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For exponents in the subcritical range, we revisit some optimal interpolation inequalities on the sphere with carré du champ methods and use the remainder terms to produce improved inequalities. The method provides us with lower estimates of the optimal constants in the symmetry breaking range and stability estimates for the optimal functions. Some of these results can be reformulated in the Euclidean space using the stereographic projection.

Introduction

Let us consider the sphere S d endowed with the uniform probability measure d µ. We shall define by u L q (S d ) = S d |u| q d µ 1/q the corresponding norm, denote by 2 * the critical exponent in dimension d ≥ 3, that is, 2 * = 2 d /(d -2) and adopt the convention that 2 * = ∞ if d = 1 or d = 2. The subcritical Gagliardo-Nirenberg inequalities on the sphere of dimension d can be stated as follows: for p ∈ (2, 2 * ),

p -2 d ∇u 2 L 2 (S d ) + λ u 2 L 2 (S d ) ≥ µ(λ) u 2 L p (S d ) ∀ u ∈ H 1 (S d , d µ) , (1) 
where the function λ → µ(λ) is positive, concave, increasing and such that µ(λ) = λ for λ ∈ (0, 1] and µ(λ) < λ if λ > 1: see [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF]. Moreover, if λ ∈ (0, 1], the only extremals of (1) are the constant functions. In the limit case p = 2 * , with d ≥ 3, the inequality also holds with optimal constant µ(λ) = min{λ, 1} and it is simply the Sobolev inequality on S d when λ = 1.

Here ϕ is a nonnegative convex function such that ϕ(0) = 0 and ϕ (0) = 1. As a consequence, ϕ(s) ≥ s and we recover (3) if ϕ(s) ≡ s, but in improved inequalities we will have ϕ(s) > s for all s = 0. Such improvements have been obtained in [START_REF] Demange | Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature[END_REF][START_REF] Dolbeault | Improved interpolation inequalities on the sphere[END_REF][START_REF] Dolbeault | Nonlinear flows and rigidity results on compact manifolds[END_REF][START_REF] Dolbeault | Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires)[END_REF]. Here we write down more precise estimates and draw some interesting consequences of [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF], such as lower estimates for the best constants in (1) and ( 2) or improved weighted Gagliardo-Nirenberg inequalities in the Euclidean space R d . The improved inequality [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF], with ϕ(s) > s for s = 0, can also be considered as a stability result for [START_REF] Bakry | Inégalités de Sobolev pour un semi-groupe symétrique[END_REF] in the sense that it can also be rewritten as

∇u 2 L 2 (S d ) - d p -2 u 2 L p (S d ) -u 2 L 2 (S d ) ≥ d ψ u 2 L p (S d ) -u 2 L 2 (S d ) (p -2) u 2 L p (S d ) u 2 L p (S d )
for any u ∈ H 1 (S d ), with ψ(s) = ϕ(s)s > 0 for s = 0. Here the right-hand side of the inequality is a measure of the distance to the optimal functions, which are the constant functions: see Appendix A for details.

Main results

Our first result goes as follows. Let 

γ = d -1 d + 2 2 (p -1) (2 # -p) if d ≥ 2 , γ = p -1 3 if d = 1 , (6) 
ϕ(s) = 1-(p-2) s-(1-(p-2) s) - γ p-2 2-p-γ if γ = 2 -p , ϕ(s) = 1 2-p 1 + (2 -p) s log 1 + (2 -p) s if γ = 2 -p . ( 7 
)
Written in terms of u 2 L 2 (S d ) and u 2 L p (S d ) , we shall prove in Section 3 that (5) holds with ϕ given by [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF] and gives rise to a following, new interpolation inequality.

Theorem 1. Let d ≥ 1, assume that p = 2 , and 1 ≤ p ≤ 2 # if d ≥ 2 , p ≥ 1 if d = 1 (8)
and let γ be given by [START_REF] Bianchi | A note on the Sobolev inequality[END_REF]. Then we have

∇u 2 L 2 (S d ) ≥ d 2 -p -γ u 2 L 2 (S d ) -u 2- 2 γ 2-p L p (S d ) u 2 γ 2-p L 2 (S d ) ∀ u ∈ H 1 (S d ) ( 9 
)
if γ = 2p, and

∇u 2 L 2 (S d ) ≥ 2 d p -2 u 2 L 2 (S d ) log u 2 L 2 (S d ) u 2 L p (S d ) ∀ u ∈ H 1 (S d ) ( 10 
)
if γ = 2 -p.
In Inequalities ( 9) and ( 10), the equality case is achieved by constant functions only and the constants d 2-p-γ in (9) and 2 d p-2 in (10) are sharp as can be shown by testing the inequality with u = 1 + ε v with v such that -∆v = d v in the limit as ε → 0. Now, let us come back to (1) and ( 2). We deduce from Theorem 1 the following estimates of the best constants in (1) and ( 2): see Fig. 1 for an illustration. Theorem 2. Let d ≥ 1, γ be given by [START_REF] Bianchi | A note on the Sobolev inequality[END_REF] and assume that p is in the range [START_REF] Cáceres | Nonlinear stability in L p for a confined system of charged particles[END_REF].

