chaotic modes, marked by a dashed line,
and the lowest value of lmax for whispering gallery modes is used to
automatically separate these two types of modes.

Fig. 5, the distribution of whispering gallery modes with respect
to lmax is shown for a given rotation. There is indeed no whis-
pering gallery mode below lmax = 10. The top panel displays
the same distribution for chaotic modes, showing that they are
instead dominated by their low degree components. In fact, there
is a critical value lc of lmax such that lmax ≤ lc for every chaotic
mode and lmax > lc for any whispering gallery mode. Therefore,
it is sufficient to find lc to remove all whispering gallery modes
from the dataset.

At finite frequency, hereω ≤ 47ωp, the Berry-Robnik regime
is not perfectly satisfied (Vidmar et al. 2007). Therefore we
expect that some modes cannot be classified in a unique category.
We find such modes and call them interface modes. There are
two types of interface modes: whispering gallery-like and island-
like. An example of island-like interface mode is presented in the
central panel of Fig. 6. By nature, interface modes have proper-
ties of both chaotic modes and either island or whispering gallery
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Fig. 6. Three modes at Ω/Ωk = 0.589 belonging to series 1. From left to
right: we see a chaotic mode, an interface mode and an island mode with
` = 4. The thick white line is the main island central orbit. The modes
intensity |Ψ|2 is represented, where Ψ is the scaled pressure amplitude
as in Fig. 4.

Table 1. Characteristics of chaotic frequency spectra.

Symmetry
class

Rotation
(Ω/Ωk)

Levels Frequencies (ω/ωp)

0− 0.481 206 28.35−46.89
0− 0.545 223 28.15−44.09
0− 0.589 217 26.02−40.29
0− 0.658 207 36.37−44.89
0− 0.706 283 23.57−36.22
0− 0.809 170 24.02−30.01
0+ 0.545 105 38.01−44.06
0+ 0.589 96 30.52−36.60
0+ 0.658 120 36.40−41.25
1− 0.589 125 30.51−38.48
4− 0.589 93 30.53−38.51

Notes. We show the symmetry classes, which are denoted by m± (where
m is the azimuthal quantum number, + is even parity and − is odd par-
ity), the rotation rate, the number of levels and the frequency domain.

modes. To distinguish between “well defined” modes and inter-
face modes, we can look either at their amplitude pattern or at
their Husimi distribution, which is a projection of the eigenmode
in phase space (Chang & Shi 1986; Lignières & Georgeot 2009).
The distinction between chaotic modes and interface modes is
not clear-cut, whether we use the amplitude of the modes or
the Husimi distributions as a guide. Any time we encountered
an ambivalent mode, we applied the following rules to catego-
rize it. If the amplitude is high near an internal caustic, then the
mode is a whispering gallery-like interface mode. The difference
between chaotic, island-like and island modes is illustrated in
Fig. 6. We consider that a mode is not chaotic if its amplitude
is concentrated around the central orbit of the main island. In
parallel, we examine the placement of the mode in the spectrum,
and look for regularities. Even at the highest frequencies consid-
ered, ` = 4 island modes cannot be distinguished from interface
modes without ambiguity from the amplitudes.

Our dataset of chaotic frequencies is described in Table 1.
All axisymmetric modes were identified using the methodology
described above. For non axisymmetric modes the last step, i.e.
the identification of interface modes through the amplitude of
the mode or the Husimi distribution, was not performed. The
modes listed in Table 1 are separated into symmetry classes asso-
ciated with the quantum number m and the parity with respect
to the equator (m− odd, m+ even). A distinctive property of

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

s̃

0.0

0.2

0.4

0.6

0.8

1.0

P

0.0 0.5 1.0 1.5 2.0

s

N

Fig. 7. Left: nearest neighbors spacing distribution P(s̃), with 1344 fre-
quency levels obtained from eight independent spectra: Ω/Ωk = 0.481
(206 odd levels), Ω/Ωk = 0.545 (223 odd levels, 105 even levels),
Ω/Ωk = 0.589 (217 odd levels, 96 even levels), Ω/Ωk = 0.658 (207
odd levels, 120 even levels) and Ω/Ωk = 0.809 (170 odd levels). Right:
integrated distribution N(s) for all eight independent spectra. In both
panels the dashed line the Wigner surmise and the dotted line is the
prediction for Poissonian spectra.

chaotic mode spectra is to have a universal statistical behavior
(Gutzwiller 1990). In particular, their nearest neighbor distribu-
tion P(s̃), with s̃n = (ωn+1 −ωn)/〈ωn+1 −ωn〉, where 〈ωn+1 −ωn〉

corresponds to the mean frequency spacing, is expected to follow
the Wigner surmise of Random Matrix Theory P(s̃) = πs̃

2 e−πs2/4

(Gutzwiller 1990). This is checked in Fig. 7 and it confirms
that our method for selecting chaotic modes works properly.
We aggregated the eight independent spectra to obtain better
statistics (left panel). Using this standard aggregating proce-
dure enables us to obtain much better statistics than in previ-
ous studies (Lignières & Georgeot 2008). The integrated distri-
bution N(s) =

∫ s
0 P(s̃) ds̃, displayed in the right panel, shows

that the agreement is good for individual spectra as well. We did
not take into account the specific case of Ω/Ωk = 0.706 which
corresponds to an anomalous statistics, intermediate between
the Wigner and Poisson distributions, with no level repulsion
(Evano et al. 2019). Such a distribution is characteristic of a
superposition of independent spectra, and will be explained later
(see Sect. 4.2).

3. Properties of high-frequency chaotic modes

3.1. Spatial distribution of the mode amplitudes

We start with a qualitative description of the main spatial fea-
tures of chaotic modes. Representative examples of their ampli-
tude distribution in a meridional plane are displayed in Fig. 8. A
first observation is that their nodal pattern is complex in the sense
that, contrary to regular modes, there is no simple way to count
the number of nodes. Nevertheless we also notice that while the
inner part of the chaotic modes looks random, the outer part is
much more structured. Indeed it is possible, near the surface,
to count radial and angular nodes. The nodes appears regularly
spaced in the radial direction but are unevenly distributed in the
angular direction. The amplitude distribution of chaotic modes
is therefore mainly characterized by its irregular nature, but with
radial regularities near the surface. In the next subsection, we
will show that the chaotic spectra present some regularities as
well. Another notable property of the chaotic modes presented in
Fig. 8 is that they spread out in the entire stellar interior. This dis-
tinguishes chaotic modes from regular modes that are confined
in a narrow part of the star: whispering gallery modes stay close
to the star surface and island modes are trapped in the vicinity
of a central periodic orbit (see Fig. 4). Chaotic modes are thus
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Fig. 8. Scaled pressure amplitude Ψ shown for twelve odd axisymmetric
chaotic modes at Ω/Ωk = 0.589 with quantum number m = 0.

the only class of p-modes able to probe the star center at high
frequency.

3.2. Regularities in the spectra

We computed the autocorrelation R2(ξ) =
∫

d(ω − 1/2ξ)d(ω +
1/2ξ) dω of a variety of chaotic spectra, where the density d(ω)
was obtained by convoluting the spectra with a Gaussian func-
tion of small standard deviation compared to the mean frequency
spacing and of height unity. The results are shown in Fig. 9 at
five different rotations for the case of axisymmetric modes with
odd equatorial parity. The figure clearly shows peaks emerg-
ing from the noise level, which are not predicted by Random
Matrix Theory nor seen in generic chaotic spectra. The peak that
appears at every rotation, and which is usually the most visible, is
referred to as the “main peak”. Its position, denoted ∆c, slightly
decreases with increasing rotation. Moreover, additional peaks
of significant amplitude appear in the autocorrelations, their rel-
ative amplitude being large especially at Ω/Ωk = 0.706. In the
following we characterize the spectrum structure behind these
peaks (the next two sub-sections) and then extend our analysis
to the non-axisymmetric modes.

