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Abstract

Nanostructured and architectured copper niobium composite wires are excellent candidates for the gen-
eration of intense pulsed magnetic fields (∼100T) as they combine both high strength and high electrical
conductivity. Multi-scaled Cu-Nb wires are fabricated by accumulative drawing and bundling (a severe
plastic deformation technique), leading to a multiscale, architectured, and nanostructured microstructure
exhibiting a strong fiber crystallographic texture and elongated grain shape along the wire axis. This paper
presents a comprehensive study of the effective elasto-plastic behavior of this composite material by using
two different approaches to model the microstructural features: full-field finite elements and mean-field
modeling. As the material exhibits several characteristic scales, an original hierarchical strategy is proposed
based on iterative scale transition steps from the nanometric grain scale to the millimetric macro-scale. The
best modeling strategy is selected to estimate reliably the effective elasto-plastic behavior of Cu-Nb wires
with minimum computational time. Finally, for the first time, the models are confronted to tensile tests and
in-situ neutron diffraction experimental data with a good agreement.

Keywords: Multiscale modeling, Copper niobium wire, Elasto-plasticity, Homogenization, Polycrystalline
material, Neutron diffraction

1. Introduction

In recent years, two types of filamentary and multilayered nano-composites composed of copper and
niobium (i.e. Cu-Nb nano-composite wires and laminates) have been highlighted thanks to their special
properties (Misra and Thilly, 2010). These two Cu-Nb nano-composites are fabricated respectively by two
different severe plastic deformation techniques: Accumulative Drawing and Bundling (Dupouy et al., 1996;5

Thilly, 2000; Vidal, 2006; Dubois, 2010; Medy, 2016) and Accumulated Roll Bonding (Lim and Rollett,
2009; Beyerlein et al., 2014).

A typical cross section of a Cu-Nb nano-composite wire is illustrated in Fig. 1, referred to as “Fila-
mentary” structure in Thilly (2000); Thilly et al. (2002): a multiscale Cu matrix embedding parallel Nb
nano-filaments. These nano-composite conductors are excellent candidates for generation of intense pulsed10
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Figure 1: Successive section views of the Cu-Nb nano-composite wires containing 852 elementary Cu/Nb long fibers. The
diameter of specimen (c) is reduced from actual 4.50 mm to two smaller diameters by supplementary cold-drawing: 2.10 mm
for in-situ neutron diffraction experiments and 0.29 mm for macroscopic tensile tests in this work. The smaller scale for pure
polycrystalline Cu or Nb (i.e. scale H0) is not shown in this figure. See Section 2.3 for scale conventions and notations.

magnetic fields (∼100T). The intense magnetic field offers valuable opportunity to carry out many of the
essential experiments (e.g. in the field of particle physics), and become promising industrial tools (such as
controlled nuclear fusion) (Spencer et al., 2004; Jaime et al., 2012; Béard et al., 2013; Halperin et al., 2013;
Debray and Frings, 2013; Zherlitsyn et al., 2013; Frydman, 2014; Peng et al., 2014; Nguyen et al., 2016; Béard
et al., 2018). To generate them, the conductors for the winding coils must combine both high mechanical15

strength (due to large Lorentz forces) and high electrical conductivity. In Thilly (2000); Vidal et al. (2007),
a conductor presenting an ultimate tensile strength as large as 1.9 GPa at 77K has been obtained, together
with an electrical conductivity of 1.72µΩ−1cm−1.

Predicting the elasto-plastic behavior of polycrystalline nano-composites with respect to their nano/micro-
structure is a complex matter, particularly if they are fabricated by severe plastic deformations leading to:20

(1) specific crystallographic/morphological textures;

(2) microstructural features which exhibit anisotropy and induce size effects;

(3) initial residual stresses.

In this field, combining material characterization and multiscale modeling is mandatory. Previous studies
on the Cu-Nb nano-composite wires and laminates have focused on textures and their evolution (Lim and25

Rollett, 2009; Dubois, 2010; Lee et al., 2012; Hansen et al., 2013; Medy, 2016), elasticity (Gu et al., 2017a),
dislocation glide (Thilly et al., 2001; Misra and Hoagland, 2007), grain size dependent yield stress/yield
criterion (Misra and Hoagland, 2007; Thilly et al., 2009; Nizolek et al., 2015), Bauschinger effect (Thilly
et al., 2007; Badinier et al., 2014), hardness (Thilly et al., 2002), ultimate tensile strength (Vidal et al., 2007),
Cu-Nb interfaces (Mayeur et al., 2013; Beyerlein et al., 2014; Mayeur et al., 2015), and thermal stability and30

internal stresses (Vidal, 2006; Dubois et al., 2010; Beyerlein et al., 2014). The electrical behavior of Cu-Nb
composites was studied by Gu et al. (2015, 2017b).

The present work concentrates on the multiscale modeling of the anisotropic elasto-plastic behavior of
architectured and nanostructured Cu-Nb composite wires. Two multi-scale methods will be introduced: a
full-field Finite Element Method (FEM, see Table 1 for the abbreviations) with periodic boundary conditions35
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(denoted PH, for Periodic Homogenization) and a mean-field homogenization model, i.e. the so-called
“β-models” after Cailletaud (1992); Pilvin (1996). These models essentially differ by the microstructural
information they are based on for the estimation of effective behavior. Here, FEM PH assumes a periodic
microstructure adapted for polycrystalline aggregates and for hexagonal fiber assemblies (present at different
scales in Fig. 1). On the other hand, β-models will be used to describe the elasto-plastic behavior of40

polycrystals made of Cu or Nb grains, but also for the estimation of a random mixture of Cu and Nb phases.
The results provided by FEM are also regarded as benchmarks to identify parameters of the β-model.

