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Abstract: For exponents in the subcritical range, we revisit some optimal interpola-

tion inequalities on the sphere with carré du champ methods and use the remainder

terms to produce improved inequalities. The method provides us with lower esti-

mates of the optimal constants in the symmetry breaking range and stability esti-

mates for the optimal functions. Some of these results can be reformulated in the

Euclidean space using the stereographic projection.
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1 Introduction
Let us consider the sphere Sd endowed with the uniform probability measure dµ.

We shall define by ‖u‖Lq (Sd ) =
( ∫

Sd |u|q dµ
)1/q

the corresponding norm, denote by

2∗ the critical exponent in dimension d ≥ 3, that is, 2∗ = 2d/(d − 2) and adopt the

convention that 2∗ = ∞ if d = 1 or d = 2. The subcritical Gagliardo-Nirenberg in-

equalities on the sphere of dimension d can be stated as follows: for p ∈ (2,2∗),

p −2

d
‖∇u‖2

L2(Sd ) +λ‖u‖2
L2(Sd ) ≥µ(λ)‖u‖2

Lp (Sd ) ∀u ∈ H1(Sd ,dµ) , (1)

where the function λ 7→ µ(λ) is positive, concave, increasing and such that µ(λ) = λ

for λ ∈ (0,1] and µ(λ) < λ if λ > 1: see [15]. Moreover, if λ ∈ (0,1], the only extremals

of (1) are the constant functions. In the limit case p = 2∗, with d ≥ 3, the inequality

also holds with optimal constant µ(λ) = min{λ,1} and it is simply the Sobolev in-

equality on Sd when λ= 1.
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In the case p ∈ [1,2), as shown in [15], there are similar inequalities where the

roles of p and 2 are exchanged: for p ∈ [1,2),

2−p

d
‖∇u‖2

L2(Sd ) +µ‖u‖2
Lp (Sd ) ≥λ(µ)‖u‖2

L2(Sd ) ∀u ∈ H1(Sd ,dµ) . (2)

Here the functionµ 7→λ(µ) is positive, concave, increasing and such thatλ(µ) =µ for

µ ∈ (0,1], and λ(µ) < µ if µ> 1. If µ ∈ (0,1], the only extremals of (2) are the constant

functions. In the limit case p = 1, the inequality with λ= 1 is the Poincaré inequality.

With λ= 1, Inequalities (1) and (2) can be rewritten as

‖∇u‖2
L2(Sd ) ≥

d

p −2

(
‖u‖2

Lp (Sd ) −‖u‖2
L2(Sd )

)
∀u ∈ H1(Sd ,dµ) (3)

for any p ∈ [1,2) ∪ (2,2∗) if d = 1, 2, and for any p ∈ [1,2) ∪ (2,2∗] if d ≥ 3. Since

dµ is a probability measure, we know from Hölder’s inequality that the right-hand

side of (3) is nonnegative independently of the sign of (p − 2). We will call (3) the

Gagliardo-Nirenberg-Sobolev interpolation inequality. In the case p > 2, it is usually

attributed to W. Beckner [5] but can also be found in [7, Corollary 6.1]. However an

earlier version corresponding to the range p ∈ [1,2)∩ (2,2#) was established in the

context of continuous Markov processes and linear diffusion operators by D. Bakry

and M. Emery in [2, 3], using the carré du champ method, where 2# is the Bakry-

Emery exponent defined as

2# = 2d 2 +1

(d −1)2

for any d ≥ 2, and where we shall adopt the convention that 2# =+∞ if d = 1. Notice

that the case p = 2# is also covered in [3, 2] if d ≥ 2. By taking the limit in (3) as p → 2,

we obtain the logarithmic Sobolev inequality on Sd ,

‖∇u‖2
L2(Sd ) ≥

d

2

∫
Sd

|u|2 log

(
|u|2

‖u‖2
L2(Sd )

)
dµ ∀u ∈ H1(Sd ,dµ) \ {0} . (4)

For brevity, we shall consider it as the “p = 2 case” of the Gagliardo-Nirenberg-

Sobolev interpolation inequality. Inequality (4) was known from earlier works, see

for instance [20].

Various proofs of (3) have been published. By Schwarz foliated symmetrization,

it is possible to reduce (3) to inequalities based on the ultraspherical operator, which

simplifies a lot the computations: see [12, 14, 18] and references therein for earlier

results on the ultraspherical operator. In this paper, we rely on the carré du champ

method of D. Bakry and M. Emery and refer to [4] for a general overview of this tech-

nique. We also revisit some improved Gagliardo-Nirenberg-Sobolev inequalities that

can be written as

‖∇u‖2
L2(Sd ) ≥ dϕ

(‖u‖2
Lp (Sd )

−‖u‖2
L2(Sd )

(p −2)‖u‖2
Lp (Sd )

)
‖u‖2

Lp (Sd ) ∀u ∈ H1(Sd ) . (5)
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Here ϕ is a nonnegative convex function such that ϕ(0) = 0 and ϕ′(0) = 1. As a con-

sequence, ϕ(s) ≥ s and we recover (3) if ϕ(s) ≡ s, but in improved inequalities we

will have ϕ(s) > s for all s 6= 0. Such improvements have been obtained in [9, 14, 16,

18]. Here we write down more precise estimates and draw some interesting conse-

quences of (5), such as lower estimates for the best constants in (1) and (2) or im-

proved weighted Gagliardo-Nirenberg inequalities in the Euclidean space Rd .

The improved inequality (5), with ϕ(s) > s for s 6= 0, can also be considered as a

stability result for (3) in the sense that it can also be rewritten as

‖∇u‖2
L2(Sd ) −

d

p −2

(
‖u‖2

Lp (Sd ) −‖u‖2
L2(Sd )

)
≥ dψ

(‖u‖2
Lp (Sd )

−‖u‖2
L2(Sd )

(p −2)‖u‖2
Lp (Sd )

)
‖u‖2

Lp (Sd )

for any u ∈ H1(Sd ), with ψ(s) = ϕ(s)− s > 0 for s 6= 0. Here the right-hand side of

the inequality is a measure of the distance to the optimal functions, which are the

constant functions: see Appendix A for details.