3.2.1. Main peak

The systematic presence of the main peak in the autocorrela-
tions is a hint that the spectra are structured by the characteristic

Fig. 9. Autocorrelations R2(ξ), where ξ is a displacement in frequency,
of chaotic spectra with odd parity: (a) 206 levels from 28.35ωp to
46.89ωp, (b) 223 levels from 28.15ωp to 44.09ωp, (c) 217 levels from
26.02ωp to 40.29ωp, (d) 283 levels from 23.57ωp to 36.22ωp and (e)
170 levels from 24.02ωp to 30.01ωp. The autocorrelations have been
normalized such that their value at the origin is unity. The main peak’s
position is labeled ∆c and marked with a solid line. Secondary peaks are
marked in panels c, d and e with a dashed line.

frequency spacing ∆c. To verify this idea, we make use of so-
called échelle diagrams. On such diagrams, two modes distant
in frequency of ∆ will be represented by two points sharing
the same abscissa and separated by one unit on the y axis. We
consider a portion of spectrum at Ω/Ωk = 0.589, and analyze
its structure in a detailed way. In Fig. 10, the frequencies of
all odd parity axisymmetric chaotic modes between 25.07ωp
and 33.78ωp are represented on an échelle diagram, using a
folding value equal to the main peak ∆c = 1.0899ωp of the auto-
correlation. The frequencies are grouped in approximate verti-
cal lines, some of which are very well aligned, whereas others
seem to form diagonal or wavy tracks (Changing slightly the
folding value breaks the best alignments but other tracks line
up instead). The échelle diagram shows that the chaotic spec-
trum can be split into series of modes separated in frequency by
approximately ∆c.

This property is well-known for low-degree modes in non-
rotating stars as well as island modes in rotating ones (see
Fig. 11). The frequency spacing between two consecutive modes
is the so-called large separation and their amplitude distribu-
tions only differs by the number of nodes along a particular
direction (radial for modes in a non rotating star and along the
central periodic orbit for island modes). In such regular spec-
tra, this structuring of the frequencies is directly related to the
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Fig. 10. Échelle diagram of chaotic modes at Ω/Ωk = 0.589 in the range
25.60ωp to 33.54ωp, with odd parity.
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Fig. 11. Échelle diagram of island modes ` = 0, 1, 2, 3, 4 at Ω/Ωk =
0.589, with only odd modes. The lowest point of the ` = 4 track corre-
sponds to an island-like interface mode.

classical dynamics through so-called Einstein-Brillouin-Keller
theory (Pasek et al. 2011, 2012). Its appearance in a chaotic
spectrum is more mysterious, and will be explained in Sect. 4.

In the autocorrelations of even chaotic mode spectra, both
the main peak and secondary peaks usually have a smaller
amplitude. Nonetheless, even mode frequencies produce ridges
in the échelle diagram, just like odd mode frequencies. In
Lignières et al. (2006), it was pointed out that even modes are
more strongly impacted by avoided crossings. This fact could
explain why even modes are less regular than odd modes.

Comparing the amplitude patterns of the chaotic modes that
belong to the same track on the échelle diagram, we find out that
consecutive modes are often very similar. This is illustrated by
two examples of consecutive modes in Fig. 12. From a systemat-
ical search for couples of modes with a similar amplitude distri-
bution that are separated in frequency by approximately ∆c

2, we
were able to label the vertical series of chaotic mode échelle dia-
gram, ending-up with the sixteen series shown in Fig. 13. The
very few modes left without a label are modes undergoing an
avoided crossing.

This analysis indicates that the spectrum organization in
series of modes separated by a fixed frequency spacing and
showing similarities in their spatial distribution is also relevant
for chaotic modes. In this context, ∆c can be interpreted as a
large separation for chaotic modes. Its value turns out to be close
to the island mode large separation in the same frequency range
∆i = 1.0907ωp.

There are nevertheless some important differences with non-
rotating and island modes. First the frequency spacing is much

2 The systematic search for consecutive modes was performed only
for the chaotic spectrum at Ω/Ωk = 0.589 represented in the échelle
diagram.

Fig. 12. Mode intensity |Ψ|2 at Ω/Ωk = 0.589, where Ψ is the scaled
pressure amplitude, showing the similarity between consecutive modes.
Top: two consecutive modes that belong to series 8. Bottom: two con-
secutive modes that belong to series 3.

more regular for non-rotating or island modes than for chaotic
modes. This is obvious from the comparison of the chaotic mode
échelle diagram with the échelle diagram of the 2-period island
modes shown in Fig. 11. The similarity of the amplitude distri-
butions along a vertical series is also much stronger for island
modes than for chaotic modes. In agreement with the asymp-
totic theory of island modes (Pasek et al. 2012), island modes of
the same series have the same number of nodes, denoted `, in
the direction perpendicular to the periodic orbit. By contrast, the
comparison between two chaotic modes of the same series but
separated by a few ∆c is not as clear, since the patterns slowly
evolves from one mode to the next. Another important differ-
ence comes from the characteristics of the series. As expected
from the theory and as observed in Fig. 11, island mode series
should not stop toward high frequencies as modes with the same
` and higher n remain aligned in the échelle diagram. This is not
the case for chaotic modes as some series like series number 1,
2, and 13 on Fig. 13 come to an end in the frequency range con-
sidered. In parallel, some series starts above a given frequency,
for example the series number 16 appearing above ω = 27∆c.
Typically, interface modes appear at the start of a series as whis-
pering gallery-like modes or at the end of a series as island-like
modes. In our data, the end of a series of chaotic modes is also
the start of a series of island modes of given `; for instance, series
1 is followed by ` = 4 island modes and series 2 by ` = 5 island
modes. This transition is visible by comparing Fig. 13, where
series 1 ends just below 27∆c, and Fig. 11 where the ` = 4 island
modes start just above 27∆c.

3.2.2. Secondary peaks

In addition to the main peak discussed above, we see other peaks
that we call secondary peaks. At Ω/Ωk = 0.589, Ω/Ωk = 0.706
and Ω/Ωk = 0.809, one can clearly distinguish these peaks
from the background noise. They are marked by a dashed line
in Fig. 9. The peaks occur at αδ + β∆c, where δ is the posi-
tion of the first secondary peak and α and β are integers. For
instance, the peaks of Fig. 9, panel c, occur at (α = +1, β = 0)
and (α = +1, β = +1). At Ω/Ωk = 0.706, secondary peaks
are numerous and close in amplitude to the main peak. At this
rotation, we have already noticed the nearest neighbors statis-
tics is anomalous (Evano et al. 2019), intermediate between the
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Fig. 13. Échelle diagram showing all chaotic frequencies in the range
25.60ωp to 33.54ωp modulo the large separation ∆c. Series of modes
are labeled by numbers 1 to 16. Black dots correspond to modes that do
not fit into a series.

Wigner and Poisson distributions with no level repulsion. This
anomalous statistics is a sign that independent subspectra coex-
ist at Ω/Ωk = 0.706. We will propose an explanation for these
secondary peaks in Sect. 4.

3.3. Non-axisymmetric modes

Because the model is cylindrically symmetric, modes are quan-
tized in the azimuthal direction, the quantum number being
denoted m. In the ray dynamics, it corresponds to the quanti-
zation of the invariant associated with this symmetry, that is the
projection Lz of the angular momentum on the axis of rotation.
For a given rotation and frequency, increasing L̃z = Lz/ω has
the effect of reducing the size of the chaotic zone. This can be
seen by comparing the PSS of Fig. 1 with m = 0 and the PSS
of Fig. 3 with m = 4, both with ω = 24.41ωp. From the mode
numerical computations, we find for m = 1 the main peak is still
clearly visible in the autocorrelation, and almost exactly at the
same position as for the axisymmetric case. However for m = 4
the autocorrelation shows a forest of peaks, the main peak being
slightly shifted toward low values (see Fig. 14).