FEM Finite Element Method PH Periodic Homogenization
SSC Standard Self-Consistent scheme RVE Representative Volume Element

OFHC Cu Oxygen-Free High Conductivity Cu CRSS Critical Resolved Shear Stress
LT Longitudinal Tensile test TT Transverse Tensile test
TS Transverse Shear test LS Longitudinal Shear test

Table 1: The abbreviations used in this work.

Taking into account dislocation movements for strain hardening of a single crystal, dislocation-based
constitutive formulations have been proposed in the literature, e.g. Asaro (1983); Tabourot et al. (1997);
Hoc and Forest (2001); Kubin et al. (2008); Devincre et al. (2008); Groh et al. (2009) for BCC (Body-45

Centered Cubic) and FCC (Face-Centered Cubic) crystals. In these models, all parameters have a physical
meaning which can be determined by experiments or other theoretical analysis, such as dislocation dynamics
(Tabourot et al., 1997; Groh et al., 2009). The Méric-Cailletaud’s model is more phenomenological in nature
and uses an original combination of kinematic and isotropic hardening for each slip system (Méric et al., 1991;
Besson et al., 2009). This model was used for the crystal plastic predictions of metallic alloys, particularly50

for FCC Cu polycrystals (Méric et al., 1994; Šǐska et al., 2006; Musienko et al., 2007; Gérard, 2008; Šǐska
et al., 2009). Here, the Méric-Cailletaud model will be used to describe the visco-plastic constitutive law for
single Cu crystals.

Full-field methods (e.g. based on FEM) applied to a Representative Volume Element (RVE) can integrate
the detailed experimental microstructure and provide the complex stress/strain fields inside the different55

phases. The elasto-(visco-)plastic effective behavior of FCC and BCC polycrystalline aggregates can be
studied by FEM in many aspects, as shown in Barbe et al. (2001a,b); Fritzen and Böhlke (2011). In addition,
in order to save computational time, another full-field method, using Fast Fourier Transform (FFT) to
solve the mechanical equilibrium, has been developed for both linear and nonlinear polycrystalline behavior
(Moulinec and Suquet, 1995; Suquet et al., 2012; Lebensohn et al., 2012). Furthermore, for heterogeneous60

materials with a random or complex microstructure, e.g. the hexagonal fiber assembly, the elasto-(visco-
)plastic scale transition is a challenge for homogenization models. In this regard, the following attempts are
worth mentioning: the above-mentioned full-field FEM (Williams and Pindera, 1997), macroscopic model
with phenomenological parameters identified from field measurements (Haddadi et al., 2006), FE2 multiscale
approach (Feyel and Chaboche, 2000; Geers et al., 2010), and TFA (Transformation Field Analysis)/NTFA65

(Nonuniform Transformation Field Analysis) (Michel and Suquet, 2003, 2004, 2016; Franciosi and Berbenni,
2008; Fritzen and Böhlke, 2011). The latter method represents a transition from full field to mean field
models.

The mean-field method relying on homogenization theory is well adapted to estimate the mechanical
behavior of polycrystals. Unlike full-field approaches, the mean-field method is based on a statistical de-70

scription of the microstructure of polycrystalline aggregates leading to reduced computational time. These
methods were initially developed for heterogeneous linear thermal-elasticity, such as the Standard Self-
Consistent scheme (denoted SSC), see the original references quoted in François et al. (1998); Qu and
Cherkaoui (2006); Nemat-Nasser and Hori (2013). Later on, they have been extended to (i) visco-plastic,
(ii) elasto-plastic and (iii) elasto-visco-plastic nonlinear properties (Ponte-Castañeda and Suquet, 1998). For75

nonlinear homogenization, the main difficulty relies on a carefully chosen linearization for the material prop-
erties. Use is made of a “linear comparison material” which exhibits a thermo-elastic like behavior defined
at each strain value or increment. For (i) visco-plastic materials, one can perform a secant linearization
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(Hutchinson, 1976), a tangent one (Molinari et al., 1987; Lebensohn and Tomé, 1994) and an affine one
(Masson and Zaoui, 1999). These approaches have been improved by using stress/strain heterogeneities80

inside the phases leading to so-called second-order moments (Castañeda, 1991, 2002). For (ii) elasto-plastic
materials, Kröner (1978) proposed an incremental approach in which the interaction between the grain and
the effective medium is purely elastic. This leads to an overestimation of the effective stress (Berveiller and
Zaoui, 1978; Masson and Zaoui, 1999). In order to (at least partly) figure out this issue, many later works,
e.g. Berveiller and Zaoui (1978); Turner and Tomé (1994); Masson et al. (2000); Neil et al. (2010); Doghri85

et al. (2011); Wu et al. (2013); Zecevic and Knezevic (2015) have considered an elasto-plastic interaction law
instead of an elastic one. Based on the Berveiller and Zaoui (1978) model for isotropic nonlinear behavior
of equiaxed polycrystals, the β-models were proposed for anisotropic behavior of multi-axial polycrystals
(Cailletaud, 1992; Forest and Pilvin, 1996; Sai et al., 2006; Martin et al., 2014; Cailletaud and Coudon,
2016; Coudon, 2017; Coudon et al., 2018). For (iii) elasto-visco-plastic behavior, one specific difficulty is90

the “long term memory effect” leading to a time delay of the interphase mechanical interactions. Different
solutions have also been proposed, such as Masson and Zaoui (1999); Paquin et al. (1999, 2001); Brenner
et al. (2002); Vu et al. (2012).