(i) If 1 ≤ p < 2, p = p * (d ), then λ(µ) ≥ 2 -p -γ µ 1- 2-p γ 2 -p -γ ∀ µ ≥ 1 . (ii) If 2 < p < 2 # , then µ(λ) ≥ λ + p -2 γ (λ -1) γ γ+p-2 ∀ λ ≥ 1 .
Our third result has to do with stability for inequalities in the Euclidean space R d with d ≥ 2. For all x ∈ R d , let us define 〈x〉 := 1 + |x| 2 and recall that

S d = 2 π d +1 2 /Γ d +1 2 .
Using the stereographic projection of S d onto R d (see Appendix B), Inequality (3) can be written as a weighted interpolation inequality in R d :

R d |∇v| 2 d x + d δ(p) p -2 R d |v| 2 〈x〉 4 d x ≥ C d ,p   R d |v| p 〈x〉 δ(p) d x   2 p with C d ,p = 2 δ(p) p d S d 1-2 p p -2 where δ(p) = 2 d -p (d -2) .
Notice that δ(2 * ) = 0 for any d ≥ 3, so that the inequality is the Sobolev inequality with sharp constant if p = 2 * . However, for any p ∈ [1, 2) ∪ (2, 2 * ] and d ≥ 3, equality is obtained with v (x) = 〈x〉 2-d and this function is, up to an arbitrary multiplicative constant, the only one to realize the equality case if p < 2 * . Equality is achieved by

v = 1 in dimension d = 2 for any p ∈ [1, 2) ∪ (2, +∞). Let us notice that ∇v is not in L 2 (R d ) if d = 1.
Using the improved version (9) of the inequality, we obtain as in Theorem 1 the following stability result.

Theorem 3. Let d ≥ 2 and assume that p ∈ (2, 2 # ). Then R d |∇v| 2 d x + d δ(p) p -2 R d |v| 2 〈x〉 4 d x -C d ,p   R d |v| p 〈x〉 δ(p) d x   2/p ≥ γ p -2 C d ,p 2 R d |v| p 〈x〉 δ(p) d x 2/p -2 2- δ(p) p S d 2 p -1 R d |v| 2 〈x〉 4 d x 2 R d |v| p 〈x〉 δ(p) d x 2/p for any v ∈ L 2 R d , 〈x〉 -4 d x such that ∇v ∈ L 2 (R d , d x).
Again, the right-hand side of the inequality is a measure of the distance to v . The proof is elementary. With ϕ given by ( 7) and ψ(s) = ϕ(s)s, we notice that

ψ (s) ≥ γ 1 -(p -2) s γ 2-p -2 for any admissible s ≥ 0. With 1 = u 2 L p (S d ) ≥ u 2 L 2 (S d ) = 1 -(p -2)
s and γ 2-p -2 < 0, we know that ψ (s) ≥ γ. As a consequence, we have

∇u 2 L 2 (S d ) - d p -2 u 2 L p (S d ) -u 2 L 2 (S d ) ≥ γ d 2 (p -2) 2 u 2 L p (S d ) -u 2 L 2 (S d ) 2 u 2 L p (S d )
.

The result of Theorem 3 follows by applying the stereographic projection. A sharper result valid also if p ∈ [1, 2) will be given in Proposition 8.

As noticed in [18, Theorem 2.2], in the Bakry-Emery range [START_REF] Cáceres | Nonlinear stability in L p for a confined system of charged particles[END_REF], we obtain an improvement if we assume an orthogonality condition on the sphere. Let us recall the result, which is independent of what we have obtained so far. Let H 1 + (S d , d µ) denote the set of the a.e. nonnegative functions in H 1 (S d , d µ) and define

Λ (p) = inf ∇u 2 L 2 (S d ) u -1 2 L 2 (S d )
where the infimum is taken on the set of the functions u ∈ H 

∇u 2 L 2 (S d ) ≥ 1 p -2 d + (d -1) 2 d (d + 2) 2 # -p Λ (p) -d u 2 L p (S d ) -u 2 L 2 (S d )
for any function u ∈ H 1 (S d , d µ) such that S d x i |u| p d µ = 0 with i = 1, 2, . . . d . We know from [START_REF] Dolbeault | Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires)[END_REF] that Λ (p) > d but the value is not explicit except for the limit case p = 2. In this case, the inequality becomes a logarithmic Sobolev inequality, which has been stated in [START_REF] Dolbeault | Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires)[END_REF]Proposition 5.4]. Using the stereographic projection, we obtain new inequalities on R d which are as follows.

Theorem 4. Let d ≥ 2 and assume that p ∈ (2, 2 # ). Then

R d |∇v| 2 d x + d δ(p) p -2 R d |v| 2 〈x〉 4 d x -C d ,p   R d |v| p 〈x〉 δ(p) d x   2/p ≥ (d -1) 2 d (d + 2) 2 # -p p -2 Λ (p) -d   2 δ(p) p S d 1-2 p   R d |v| p 〈x〉 δ(p) d x   2/p -4 R d |v| 2 〈x〉 4 d x   for any function v in the space v ∈ L 2 R d , 〈x〉 -4 d x : ∇v ∈ L 2 (R d , d x) such that R d x 〈x〉 4 |v| 2 d x = 0 and R d |x| 2 〈x〉 4 |v| 2 d x = R d |x| 2 〈x〉 4 |v | 2 d x .
Under the same conditions on v, we also have

R d |∇v| 2 d x ≥ d (d -2) R d |v| 2 〈x〉 4 d x + λ 2 R d |v| 2 〈x〉 4 log   1 2 〈x〉 2 d -2 |v| 2 4 S d -1 R d |v| 2 〈x〉 4 d x   d x with λ = d + 2 d 4 d -1 2 (d + 3) + 2 (d + 3) (2 d + 3) .
Notice that the right-hand side of each of the two inequalities is proportional to the corresponding entropy and not to the square of the entropy as in Theorem 3. This result is a counterpart for p ∈ (2, 2 # ), with a quantitative constant, of the result of G. Bianchi and H. Egnell in [START_REF] Bianchi | A note on the Sobolev inequality[END_REF] for the critical exponent p = 2 * . See Remark 9. The constant Λ (p) can be estimated explicitly in the limit case as p = 2: see [18, Proposition 5.4] for further details.