4. Semiclassical interpretation

In Sect. 3, we gave a description of the most important proper-
ties of chaotic modes in our model of rotating stars. Our goal in
the present section is to provide a theoretical understanding of
these results based on asymptotic methods. The statistical prop-
erties of chaotic spectra are well described by Random Matrix
Theory (Bohigas 1991; Mehta 2004), which studies the distri-
bution of the eigenvalues of matrices filled with Gaussianly dis-
tributed random numbers. Real symmetric random matrices are
of particular interest. Indeed, they form the Gaussian Orthog-
onal Ensemble (GOE) that models the spectra of time-reversal
symmetric systems. Comparing an autocorrelation of the stellar
model with the GOE autocorrelation (see Fig. 15) makes it clear
that the main peak and secondary peaks are not generic features
of wave chaos. If Random Matrix Theory is efficient at modeling
the generic properties of chaotic systems, it is not able to grasp
specific behaviors that may arise in particular systems (see e.g.,
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Fig. 14. Top panel: autocorrelation at Ω/ωk = 0.589 for quantum num-
ber m = 1, in the frequency domain 30.51ωp to 38.48ωp. Bottom panel:
autocorrelation at Ω/ωk = 0.589 for quantum number m = 4, in the fre-
quency domain 30.53ωp to 38.51ωp. In both cases, the dashed line is
the position ∆c of the main peak for axisymmetric modes at the same
rotation rate.
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Fig. 15. Comparison of the “stellar” autocorrelation R2(ξ) at Ω/Ωk =
0.589, represented in solid line, with the GOE autocorrelation repre-
sented by a dashed line. To compare the “stellar” and GOE autocorre-
lations, two changes have been made. First, the autocorrelation of our
model has been re-scaled so that the value of the plateau, i.e. the line
around which there are fluctuations, is approximately unity. The value
of the plateau otherwise depends on the mean density d̄(ω) = dN̄/dω
and the Gaussian smoothing of the spectrum. Secondly, the GOE dis-
tribution has been rescaled, in the direction of the x axis, by the mean
level spacing of the Ω/Ωk = 0.589 spectrum in the frequency domain
considered.

Bogomolny et al. 1992, 1997). However, semiclassical methods
based on the propagation of rays are well suited for this task.

Using the semiclassical periodic orbit theory, which relates
the mode properties to the acoustic ray dynamics, we show in
Sect. 4.1 that the ∆c regularity is caused by the strong decrease
of the sound speed at the surface, and present a theory which
predicts the occurrence of the peak and its characteristics from
the ray dynamics. We then explain the presence of secondary
peaks by the transport properties of the phase space in Sect. 4.2.
In Sect. 4.3 we show, using a simplified model, how the behav-
ior of acoustic rays near the surface may induce structure in the
nodal pattern. In Sect. 4.4 we discuss how the families of chaotic
modes evolve when the frequency domain changes. At last in
Sect. 4.5, we show that the proximity of ∆c and ∆i is not acci-
dental, and we propose a way to differentiate chaotic modes and
island modes using the symmetries of the system.
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4.1. Main autocorrelation peak

4.1.1. Periodic orbit theory

Before diving into the subject of periodic orbit theory, let us
introduce a few quantities that will be later used to character-
ize the statistical properties of the spectra. The staircase function
N(ω) counts the number of modes below a given frequency ω.
From the staircase function one can define the spectral density
d(ω) = dN/dω. Both the staircase function and the spectral den-
sity are often written as the sum of two contributions called the
smooth part N̄(ω) (or d̄(ω)) and the fluctuating (or oscillating)
part Nosc(ω) (or dosc(ω)), where the smooth part is obtained by
locally averaging the function in the neighborhood of a target
frequency.

Periodic orbit theory is an asymptotic semiclassical theory
developed in the limit of high frequency or short wavelength. It
is based on the trace formula (Gutzwiller 1990), which relates
the spectral density to a sum over the periodic trajectories of
the Hamiltonian system. Though it was originally derived in
the framework of quantum mechanics, the trace formula can be
adapted to any wave system with a ray approximation. Indeed
trace formulas have been built and tested, for instance in optics
using microwave cavities (Kudrolli et al. 1994) or for plate
vibrations (Bogomolny & Hugues 1998). In the same spirit, we
re-derive the trace formula for the system considered here in
Appendix A. Using j as a label for the periodic orbits γ j, the
formula reads:

d(ω) − d̄(ω) = Re
∑

j

A j eiS j(ω), (7)

where S j = ω
∮
γ j

ds/c̃s is the action and
∮
γ j

ds/c̃s = T j is the
acoustic travel time of γ j. The amplitude term is expressed as

A j =
1
π

T j

| det(M j − I)|1/2
, (8)

where I denotes the identity matrix and M j is the monodromy
matrix which describes the linearized motion around the periodic
orbit and whose eigenvalues give the stability of the orbit. The
periodic orbits are either so-called primitive orbits or repetitions
of them. In many systems, the density ρ(T ) of orbits with a time
period T grows exponentially as

ρ(T ) ≈ (1/T ) eλT , (9)

where λ is the average lyapunov exponent of the system, which
describes the rate at which nearby trajectories diverge. Long
orbits are less stable and their amplitude drops down as

A(T ) ≈
1
π

T e−(1/2)λT . (10)

The exponential growth of the number of long orbits makes
it numerically difficult to attain good precision on the spectral
density using the trace formula. Moreover in many systems,
including the stellar model studied here, there is no automatic
procedure to find the periodic orbits. To circumvent these issues,
Berry showed (Berry 1985) that some statistical quantities such
as the variance, or more importantly the autocorrelation of the
spectrum, can be approximated using the trace formula in sys-
tems where individual periodic orbits are not known, provided
one knows their distribution.

The autocorrelation R2(ξ) = 〈d(ω − 1/2 ξ) d(ω + 1/2 ξ)〉,
with the average 〈 f 〉 =

∫
f dω, can be re-written as R2(ξ) =

〈dosc(ω − 1/2ξ) dosc(ω + 1/2ξ)〉 + φ(ξ), where φ(ξ) is a smooth
function. The theory aims at deriving an approximate expression
of the form factor:

K(T ) =
1
√

2π

∫ ∞

−∞

dξ exp(iξT ) C(ξ), (11)

which is the Fourier transform of the autocorrelation

C(ξ) =
〈
dosc(ω − 1/2ξ) dosc(ω + 1/2ξ)

〉
, (12)

=
〈(

Re
∑

i

AieiSi(ω−1/2ξ)
)(

Re
∑

j

A jeiS j(ω+1/2ξ)
)〉
. (13)

Getting rid of the real parts through the fact that with x =
Re(x̃) = Ai cos(ξTi + Si) and y = Re(ỹ) = A j cos(ξT j + S j) then
〈x y〉 = 1/2 〈x̃ ỹ∗〉, gives

C(ξ) =
1
2

〈(∑
i

AieiSi(ω−1/2ξ)
)(∑

j

A jeiS j(ω+1/2ξ)
)∗〉
· (14)

Inserting this expression in Eq. (11) and expanding the action as
S j(ω ± 1/2ξ) ≈ S j(ω) ± 1/2 ξ (∂S j/∂ω) = S j(ω) ± 1/2 ξT j(ω),
where T j is the acoustic travel time introduced before, leads to a
new expression of the form factor:

K(T ) =
1
2

〈∑
i

∑
j

AiA∗j ei(Si−S j) 1
√

2π

∫ ∞

−∞

dξ eiξ(T− 1
2 (Ti+T j))

〉
,

=
1
2

〈∑
i

∑
j

AiA∗j ei(Si−S j) 2π
√

2π
δ
(
T −

1
2

(Ti + T j)
)〉
· (15)

Under the frequency average 〈.〉, the contribution of the off-
diagonal terms i, j in the double sum can be neglected.
This diagonal approximation is valid for “short times” below
the Ehrenfest time TE ≈ (1/λ) ln(ω) (Bogomolny et al. 1997).
Beyond TE, there are pairs of orbits with very close
actions Si ≈ S j and higher order terms need to be computed
(Bogomolny & Keating 1996; Sieber & Richter 2001). In the
regime where the diagonal approximation is valid, the expres-
sion of the form factor is reduced to

K(T ) ≈
∑

j

A2
j δ(T − T j). (16)

In this expression K(T ), as a Fourier transform of a correlation
function in frequency, is a function of time T . Equation (16)
means that K(T ) is related to the distribution of travel times of
all the periodic orbits labeled by j (and not of their lengths).
This will be crucial in the subsequent analysis. For long orbits
Eq. (16) can be written as

K(T ) ≈ A2(T ) ρ(T ), (17)

where ρ(T ) dT is the number of periodic orbit with a time period
between T and T +dT . A prescription for the amplitude A(T ) and
the density ρ(T ) is given in Eqs. (10) and (9), and can be gener-
alized (Hannay & Ozorio De Almeida 1984), leading to the con-
clusion that for generic chaotic systems (Berry 1985) the form
factor is a linear function of T i.e. K(T ) ∝ T (up to the Ehren-
fest time), which is in accordance with the predictions of GOE
(Bohigas 1991). Such a result does not predict the occurrence of
peaks in the autocorrelation. We will show that the same theory
but using the specific density of periodic orbits of our system
leads to a different result predicting autocorrelation peaks.
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4.1.2. Distribution of acoustic travel times

To this aim, we need to model the density ρ(T ) of periodic orbit
travel times in our system. First, we define a chord as a portion
of orbit between two consecutive rebounds at the surface. From
this definition, a trajectory that bounces n times at the surface
will be called a n-chord. For any integer n, periodic trajectories
with n rebounds are a subset of n-chord trajectories. As already
mentioned, we do not know any systematic way of finding all
the periodic orbits in the system. Nonetheless, we may infer
some of their properties by studying large samples of n-chord
trajectories.