Despite a wealth of literature works on elasto-(visco-)plasticity of crystals, we have found that the
following three points are still missing:95

(1) A systematic analysis of the anisotropic behavior for Cu/Nb polycrystals by elasto-plastic homogeniza-
tion models, especially for the specific crystallographic/morphological textures encountered in Cu-Nb
wires;

(2) An iterative scale transition homogenization approach accounting for elasto-plasticity adapted for the
recent Cu-Nb wires with a complex architecture (i.e. the multi-scaled hexagonal fiber assemblies), and100

including the effect of initial residual stresses;
(3) An interpretation of recent experimental mechanical test data of Cu-Nb wires, particularly the in-situ

neutron diffraction data in Medy (2016). It should be noted that only tensile tests can be performed
in-situ with such thin wires.

Therefore, the objectives of the present work are threefold:105

(1) Provide a homogenization model for individual Cu and Nb polycrystals present in the composite wires
taking into account the crystallographic and morphological textures;

(2) Provide a multi-scale homogenization procedure to model the architectured and nanostructured Cu-Nb
composite wires, accounting for initial residual stresses and grain size effects;

(3) Provide a quantitative understanding of the load dependency of crystal lattice evolution during neutron110

diffraction uniaxial loading test for Cu-Nb wires.

Accordingly, the outline of the article is as follows. The architecture/microstructure of Cu-Nb wires and
the induced mechanical properties are described in Section 2. In order to reproduce the effective elasto-
plastic behavior of this material, two multi-scale methods, i.e. full-field periodic models and the β-models
are presented in Section 3. In Section 4, the elasto-plastic Cu polycrystals are isolated and homogenized.115

Then in Section 5, several scale transitions of architectured Cu-Nb composites are performed to determine
the effective elasto-plastic behavior of Cu-Nb wires up to macro-scale. The uncertainties of scale transition
are discussed and the best-suited modeling strategy is selected. Finally, in Section 6, the model results
are validated by comparison with macroscopic mechanical data from tensile tests and lattice strains from
neutron diffraction.120

Throughout this work, the following notation is used: x for scalars, x for vectors, x∼ for 2nd-order tensors,
x∼∼

for 4th-order tensors, · for single contraction, : for double contraction, ⊗ for tensor product, x̃ for effective

(or homogenized) property and x̄ = 〈x〉 for volume average.

2. Material description

2.1. Fabrication process125

Cu-Nb nano-composite wires are fabricated via a severe plastic deformation process, based on ADB
(series of hot extrusion, cold drawing and bundling stages) according to (Dupouy et al., 1996; Thilly, 2000;
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Vidal, 2006; Dubois, 2010; Medy, 2016):

• A Nb wire is initially inserted into a Cu tube. The used Cu is Oxygen-Free High Conductivity (OFHC).

• The structure is extruded and drawn, then cut into 85 smaller pieces with hexagonal cross section.130

• These pieces are then bundled and inserted into a new Cu tube.

• The new composite structure is again extruded and drawn. And so on.

In the present work, ADB is repeated twice, leading to copper based architectured and nanostructured
composite wires which are composed of a multi-scale Cu matrix embedding 852 Nb nanofibers (so-called
N=852 type of “Cu-Nb Filamentary” wires, as illustrated in Fig. 1): Nb fibers are separated by the finest135

Cu-0 copper channels; groups of 85 Nb/Cu-0 elementary long fibers are then separated by Cu-1 copper
channels; the group of 852 elementary patterns is finally embedded in an external Cu-2 copper jacket. It is
noted that, unlike Cu, Nb fibers are introduced only at the very first fabrication stage. Therefore, Nb fibers
are all deformed together during the iterative ADB process, and should exhibit the same microstructure with
similar characteristic sizes. In contrast, copper is introduced at each stage so that several types of copper140

microstructures are present in the material. The Cu-0 regions originate from the beginning of the process,
while the Cu- and Cu-2 are introduced successively during the two steps of ADB; different microstructures
are thus expected for the different Cu-i regions (i = 0, 1, and 2).

Component Nb Cu-0 Cu-1 Cu-2
Volume fraction f 44.7% 15.2% 17.5% 22.6%

Channel width δ
wire diameter: 2.10 mm 13.74 µm 2.19 µm 21.97 µm 124.48 µm
wire diameter: 0.29 mm 1.94 µm 310 nm 3.09 µm 17.65 µm

Fiber 〈111〉 - 70% 90% 81%
textures 〈100〉 - 30% 10% 19%

〈110〉 100% - - -

Table 2: Volume fraction f , channel width δ, crystallographic textures and yield stresses σy of individual component for Cu
and Nb polycrystals in Cu-Nb wires, obtained experimentally in Medy (2016). The two wires with different diameters are
assumed to exhibit similar crystallographic textures. Yield stresses σy are > 2 GPa for Nb, ∼ 350 MPa for Cu-1 and Cu-2, and
500MPa for Cu-0 with channel width δ = 310 nm.