2 Main results
Our first result goes as follows. Let

γ=
(

d −1

d +2

)2

(p −1)(2# −p) if d ≥ 2, γ= p −1

3
if d = 1, (6)

so that γ= 2−p with 1 ≤ p ≤ 2# means that

d = 1 and p = 7/4 = p∗(1) ,

d > 1 and p = p∗(d)

occurs, where

p∗(d) = 3+d +2d 2 −2
p

4d +4d 2 +d 3

(d −1)2

for any d ≥ 2. Notice that for all d ≥ 1, 1 < p∗(d) < 2 and limd→+∞ p∗(d) = 2. For any

admissible s ≥ 0, i.e., for any s ∈ [
0,(p −2)−1

)
if p > 2 and any s ≥ 0 if p ∈ [1,2), let

ϕ(s) = 1−(p−2) s−(1−(p−2) s)−
γ

p−2

2−p−γ if γ 6= 2−p ,

ϕ(s) = 1
2−p

(
1+ (2−p) s

)
log

(
1+ (2−p) s

)
if γ= 2−p .

(7)

Written in terms of ‖u‖2
L2(Sd )

and ‖u‖2
Lp (Sd )

, we shall prove in Section 3 that (5) holds

with ϕ given by (7) and gives rise to a following, new interpolation inequality.
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Theorem 1. Let d ≥ 1, assume that

p 6= 2, and 1 ≤ p ≤ 2# if d ≥ 2, p ≥ 1 if d = 1 (8)

and let γ be given by (6). Then we have

‖∇u‖2
L2(Sd ) ≥

d

2−p −γ
(
‖u‖2

L2(Sd ) −‖u‖2− 2γ
2−p

Lp (Sd )
‖u‖

2γ
2−p

L2(Sd )

)
∀u ∈ H1(Sd ) (9)

if γ 6= 2−p, and

‖∇u‖2
L2(Sd ) ≥

2d

p −2
‖u‖2

L2(Sd ) log

( ‖u‖2
L2(Sd )

‖u‖2
Lp (Sd )

)
∀u ∈ H1(Sd ) (10)

if γ= 2−p.

In Inequalities (9) and (10), the equality case is achieved by constant functions only

and the constants d
2−p−γ in (9) and 2d

p−2 in (10) are sharp as can be shown by testing

the inequality with u = 1+εv with v such that −∆v = d v in the limit as ε→ 0.

Now, let us come back to (1) and (2). We deduce from Theorem 1 the following

estimates of the best constants in (1) and (2): see Fig. 1 for an illustration.

Theorem 2. Let d ≥ 1, γ be given by (6) and assume that p is in the range (8).

(i) If 1 ≤ p < 2, p 6= p∗(d), then

λ(µ) ≥ 2−p −γµ1− 2−p
γ

2−p −γ ∀µ≥ 1.

(ii) If 2 < p < 2#, then

µ(λ) ≥
(
λ+ p −2

γ
(λ−1)

) γ

γ+p−2 ∀λ≥ 1.

Our third result has to do with stability for inequalities in the Euclidean space Rd

with d ≥ 2. For all x ∈ Rd , let us define 〈x〉 :=
√

1+|x|2 and recall that
∣∣Sd

∣∣ =
2π

d+1
2 /Γ

( d+1
2

)
. Using the stereographic projection of Sd onto Rd (see Appendix B),

Inequality (3) can be written as a weighted interpolation inequality in Rd :

∫
Rd

|∇v |2 d x + d δ(p)

p −2

∫
Rd

|v |2
〈x〉4

d x ≥Cd ,p

∫
Rd

|v |p
〈x〉δ(p)

d x

 2
p

with Cd ,p = 2
δ(p)

p d
∣∣Sd

∣∣1− 2
p

p −2

where

δ(p) = 2d −p (d −2) .
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Notice that δ(2∗) = 0 for any d ≥ 3, so that the inequality is the Sobolev inequality

with sharp constant if p = 2∗. However, for any p ∈ [1,2)∪ (2,2∗] and d ≥ 3, equality

is obtained with v?(x) = 〈x〉2−d and this function is, up to an arbitrary multiplicative

constant, the only one to realize the equality case if p < 2∗. Equality is achieved by

v? = 1 in dimension d = 2 for any p ∈ [1,2)∪ (2,+∞). Let us notice that ∇v? is not

in L2(Rd ) if d = 1. Using the improved version (9) of the inequality, we obtain as in

Theorem 1 the following stability result.

Theorem 3. Let d ≥ 2 and assume that p ∈ (2,2#). Then

∫
Rd

|∇v |2 d x + d δ(p)

p −2

∫
Rd

|v |2
〈x〉4

d x −Cd ,p

∫
Rd

|v |p
〈x〉δ(p)

d x

2/p

≥ γ

p −2

Cd ,p

2

[(∫
Rd

|v |p
〈x〉δ(p) d x

)2/p −22− δ(p)
p

∣∣Sd
∣∣ 2

p −1 ∫
Rd

|v |2
〈x〉4 d x

]2

(∫
Rd

|v |p
〈x〉δ(p) d x

)2/p

for any v ∈ L2
(
Rd ,〈x〉−4 d x

)
such that ∇v ∈ L2(Rd ,d x).

Again, the right-hand side of the inequality is a measure of the distance to v?. The

proof is elementary. With ϕ given by (7) and ψ(s) =ϕ(s)− s, we notice that

ψ′′(s) ≥ γ(
1− (p −2) s

) γ

2−p −2

for any admissible s ≥ 0. With 1 = ‖u‖2
Lp (Sd )

≥ ‖u‖2
L2(Sd )

= 1− (p −2) s and γ

2−p −2 < 0,

we know that ψ′′(s) ≥ γ. As a consequence, we have

‖∇u‖2
L2(Sd ) −

d

p −2

(
‖u‖2

Lp (Sd ) −‖u‖2
L2(Sd )

)
≥ γd

2(p −2)2

(
‖u‖2

Lp (Sd )
−‖u‖2

L2(Sd )

)2

‖u‖2
Lp (Sd )

.