At a given rotation rate, we compute the acoustic travel times
of thousands of n-chord trajectories. The 1-chord distribution is
shown in the right panel of Fig. 16, at Ω/Ωk = 0.481. The dis-
tribution is a narrow packet: its standard deviation σ0 is small
compared to its mean value T0. We interpret this effect as a con-
sequence of the strong decrease of the sound speed near the sur-
face3. Indeed, the trajectories travel rapidly through the core of
the star and the acoustic time is dominated by the surface behav-
ior, so the actual length of the trajectory has very little impact on
its travel time. We expect the characteristic time T0 to increase
with rotation, because of the increasing volume of the star. This
is indeed confirmed, with T0 = 5.19/ωp at Ω/Ωk = 0.481 and
T0 = 6.30/ωp at Ω/Ωk = 0.706.

Moreover, due to the centrifugal deformation, the region
where the sound speed is very small widens at the equator. Hence
the dispersion of travel times must increase as well with rotation,
as can be seen by comparing, for instance, the chord joining the
two poles with the chord joining opposite points on the equator.
The total distribution of n-chords with n ≤ 20, with the same
number of orbits for all values of n, is represented in Fig. 16,
panels a and b at rotations Ω/Ωk = 0.481 and Ω/Ωk = 0.809.
The packets are evenly spaced out (Tn ≈ nT0) but get thicker
as n increases (σn ≈

√
nσ0), since each packet can be seen as

the sum of n independent variables. Thus this packet structure
will disappear when n becomes large, i.e. for long travel times.
An important difference between the two distributions shown in
Fig. 16 is the rate at which adjacent packets overlap, leading to
the disappearance of the packet structure. This is quantified by
the ratio σ0/T0 which is 0.049 at Ω/Ωk = 0.481 and 0.097 at
Ω/Ωk = 0.809.

The constraints imposed by the n-chord acoustic time dis-
tribution could be strong enough to impose a kind of periodic
oscillation in the distribution of periodic orbits, and thus in the
form factor K(T ). This oscillation could then produce a peak in
the autocorrelation in virtue of the Fourier relation4. We will now
show that it is indeed the case

To this aim, we model the distribution of travel times as a
sum of Gaussian functions: PΩ(T ) =

∑
n Pn,Ω(T ), with Pn,Ω(T )

the probability distribution of n-chords travel times:

Pn,Ω(T ) =
T0

√
2πnσ0

exp
(
−

(T − n T0)2

2(
√

nσ0)2

)
, (18)

where T0, in the prefactor, has been added for normalization pur-
poses. It is a crude approximation but it encapsulates in a sim-
ple form all the relevant properties of the distributions, namely

3 To test this hypothesis, we computed the acoustic time distribution
in a domain shaped like a Ω/Ωk = 0.706 rotating star, but with a homo-
geneous sound speed throughout the interior. It results in a distribution
whose dispersion is of the same order as the mean value: σ0 ≈ 0.32 T0.
4 Looking closely, one can discern a very narrow peak inside each
packet. It is created by trajectories trapped near the main island (see
Sect. 4.2) and will have no significant impact on the autocorrelation.
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Fig. 16. Left panels: number of n-chord trajectories, with n = 1, . . . , 20,
vs their travel time T at rotations Ω/Ωk = 0.481 (top) and Ω/Ωk =
0.809 (bottom), with 300 bins for the total distribution. The n-chord
samples contain ∼4200 chords each. Right panel: Ω/Ωk = 0.481 1-
chord distribution in more details, with ∼84 000 chords and 100 bins.
The mean value T0 of the distribution is marked with a dashed line and
the standard deviation σ0 is shown.

the presence of regularly spaced packets and their widening
with increasing n. One has to keep in mind that the depen-
dency on Ω is not explicit but hidden in the values of T0 and
σ0. Finally, we need to take into account the fact that the num-
ber of trajectories of acoustic time T grows with T . Thus, we
write ρ(T ) = (1/T )eλT × PΩ(T ) and the form factor becomes
K(T ) ∝ A2(T ) ρ(T ) = T PΩ(T ).

The Fourier transform of this quantity

F(ξ) =
1
√

2π

∫ ∞

−∞

dT exp(−iξT ) T PΩ(T ),

is shown in the middle panel of Fig. 17 for six rotations cor-
responding to the simulated chaotic spectra. This quantity is a
semiclassical approximation of C(ξ) (see Eq. (12)) and is closely
related to the autocorrelation R2(ξ) (see Fig. 9). The results show
that the periodic orbit theory based on the ray model indeed
predicts a peak in the autocorrelation. In the middle panel of
Fig. 17, its theoretical position ∆th

c moves with rotation, as in the
numerical mode computations, from 1.1458ωp at Ω/Ωk = 0.481
to 0.9254ωp at Ω/Ωk = 0.809. In the top panel, ∆th

c is com-
pared to the peak position of the numerical modes ∆c, with good
agreement. The position, height and width of the peaks are com-
pletely determined by T0 and σ0. The position is found straight-
forwardly as ∆th

c ≈ 2π/T0. The height and width are controlled
by the ratioσ0/T0. Indeed, the conditionσ0 � T0 is necessary to
clearly distinguish the packets in the distribution of travel times,
as in Fig. 16. Due to the increase ofσ0/T0 with rotation, the peak
gets less visible at high rotation rates.

The theoretical large separation ∆th
c is not only a function of

the rotation rate Ω, but also of the projected angular momentum
L̃z. In the bottom panel of Fig. 17 we show the predicted peaks
for L̃z = 0, 0.0819/ωp, 0.1638/ωp and 0.2458/ωp at Ω/Ωk =
0.589. The shift in position is governed by the value of T0 and
the change in amplitude by the value of σ0 as L̃z increases. The
main difference with the axisymmetric case is a reduction of the
domain of propagation, resulting in a smaller standard deviation
σ0. As the mean travel time T0 between two rebounds depends
on the impact of L̃z on the ray paths, it changes slightly in a non
monotonic fashion.

We have seen that the sound speed profile in the star imposes
restrictions on the travel times of acoustic rays. In spite of the
chaotic nature of the dynamics, the small dispersion of travel
times produces order in the spectra, in the form of a peak in
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Fig. 17. Upper panel: theoretical large separation ∆th
c /ωp (upward trian-

gles) compared to the numerical peak’s position (downward triangles)
calculated for axisymmetric modes at six rotation rates. Middle panel:
theoretical autocorrelations with quantum number m = 0, from right
to left the rotation rate increases. Bottom panel: theoretical autocorrela-
tions at Ω/Ωk = 0.589 with m = 0, 2, 4, 6 and frequency ω = 24.41ωp.

the autocorrelation at a value ∆th
c that corresponds to the mean

travel time between two points at the surface. It is fundamen-
tally a radial phenomenon, since the strong variation of the sound
speed occurs in the radial direction. Introducing the radial acous-
tic time at a given colatitude τ(θ) =

∫ rs(θ)
0 dr/c̃s, where r is the

radial coordinate, the mean acoustic time between two rebounds
can be estimated without using ray dynamics, as

T av = 2
(

2
π

∫ π/2

0
τ(θ)dθ

)
, (19)

where the integral is performed over a quarter of the star because
of the axial and equatorial symmetries. In the m , 0 case, the
domain of integration must be adapted, since the acoustic ray
cavity is reduced in size. We find that 2π/T av is a good estima-
tion of ∆c. For instance, at ω/Ωk = 0.589, 2π/T av = 1.0996ωp,
which differs from ∆c by less than 1%.