So far, all results have been limited to the Bakry-Emery range and rely on heat flow estimates on the sphere. However, using nonlinear flows as in [START_REF] Dolbeault | Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires)[END_REF], improvements and stability results can also be achieved when p ∈ [2 # , 2 * ). This will be the topic of Section 4 while all results of Section 2 are proved in Section 3 using the heat flow and the carré du champ method on the sphere.

Heat flow and carré du champ method

In this section, our goal is to prove that (5) holds with ϕ given by [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF].

In its simplest version, the carré du champ method goes as follows. We define the entropy and the Fisher information respectively by

e := 1 p -2 u 2 L p (S d ) -u 2 L 2 (S d ) and i := ∇u 2 L 2 (S d ) .
Then we shall assume that these quantities are driven by the flow such that u p is evolved by the heat equation, that is, we shall assume that u > 0 solves

∂u ∂t = ∆u + (p -1) |∇u| 2 u ( 11 
)
where ∆ denotes the Laplace-Beltrami operator on S d . In the next result, denotes a t derivative.

Lemma 5. Let d ≥ 1, γ be given by [START_REF] Bianchi | A note on the Sobolev inequality[END_REF] and assume that p is in the range [START_REF] Cáceres | Nonlinear stability in L p for a confined system of charged particles[END_REF]. With the above notations, e solves e + 2 d e -

γ |e | 2 1 -(p -2) e ≥ 0 . (12) 
Proof. Since (11) amounts to ∂u p ∂t = ∆u p , it is straightforward to check that

d d t S d |u(t , •)| p d µ = 0 and e = -2 i.
Let us summarize results that can be found in [START_REF] Demange | Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature[END_REF][START_REF] Dolbeault | Improved interpolation inequalities on the sphere[END_REF][START_REF] Dolbeault | Nonlinear flows and rigidity results on compact manifolds[END_REF][START_REF] Dolbeault | Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires)[END_REF]. We adopt the presentation of the proof of [START_REF] Dolbeault | Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities[END_REF]Lemma 4.3]. With S d considered as a d -dimensional compact manifold with metric g and measure d µ, let us introduce some notation. If A i j and B i j are two tensors, then A : B := g i m g j n A i j B mn and A 2 := A : A .

Here g i j is the inverse of the metric tensor, i.e., g i j g j k = δ i k . We use the Einstein summation convention and δ i k denotes the Kronecker symbol. Let us denote the Hessian by Hu and define the trace-free Hessian by Lu := Hu -1

d (∆u) g .
We also define the trace-free tensor

Mu := ∇u ⊗ ∇u u - 1 d |∇u| 2 u g .
An elementary but lengthy computation that can be found in [START_REF] Dolbeault | Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities[END_REF] shows that 1 2

(i -d e) = 1 2 i + 2 d i = - d d -1 S d Lu -(p -1) d -1 d + 2 Mu 2 d µ -γ S d |∇u| 4 u 2 d µ
where γ is given by ( 6). In the framework of the carré du champ method of D. Bakry and M. Emery applied to a solution u of ( 11), the admissible range for p is therefore (8) as shown in [START_REF] Bakry | Inégalités de Sobolev pour un semi-groupe symétrique[END_REF][START_REF] Dolbeault | Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires)[END_REF]: this is the range in which we know that γ ≥ 0. Since lim t →+∞ e(t) = lim t →+∞ i(t) = 0 and d d t (i -d e) = i + 2 d i ≤ 0, it is straightforward to deduce that id e ≥ 0 for any t ≥ 0 and, as a special case, at t = 0 for an arbitrary initial datum. This completes the proof of (3), after replacing u by |u| and removing the assumption u > 0 by a density argument.

Following an idea of [START_REF] Arnold | Refined convex Sobolev inequalities[END_REF], it has been observed in [START_REF] Dolbeault | Improved interpolation inequalities on the sphere[END_REF] that an improvement is achieved for any p ∈ [1, 2) ∪ (2, 2 # ) using

i 2 =   S d u • |∇u| 2 u d µ   2 ≤ S d u 2 d µ S d |∇u| 4 u 2 d µ = 1 -(p -2) e S d |∇u| 4 u 2 d µ
where the last equality holds if we impose that u L p (S d ) = 1 at t = 0. This completes the proof of Lemma 5.

Lemma 6.

For any γ ≥ 0, the solution ϕ of

ϕ (s) = 1 + γ ϕ(s) 1 -(p -2) s , ϕ(0) = 0 , ( 13 
)
is given by [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF].

Proof. The solution of ( 13) is unique and it is a straightforward computation that ϕ given by ( 7) solves [START_REF] Dolbeault | Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spec-tral estimates[END_REF].

Lemma 7. Let d ≥ 1, γ be given by [START_REF] Bianchi | A note on the Sobolev inequality[END_REF] and assume that p is in the range [START_REF] Cáceres | Nonlinear stability in L p for a confined system of charged particles[END_REF]. Then [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF] holds with ϕ given by [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF].