The result of Theorem 3 follows by applying the stereographic projection. A sharper

result valid also if p ∈ [1,2) will be given in Proposition 8.

As noticed in [18, Theorem 2.2], in the Bakry-Emery range (8), we obtain an im-

provement if we assume an orthogonality condition on the sphere. Let us recall the

result, which is independent of what we have obtained so far. Let H1+(Sd ,dµ) denote

the set of the a.e. nonnegative functions in H1(Sd ,dµ) and define

Λ?(p) = inf
‖∇u‖2

L2(Sd )

‖u −1‖2
L2(Sd )
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where the infimum is taken on the set of the functions u ∈ H1+(Sd ,dµ) such that∫
Sd u dµ= 1 and

∫
Sd x |u|p dµ= 0. Then for any p ∈ (2,2#), we have

‖∇u‖2
L2(Sd ) ≥

1

p −2

(
d + (d −1)2

d (d +2)

(
2# −p

)(
Λ?(p)−d

))(
‖u‖2

Lp (Sd ) −‖u‖2
L2(Sd )

)
for any function u ∈ H1(Sd ,dµ) such that

∫
Sd xi |u|p dµ = 0 with i = 1, 2, . . .d . We

know from [18] that Λ?(p) > d but the value is not explicit except for the limit case

p = 2. In this case, the inequality becomes a logarithmic Sobolev inequality, which

has been stated in [18, Proposition 5.4]. Using the stereographic projection, we ob-

tain new inequalities on Rd which are as follows.

Theorem 4. Let d ≥ 2 and assume that p ∈ (2,2#). Then

∫
Rd

|∇v |2 d x + d δ(p)

p −2

∫
Rd

|v |2
〈x〉4

d x −Cd ,p

∫
Rd

|v |p
〈x〉δ(p)

d x

2/p

≥ (d −1)2

d (d +2)

2# −p

p −2

(
Λ?(p)−d

) 2
δ(p)

p
∣∣Sd

∣∣1− 2
p

∫
Rd

|v |p
〈x〉δ(p)

d x

2/p

− 4
∫
Rd

|v |2
〈x〉4

d x


for any function v in the space

{
v ∈ L2

(
Rd ,〈x〉−4 d x

)
: ∇v ∈ L2(Rd ,d x)

}
such that∫

Rd

x

〈x〉4
|v |2 d x = 0 and

∫
Rd

|x|2
〈x〉4

|v |2 d x =
∫
Rd

|x|2
〈x〉4

|v?|2 d x .

Under the same conditions on v, we also have∫
Rd

|∇v |2 d x ≥ d (d −2)
∫
Rd

|v |2
〈x〉4

d x + λ

2

∫
Rd

|v |2
〈x〉4

log

 ( 1
2 〈x〉2

)d−2 |v |2
4
∣∣Sd

∣∣−1 ∫
Rd

|v |2
〈x〉4 d x

d x

with λ= d + 2

d

4d −1

2(d +3)+p
2(d +3)(2d +3)

.

Notice that the right-hand side of each of the two inequalities is proportional to the

corresponding entropy and not to the square of the entropy as in Theorem 3. This

result is a counterpart for p ∈ (2,2#), with a quantitative constant, of the result of

G. Bianchi and H. Egnell in [6] for the critical exponent p = 2∗. See Remark 9. The

constant Λ?(p) can be estimated explicitly in the limit case as p = 2: see [18, Propo-

sition 5.4] for further details.

So far, all results have been limited to the Bakry-Emery range and rely on heat

flow estimates on the sphere. However, using nonlinear flows as in [18], improve-

ments and stability results can also be achieved when p ∈ [2#,2∗). This will be the

topic of Section 4 while all results of Section 2 are proved in Section 3 using the heat

flow and the carré du champ method on the sphere.
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3 Heat flow and carré du champ method
In this section, our goal is to prove that (5) holds with ϕ given by (7).

In its simplest version, the carré du champ method goes as follows. We define

the entropy and the Fisher information respectively by

e := 1

p −2

(
‖u‖2

Lp (Sd ) −‖u‖2
L2(Sd )

)
and i := ‖∇u‖2

L2(Sd ) .

Then we shall assume that these quantities are driven by the flow such that up is

evolved by the heat equation, that is, we shall assume that u > 0 solves

∂u

∂t
=∆u + (p −1)

|∇u|2
u

(11)

where ∆ denotes the Laplace-Beltrami operator on Sd . In the next result, ′ denotes

a t derivative.

Lemma 5. Let d ≥ 1, γ be given by (6) and assume that p is in the range (8). With the

above notations, e solves

e′′+2d e′− γ |e′|2
1− (p −2)e ≥ 0. (12)

Proof. Since (11) amounts to ∂up

∂t =∆up , it is straightforward to check that

d

d t

∫
Sd

|u(t , ·)|p dµ= 0 and e′ =−2 i .

Let us summarize results that can be found in [9, 14, 16, 18]. We adopt the presenta-

tion of the proof of [19, Lemma 4.3]. With Sd considered as a d-dimensional com-

pact manifold with metric g and measure dµ, let us introduce some notation. If Ai j

and Bi j are two tensors, then

A : B := g i m g j n Ai j Bmn and ‖A‖2 := A : A.

Here g i j is the inverse of the metric tensor, i.e., g i j g j k = δi
k . We use the Einstein sum-

mation convention and δi
k denotes the Kronecker symbol. Let us denote the Hessian

by Hu and define the trace-free Hessian by

Lu := Hu − 1

d
(∆u) g .