4.2. Secondary peaks

At every rotation there are other peaks in addition to the main
peak caused by the large separation of chaotic modes. At rota-
tions higher than Ω/Ωk = 0.589 some of these peaks raise high
above the noise level and we call them secondary peaks. The
presence of small amplitude peaks in the autocorrelation can be
understood as reflecting the organization of the chaotic spectra
on an échelle diagram, illustrated in Fig. 10. Indeed, the spec-
trum is organized in families of nearly aligned frequencies. Lets
us consider first the case of two perfectly aligned families of
frequencies. These two families would produce a peak in the

autocorrelation at a position given by the distance between con-
secutive levels in the two series. This is reminiscent of the case
of island modes, that show well-aligned families on the échelle
diagram and, accordingly, many peaks are seen in the autocorre-
lation. In this later case, the effect is strong because the separa-
tion δ` = ωn,`+1 − ωn,` between consecutive families is fixed. In
the case of chaotic modes, the alignments are weaker and con-
secutive series are not regularly spaced out. Thus, we expect the
peaks to be of small amplitude.

The high amplitude peaks observed in the data at Ω/Ωk =
0.589 are caused in part by two series, number 1 and 2 in Fig. 10,
that are nearly parallel on the échelle diagram. The spacing
between these two series indeed corresponds to the position δ
of the leftmost secondary peak in Fig. 9, panel c. If couples of
nearly parallel series can occur occasionally, there is however
no reason to expect them at every rotation rate. The presence of
strong secondary peaks at other rotation rates (and also in the
spectra of non axisymmetric modes) is a hint that a more generic
mechanism is at play. Moreover, we know that the spectral statis-
tics of the chaotic spectrum at Ω/Ωk = 0.706 indicates that it is
divided into independent subspectra, as explained in Sect. 3.2.2.
In the following, we will argue that the presence of secondary
peaks is a consequence of the presence of partial barriers in the
phase space of the ray system which create separate independent
subsets of modes.

It is known that transport properties in chaotic phase
space can have a significant impact on the wave system spec-
tra (Bohigas et al. 1993). The transport of trajectories from a
subregion A to another subregion B can be affected by the pres-
ence of partial barriers. These are curves through which classi-
cally trajectories can flow, but with a much smaller flux than in
other parts of phase space. Thus, contrary to KAM tori that act
as complete barriers, ergodic trajectories are able to cross partial
barriers after a sufficiently long time. Such partial barriers are
typically created when the system is being perturbed, through
the destabilization of island orbits. In virtue of the Poincaré-
Birkhoff theorem (Ott 1993), resonant tori are destroyed by the
perturbation and generate new structures in phase space: a new
(smaller) island chain around an elliptic central orbit along with
an unstable periodic orbit. The unstable orbits created through
this process are known to be the source of partial barriers that
trap ergodic trajectories (Shim et al. 2011; Bohigas et al. 1993).

Acoustic ray simulations show that two 6-period unstable
orbit revolves around the main 2-period island chain at Ω/Ωk =
0.589. At Ω/Ωk = 0.706, we also find a periodic orbit revolving
around the island and strongly suspect the presence of a sec-
ond one. Moreover, by choosing trajectories with initial condi-
tions around the main island and evolving the system forward
in time, we see clearly the contours of the partial barrier reveal
themselves (see Fig. 18). For the frequencies considered in our
dataset, the partial barriers may act as complete barriers and
isolate some modes, as observed in other systems (Shim et al.
2011). Quantitative estimates of the area and outgoing flux have
been given in Evano et al. (2019), showing that the barrier grows
in size from Ω/Ωk = 0.589 to Ω/Ωk = 0.706 and that, in parallel,
it takes longer to go through the partial barrier at Ω/Ωk = 0.706.
Thus, the trapping of chaotic trajectories around stable islands
seems to be the cause of the additional peaks seen in the autocor-
relations. Moreover, as the trapped trajectories revolve around a
6-periodic orbit (see Fig. 18), and assuming the modes to quan-
tize like island modes, one can expect that the secondary peaks
will be located approximately at ∆c/3. As seen in Fig. 9, this idea
is consistent with the data at ω/ωk = 0.706. However it gives
only a rough estimate of the peak position at other rotation rates
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Fig. 18. Snapshot of the evolution of a bundle of trajectories as they
intersect the PSS, represented by black dots, at Ω/Ωk = 0.706. The
phase space zones where black dots are dense correspond to regions
enclosed by partial barriers. The trajectories are initially in the neigh-
borhood of the two main islands. One of the central periodic orbits of
these zones is indicated by colored dots (large gray dots).

Fig. 19. Superposition of random stationary waves reproducing the kind
of amplitude patterns seen in the chaotic p-modes of the polytropic stel-
lar model (see text).

and thus this issue should be analyzed in more depth. The spe-
cific rotations where the trapping of trajectories will be efficient
can be anticipated only through precise numerical simulations of
the ray model.

4.3. Amplitude distribution of chaotic modes

Berry proposed that the eigenstates of a classically chaotic sys-
tem, like quantum billiards, could be modeled by a superposi-
tion of random plane waves. Indeed this picture holds locally,
in the high frequency regime, where the mode is a superpo-
sition of rays of the same magnitude |k|, but coming from all
possibles directions. It is easy to test this idea, as done e.g. in
O’Connor et al. (1987), by adding multiple time-harmonic solu-
tions of the Helmholtz equation ∇2ψ + k2ψ = 0. The waves are
of the form ψn = an cos(kn(αn) · x + ξn), where the amplitude an,
the wave vector orientation αn and the phase shift ξn are random
variables but the magnitude |k| of the wave vector is fixed. The
resulting modes indeed exhibit the random ridges characteristic
of chaotic modes.

Contrary to quantum billiards, the wavevector magnitude
varies strongly within a star, as it is proportional to the inverse of
the sound speed. Moreover, each incoming ray approaching the
surface is almost aligned in the radial direction (kr � kθ). Thus,
the hypothesis that intersecting rays come with a large variety of
possible orientations is not valid near the surface. We modified

slightly the random wave model to incorporate such a behavior.
For simplicity, we treat the x axis as a radial direction. Then we
impose a radial increase of the magnitude |k| and that all waves
end up aligned in the radial direction as x → ∞. An example
of mode produced in this way is shown in Fig. 19. The mode
exhibits random ridges in the center but the outer part is more
structured, with nodes regularly spaced radially and irregular in
the transverse direction as in the star.

4.4. Spectrum organization

In the previous sections, we found that the chaotic spectrum can
be described as a set of series of modes, where a series cor-
responds to modes separated by approximately ∆c and having
similar amplitude distribution. Sixteen series have been effec-
tively identified at the rotation rate Ω/Ωk = 0.589 and in the
frequency range, 25.60ωp < ω < 33.54ωp. We also found that
whispering gallery modes are present at the low-frequency end
of some chaotic series, and that island mode series appears as
high-frequency extensions of some other chaotic series. In this
section, we use semiclassical arguments to investigate the origin
of the different chaotic series and their link with the whispering
gallery and island mode spectra.

We first consider a non rotating star because in this case
the modes can be precisely located on the PSS. As the system
is integrable, the phase space is foliated with Nd-dimensional
tori, where Nd is the number of degrees of freedom. Modes are
then constructed on some of the tori, the ones specified by the
Einstein-Brillouin-Keller quantization rules. The quantization of
the norm of the angular momentum L, the invariant associated
with the spherical symmetry, reads L = ±(`s+1/2) (Gough 1993)
where `s is the degree of the mode, with the index s denoting
the “spherical” case. For the frequency-scaled coordinates used
here, we rather use the invariant L̃ = L/ω = ±(`s + 1/2)/ωns,`s,m,
where ns and m are the radial order and the azimuthal order of
the mode. In the axisymmetric case, Lz = 0, the tori imprint the
PSS on horizontal lines k̃θ = ±L̃ (Lignières & Georgeot 2009).
On Fig. 20, the identification of a few mode-carrying tori is dis-
played. It shows how the position of the tori along the vertical
axis depends on `s and ns. For fixed radial order ns and increas-
ing `s, the tori indeed move toward higher L̃ or k̃θ values. Simi-
larly, for fixed `s and increasing ns, the tori approach the k̃θ = 0
axis. In particular, the `s = 0 or `s = 1 modes are already close
to the central axis for the smallest radial order.