In this work, two Cu-Nb Filamentary wires with a final diameter 1 of 0.29 mm and 2.10 mm are used for
macroscopic tensile testing and in-situ neutron diffraction experiments. These wires are obtained from initial145

specimens with a diameter of 4.50 mm by supplementary cold-drawings (Medy, 2016). The volume fractions
f of each component (i.e. Nb, Cu-0, Cu-1 and Cu-2) are not altered by hot-extrusion nor cold-drawing and
they can be determined from the initial dimensions of Nb cylinder and Cu jacket. The theoretical value
of channel width, δ, can be estimated assuming a homogeneous deformation of the structure during the
material processing (Vidal, 2006), as indicated in Table 2 for the two diameters.150

2.2. Crystallographic and morphological textures

The study of the elastic behavior of the wires performed by (Gu et al., 2017a) shows that the effective
wire behavior critically depends on the grain morphology and texture. In particular, accounting for the
crystallographic textures is of the utmost importance and will be part of the proposed multiscale modeling
of elasto-plasticity in this work. The crystallographic texture of the Cu-Nb Filamentary wire of interest at155

a diameter of 4.50 mm has been investigated by EBSD at various scales by Medy (2016). Fig. 2 illustrates
the EBSD orientation map of a the cross section perpendicular to the wire axis x1 at the effective scale H1.

1Following (Thilly et al., 2002; Medy, 2016), all dimensions are given in the x2-x3 cross section, i.e. perpendicular to the
wire axis x1, see Fig. 1 for the coordinate system.
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Figure 2: EBSD map in the x2 - x3 transverse plane showing Cu and Nb grain orientations (Medy, 2016). Inverse pole figure
(x1 axis) coloring according to the cubic crystal system. Nb appears in green due to the strong 〈110〉 fiber texture and Cu in
red/blue. The specimen diameter is 4.50 mm.

Figure 3: EBSD map in a plane parallel to x1 showing Cu and Nb grain orientations (Medy, 2016). Inverse pole figure (x1
axis) coloring according to the cubic crystal system. The specimen diameter is 4.50 mm. Highly elongated grains along x1 are
observed for all components (e.g. Cu-1 in this figure).
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The Cu grains exhibit a strong 〈111〉 fiber texture with a remnant 〈100〉 fiber, while a single 〈110〉 texture
is observed for Nb. Due to extrusions and drawings along the wire direction in the material processing,
x1 is the symmetry axis of theses fibers. The crystallographic textures of each component are given in160

Table 2. The associated texture spread (i.e. FWHM, for Full Width at Half Maximum) is estimated to be
10.0◦ ± 3.0◦, based on EBSD data. The specimens with smaller diameters 2.10 and 0.29 mm studied in this
work are assumed to display very similar crystallographic texture.

In the following, ` is defined as the average grain length along the longitudinal wire axis x1 and d as the
average grain diameter in the transverse x2-x3 cross section. As illustrated in Fig. 3 obtained by EBSD165

(Medy, 2016), the morphological texture exhibits highly elongated grains along x1 because of iterative severe
plastic extrusion and drawing, i.e. `� d for both Cu and Nb components.

2.3. Scale conventions

For multiscale modeling of the effective elasto-plastic behavior of these Cu-Nb wires, the following scale
conventions will be used (see Figure 1):170

• Scale H0. Homogenization at the highest magnification scale, looking directly at each individual
polycrystalline Cu or Nb agregate, is labeled as H0 (Homogenization 0). In other words, the effective
stress-strain denoted (σ∼-ε∼)H0 at scale H0 of pure Cu (or pure Nb) polycrystalline agregates will be
obtained from the homogenization models.

• Scale H1. Homogenization at the scale of a bundle unit containing 851 elementary Nb/Cu-0 long fibers175

is labeled as H1 (Homogenization 1).

• Scale H2. Iterative homogenization at the scale where the effective Cu-Nb composite H1 zones are
embedded in the Cu-1 matrix is labeled as H2 (Homogenization 2), i.e. H2 provides the effective
behavior of an assembly of 852 elementary patterns. The effective behavior is labeled as (σ∼-ε∼)Hi at
scales Hi of the bundle unit of 85i (i=1, 2) elementary long fibers.180

• Scale S2. The macrocospic scale S2 is defined here as a single cylinder-shaped Structure with two
layers: effective Cu-Nb composite H2 core zone surrounded by the external Cu-2 jacket. The structural
problem S2 will be solved by FEM to compute the macroscopic behavior (σ∼-ε∼)S2. Then, this effective
behavior will be compared with available experimental data.

In addition, the effective elastic stiffness tensors are noted as (C̃∼∼
)Hi and (C̃∼∼

)S2 at scales Hi (i=0,1,2) and185

S2 respectively as in (Gu et al., 2017a). Finally, due to the combination of the axisymmetric morphological
and crystallographic textures of Cu and Nb agregates with the successive quasi-hexagonal arrangements of
fibers or bundles, the effective behavior is expected to exhibit transverse isotropy with respect to x1 at all
scales H0 to S2.