Proof. With the notation of Lemma 5, we compute

2 d d t i -d ϕ(e) = -e + 2 d e -2 d e γ ϕ(e) 1 -(p -2) e ≤ - 4 γ i 1 -(p -2) e i -d ϕ(e)
using [START_REF] Dolbeault | Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spec-tral estimates[END_REF] in the equality and then [START_REF] Dolbeault | Sharp interpolation inequalities on the sphere: New methods and consequences[END_REF] in the inequality. Since lim t →+∞ e(t) = lim t →+∞ i(t) = 0 and id ϕ(e) ∼ id e ≥ 0 in the asymptotic regime as t → +∞, this proves that for functions u satisfying

u L p (S d ) = 1, i ≥ d ϕ(e) .
By homogeneity, this proves (5) for an arbitrary function u.

Theorem 1 is then obtained by replacing ϕ in (5) by the expression in [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF]. As noted in Section 2, Theorem 3 is a simple consequence of Theorem 1 and of the stereographic projection using the computations of Appendix B. Theorem 4 is also a straightforward consequence of [18, Theorem 2.2 and Proposition 5.4] using the stereographic projection. Hence all results of Section 2 are established except Theorem 2.

A sharper version of Theorem 3, valid for any p in the range [START_REF] Cáceres | Nonlinear stability in L p for a confined system of charged particles[END_REF], can be deduced directly from [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF] with ϕ given by (7) using the stereographic projection. It goes as follows.

Proposition 8. Let d ≥ 2 and assume that p is in the range [START_REF] Cáceres | Nonlinear stability in L p for a confined system of charged particles[END_REF].

Then for any v ∈ L 2 R d , 〈x〉 -4 d x such that ∇v ∈ L 2 (R d , d x) we have R d |∇v| 2 d x -d (d -2) R d |v| 2 〈x〉 4 d x ≥ 4 d 2 -p -γ    R d |v| 2 〈x〉 4 d x -κ 1- γ 2-p p   R d |v| p 〈x〉 δ(p) d x   2 p 1- γ 2-p   R d |v| 2 〈x〉 4 d x   γ 2-p    if γ = 2 -p, and R d |∇v| 2 d x -d (d -2) R d |v| 2 〈x〉 4 d x ≥ 8 d p -2   R d |v| 2 〈x〉 4 d x   log   κ -1 p R d |v| 2 〈x〉 4 d x R d |v| p 〈x〉 δ(p) d x   if γ = 2 -p, where κ p = 2 δ(p) p -2 S d 1-2 p .
Remark 9. Inequalities (9)- [START_REF] Dolbeault | Φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations[END_REF] are key estimates in this paper. Because of the convexity of the function ϕ defined by [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF], we know that (9) and [START_REF] Dolbeault | Φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations[END_REF] are stronger than (3) and (4), even if all these inequalities are optimal. The fact that

1 2 -p -γ u 2 L 2 (S d ) -u 2- 2 γ 2-p L p (S d ) u 2 γ 2-p L 2 (S d ) ≥ 1 p -2 u 2 L p (S d ) -u 2 L 2 (S d )
can be recovered using Hölder's inequality. For instance, if p > 2, we know that

u L 2 (S d ) ≤ u L p (S d )
. By homogeneity, we can assume without loss of generality that u

L 2 (S d ) = 1 and t = u 2 L p (S d ) ≥ 1. With θ = γ/(p -2), this amounts to t 1+θ -1 ≥ (1 + θ) (t -1)
which is obviously satisfied for any t ≥ 1 because θ is nonnegative. Similar arguments apply if p < 2, p = p * (d ) and the case p = p * (d ) is obtained as a limit case. The difference of the two sides in the inequality is the measure of the distance to the constants.

As in [START_REF] Bianchi | A note on the Sobolev inequality[END_REF], the stability can also be obtained in the stronger semi-norm u → S d |∇u| 2 d µ. We can indeed rewrite the improved inequality as

e ≤ ϕ -1 i d ,
for any u satisfying u 2 L p (S d ) = 1, and obtain that

i ≥ d e + ψ(i) where ψ(i) = i -d ϕ -1 i d ≥ 0 .
An explicit lower bound for µ(λ) has been obtained in [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF]Proposition 8]. Let us recall it with a sketch of the proof, for completeness.

Proposition 10 ([15]

). Assume that d ≥ 3 and let θ = d p-2

2 p . Then µ(λ) ≥ p -2 d 1 4 d (d -2) θ λ d p -2 1-θ ∀ λ ≥ 1 .
Notice that this bound is limited to the case d ≥ 3 and p ∈ (2, 2 * ).

Proof. From Hölder's inequality

u L p (S d ) ≤ u θ L 2 * (S d ) u 1-θ L 2 (S d ) , we get that ∇u 2 L 2 (S d ) + λ d p-2 u 2 L 2 (S d ) u 2 L p (S d ) ≥ ∇u 2 L 2 (S d ) + λ d p-2 u 2 L 2 (S d ) u 2 L 2 * (S d ) θ ∇u 2 L 2 (S d ) + λ d p-2 u 2 L 2 (S d ) u 2 L 2 (S d ) 1-θ .
After dropping ∇u 2 L 2 (S d ) in the second parenthesis of the right-hand side and observing that 1/(p -2) ≥ (d -2)/4, the conclusion holds using the Sobolev inequality in the first parenthesis. We indeed recall that µ(λ)

= 1 4 d (d -2) for any λ ≥ 1 if p = 2 * .
We may notice that the estimate of Proposition 10 captures the order in λ of µ(λ) as λ → +∞ but is not accurate close to λ = 1 and limited to the case p ∈ (2, 2 * ) and d ≥ 3.