We also define the trace-free tensor

Mu := ∇u ⊗∇u

u
− 1

d

|∇u|2
u

g .
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An elementary but lengthy computation that can be found in [19] shows that

1

2
(i−d e)′ = 1

2

(
i′+2d i

)=− d

d −1

∫
Sd

∥∥∥∥Lu − (p −1)
d −1

d +2
Mu

∥∥∥∥2

dµ−γ
∫
Sd

|∇u|4
u2

dµ

where γ is given by (6). In the framework of the carré du champ method of D. Bakry

and M. Emery applied to a solution u of (11), the admissible range for p is there-

fore (8) as shown in [3, 18]: this is the range in which we know that γ ≥ 0. Since

limt→+∞ e(t ) = limt→+∞ i(t ) = 0 and d
d t (i− d e) = i′ + 2 d i ≤ 0, it is straightforward

to deduce that i− d e ≥ 0 for any t ≥ 0 and, as a special case, at t = 0 for an arbitrary

initial datum. This completes the proof of (3), after replacing u by |u| and removing

the assumption u > 0 by a density argument.

Following an idea of [1], it has been observed in [14] that an improvement is

achieved for any p ∈ [1,2)∪ (2,2#) using

i2 =
 ∫
Sd

u · |∇u|2
u

dµ

2

≤
∫
Sd

u2 dµ
∫
Sd

|∇u|4
u2

dµ= (
1− (p −2)e

)∫
Sd

|∇u|4
u2

dµ

where the last equality holds if we impose that ‖u‖Lp (Sd ) = 1 at t = 0. This completes

the proof of Lemma 5.

Lemma 6. For any γ≥ 0, the solution ϕ of

ϕ′(s) = 1+ γϕ(s)

1− (p −2) s
, ϕ(0) = 0, (13)

is given by (7).

Proof. The solution of (13) is unique and it is a straightforward computation that ϕ

given by (7) solves (13).

Lemma 7. Let d ≥ 1, γ be given by (6) and assume that p is in the range (8). Then (5)

holds with ϕ given by (7).

Proof. With the notation of Lemma 5, we compute

2
d

d t

(
i− dϕ(e)

)=−(
e′′+2d e′

)− 2d e′ γϕ(e)

1− (p −2)e ≤− 4γ i
1− (p −2)e

(
i− dϕ(e)

)
using (13) in the equality and then (12) in the inequality. Since limt→+∞ e(t ) =
limt→+∞ i(t ) = 0 and i− dϕ(e) ∼ i− d e ≥ 0 in the asymptotic regime as t → +∞,

this proves that for functions u satisfying ‖u‖Lp (Sd ) = 1,

i≥ dϕ(e) .

By homogeneity, this proves (5) for an arbitrary function u.
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Theorem 1 is then obtained by replacingϕ in (5) by the expression in (7). As noted in

Section 2, Theorem 3 is a simple consequence of Theorem 1 and of the stereographic

projection using the computations of Appendix B. Theorem 4 is also a straightfor-

ward consequence of [18, Theorem 2.2 and Proposition 5.4] using the stereographic

projection. Hence all results of Section 2 are established except Theorem 2.

A sharper version of Theorem 3, valid for any p in the range (8), can be deduced

directly from (5) with ϕ given by (7) using the stereographic projection. It goes as

follows.

Proposition 8. Let d ≥ 2 and assume that p is in the range (8). Then for any v ∈
L2

(
Rd ,〈x〉−4 d x

)
such that ∇v ∈ L2(Rd ,d x) we have

∫
Rd

|∇v |2 d x −d (d −2)
∫
Rd

|v |2
〈x〉4

d x

≥ 4d

2−p −γ

∫
Rd

|v |2
〈x〉4

d x −κ1− γ

2−p
p

∫
Rd

|v |p
〈x〉δ(p)

d x

 2
p

(
1− γ

2−p

) ∫
Rd

|v |2
〈x〉4

d x


γ

2−p


if γ 6= 2−p, and

∫
Rd

|∇v |2 d x −d (d −2)
∫
Rd

|v |2
〈x〉4

d x ≥ 8d

p −2

∫
Rd

|v |2
〈x〉4

d x

 log

κ−1
p

∫
Rd

|v |2
〈x〉4 d x∫

Rd
|v |p

〈x〉δ(p) d x


if γ= 2−p, where κp = 2

δ(p)
p −2 ∣∣Sd

∣∣1− 2
p .

Remark 9. Inequalities (9)-(10) are key estimates in this paper. Because of the con-

vexity of the functionϕ defined by (7), we know that (9) and (10) are stronger than (3)

and (4), even if all these inequalities are optimal.

The fact that

1

2−p −γ
(
‖u‖2

L2(Sd ) −‖u‖2− 2γ
2−p

Lp (Sd )
‖u‖

2γ
2−p

L2(Sd )

)
≥ 1

p −2

(
‖u‖2

Lp (Sd ) −‖u‖2
L2(Sd )

)
can be recovered using Hölder’s inequality. For instance, if p > 2, we know that

‖u‖L2(Sd ) ≤ ‖u‖Lp (Sd ). By homogeneity, we can assume without loss of generality that

‖u‖L2(Sd ) = 1 and t = ‖u‖2
Lp (Sd )

≥ 1. With θ = γ/(p −2), this amounts to

t 1+θ−1 ≥ (1+θ) (t −1)

which is obviously satisfied for any t ≥ 1 because θ is nonnegative. Similar arguments

apply if p < 2, p 6= p∗(d) and the case p = p∗(d) is obtained as a limit case. The differ-

ence of the two sides in the inequality is the measure of the distance to the constants.
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As in [6], the stability can also be obtained in the stronger semi-norm u 7→∫
Sd |∇u|2 dµ. We can indeed rewrite the improved inequality as

e≤ ϕ−1
( i

d

)
,

for any u satisfying ‖u‖2
Lp (Sd )

= 1, and obtain that

i≥ d e+ ψ̃(i) where ψ̃(i) = i−dϕ−1
( i

d

)
≥ 0.

An explicit lower bound for µ(λ) has been obtained in [15, Proposition 8]. Let us

recall it with a sketch of the proof, for completeness.

Proposition 10 ([15]). Assume that d ≥ 3 and let θ = d p−2
2 p . Then

µ(λ) ≥ p −2

d

(
1

4
d (d −2)

)θ (
λd

p −2

)1−θ
∀λ ≥ 1.

Notice that this bound is limited to the case d ≥ 3 and p ∈ (2,2∗).