2.4. Grain size dependent yield stress190

Different types of copper matrix channels are present (Thilly et al., 2009), due to the multi-scale mi-
crostructures: (1) Cu channels with δ larger than a few micrometers (i.e. the so-called “large” Cu channels)
which are composed of grains with a transverse size d ∼ 1µm together with remaining smaller grains
with d=200-400 nm (a typical grain size in cold-worked Cu); (2) The “fine” Cu-0 channels lie in the sub-
micrometer range, with only a few grains located between the Cu/Nb interfaces: in this case, the grain195

width d varies from δ/3 to δ.
According to Vidal et al. (2007); Thilly et al. (2009), the yield stress σy of the highly cold worked

large Cu channels can be estimated as 350 MPa. Furthermore, it was observed unambiguously that plastic
deformation proceeds in the fine Cu-0 channels by emission of individual dislocation loops at one Cu-Nb
interface, then gliding in the Cu-0 grain interior and absorption in the neighbouring Cu-Nb interface (Thilly200

et al., 2001). As a result, edge segments are absorbed in the Cu/Nb interfaces and screw segments bow
out between two interfaces, eventually propagating by further bowing and deposition of dislocation debris
at interfaces. Such a “single dislocation” regime is usually related to the Orowan-type behavior where

7



the enhanced yield stress σy can be related to the channel width δ as: σy = σ0
y + αµ(b/δ)ln(δ/b) where

µ=42.5 GPa, bCu=0.256 nm and α=0.6 denotes respectively shear modulus, norm of Burgers vector and205

a material constant depending on the dislocation character together with the Taylor factor (Thilly et al.,
2009). In addition, σ0

y is 350 MPa corresponding to the yield stress of “coarse grain” in large Cu channels.
By using this grain size effect formula, the finest Cu-0 channels with δ=310 nm are expected to display a
higher σy up to 500 MPa. In contrast, Cu-0 channels with δ=2.19µm still display a σy of 350 MPa, when
wire diameter takes 2.10 mm.210

The bulk specimens of cold worked polycrystalline Nb display a σy ∼ 1.4 GPa (Dupouy et al., 1995).
On the other hand, Nb grain size dNb is comparable with the fiber diameter (Thilly et al., 2009). Due
to size effects, Dubois et al. (2012) argued that σy of Nb fibers is much higher (>2 GPa) than σy of Cu
channels. Several ex-situ/in-situ tensile tests of Cu-Nb wires were performed along the wire direction x1
up to macroscopic material failure, and plastic strain has not been observed in the Nb fibers (Vidal, 2006;215

Dubois, 2010). Therefore, Nb is assumed to remain elastic for the small-strain mechanical tests considered
in this work. All yield stress values σy of the various components considered in this work are summarized
in the legend of Table 2.

2.5. Initial residual stresses

Due to the material processing, residual stresses, denoted by σ∼res
, are initially introduced in composite220

Cu-Nb wires, as observed by X-ray diffraction (Vidal, 2006). The longitudinal initial residual stresses (σres)11
along the wire axis x1 have been determined in a Cu-Nb wire containing N=554 elementary Cu/Nb fibers
(specimen diameter 1.49 mm): Axial compression ∼ -100 MPa for the large Cu channels (δ > 1µm) and
axial tension ∼+250 MPa in the Nb phase. However, σ∼res

could not be determined accurately, and have not
been reported for the Cu-Nb Filamentary wires N=852 studied in this work. The identification of σ∼res

will225

be discussed later in Section 6.2.

3. Hierarchical homogenization strategy

The homogenization strategy used in this work, including the corresponding scales, models used, results
obtained and identification of initial residual stresses, is illustrated in Fig. 4.

3.1. Constitutive equations for the single crystal230

The Cu-Nb wires are made of FCC Cu and BCC Nb grains. Nb exhibits a high yield stress and therefore
only the elastic behavior will be considered, i.e. no plastic strain assumed (Section 2.4). This section
presents the elasto-visco-plastic single crystal model used for the Cu components. The Méric-Cailletaud
model has been developed in the framework of crystal plasticity theory following (Méric et al., 1991) and
used for several metallic alloys. It is presented here in its small perturbation version, which uses an additive235

decomposition of the total strain rate into elastic and viscoplastic parts.
The resolved shear stress τs acting on a particular slip system (s) is given by Schmid’s law:

τs = σ∼
(r) : m∼

s (1)

where σ∼
(r) is the stress tensor in a crystal phase (r) and m∼

s is the orientation tensor attributed to the slip
system (s):

m∼
s =

1

2
(l s ⊗ n s + n s ⊗ l s) (2)

with unit vectors n s and l s being the “slip plane” normal and the “slip direction”, respectively. Here, 12
octahedral systems are considered for FCC Cu. The resolved shear stress τs is related to the corresponding
viscoplastic shear rate γ̇s via a power law expression:

γ̇s =

{
|τs −Xs| −Rs

K

}n

sign(τs −Xs), with {a} = max(a, 0) . (3)
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Cu or Nb grain Single crystal plasticity + Textures