It turns out that the whole range (8) for any d ≥ 1 can be covered as a consequence of Theorem 1 with a lower bound for µ(λ) which is increasing with respect to λ ≥ 1 and such that it takes the value 1 if λ = 1. This is essentially the contents of Theorem 2 for p ∈ (2, 2 # ), which also covers the range p ∈ [1, 2).

Proof of Theorem 2. We shall distinguish several cases.

1) Case p ∈ (2, 2 # ). Assume that λ > 1 and θ > 0. We deduce from

µ(λ) := (θ + 1) λ -1 θ θ θ+1 = min t ≥1 1 t λ + t 1+θ -1 1 + θ that t 1+θ -1 1 + θ ≥ µ(λ) t -λ ∀ t ≥ 1 . With θ = γ p-2 , Inequality (9) takes the form p -2 d ∇u 2 L 2 (S d ) ≥ 1 1 + θ u 2 (1+θ) L p (S d ) u -2 θ L 2 (S d ) -u 2 L 2 (S d ) ∀ u ∈ H 1 (S d ) . Using t = u 2 L p (S d ) / u 2 L 2 (S d ) ≥ 1, the right-hand side satisfies 1 1 + θ u 2 (1+θ) L p (S d ) u -2 θ L 2 (S d ) -u 2 L 2 (S d ) = u 2 L p (S d ) 1 + θ 1 t t 1+θ -1 ≥ u 2 L p (S d ) µ(λ) - λ t = µ(λ) u 2 L p (S d ) -λ u 2 L 2 (S d ) .
Hence we find

µ(λ) ≥ µ(λ) = λ + p -2 γ (λ -1) γ γ+p-2 ∀ λ ≥ 1 .
2) Case p ∈ p * (d ), 2 . In this regime we have γ > 2p and take θ =

γ 2-p -1 > 0. We deduce from λ(µ) := (θ + 1) µ θ θ+1 -1 θ = min t ∈[0,1] t -θ -1 θ + µ t that t -θ -1 θ ≥ λ(µ) -µ t ∀ t ∈ [0, 1] .
Inequality [START_REF] Demange | Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature[END_REF] takes the form

2 -p d ∇u 2 L 2 (S d ) ≥ 1 θ u -2 θ L p (S d ) u 2 (1+θ) L 2 (S d ) -u 2 L 2 (S d ) ∀ u ∈ H 1 (S d ) . Using t = u 2 L p (S d ) / u 2 L 2 (S d ) ≤ 1, the right-hand side satisfies 1 θ u -2 θ L p (S d ) u 2 (1+θ) L 2 (S d ) -u 2 L 2 (S d ) = u 2 L 2 (S d ) t -θ -1 θ ≥ u 2 L 2 (S d ) λ(µ) -µ t = λ(µ) u 2 L 2 (S d ) -µ u 2 L p (S d ) .
Hence we find

λ(µ) ≥ λ(µ) = 2 -p -γ µ 1- 2-p γ 2 -p -γ ∀ µ ≥ 1 .
3) Case p = p * (d ). It is achieved by taking the limit as p → p * (d ), but the estimate degenerates into λ(µ) ≥ 1, which we already know because λ(µ) ≥ λ(1) = 1 for any λ ≥ 1.

4) Case p ∈ 1, p * (d ) and d = 2. In this regime we have γ < 2p and take θ = γ 2-p ∈ (0, 1). We deduce from

λ(µ) := 1 -θ µ 1-1 θ 1 -θ = min t ∈[0,1] 1 -t 1-θ 1 -θ + µ t that 1 -t 1-θ 1 -θ ≥ λ(µ) -µ t ∀ t ∈ [0, 1] .
Inequality [START_REF] Demange | Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature[END_REF] takes the form

2 -p d ∇u 2 L 2 (S d ) ≥ 1 1 -θ u 2 L 2 (S d ) -u 2 (1-θ) L p (S d ) u 2 θ L 2 (S d ) ∀ u ∈ H 1 (S d ) . Using t = u 2 L p (S d ) / u 2 L 2 (S d ) ≤ 1, the right-hand side satisfies 1 1 -θ u 2 L 2 (S d ) -u 2 (1-θ) L p (S d ) u 2 θ L 2 (S d ) = u 2 L 2 (S d ) 1 -t 1-θ 1 -θ ≥ u 2 L 2 (S d ) λ(µ) -µ t = λ(µ) u 2 L 2 (S d ) -µ u 2 L p (S d ) .
Hence we find

λ(µ) ≥ λ(µ) = 2 -p -γ µ 1- 2-p γ 2 -p -γ ∀ µ ≥ 1 .