Proof. From Hölder’s inequality ‖u‖Lp (Sd ) ≤ ‖u‖θ
L2∗ (Sd )

‖u‖1−θ
L2(Sd )

, we get that

‖∇u‖2
L2(Sd )

+ λd
p−2 ‖u‖2

L2(Sd )

‖u‖2
Lp (Sd )

≥
(‖∇u‖2

L2(Sd )
+ λd

p−2 ‖u‖2
L2(Sd )

‖u‖2
L2∗ (Sd )

)θ (‖∇u‖2
L2(Sd )

+ λd
p−2 ‖u‖2

L2(Sd )

‖u‖2
L2(Sd )

)1−θ

.

After dropping ‖∇u‖2
L2(Sd )

in the second parenthesis of the right-hand side and ob-

serving that 1/(p−2) ≥ (d−2)/4, the conclusion holds using the Sobolev inequality in

the first parenthesis. We indeed recall thatµ(λ) = 1
4 d (d−2) for anyλ≥ 1 if p = 2∗.

We may notice that the estimate of Proposition 10 captures the order in λ of µ(λ) as

λ→+∞ but is not accurate close toλ= 1 and limited to the case p ∈ (2,2∗) and d ≥ 3.

It turns out that the whole range (8) for any d ≥ 1 can be covered as a consequence of

Theorem 1 with a lower bound for µ(λ) which is increasing with respect to λ≥ 1 and

such that it takes the value 1 if λ= 1. This is essentially the contents of Theorem 2 for

p ∈ (2,2#), which also covers the range p ∈ [1,2).

Proof of Theorem 2. We shall distinguish several cases.

1) Case p ∈ (2,2#). Assume that λ> 1 and θ > 0. We deduce from

µ(λ) :=
(

(θ+1)λ−1

θ

) θ
θ+1 = min

t≥1

1

t

(
λ+ t 1+θ−1

1+θ
)
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that
t 1+θ−1

1+θ ≥µ(λ) t −λ ∀ t ≥ 1.

With θ = γ

p−2 , Inequality (9) takes the form

p −2

d
‖∇u‖2

L2(Sd ) ≥
1

1+θ
(
‖u‖2(1+θ)

Lp (Sd )
‖u‖−2θ

L2(Sd ) −‖u‖2
L2(Sd )

)
∀u ∈ H1(Sd ) .

Using t = ‖u‖2
Lp (Sd )

/‖u‖2
L2(Sd )

≥ 1, the right-hand side satisfies

1

1+θ
(
‖u‖2(1+θ)

Lp (Sd )
‖u‖−2θ

L2(Sd ) −‖u‖2
L2(Sd )

)
=

‖u‖2
Lp (Sd )

1+θ
1

t

(
t 1+θ−1

)
≥ ‖u‖2

Lp (Sd )

(
µ(λ)− λ

t

)
=µ(λ)‖u‖2

Lp (Sd ) −λ‖u‖2
L2(Sd ) .

Hence we find

µ(λ) ≥µ(λ) =
(
λ+ p −2

γ
(λ−1)

) γ

γ+p−2 ∀λ≥ 1.

2) Case p ∈ (
p∗(d),2

)
. In this regime we have γ > 2−p and take θ = γ

2−p −1 > 0. We

deduce from

λ(µ) := (θ+1)µ
θ
θ+1 −1

θ
= min

t∈[0,1]

(
t−θ−1

θ
+µ t

)
that

t−θ−1

θ
≥λ(µ)−µ t ∀ t ∈ [0,1] .

Inequality (9) takes the form

2−p

d
‖∇u‖2

L2(Sd ) ≥
1

θ

(
‖u‖−2θ

Lp (Sd ) ‖u‖2(1+θ)
L2(Sd )

−‖u‖2
L2(Sd )

)
∀u ∈ H1(Sd ) .

Using t = ‖u‖2
Lp (Sd )

/‖u‖2
L2(Sd )

≤ 1, the right-hand side satisfies

1

θ

(
‖u‖−2θ

Lp (Sd ) ‖u‖2(1+θ)
L2(Sd )

−‖u‖2
L2(Sd )

)
= ‖u‖2

L2(Sd )

t−θ−1

θ

≥ ‖u‖2
L2(Sd )

(
λ(µ)−µ t

)=λ(µ)‖u‖2
L2(Sd ) −µ‖u‖2

Lp (Sd ) .

Hence we find

λ(µ) ≥λ(µ) = 2−p −γµ1− 2−p
γ

2−p −γ ∀µ≥ 1.

3) Case p = p∗(d). It is achieved by taking the limit as p → p∗(d), but the estimate

degenerates into λ(µ) ≥ 1, which we already know because λ(µ) ≥ λ(1) = 1 for any

λ≥ 1.
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4) Case p ∈ (
1, p∗(d)

)
and d 6= 2. In this regime we have γ < 2−p and take θ = γ

2−p ∈
(0,1). We deduce from

λ(µ) := 1−θµ1− 1
θ

1−θ = min
t∈[0,1]

(
1− t 1−θ

1−θ +µ t

)
that

1− t 1−θ

1−θ ≥λ(µ)−µ t ∀ t ∈ [0,1] .

Inequality (9) takes the form

2−p

d
‖∇u‖2

L2(Sd ) ≥
1

1−θ
(
‖u‖2

L2(Sd ) −‖u‖2(1−θ)
Lp (Sd )

‖u‖2θ
L2(Sd )

)
∀u ∈ H1(Sd ) .

Using t = ‖u‖2
Lp (Sd )

/‖u‖2
L2(Sd )

≤ 1, the right-hand side satisfies

1

1−θ
(
‖u‖2

L2(Sd ) −‖u‖2(1−θ)
Lp (Sd )

‖u‖2θ
L2(Sd )

)
= ‖u‖2

L2(Sd )

1− t 1−θ

1−θ
≥ ‖u‖2

L2(Sd )

(
λ(µ)−µ t

)=λ(µ)‖u‖2
L2(Sd ) −µ‖u‖2

Lp (Sd ) .

Hence we find

λ(µ) ≥λ(µ) = 2−p −γµ1− 2−p
γ

2−p −γ ∀µ≥ 1.