Pure polycrystalline Cu/Nb componentsScale H0 (σ∼-ε∼)H0-Cu/Nb

FEM for polycrystals β0-model

Identification ofD∼∼

851 elementary patternsScale H1 (σ∼-ε∼)H1

PH1-β=FEM+β0 PH1 Mosaic β1-model

852 elementary patternsScale H2 (σ∼-ε∼)H2

PH2-β=FEM+β1+β0 β2-model

Cylinder-shaped structureScale S2 (σ∼-ε∼)S2

FEM S2=FEM+β2+β0

Comparison with the data of
macroscopic tensile test

Identification of initial
residual stresses σ∼ res

Comparison with the data of
in-situ neutron diffraction

Figure 4: Overview chart of the iterative scale transition steps and experimental comparison. The considered scales and scale
transition models are mentioned, together with the obtained effective behavior. The identification of initial residual stresses is
also shown. The same parameter combination of Dij is used for all the βi-model (i=0,1,2), once identified at scale H0.
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For each slip system, internal variables are introduced to describe the hardening of the material: isotropic
hardening variables Rs and kinematic hardening variables Xs. In addition, n and K are the parameters
controlling viscosity. The non-linear evolution rule for isotropic hardening involves a 12×12 interaction
matrix h which includes self-hardening and latent hardening:

Rs = R0 +Q
∑
u

hsu[1− exp(−bvu)], with v̇u = |γ̇u| , (4)

where h contains six independent parameters: one diagonal term (noted as h1) for the self-hardening and
five other non-diagonal terms (i.e. h2, h3, h4, h5 and h6) for the latent hardening. Also, R0 denotes the
initial critical resolved shear stress (CRSS). The following non-linear kinematic hardening is also adopted:

Xs = Cαs, with α̇s = γ̇s −D|γ̇s|αs . (5)

Here, before loading, Xs=0, thus αs is initialized as 0. Note that Xs tends to the saturated value C/D
for large values of slip. The material parameters Q, b, C, D in the above equations must be identified for
isotropic and kinematic hardening. The parameter identification for the single crystal model of Cu will be
discussed in Section 4.1. Finally, plastic deformation ε∼

(r)
p

in a crystal phase (r) is the result of slip processes
on all slip systems:

ε̇∼
(r)
p

=

12∑
s=1

γ̇sm∼
s . (6)

3.2. Full-field periodic models

In the present work, a full-field FEM PH is proposed to compute the effective elasto-plastic behavior of
Cu-Nb wires at the various scales. An elementary volume V made of heterogeneous materials is considered
for polycrystalline aggregates (scale H0) in Section 3.2.1 and for hexagonal fiber assemblies (scales H1 and
H2) in Section 3.2.2. Periodic boundary conditions are prescribed at the boundary ∂V . The displacement
field u in V , then takes the following form:

u (x ) = ε∼·x + v (x ) ∀x ∈ V (7)

where the fluctuation v is periodic, i.e. it takes the same values at two homologous points on opposite faces
of V . Furthermore, the traction vector σ∼ ·n takes opposite values at two homologous points on ∂V (n is the
outwards normal vector to ∂V ). The finite element code used in this work (Z–set package, 2013) allows to240

prescribe the averaged strain components of ε∼, or conjugate mean stress components (Besson et al., 2009).

3.2.1. Full-field model for polycrystalline aggregates

As illustrated in Fig. 3, Cu grains are highly elongated along x1 due to material processing, i.e. `/d→∞.
In order to take this morphological texture into account, a slice-shaped parallelepipedic tessellation (finite
element mesh using c3d20r elements, i.e. quadratic brick element with 20 nodes and reduced integration245

with 8 Gauss points) was proposed in Gu et al. (2017a), as shown in Fig. 5. This tessellation is composed of
15×15(=225) regularly arranged square grains, and it is subjected to periodic boundary conditions (Eq. (7)),
thus taking advantage of a smaller RVE size than the one with homogeneous boundary conditions according
to (Kanit et al., 2003). Furthermore, these 225 grain orientations obey the Orientation Distribution Function
described in Section 2.2, and the discrete orientations are spatially randomly distributed among the grains250

of the parallelepipedic tessellation. Fig. 5 indicates the 〈111〉 and 〈100〉 fiber texture distributions, which
are close to the EBSD orientation map of Fig. 2. The mesh density has also been selected as a compromise
between numerical accuracy and computational time.
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Figure 5: FE meshes for columnar polycrystals: (a) The overall (mean) shape of a single grain elongated along direction x1
with dimensions `× d× d; (b) Parallelepipedic tessellation of 225 grains (= 15× 15) with the aspect ratio `/d→∞ (periodic
boundary conditions, denoted #, are considered); (c) Orientation distribution in the tessellation mesh (b), blue stands for
〈111〉 fiber texture and red for 〈100〉; (d) {100} Pole Figure and x1 axis Inverse Pole Figure of Cu-0. Grain orientations are
generated by the software LaboTex based on experimental EBSD textures.

3.2.2. Full-field models for hexagonal fiber assemblies

The effective elasto-plastic behavior will be predicted for the hexagonal fiber assemblies of Cu-Nb com-255

posites at scales H1 and H2. As the specimens exhibit several characteristic scales, one of the modelling
challenge is to account for the nonlinear behavior in the different scale transitions. This scale transition can
be performed for elasto-(visco-)plastic heterogeneous materials with a complex and random microstructure
in various ways, as mentioned Section 1. In this regard, macroscopic models, e.g. Haddadi et al. (2006)
can provide an accurate homogenized behavior, however phenomenological parameter calibrations need to260

be repeated when the information at scale H0 changes. The FE2 approach, e.g. (Feyel and Chaboche, 2000;
Geers et al., 2010), required long CPU time despite applying parallel computational techniques. TFA/NTFA
are promising models, e.g. (Michel and Suquet, 2016), and represent an alternative to the Finite Element
method used in this work.