When rotation comes into play, the location of the tori at
Ω = 0 has strong consequences on their fate. From the evolution
of the PSS we know that the phase space becomes rapidly dom-
inated by three main structures: the 2-period island chain at low
k̃θ, the large chaotic zone at low and intermediate k̃θ, and at large
k̃θ, the region of surviving KAM tori corresponding to whisper-
ing gallery trajectories. In this context, high-L̃ tori at Ω = 0
will transform into structures of the surviving KAM tori region,
whereas low-L̃ tori will be destroyed as the 2-period island chain
and the chaotic zone surrounding it emerge. We thus expect
high-L̃ modes to become whispering gallery modes, while low-L̃
modes should evolve toward chaotic or island modes.

We can use this phenomenology to predict the fate of a
sequence of modes having a fixed degree `s and variable radial
orders ns. In such a series, L̃ has a maximum value for ns = 1
and it decreases toward zero as ns increases. Generically, we
thus expect that, as rotation increases, the low-ns (high-L̃) modes
become whispering gallery modes, the intermediate-ns modes
become chaotic modes, and the high-ns (low-L̃) modes become
island modes. Combining this picture with our observation
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Fig. 20. Intersection of a few tori with the PSS at Ω/Ωk = 0. Only the
part of the PSS where kθ > 0 is shown because of the symmetry with
respect to the kθ = 0 axis at zero rotation. The tori correspond to modes
of degree `s = 1, `s = 9 or `s = 11.

that some series of chaotic modes show island modes at their
high-frequency end or whispering gallery modes at their low-
frequency end, we are led to interpret the chaotic series together
with their island modes and whispering gallery modes exten-
sions as the remnants of series of given `s at zero rotation.

At Ω/Ωk = 0.589, we could indeed relate two chaotic series
(the series 1 and 2) with the ` = 4 and the ` = 5 odd-parity island
mode series, respectively. Following this interpretation and using
the formulas that link ` to `s (Reese et al. 2008; Pasek et al.
2012) we can attribute the `s = 9 value to series 1 and the `s = 11
value to series 2. In principle, the `s value of the other chaotic
series shown on Fig. 13 could also be determined, either by fol-
lowing them to higher frequency up to the island mode transition
or by looking for a whispering gallery mode and its `s value at
low frequency.

The generic case of a `s series containing the three type of
modes only holds for high enough `s. The computed PSS indeed
show that below a specific k̃θ that depends on the rotation rate,
all trajectories are either chaotic or within an island chain. We
thus expect that, below some critical `s that depends on the rota-
tion rate, all modes in the series are either of the chaotic or
island type. Moreover, from numerical studies (Lignières et al.
2006; Reese et al. 2008; Pasek et al. 2012) where `s = {0, 1, 2, 3}
modes have been carefully followed with rotation, we know that,
for these lowest degree, modes of all orders behave as island
modes. This is coherent with the fact that their initial L̃ are all
close to the k̃θ = 0 axis.

To summarize, we argued that the chaotic mode spectrum
of rapidly rotating stars is organized in series that can be traced
back to the fixed `s series of the non-rotating star. While sup-
ported by the analysis of our numerical results, this idea needs
to be further tested at other rotations and in other frequency
domains. It is also important to stress that without the ∆c organi-
zation of the chaotic spectrum, the chaotic series would not exist
and we could not attribute `s value to them. Indeed, tracing back
chaotic modes to their integrable counterpart is not possible for
typical mixed systems like quantum billiards. Another property
that help recognize the link with a high-frequency island mode
series is that ∆i is very close to ∆c.

4.5. Mode identification: chaos versus islands

In the numerically computed spectra, the large separations of
island modes and chaotic modes are found to be very close

Table 2. Comparison of the large separation of island modes ∆i and
chaotic modes ∆c, obtained from the simulated spectra at six rotations.

Ω/Ωk ∆i ∆c |∆i − ∆c|/∆i

0.481 1.1644ωp 1.1458ωp 1.60%
0.545 1.1288ωp 1.0907ωp 3.38%
0.589 1.1021ωp 1.1132ωp 1.01%
0.658 1.0543ωp 1.0543ωp 0.00%
0.706 1.0155ωp 1.0169ωp 0.14%
0.809 0.9345ωp 0.9355ωp 0.10%

to one another (see Table 2). The asymptotic theory discussed
above gives a natural explanation for this apparent coincidence.
Indeed we established that the large separation of chaotic modes
is defined asymptotically by ∆th

c = 2π/T0. On the other hand,
the large separation of island modes in the asymptotic regime is
related to the acoustic time along the central periodic orbit γ by
(Pasek et al. 2012) ∆i = 2δn with δn = 2π/

∮
γ
(ds/c̃s). The close-

ness of the two peaks is thus due to the closeness of the mean
travel time of a chaotic trajectory and the travel time along the
central path γ. For the same reason that all chaotic trajectories
have almost the same travel time, the acoustic time between two
rebounds along the central orbit of the island has to be very close
to T0.

Despite the proximity of the two peaks, it may be possible
to tell them apart by combining odd and even spectra. In this
case, the autocorrelation of the island mode spectra shows not
only a peak at the large separation but also at half the large sep-
aration. This is due to the fact that the island modes are built
around a central orbit which is self-retracing, i.e. during a com-
plete period it goes twice through the same points in q with oppo-
site momenta. For such orbit, the semiclassical quantization for
an even or odd spectrum uses a twice shorter orbit than for the
full spectrum. In contrast, the odd and even spectra of chaotic
modes are built on generic orbits with no such property, and are
completely independent. Hence, the autocorrelation of the full
chaotic spectrum at a given rotation, with both parities, does not
show a peak at half separation.

5. Discussion and conclusion

In this paper, we have computed high frequency p-modes in stel-
lar polytropic models for rotation rates between Ω/Ωk = 0.48
and Ω/Ωk = 0.81. Following the methodology of Sect. 2.3, we
have then identified chaotic modes and built a dataset of chaotic
frequencies. As expected, the nearest-neighbor statistics of the
chaotic spectra for most rotations follow the Wigner-Dyson dis-
tribution, a well-known generic property of wave chaos systems.
The frequency autocorrelations of the chaotic spectra have been
computed. All of them exhibit peaks above the noise level. The
presence of peaks in the frequency autocorrelation is clearly not
generic in wave chaos systems.

Our analysis shows that chaotic modes are organized in
series. The frequency difference between consecutive modes
being approximately constant and of similar value across all
series. By displaying chaotic mode frequencies on échelle dia-
grams, we showed that this weakly varying frequency interval
can be interpreted as a pseudo large separation. We speak about
pseudo large separation because contrary to modes in the non-
rotating case or to island modes, the interval is slightly irregular
and would remain so asymptotically.
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The pseudo large separation is responsible for the presence
of the so-called main peak in the frequency autocorrelations and
we explained it using semiclassical methods. The ray dynam-
ics is indeed peculiar, as the sound speed is strongly inhomoge-
neous along the radius of the star. We characterized the impact
of the sound speed profile on the ray dynamics through two vari-
ables, σ0 and T0 (see Eq. (18)). These two quantities correspond
respectively to the mean value and standard deviation of the one-
chord travel time distribution. Using the formalism of quantum
chaos, we then wrote a semiclassical expression of the autocor-
relation and showed that knowingσ0 and T0 is enough to recover
the position of the main peak in the numerically computed spec-
tra. This asymptotic analysis also explains the decrease of the
peak height as rotation increases, equivalent to a loss of regu-
larity of chaotic modes. There are other peaks in the autocor-
relations, which vary in a less predictable way as a function
of rotation. We propose that they are created by the presence
of phase space structures that develop around the stable island
chains, called partial barriers.

The large separation is expressed as ∆c ∼ 2π/T0. Since
chaotic trajectories cover the entire meridional plane, at least in
the asymmetric case, we found that T0 can be estimated approx-
imately, without using ray tracing, by computing the average
acoustic time over the meridional plane (see Eq. (19)).