4 Inequalities based on nonlinear flows
In this section, the range of p is

p ∈ [1,2∗], p 6= 2 if d ≥ 3 and p ∈ [1,+∞), p 6= 2 if d = 1,2. (14)

This range includes in particular the case 2# < p < 2∗, which was not covered in Sec-

tion 3. As in [9, 14, 18], let us replace (11) by the nonlinear diffusion equation

∂u

∂t
= u2−2β

(
∆u +κ |∇u|2

u

)
. (15)

The parameter β has to be chosen appropriately as we shall see below. With the

choice κ=β (p −2)+1, one can check that

d

d t

∫
Sd

u(t , ·)βp dµ= 0
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because ρ = uβp solves the porous medium equation ∂ρ

∂t =∆ρm with m such that

1

β
+ p

2
= 1+m

p

2
. (16)

Notice that m > 0 can be larger or smaller than 1 depending on β, d and p. The

entropy and the Fisher information are redefined respectively by

e := 1

p −2

(∥∥uβ
∥∥2

Lp (Sd ) −
∥∥uβ

∥∥2
L2(Sd )

)
and i := ∥∥∇uβ

∥∥2
L2(Sd ) .

The equation e′ =−2 i holds true only if β= 1, in which case (15) coincides with (11).

Here we have: e′ =−2β2 ‖∇u‖2
L2(Sd )

6= −2 i if β 6= 1 but we can still compute d
d t (i− d e)

and obtain that

1

2β2

(
i′− d e′

)=− d

d −1

∫
Sd

∥∥∥∥Lu −β (p −1)
d −1

d +2
Mu

∥∥∥∥2

dµ−γ(β)
∫
Sd

|∇u|4
u2

dµ (17)

with

γ(β) :=−
(

d −1

d +2
(κ+β−1)

)2

+ κ (β−1)+ d

d +2
(κ+β−1) . (18)

To guarantee thatγ(β) ≥ 0 for someβ ∈R, a discussion has to be made: see Lemma 13

below for a detailed statement and also [14]. Notice that the value of γ given by (6) in

Sections 2 and 3 corresponds to (18) withβ= 1. In the sequel let us denote byB(p,d)

the set of β such that γ(β) ≥ 0 with p in the range (14).

Lemma 11. Let d ≥ 1 and assume that p is in the range (14). Then B(p,d) is non-

empty.

Proof. As a function of β, γ(β) is a polynomial of degree at most two. We refer to [14,

Appendix A] for a proof, up to the restriction p < 9 + 4
p

3 in dimension d = 2. If

d = 2 and p > 9+4
p

3, we can make the choice β = 4(5−p)/(p2 −18 p +33) which

corresponds to m = 8(p − 1)/(p2 − 18 p + 33), while for d = 2 and p = 9+ 4
p

3, β ≥
−1/(2+2

p
3) is an admissible choice (in that case, γ(β) is a polynomial of degree 1).

Corollary 12. Let d ≥ 1 and assume that p is in the range (14). For any β ∈B(p,d),

any solution of (15) is such that i− d e is monotone non-increasing with limit 0 as

t →+∞.

As a consequence, we know that i ≥ d e, which proves (3) in the range (14). Let us

define by

β±(p,d) :=
d 2 −d (p −5)− 2 p +6± (d +2)

√
d (p −1)

(
2d −p (d −2)

)
d 2

(
p2 −3 p +3

)− 2d (p2 −3)+ (p −3)2



14 J. Dolbeault & M.J. Esteban

the roots of γ(β) = 0, provided d 2
(
p2 −3 p +3

)− 2d (p2 −3)+ (p −3)2 6= 0, i.e.,

p 6= 9±4
p

3 if d = 2,

p 6= 9
4 and p 6= 6 if d = 3,

p 6= 3 if d = 4.

The precise description of B(p,d) goes as follows.

Lemma 13. Let d ≥ 1 and assume that p is in the range (14). The set B(p,d) with p is

defined by

(i) if d = 1, β−(p,1) ≤ β≤ β+(p,1) if p < 2, β≤ 3/4 if p = 2 and β ∈ (−∞,β+(p,1)
]∪[

β−(p,1),+∞) if p > 2.

(ii) if d = 2, β−(p,1) ≤ β ≤ β+(p,1) if p < 9− 4
p

3 or p > 9+ 4
p

3, β ≤ 1/(2
p

3− 2)

if p = 9−4
p

3, β ∈ (−∞,β+(p,1)
]∪ [

β−(p,1),+∞) if 9−4
p

3 < p < 9+4
p

3 and

β≥−1/(2
p

3+2) if p = 9+4
p

3.

(iii) if d = 3, β−(p,1) ≤ β ≤ β+(p,1) if p < 9/4, β ∈ (−∞,β+(p,1)
]∪ [

β−(p,1),+∞) if

9/4 < p < 6 and β≤ 2/3 if p = 9/4.

(iv) if d ≥ 4, β−(p,d) ≤β≤β+(p,d) if (d , p) 6= (4,3) and β≥β−(p,d) if (d , p) = (4,3).

A much simpler picture is obtained in terms of m = m(β, p,d) given by (16). Let

m−(p,d) = min± m
(
β±(p,d), p,d

)
and m+(p,d) = max± m

(
β±(p,d), p,d

)
. The com-

pletion of the set
{
m(β, p,d) : β ∈B(p,d)

}
is simply the set

m−(p,d) ≤ m ≤ m+(p,d) .

See Fig. 2.

As observed in [9, 14, 18], an improved inequality can also be obtained. Since

the case p ∈ [1,2) is covered in Section 3, we shall assume from now on that p > 2.