In the present work, in order to account for the elasto-(visco-)plastic behavior of hexagonal fiber assem-265

blies of H1/H2 with a reasonable CPU time, a combination of the full-field FEM PH and the mean-field
β-models is proposed, labeled as “PHi-β model” (i=1,2 for scales H1 and H2 respectively). The section
views of the unit cell at H1 and H2, with their meshes, are respectively indicated in Fig. 6(a) and Fig.
6(b). Inspired from the parallelepipedic tessellation of FEM for polycrystals, another “PH1 Mosaic” model
is introduced, as shown in Fig. 6(c). These unit cells are subjected to periodic boundary conditions. They270

are composed of two equivalent long fibers (1+4×1/4 fibers) which are arranged in a hexagonal lattice, and
they represent the (idealized) multi-scaled experimental microstructure of Cu-Nb wires. They contain all
information about the morphological RVE at the effective scales H1 and H2.

Detailed descriptions of the above-mentioned models are as follows:

• In the PH1-β model, Nb fibers are endowed with elastic properties with the effective stiffness tensor275

(denoted (C̃∼∼
)H0-Nb) determined by the SSC scheme applied to pure Nb polycrystalline agregate. These

properties are taken from (Gu et al., 2017a). On the other hand, the mean-field β0-model is used
to estimate the effective elasto-plastic behavior of the pure polycrystalline Cu-0 agregate with local
nonlinear constitutive behavior described above, as illustrated in the upper insets of Fig. 6.
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(c) PH1 Mosaic (d) Orientation distribution in (c)

Figure 6: Multiscale modeling of effective elasto-plastic behavior of Cu-Nb wires (Orange stands for Cu, gray for Nb, light gray
for Cu-Nb composite): (a) Using the PH1-β at scale H1, a periodic distribution of Nb fibers is assumed (# denotes periodic
boundary conditions). The polycrystalline Nb and Cu-0 agregates are described by an effective elastic stiffness obtained by the
SSC scheme and an elasto-plastic behavior provided by the β0-model, respectively (see the inset). (b) Using the PH2-β at scale
H2, the behavior of the Cu-Nb composite H1 zone is provided by the β1-model, while that of the polycrystalline Cu-1 agregate
is given by a β0-model accounting for the microstructure of Cu-1. (c) Using the PH1 Mosaic at scale H1, polycrystalline
Cu-0 surrounding the elastic Nb is described by a tessellation of polycrystalline aggregates. (d) Orientation distribution in the
tessellation of (c), blue stands for the 〈111〉 fiber texture and red for 〈100〉.
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• Similarly, for the PH2-β model at scale H2, the behavior of the H1 zone and of the Cu-1 surrounding280

matrix are provided to the β1-model (random mix of Cu-0 and Nb grains) and β0-model (agregate of
Cu-1 grains) respectively, as illustrated in Fig. 6(b). The β-models will be presented in Section 3.3
and their reliability will be demonstrated in Sections 4 and 5.

• The PH1 Mosaic model at H1 is composed of elastic Nb fibers and elasto-plastic Cu-0 channels. In
these Cu-0 channels, individual grains are considered by a heterogeneous tessellation of polycrystalline285

aggregates, instead of a homogeneous medium used in the PH1-β approach. Based on experimental
observations as in Fig. 2, the transverse size d of Cu-0 grains varies from δ/3 to δ where δ denotes
channel width of Cu. Here, d=δ/2 is chosen to construct the mesh. The experimental 〈111〉 and
〈100〉 fibers textures are taken into account. Therefore, the tessellation of polycrystalline Cu-0 is able
to account for the accurate information of crystallographic/morphological textures. In this work, we290

regard the responses of the PH1 Mosaic model as benchmarks at scale H1.

Note that FEM PH models describe an infinite periodic honeycomb microstructure. However, the real
architecture of Cu-Nb wires at all scales contains only a finite number (i.e. 85) of long fibers. Simulations
of a larger hexagonal structure without periodic boundary conditions have been performed to check that
the hypothetical periodicity does not significantly affect the results. Furthermore, the mesh density for the295

models at H1/H2 will receive further attention in Section 5.2, due to strain localization phenomena occurring
in the Cu matrix. Finally, it is noted that the calculations (including all the full-field approaches in this
work) require a 2D analysis with generalized plane strain conditions in order to allow for homogeneous strain
in the third direction and out of plane shearing. For that purpose, a 3D mesh with one single element in
the thickness is used, together with suitable boundary conditions to keep flat upper and lower planes.300

3.3. Mean-field β-model

The full-field PH1-β model for hexagonal fiber assemblies at scale H1 requires a local constitutive law to
describe the elasto-plastic behavior of polycrystalline Cu-0 matrix (similarly for PH2-β). In this regard, the
mean-field method is used to estimate the effective behavior of polycrystalline materials at H0 and the found
model is implemented in FEM as a polycrystalline constitutive law at H1. The mean-field approaches are305

often advocated to be CPU time saving models for polycrystalline aggregates, compared with FEM (Prakash
and Lebensohn, 2009). Among a wealth of literature references for the mean-field schemes mentioned in
Section 1, the β-models (Cailletaud and Coudon, 2016; Coudon et al., 2018) are chosen in the present
work, due to (1) its higher computational efficiency compared to other semi-analytical schemes, e.g. Turner
and Tomé (1994) and (2) its suitability for the anisotropic behavior of multi-axial polycrystals. (1) is310

particularly beneficial for the iterative scale transition processes, as the PHi-β (i=1,2) like models consume
a lot of computational resources (Geers et al., 2010). Concerning (2), this model is suited for both Cu and
Nb grains exhibiting highly elongated grains (i.e. `� d).