As explained in Sect. 4.5, the small variance of acoustic
travel times (σ0/T0 � 1) implies the observed quasi-degeneracy
of ∆i and ∆c. Thus, we expect rapidly rotating stars to be char-
acterized by a unique large separation ∆ ∼ ∆i ∼ ∆c. Autocor-
relation peaks at the large separation detected in δ scuti stars
(García Hernández et al. 2015) could be produced not only by
island modes, as previously thought, but also in part by chaotic
modes. This would be important for stars that rotate rapidly
enough to harbor a significant number of chaotic modes. A way
to distinguish the contribution of island modes is to look for a
peak at half the large separation as our analysis indicates that it
is due to island modes only.

To go further in the comparison with observed spectra, one
should construct a database of low-frequency synthetic spectra
as in Reese et al. (2017) but with full mode identification and
with a higher sampling in rotation rate. We expect the asymp-
totic properties described in the present paper to guide the iden-
tification of chaotic modes even at low frequency, as it was the
case for island modes. Having fully identified synthetic spectra
then would help to identify modes in real data.

Calculations of mode visibilities in rapid rotators were
performed first in Lignières & Georgeot (2009) and later in
Reese et al. (2013) taking more effects into account such as grav-
ity darkening. These calculations showed that the surface struc-
ture of chaotic modes should allow them to be visible, especially
at high rotation rates. The most direct proof of the occurrence of
wave chaos in stars would be to identify a large set of observed
chaotic mode frequencies and find that they follow closely the
Wigner-Dyson surmise. This is a very difficult task, however a
couple of observations might reduce the difficulty by a small
amount. First, the spectra of many stars with various rotation
rates can be aggregated, as we did in Fig. 7 to construct the
nearest neighbor distribution. Also, choosing very fast rotators
may help, since chaotic modes are expected to be more present
at very high rotation rates. Finally, a pole-on configuration can
be helpful as avoiding m , 0 sub-spectra would simplify mode
identification.
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Appendix A: Trace formula

In this appendix we will adapt the semiclassical formalism used
in quantum mechanics to derive a trace formula for chaotic
modes in rotating stars. The general derivation follows the orig-
inal one due to Gutzwiller, detailed e.g. in (Gutzwiller 1990;
Cvitanovic et al. 2017; Ott 1993).

A.1. The Hamiltonian system

We denote the canonically conjugate variables (p, q), as is usual
in textbooks on Hamiltonian mechanics. In the present subsec-
tion, we will consider the system to be one-dimensional to avoid
carrying indices in the notation. The ray dynamics is governed
by the following Hamiltonian:

H =

√
c2

s k2 + ω2
c = ω, (A.1)

where the wave vector plays the role of momentum: p ≡ k.

A.1.1. Hamilton’s principal function

We now express p as a function of q̇:

∂H
∂p

= q̇ = 2c2
s p/ω =⇒ p =

q̇ω
2c2

s
· (A.2)

The ray system can thus be seen as analogous to a mechani-
cal system with a varying mass ω/c2

s . Then, the Lagrangian L is
obtained through the usual Legendre transform:

L = q̇p − H =
q̇2ω

2c2
s
− ω. (A.3)

Hamilton’s principal function, denoted R, is defined as the time
integral of the Lagrangian. Its computation involves following a
trajectory from (q′, t′) to (q, t). For short times δt, it gives:

R(q, q′, δt) =
(q − q′)2ω

2c2
sδt

− ω δt, (A.4)

using q̇ = (q − q′)/δt.

A.1.2. Action integral

The action integral S is defined from R as S (q, q′, ω) =

R(q, q′, t) + ωt =
∫ t

0 (L + H) dt. From Eq. (A.3) we have:

S (q(t), q′(0)) =

∫ t

0

q̇2ω

2c2
s

dt

=

∫ q(t)

q′(0)

q̇2ω

2c2
s

dq
q̇

=

∫ q(t)

q′(0)

q̇ω
2c2

s
dq =

∫ q(t)

q′(0)
p dq, (A.5)

which is the well know expression of the action. Finally, the
eikonal equation Eq. (2) gives k̃ = p/ω = 1/c̃s. Thus the action
can be written in terms of the acoustic time:

S (q, q′, ω) = ω

∫ q

q′

ds
c̃s
, (A.6)

where s is the curvilinear coordinate along the ray path.

A.2. WKB approximation for the semiclassical propagator

We first derive the expression for the semiclassical propagator,
adapting the method in (Cvitanovic et al. 2017) for quantum sys-
tems to our star model, which has two degrees of freedom and
a four-dimensional phase space. Let Λ−1 be a small dimension-
less parameter. In the wave equation, Eq. (1), we insert the WKB
ansatz Ψ(q, t) = A eiΛφ(q,t) leading to (Gough 1993):

(∂tφ)2 −
1

Λ2 (ω2
c + c2

s k2) = 0, (A.7)

Λ∂tφ ± (ω2
c + c2

s k2)1/2 = 0. (A.8)

Equation (A.7) can be recognized as the Hamilton-Jacobi equa-
tion ∂R/∂t = ±H. Thus, in the limit of small wavelengths, the
phase is simply Hamilton’s principal function: φ = R or φ = −R
(associated to the Hamiltonian −H). The two possible phases
lead to two terms in the propagator, with a projector on each
subspace P1 and P2 satisfying P1 + P2 = I.

Additionally, the substitution φ̇ = −H = −ω yields:

∂

∂t
(A2) +

c2
s

ω

∂

∂q

(
A2 ∂R
∂q

)
= 0. (A.9)

Introducing the density ρ = A2 and velocity v = 1/m (∂R/∂q),
with m = ω/c2

s (from the mechanical analogy introduced in
Sect. A.1.1), Eq. (A.9) appears as a continuity equation. It fol-
lows that the ray amplitude A(q, t) can be interpreted as the
square root of the density of nearby trajectories. The evolution
of this density from q′ to q (variation of volume in coordinate
space of a swarm of trajectories) is quantified through the Jaco-
bian determinant det

(
∂q′

∂q

)
.

Having now both the phase and amplitude, we obtain the
semiclassical wave function

Ψsc(q, t) = A1

∫
dq′

∣∣∣∣∣det
∂q′

∂q

∣∣∣∣∣1/2 eiR(q,q′,t)Ψsc(q′, 0)

+ A2

∫
dq′

∣∣∣∣∣det
∂q′

∂q

∣∣∣∣∣1/2 e−iR(q,q′,t)Ψsc(q′, 0), (A.10)

where A1 and A2 are the projection of the intial wave function on
the two subspaces. This is valid for short time, i.e. when only one
classical trajectory connects q′ to q in time t. For longer times,
several trajectories which we label by j connect the two points,
and the formula becomes:

Ψsc(q, t) = A1

∫
dq′

∑
j

∣∣∣∣∣det
∂q′

∂q

∣∣∣∣∣1/2 eiR j(q,q′,t)−iκ jπ/2Ψsc(q′, 0)

+ A2

∫
dq′

∑
j

∣∣∣∣∣det
∂q′

∂q

∣∣∣∣∣1/2 e−iR j(q,q′,t)−iκ jπ/2Ψsc(q′, 0),

(A.11)

where the topological index κ is added to account for the phase
shift at points where the amplitude becomes singular, such as
caustics.

The propagator K is defined by

ψ(q, t) =

∫
dq′K(q, q′, t)ψ(q′, 0). (A.12)

The propagator is the time-dependent Green’s function, it is
thus solution of the wave equation with the initial condition
limt→0K(q, q′, t) = δ(q − q′). Again, we will assume that, for
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short times δt, the semiclassical propagator is of the form (for
the first term, the computation is similar for the second term)

Ksc(q, q′, δt) = A(q, q′, δt) eiR(q,q′,δt). (A.13)

Neglecting the second term ω δt in (A.4) gives

Ksc(q, q′, δt) = A(q, q′, δt)e
i ω

2c2
s δt

(q−q′)2

. (A.14)

If we impose A(q, q′, δt) = ( ω
2πic2

s δt
), then the previous expression

is a 2-dimensional Gaussian of width σ = (δt c2
s/ω)1/2. In the

limit δt = 0 the condition K(q′′, q′, t = 0) = δ(q− q′) is satisfied.
Using again the substitution m = ω/c2

s for clarity

Ksc(q, q′, δt) =

( m
2πiδt

)
eiR(q,q′,δt), (A.15)

using the fact that m/δt = det(− ∂p′

∂q ) = det(− ∂2R
∂q∂q′ ) the expression

becomes

Ksc(q, q′, t) = (2πi)−1

∣∣∣∣∣∣det
∂2R
∂q∂q′

∣∣∣∣∣∣1/2 eiR j(q,q′,t). (A.16)

This short time expression with the correct limit at t → 0
can be extended to longer times using Eq. (A.11) and the fact
that det ∂p′

∂q det ∂q
∂q′′ = det ∂p′

∂q′′ . This gives:

Ksc(q, q′, t) = A1

∑
j

(2πi)−1

∣∣∣∣∣∣det
∂2R
∂q∂q′

∣∣∣∣∣∣1/2 eiR j(q,q′,t)−iκ jπ/2

+ A2

∑
j

(2πi)−1

∣∣∣∣∣∣det
∂2R
∂q∂q′

∣∣∣∣∣∣1/2 e−iR j(q,q′,t)−iκ jπ/2,

(A.17)

where the sum is over all classical trajectories labeled by j from
q′ to q in time t.