Inequalities based on nonlinear flows

In this section, the range of p is

p ∈ [1, 2 * ], p = 2 if d ≥ 3 and p ∈ [1, +∞), p = 2 if d = 1 , 2 . ( 14 
)
This range includes in particular the case 2 # < p < 2 * , which was not covered in Section 3. As in [START_REF] Demange | Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature[END_REF][START_REF] Dolbeault | Improved interpolation inequalities on the sphere[END_REF][START_REF] Dolbeault | Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires)[END_REF], let us replace [START_REF] Dolbeault | Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities[END_REF] by the nonlinear diffusion equation

∂u ∂t = u 2-2β ∆u + κ |∇u| 2 u . ( 15 
)
The parameter β has to be chosen appropriately as we shall see below. With the choice κ = β (p -2) + 1, one can check that

d d t S d u(t , •) β p d µ = 0 because ρ = u β p solves the porous medium equation ∂ρ ∂t = ∆ρ m with m such that 1 β + p 2 = 1 + m p 2 . ( 16 
)
Notice that m > 0 can be larger or smaller than 1 depending on β, d and p. The entropy and the Fisher information are redefined respectively by

e := 1 p -2 u β 2 L p (S d ) -u β 2 L 2 (S d ) and i := ∇u β 2 L 2 (S d ) .
The equation e = -2 i holds true only if β = 1, in which case [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF] coincides with [START_REF] Dolbeault | Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities[END_REF].

Here we have:

e = -2 β 2 ∇u 2 L 2 (S d ) = -2 i if β = 1 but we can still compute d d t (i -d e)
and obtain that 1

2 β 2 i -d e = - d d -1 S d Lu -β (p -1) d -1 d + 2 Mu 2 d µ -γ(β) S d |∇u| 4 u 2 d µ (17) with γ(β) := - d -1 d + 2 (κ + β -1) 2 + κ (β -1) + d d + 2 (κ + β -1) . ( 18 
)
To guarantee that γ(β) ≥ 0 for some β ∈ R, a discussion has to be made: see Lemma 13 below for a detailed statement and also [START_REF] Dolbeault | Improved interpolation inequalities on the sphere[END_REF]. Notice that the value of γ given by ( 6) in ) is an admissible choice (in that case, γ(β) is a polynomial of degree 1).

Corollary 12. Let d ≥ 1 and assume that p is in the range [START_REF] Dolbeault | Improved interpolation inequalities on the sphere[END_REF]. For any β ∈ B(p,d), any solution of ( 15) is such that id e is monotone non-increasing with limit 0 as t → +∞.

As a consequence, we know that i ≥ d e, which proves (3) in the range [START_REF] Dolbeault | Improved interpolation inequalities on the sphere[END_REF]. Let us define by

β ± (p, d ) := d 2 -d (p -5) -2 p + 6 ± (d + 2) d (p -1) 2 d -p (d -2) d 2 p 2 -3 p + 3 -2 d (p 2 -3) + (p -3) 2 Proof. Using the identity 1 2 + β-1 β (p-2) + ζ = 1, Hölder's inequality shows that 1 β 2 S d ∇ u β 2 d µ = S d u 2(β-1) |∇u| 2 d µ = S d |∇u| 2 u • u p(β-1) p-2 • u 2βζ d µ ≤   S d |∇u| 4 u 2 d µ   1 2   S d u βp d µ   β-1 β (p-2)   S d u 2β d µ   ζ . With the choice u β L p (S d ) = 1, we find that   S d |∇u| 4 u 2 d µ   1/2 ≥ 1 β 2 i 1 -(p -2) e ζ .
On the other hand, by using the identity 1 2 +

β-1

2 β + 1 2 β = 1
, and Hölder's inequality again, we have also

  S d |∇u| 4 u 2 d µ   1/2 ≥ S d |∇u| 2 d µ 1 -(p -2) e 1 2 β
, since d µ is a probability measure on S d . Therefore, from [START_REF] Dolbeault | Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization[END_REF] we get the inequality

d d t (i -d e) ≤ γ(β) ie β 2 1 -(p -2) e ζ+ 1 2 β
.

For every β > 1 it is possible to find a function ψ β satisfying the ODE

ψ β (s) ψ β (s) = - γ(β) β 2 1 -(p -2) s -ζ-1 2β , ψ β (0) = 0 , with ζ = ζ(β), such that ψ β > 0. Then d d t iψ β (e) -d ψ β (e) ≤ 0 , from which we conclude that i ≥ d ϕ β (e) with ϕ β := ψ β /ψ β . It is then elementary to check that ϕ β satisfies the ODE ϕ β = 1 -ϕ β ψ β (s) ψ β (s) = 1 + γ(β) β 2 1 -(p -2) s -ζ-1 2β ϕ β
and that ϕ β (0) = 0. Solving this linear ODE, we find the expression of ϕ β . Notice that ϕ β is defined for any s ∈ 0, 1/(p -2) and that ϕ β (s) > 0 for any s = 0. From the equation satisfied by ϕ β we get that ϕ β (s) > 1 and ϕ β (s) > 0, hence ϕ β (s) > s for any admissible β and any s ∈ 0, 1/(p -2) .

Let us define

µ(λ) = min t ≥1 p -2 t ϕ t -1 p -2 + λ t . (20) 
By arguing exactly as in the proof of Theorem 2, we obtain an estimate of the optimal constant in (1) which is valid for instance if 2 # < p < 2 * .

Corollary 15. Let d ≥ 1 and assume that p ∈ (2, 2 * ). With the notations of Theorem 14 and µ(λ) defined by [START_REF] Mueller | Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere[END_REF], the optimal constant in (1) can be estimated for any p ∈ (2, 2 * ) by

µ(λ) ≥ µ(λ) ∀ λ ≥ 1 .
Another consequence is that one can write an improved inequality on R d in the spirit of Proposition 8, for any p ∈ (1, 2 * ), p = 2. Since the expression involves ϕ as defined in Theorem 14, we do not get any fully explicit expression, so we shall leave it to the interested reader. A major drawback of our method is that ϕ is defined through a primitive. With some additional work, ϕ can be written as an incomplete Γ function, which is however not of much practical interest. This is why it is interesting to consider a special case, for which we obtain an explicit control of the remainder term. For completeness, let us state the following result which applies to a particular class of functions u.