With

ϕβ(s) =
s∫

0

exp

(
2γ(β)

β (β−1) p

((
1− (p −2) s

)1−ζ− 1
2β − (

1− (p −2) z
)1−ζ− 1

2β

))
d z ,

where γ= γ(β) is given by (18) and ζ= ζ(β) = 2− (4−p)β
2β (p−2) , let us consider

ϕ(s) := sup
{
ϕβ(s) : β ∈B(p,d)

}
. (19)

Theorem 14. Let d ≥ 1 and assume that p ∈ (2,2∗). Inequality (5) holds with ϕ de-

fined by (19).
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Proof. Using the identity 1
2 +

β−1
β (p−2) +ζ= 1, Hölder’s inequality shows that

1

β2

∫
Sd

∣∣∇(
uβ

)∣∣2
dµ=

∫
Sd

u2(β−1) |∇u|2 dµ=
∫
Sd

|∇u|2
u

·u
p(β−1)

p−2 ·u2βζdµ

≤
 ∫
Sd

|∇u|4
u2

dµ

 1
2
 ∫
Sd

uβp dµ


β−1

β (p−2)
 ∫
Sd

u2βdµ

ζ .

With the choice
∥∥uβ

∥∥
Lp (Sd ) = 1, we find that ∫

Sd

|∇u|4
u2

dµ

1/2

≥ 1

β2

i(
1− (p −2)e

)ζ .

On the other hand, by using the identity 1
2 + β−1

2β + 1
2β = 1, and Hölder’s inequality

again, we have also  ∫
Sd

|∇u|4
u2

dµ

1/2

≥
∫
Sd |∇u|2 dµ(

1− (p −2)e
) 1

2β

,

since dµ is a probability measure on Sd . Therefore, from (17) we get the inequality

d

d t
(i−d e) ≤ γ(β) ie′

β2
(
1− (p −2)e

)ζ+ 1
2β

.

For every β> 1 it is possible to find a function ψβ satisfying the ODE

ψ′′
β

(s)

ψ′
β

(s)
=− γ(β)

β2

(
1 − (p −2) s

)−ζ− 1
2β , ψβ(0) = 0,

with ζ= ζ(β), such that ψ′
β
> 0. Then

d

d t

(
iψ′

β(e)−dψβ(e)
)≤ 0,

from which we conclude that i ≥ dϕβ(e) with ϕβ :=ψβ/ψ′
β

. It is then elementary to

check that ϕβ satisfies the ODE

ϕ′
β = 1−ϕβ

ψ′′
β

(s)

ψ′
β

(s)
= 1+ γ(β)

β2

(
1 − (p −2) s

)−ζ− 1
2β ϕβ

and that ϕβ(0) = 0. Solving this linear ODE, we find the expression of ϕβ. Notice that

ϕβ is defined for any s ∈ [
0,1/(p − 2)

)
and that ϕβ(s) > 0 for any s 6= 0. From the

equation satisfied by ϕβ we get that ϕ′
β

(s) > 1 and ϕ′′
β

(s) > 0, hence ϕβ(s) > s for any

admissible β and any s ∈ (
0,1/(p −2)

)
.



16 J. Dolbeault & M.J. Esteban

Let us define

µ(λ) = min
t≥1

[
p −2

t
ϕ

(
t −1

p −2

)
+ λ

t

]
. (20)

By arguing exactly as in the proof of Theorem 2, we obtain an estimate of the optimal

constant in (1) which is valid for instance if 2# < p < 2∗.

Corollary 15. Let d ≥ 1 and assume that p ∈ (2,2∗). With the notations of Theorem 14

and µ(λ) defined by (20), the optimal constant in (1) can be estimated for any p ∈
(2,2∗) by

µ(λ) ≥µ(λ) ∀λ≥ 1.

Another consequence is that one can write an improved inequality onRd in the spirit

of Proposition 8, for any p ∈ (1,2∗), p 6= 2. Since the expression involves ϕ as defined

in Theorem 14, we do not get any fully explicit expression, so we shall leave it to the

interested reader. A major drawback of our method is that ϕ is defined through a

primitive. With some additional work,ϕ can be written as an incomplete Γ function,

which is however not of much practical interest. This is why it is interesting to con-

sider a special case, for which we obtain an explicit control of the remainder term.

For completeness, let us state the following result which applies to a particular class

of functions u.

Theorem 16 ([18]). Let d ≥ 3. If p ∈ (1,2)∪ (2,2∗), we have∫
Sd

|∇u|2 dµ≥ d

p −2

[
1+ (d 2 −4)(2∗−p)

d (d +2)+p −1

](
‖u‖2

Lp (Sd ) −‖u‖2
L2(Sd )

)

for any u ∈ H1(Sd ,dµ) with antipodal symmetry, i.e.,

u(−x) = u(x) ∀x ∈Sd . (21)

The limit case p = 2 corresponds to the improved logarithmic Sobolev inequality∫
Sd

|∇u|2 dµ≥ d

2

(d +3)2

(d +1)2

∫
Sd

|u|2 log

(
|u|2

‖u‖2
L2(Sd )

)
dµ

for any u ∈ H1(Sd ,dµ) \ {0} such that (21) holds.

We refer to [18, Theorem 5.6] and its proof for details. Instead of (21), one can use

any symmetry which guarantees that d
d t

∫
Sd u(t , ·)βp dµ = 0 if we evolve u accord-

ing to (15). Using the stereographic projection, one can obtain a weighted inequality

with the same constant on Rd , for solutions which have the inversion symmetry cor-

responding to (21).
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5 Further results and concluding remarks
The interpolation inequalities (1) and (2) are equivalent to Keller-Lieb-Thirring es-

timates for the principal eigenvalue of Schrödinger operators, respectively −∆−V

on Sd with V ≥ 0 in Lq (Sd ) for some q > 1, and −∆+V on Sd with V > 0 such that

V −1 ∈ Lq (Sd ), again for some q > 1. See for instance [13, 15] and references therein.

Corollary 17. Let d ≥ 1, q > max{1,d/2}, p = 2 q/(q − 1) and assume that V be a

positive potential in Lq (Sd ) with µ = ‖V ‖Lq (Sd ). If λ(µ) denotes the inverse of λ 7→
µ(λ) defined by (20) for some convex function ϕ such that (5) holds with ϕ(0) = 0 and

ϕ′(0) = 1, then

λ1(−∆−V ) ≥−λ(‖V ‖Lq (Sd )

)
.