A.3. Green’s function

To derive the trace formula, the usual procedure necessitates in
quantum mechanical systems to go from the propagator to the
energy-dependent Green function G(q, q′, E), which is related to
the propagator through the Fourier transform

G(q, q′, E) =
1
i~

∫ ∞

0
K(q, q′, t) e

i
~

Et+ εt
~ dt, (A.18)

where ε is a small positive number which makes the integral
convergent and goes to zero eventually. Then one uses the fact
that G(q, q′, E) can be expanded on a basis of eigenvector {φ j} of
the Hamiltonian with eigenvalues En as

G(q, q′, E) =
∑

n

φ∗n(q)φn(q′)
E − En + iε

· (A.19)

In the semiclassical approximation this leads to the following
equality for E/~→ ∞∑

n

φ∗n(q)φn(q′)
E − En + iε

=
1
i~

∫ ∞

0
Ksc(q, q′, t′) e

i
~

Etdt, (A.20)

which is valid at first order in ~ (acoustic case: first order in Λ−1).
One can already forecast the trace formula from this equality, as
it involves both the eigenenergies of the quantum system on the
left-hand side and classical quantities in the right-hand side. We

now need to find out an expression similar to Eq. (A.20) for the
acoustic waves.

The propagator can be found by taking the matrix element of
the evolution operator U(t, 0) between the final and initial states
|q〉 and |q′〉, (see e.g. Cohen-Tannoudji et al. 1977):

K(q, q′, t) = 〈q|U(t, 0)|q′〉. (A.21)

U(t, 0) satisfies the wave equation: ∂2/∂t2U(t) = −Ĥ2U(t, 0),
where Ĥ is the Hamiltonian operator with Ĥ2 = c2

s∇
2+ω2

c . Then:

U(t, 0) = P1e−iĤt + P2eiĤt, (A.22)

with P1 and P2 projectors in two subspaces as above. Let |φn〉 be
the eigenfunctions of the Hamiltonian Ĥ. Then, from the closure
relation, we have:

U(t, 0) =
∑

n

|φn〉〈φn|
(
A1e−iωnt + A2eiωnt

)
, (A.23)

where A1 and A2 are the projection of the intial wave function on
the two subspaces. Using Eq. (A.23) in Eq. (A.21) gives:

K(q, q′, t) =
∑

n

φ∗n(q)φn(q′)
(
A1e−iωnt + A2eiωnt

)
, (A.24)

The ω dependent Green’s function G(q′′, q′, ω) stems from the
Fourier transform of K(q, q′, 0):

G±(q, q′, ω) =
∑

n

φ∗n(q)φn(q′)
1
i

∫ ∞

0
e−i(ω±ωn)t+εtdt

= A1

∑
n

φ∗n(q)φn(q′)
ω − ωn + iε

+ A2

∑
n

φ∗n(q)φn(q′)
ω + ωn + iε

· (A.25)

On the other hand, the semiclassical Green’s function is
obtained by taking the Fourier transform of the semiclassical
propagator (A.17) and evaluating it by stationary phase; one
starts from

Gsc(q, q′, ω) =
1
i

∫ ∞

0
Ksc(q, q′, t)eiωtdt. (A.26)

The phase term of the integrand is the action R(q, q′, t) + ωt =
S (q, q′, ω) or −R(q, q′, t) + ωt = S ′(q, q′, ω). Stationary points
of the first sum are such that ∂R(q,q′,t)

∂t + ω = 0 which correspond
to classical trajectories from q′ to q at frequency ω. As usual
one expands the integrand in Eq. (A.26) in powers of t at second
order. Then the integral is approximated by the method of sta-
tionary phase (Schulman 1996). Again, the computation of the
prefactor requires to combine the prefactor of (A.17) with the
one coming from the stationary phase. The second sum has sta-
tionary points at or ∂R(q,q′,t)

∂t − ω = 0. The result is:

Gsc(q, q′, ω) = A1
1

i
√

2π

∑
j

∣∣∣∣∣∣ 1
q̇q̇′

∂2S
∂q⊥∂q′⊥

∣∣∣∣∣∣1/2 eiS j(q,q′,ω)−iκ′jπ/2

+ A2
1

i
√

2π

∑
j

∣∣∣∣∣∣ 1
q̇q̇′

∂2S
∂q⊥∂q′⊥

∣∣∣∣∣∣1/2 eiS ′j(q,q
′,ω)−iκ′jπ/2,

(A.27)

where the sum is over all classical trajectories from q′ to q at
frequency ω, q̇ and q̇′ are final and initial velocities, and q⊥ and
q′⊥ are coordinates transverse to the orbit. The index κ′j counts
again the singularities along the orbits.
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A.4. The final formula

To obtain the trace formula, we should compute the trace
of the Green’s function from the two formulas we obtained,
Eqs. (A.25) and (A.27). We will now keep only the first part
in both equations since each term in one equation is equal to its
counterpart in the other. Let us first compute the trace of Green’s
function from Eq. (A.25). To this aim, let the small imaginary
part in the denominator go to zero and get for the imaginary part:

Im Tr G(q, q′, ω) = −
1
π

∑
j

δ(ω − ω j). (A.28)

On the other hand, the trace of the semiclassical Green’s function
Eq. (A.27) is:

Tr Gsc =

∫
dq Gsc(q, q, ω)

=

∫
dq

1

i
√

2π

∑
j

∣∣∣∣∣∣ 1
q̇q̇′

∂2S
∂q⊥∂q′⊥

∣∣∣∣∣∣1/2 eiS j(q,q′,ω)−iκ′jπ/2,

(A.29)

This formula is an integral involving all closed classical
paths from q to q at frequency ω. It contains two parts. The first
one corresponds to the limit for q→ q′ of the short direct trajec-
tories between q and q′, which become of zero length. We call it
Tr G0 and it should be treated separately. The remaining contains
a sum of closed orbits between q and q with nonzero length. We
evaluate this sum again by stationary phase; the stationary points

in the sum are such that the first derivative of the function in the
exponential is cancelled. This implies that ∂S (q,q′,ω)

∂q′ +
∂S (q,q′,ω)

∂q = 0
for q = q′. This selects closed trajectories with equal initial and
final momentum, thus periodic orbits. Again, the prefactors are
to be combined correctly, yielding to:

Tr Gsc(q, q′, ω) = Tr G0 +
∑

j

1
i

T j |det(Mi − I)|−1/2 eiS j(ω)−iκ′jπ/2,

(A.30)

where i labels all the periodic orbits of the system, including
repetitions of a primitive orbit, Mi is the monodromy matrix
describing the linearized motion in the transverse direction to
the orbit; the determinant encodes the stability of this orbit i. Ti
is the geometrical period of the orbit (i.e. without counting the
repetitions).

Equation (A.28) connects the trace of the Green’s function
to the density of states

∑
j δ(ω − ω j). It is known that this sum

can be split in two parts d(ω) = d̄(ω) + dosc(ω). The first term
corresponds to the smooth part of the density of states, while the
second part contains the fluctuating (oscillatory) part. It turns out
that d̄(ω) corresponds to Tr G0, while the oscillatory part cor-
responds to the remaining part of Eq. (A.30). Putting together
Eq. (A.28) for positive frequencies and Eq. (A.30) gives the
Gutzwiller formula for the acoustic waves:

dosc(ω) =
1
π

Re
∑

j

T j |det(Mi − I)|−1/2 eiS j(ω)−iκ′jπ/2. (A.31)
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