Theorem 16 ([18]). Let d ≥ 3. If p ∈ (1, 2) ∪ (2, 2 * ), we have

S d |∇u| 2 d µ ≥ d p -2 1 + (d 2 -4) (2 * -p) d (d + 2) + p -1 u 2 L p (S d ) -u 2 L 2 (S d )
for any u ∈ H 1 (S d , d µ) with antipodal symmetry, i.e.,

u(-x) = u(x) ∀ x ∈ S d . ( 21 
)
The limit case p = 2 corresponds to the improved logarithmic Sobolev inequality

S d |∇u| 2 d µ ≥ d 2 (d + 3) 2 (d + 1) 2 S d |u| 2 log |u| 2 u 2 L 2 (S d ) d µ for any u ∈ H 1 (S d , d µ) \ {0} such that (21) holds.
We refer to [START_REF] Dolbeault | Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires)[END_REF]Theorem 5.6] and its proof for details. Instead of [START_REF] Unterreiter | On generalized Csiszár-Kullback inequalities[END_REF], one can use any symmetry which guarantees that d d t S d u(t , •) β p d µ = 0 if we evolve u according to [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF]. Using the stereographic projection, one can obtain a weighted inequality with the same constant on R d , for solutions which have the inversion symmetry corresponding to [START_REF] Unterreiter | On generalized Csiszár-Kullback inequalities[END_REF].

Further results and concluding remarks

The interpolation inequalities (1) and ( 2) are equivalent to Keller-Lieb-Thirring estimates for the principal eigenvalue of Schrödinger operators, respectively -∆ -V on S d with V ≥ 0 in L q (S d ) for some q > 1, and -∆ + V on S d with V > 0 such that V -1 ∈ L q (S d ), again for some q > 1. See for instance [START_REF] Dolbeault | Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spec-tral estimates[END_REF][START_REF] Dolbeault | Spectral estimates on the sphere[END_REF] and references therein.

Corollary 17. Let d ≥ 1, q > max{1, d /2}, p = 2 q/(q -1) and assume that V be a positive potential in L q (S d ) with µ = V L q (S d ) . If λ(µ) denotes the inverse of λ → µ(λ) defined by [START_REF] Mueller | Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere[END_REF] for some convex function ϕ such that (5) holds with ϕ(0) = 0 and

ϕ (0) = 1, then λ 1 (-∆ -V ) ≥ -λ V L q (S d ) .
Proof. From Hölder's inequality

S d V u 2 d µ ≤ µ u 2 L p (S d ) with µ = V L q (S d ) , we learn that S d |∇u| 2 -V u 2 d µ u 2 L 2 (S d ) ≥ ∇u 2 L 2 (S d ) -µ u 2 L p (S d ) u 2 L 2 (S d ) ≥ -λ(µ) .
Corollary 17 applies to ϕ defined by [START_REF] Dolbeault | Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities[END_REF] for any p ∈ (2, 2 * ) and to ϕ defined by [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF] for any p ∈ (2, 2 # ). In that case, the result holds with

λ(µ) = µ if µ ∈ (0, 1] and λ(µ) = p -2 + γ µ 1+ p-2 γ p -2 + γ if µ > 1 .
Even more interesting is the fact that a result can also be deduced from Theorem 2 in the range p ∈ [1, 2), p = p * (d ), for which no explicit estimate was known so far. In that case, let us define

λ(µ) = µ if µ ∈ (0, 1] and λ(µ) = 2 -p -γ µ 1- 2-p γ 2 -p -γ if µ > 1 .
Corollary 18. Let d ≥ 1, q > 1, p = 2 q/(q + 1) and assume that V be a positive potential such that V -1 ∈ L q (S d ). Then

λ 1 (-∆ -V ) ≥ λ V L q (S d ) .
Proof. By the reverse Hölder inequality, with µ = V -1 -1 L q (S d ) we have

S d |∇u| 2 + V |u| 2 d µ ≥ ∇u 2 L 2 (S d ) + µ u 2 L p (S d ) .
The conclusion holds using (2) and Theorem 2, (i) .

Let us conclude with a summary and some considerations on open problems. This paper is devoted to improvements of ( 3) and ( 4) by taking into account additional terms in the carré du champ method. The stereographic projection then induces improved weighted inequalities on the Euclidean space R d . Alternatively, various improvements have been obtained on R d using the scaling invariance: see for instance [START_REF] Dolbeault | Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities[END_REF] and references therein. It is to be expected that these two approaches are not unrelated as well as nonlinear diffusion flows on S d and nonlinear diffusion flows on R d can probably be related. The self-similar changes of variables based on the so-called Barenblatt solutions also points in this direction: see [START_REF] Dolbeault | Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization[END_REF]. Concerning stability issues, we have been able to establish various estimates with explicit constants, which are all limited to the subcritical range p < 2 * when d ≥ 3. This is clearly not optimal (see [START_REF] Bianchi | A note on the Sobolev inequality[END_REF][START_REF] Dolbeault | Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires)[END_REF]). A last point deserves to be mentioned: improved entropy -entropy production estimates like i ≥ d ϕ(e) mean increased convergence rates in evolution problems like [START_REF] Dolbeault | Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities[END_REF] or ( 15): how to connect an initial time layer with large entropy e to an asymptotic time layer with an improved spectral gap obtained, for instance, by best matching (which amounts to impose additional orthogonality conditions for large time asymptotics), is a topic of active research.