Proof. From Hölder’s inequality
∫
Sd V u2 dµ ≤ µ‖u‖2

Lp (Sd )
with µ = ‖V ‖Lq (Sd ), we

learn that ∫
Sd

(|∇u|2 −V u2
)

dµ

‖u‖2
L2(Sd )

≥
‖∇u‖2

L2(Sd )
−µ‖u‖2

Lp (Sd )

‖u‖2
L2(Sd )

≥−λ(µ) .

Corollary 17 applies toϕ defined by (19) for any p ∈ (2,2∗) and toϕ defined by (7) for

any p ∈ (2,2#). In that case, the result holds with

λ(µ) =µ if µ ∈ (0,1] and λ(µ) = p −2+γµ1+ p−2
γ

p −2+γ if µ> 1.

Even more interesting is the fact that a result can also be deduced from Theorem 2

in the range p ∈ [1,2), p 6= p∗(d), for which no explicit estimate was known so far. In

that case, let us define

λ(µ) =µ if µ ∈ (0,1] and λ(µ) = 2−p −γµ1− 2−p
γ

2−p −γ if µ> 1.

Corollary 18. Let d ≥ 1, q > 1, p = 2 q/(q +1) and assume that V be a positive poten-

tial such that V −1 ∈ Lq (Sd ). Then

λ1(−∆−V ) ≥λ(‖V ‖Lq (Sd )

)
.

Proof. By the reverse Hölder inequality, with µ= ∥∥V −1
∥∥−1

Lq (Sd ) we have∫
Sd

(|∇u|2 +V |u|2)dµ≥ ‖∇u‖2
L2(Sd ) +µ‖u‖2

Lp (Sd ) .
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The conclusion holds using (2) and Theorem 2, (i) .

Let us conclude with a summary and some considerations on open problems. This

paper is devoted to improvements of (3) and (4) by taking into account additional

terms in the carré du champ method. The stereographic projection then induces

improved weighted inequalities on the Euclidean space Rd . Alternatively, various

improvements have been obtained on Rd using the scaling invariance: see for in-

stance [11] and references therein. It is to be expected that these two approaches

are not unrelated as well as nonlinear diffusion flows on Sd and nonlinear diffusion

flows on Rd can probably be related. The self-similar changes of variables based on

the so-called Barenblatt solutions also points in this direction: see [17]. Concerning

stability issues, we have been able to establish various estimates with explicit con-

stants, which are all limited to the subcritical range p < 2∗ when d ≥ 3. This is clearly

not optimal (see [6, 18]). A last point deserves to be mentioned: improved entropy

- entropy production estimates like i ≥ dϕ(e) mean increased convergence rates in

evolution problems like (11) or (15): how to connect an initial time layer with large

entropy e to an asymptotic time layer with an improved spectral gap obtained, for

instance, by best matching (which amounts to impose additional orthogonality con-

ditions for large time asymptotics), is a topic of active research.

Appendices

A Estimating the distance to the constants
In Section 1, we claimed that the entropy

u 7→
‖u‖2

Lp (Sd )
−‖u‖2

L2(Sd )

p −2

is an estimate of the distance of the function u to the constant functions. Let us give

some details.

If p ∈ [1,2) we know that

‖u‖2
L2(Sd ) −‖u‖2

Lp (Sd ) ≥
2−p

2p−1 p2
‖u‖2(1−p)

L2(Sd )

 ∫
Sd

∣∣|u|p −up ∣∣ 2
p dµ

p

with u = ‖u‖Lp (Sd ), for any u ∈ Lp ∩ L2(Sd ), by the generalized Csiszár-Kullback-

Pinsker inequality: see [21, 8] or [10, Proposition 2.1], and references therein.
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If p > 2, let us define the constant

cq := inf
t∈R+\{1}

t q −1−q (t −1)

νq (t −1)
with νq (t ) =

{
|s|2 if |s| ≤ 1

|s|q if s > 1

for any q > 1. Let q = p/2 and use the above constant to get, with t = u2/‖u‖2
L2(Sd )

,

the estimate

∫
Sd

|u|p dµ≥ ‖u‖p
L2(Sd )

1+ cp/2

∫
Sd

νp/2

(
|u|2

‖u‖2
L2(Sd )

−1

)
dµ


and deduce that

‖u‖2
Lp (Sd ) −‖u‖2

L2(Sd ) ≥ ‖u‖2
L2(Sd )

1+ cp/2

∫
Sd

νp/2

(
|u|2 −u2

u2

)
dµ

2/p

−1


with u = ‖u‖L2(Sd ), for any u ∈ Lp ∩L2(Sd ). Although there is no good homogeneity

property because of the definition of the function νp/2, the right-hand side is clearly

a measure of the distance of u to the constant u.

B Stereographic projection
Let x ∈ Rd , r = |x|, ω = x

|x| and denote by (ρω, z) ∈ Rd × (−1,1) the cartesian coordi-

nates on the unit sphere Sd ⊂Rd+1 given by

z = r 2 −1

r 2 +1
= 1− 2

〈x〉2
, ρ = 2r

〈x〉2
.

Let u be a function defined on Sd and consider its counterpart v on Rd given by

u(ρω, z) =
( 〈x〉2

2

) d−2
2

v(x) ∀x ∈Rd .

Recall that δ(p) = 2d −p (d −2). For any p ≥ 1, we have∫
Sd

|u|p dµ= ∣∣Sd
∣∣−1

2
δ(p)

2

∫
Rd

|v |p
〈x〉δ(p)

d x

and also ∫
Sd

|∇u|2 dµ+ 1

4
d (d −2)

∫
Sd

|u|2 dµ= ∣∣Sd
∣∣−1

∫
Rd

|∇v |2 d x .
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Figures
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Fig. 1. The best constant λ 7→ µ(λ) in Inequality (1) for d = 3 and p = 3 is represented by
the plain curve (numerical computation). The dashed line is the estimate of Proposition 10
(valid only for λ≥ 1) and the dotted line is the estimate of Theorem 2.
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Fig. 2. The admissible range for d = 1, 2, 3 (first line), and d = 4, 5 and 10 (from left to
right), as it is deduced from Lemma 13 using (16): the curves p 7→ m±(p) enclose the admis-
sible range of the exponent m.
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