Appendices A Estimating the distance to the constants

In Section 1, we claimed that the entropy u → If p > 2, let us define the constant c q := inf t ∈R + \{1} t q -1q (t -1) ν q (t -1) with ν q (t ) = |s| 2 if |s| ≤ 1 |s| q if s > 1 for any q > 1. Let q = p/2 and use the above constant to get, with t = u 2 / u 2 L 2 (S d ) , the estimate 

so that γ = 2 - 2 for any d ≥ 2 .

 222 p with 1 ≤ p ≤ 2 # means that d = 1 and p = 7/4 = p * (1) , d > 1 and p = p * (d ) occurs, where p * (d ) = 3 + d + 2 d 2 -2 4 d + 4 d 2 + d 3 (d -1) Notice that for all d ≥ 1, 1 < p * (d ) < 2 and lim d →+∞ p * (d ) = 2. For any admissible s ≥ 0, i.e., for any s ∈ 0, (p -2) -1 if p > 2 and any s ≥ 0 if p ∈ [1, 2), let

Sections 2 and 3 Lemma 11 .

 311 corresponds to[START_REF] Dolbeault | Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires)[END_REF] with β = 1. In the sequel let us denote by B(p,d) the set of β such that γ(β) ≥ 0 with p in the range[START_REF] Dolbeault | Improved interpolation inequalities on the sphere[END_REF]. Let d ≥ 1 and assume that p is in the range[START_REF] Dolbeault | Improved interpolation inequalities on the sphere[END_REF]. Then B(p,d) is nonempty.Proof. As a function of β, γ(β) is a polynomial of degree at most two. We refer to[14, Appendix A] for a proof, up to the restriction p < 9 + 4 3 in dimension d = 2. If d = 2 and p > 9 + 4 3, we can make the choice β = 4 (5p)/(p 2 -18 p + 33) which corresponds to m = 8 (p -1)/(p 2 -18 p + 33), while for d = 2 and p = 9 + 4 3, β ≥ -1/(2 + 2 3

u 2 L p (S d ) -u 2 L 2 (S d ) p - 2 isp

 2222 an estimate of the distance of the function u to the constant functions. Let us give some details.If p ∈ [1, 2) we know thatu 2 L 2 (S d )u 2 L p (S d ) ≥with u = u L p (S d ) , for any u ∈ L p ∩ L 2 (S d ), by the generalized Csiszár-Kullback-Pinsker inequality: see[START_REF] Unterreiter | On generalized Csiszár-Kullback inequalities[END_REF][START_REF] Cáceres | Nonlinear stability in L p for a confined system of charged particles[END_REF] or [10, Proposition 2.1], and references therein.

2 d -2 2 v 2 δ|∇u| 2 d µ + 1 4 d

 2224 p (S d )u 2 L 2 (S d ) ≥ u 2 L 2 (S d ) u = u L 2 (S d ) , for any u ∈ L p ∩ L 2 (S d ).Although there is no good homogeneity property because of the definition of the function ν p/2 , the right-hand side is clearly a measure of the distance of u to the constant u.B Stereographic projectionLet x ∈ R d , r = |x|, ω = x|x| and denote by (ρ ω, z) ∈ R d × (-1, 1) the cartesian coordinates on the unit sphere S d ⊂ R d +1 given byz = r 2 -1 r 2 + 1 = 1 -2 〈x〉 2 , ρ = 2 r 〈x〉 2 .Let u be a function defined on S d and consider its counterpart v on R d given byu(ρ ω, z) = 〈x〉 2 (x) ∀ x ∈ R d . Recall that δ(p) = 2 dp (d -2). For any p ≥ 1, we have S d |u| p d µ = S d -1 (d -2) S d |u| 2 d µ = S d -1 R d |∇v| 2 d x .
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 2 Fig. 2. The admissible range for d = 1, 2, 3 (first line), and d = 4, 5 and 10 (from left to right), as it is deduced from Lemma 13 using (16): the curves p → m ± (p) enclose the admissible range of the exponent m.

  1 + (S d , d µ) such that S d u d µ = 1 and S d x |u| p d µ = 0. Then for any p ∈ (2, 2 # ), we have
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The precise description of B(p,d) goes as follows.

Lemma 13. Let d ≥ 1 and assume that p is in the range [START_REF] Dolbeault | Improved interpolation inequalities on the sphere[END_REF]. The set B(p,d) with p is defined by

(ii

A much simpler picture is obtained in terms of m = m(β, p, d ) given by ( 16). Let

See Fig. 2.

As observed in [START_REF] Demange | Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature[END_REF][START_REF] Dolbeault | Improved interpolation inequalities on the sphere[END_REF][START_REF] Dolbeault | Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d'interpolation sur la sphère : flots non-linéaires vs. flots linéaires)[END_REF], an improved inequality can also be obtained. Since the case p ∈ [1, 2) is covered in Section 3, we shall assume from now on that p > 2. With

where γ = γ(β) is given by ( 18 (

Theorem 14. Let d ≥ 1 and assume that p ∈ (2, 2 * ). Inequality (5) holds with ϕ defined by [START_REF] Dolbeault | Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities[END_REF].