In this work, the β-models are categorized into two types, accounting for the various scales (see appendix
AppendixA for the detailed formulation of the β-model):315

• β0-model. At scale H0, β-model can be used to describe the elasto-plastic behavior of polycrystalline
agregates made of pure Cu grains. In this work, the β0-model takes into account three different Cu
components, labeled “β0-model for H0-(Cu-i) (i=0,1,2)”.

• βi-model (i=1,2). The β1-model constructs a fictitious material in which Cu and Nb grains are ran-
domly mixed together, with the volume fractions, textures, grain size dependent yield stress σy and320

initial residual stresses σ∼res
at H1 accounted for, but without considering the periodic architecture. In

this way, the β1-model predicts the elasto-plastic behavior at scale H1. Similarly, the β2-model takes
into account the microstructural information at H2, however without considering anymore the specific
architecture (i.e. hexagonal fiber assemblies) of Cu-Nb wires. The predictive capability and computa-
tional efficiency of the proposed βi-models (i=1,2) will be discussed in Section 5. The proposition of325

such a model is based on findings of Gu et al. (2017a) in which it has been shown that the mean-field
SSC scheme reliably estimates the effective elastic behavior of Cu-Nb wires not only at scale H0, but
also at scales H1/H2 assuming a sole random mixture of Cu/Nb grains.
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Hereafter, a mechanical phase (r) denotes the set of all grains in the microstructure that exhibit the same
crystal orientation with a given precision; those grains have however different shapes and environment. The
scale transition interaction equation of β-models is the following (see AppendixA for the detailed derivation
and corresponding assumptions):

σ∼
(r) = B∼∼

(r) :
[
σ∼ +L∼∼

∗
C

:
(
β̃
∼
− β

∼

(r)
)]

+ σ∼
(r)
res

(8)

where B∼∼
(r) and σ∼

(r)
res

denote respectively the stress concentration tensor (estimated according to the elastic

SSC scheme) and the initial residual stress in phase (r). It provides the mean stress in each phase (r) as a330

function of the overall stress σ∼ and of the plastic accommodation variables β
∼

(r). The stress heterogeneity

from phase to phase results from the deviation of the β-variables β
∼

(r) from their effective value β̃
∼

(see

AppendixA). The accommodation tensor L∼∼
∗
C

is expressed as:

L∼∼
∗
C

= C̃∼∼
:
(
I∼∼
− S∼∼Esh

)
(9)

with I∼∼
the fourth order identity tensor and S∼∼Esh

the Eshelby tensor for spheroidal inclusions with ratio

`/d. Here, S∼∼Esh
depends on the effective stiffness tensor C̃∼∼

(instead of the elasto-plastic tensor L̃∼∼
as in Hill

proposition) and on the morphological texture `/d. In order to correct the errors caused by the assumption
of using only the elastic behavior for determining L∼∼

∗
C

, the variables β
∼

introduce a plastic accommodation

associated with plastic strain tensors ε∼
(r)
p

in each phase. The evolution equation for the β-variables reads:

β̇
∼

(r)
= ε̇∼

(r)
p
−D∼∼ : β

∼

(r)‖ε̇∼
(r)
p
‖ (10)

where ‖ε̇∼
(r)
p
‖ denotes the von Mises equivalent plastic strain rate. Analogous to ε∼

(r)
p

, β
∼

(r) variables are

initialized as 0∼ before loading. The evolution equation (10) is similar to a nonlinear kinematic hardening
rule (Besson et al., 2009). In this equation, D∼∼

denotes a fourth order phenomenological constant tensor to be

calibrated, in such a way that the β-model responses fit the stress-strain curve obtained by the benchmark
FEM (as indicated in the algorithm of Fig. 4). It means that the FEM unit cell simulations serve as
input data for the calibration of some parameters of the β-models. These models can therefore be seen as
reduced order models driven by explicit evolution equations, instead of integral differential equations very
often encountered in more classical homogenization methods. This model feature contributes to CPU time
saving, the price to pay being the calibration of the scale transition coefficients. In this work, the tensor D∼∼
is assumed to have constant values irrespective of the phase (r). It admits x1 as a symmetry axis and takes
the form:

D∼∼
=


D11 D12 D12

D12 D33 D23

D12 D23 D33

D44

D55

D55

 . (11)

which is similar to the form also used in (Sai et al., 2006; Martin et al., 2014) for columnar grain morphology.

In the material frame, assuming the deviatoric property of the accommodation variable, i.e. trace(β̇
∼

(r)
)=0,

the following additional condition is enforced according to Eq. (10) (Sai et al., 2006):

D11 = D33 +D23 −D12 . (12)

Therefore, there are five independent coefficients Dij to be determined, see Section 4.3 for the corresponding
identification strategy.335
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Finally, the definition of the overall variable β̃
∼

in Eq. (8) is derived from the homogenization condition

σ∼ = 〈σ∼(r)〉, which gives

β̃
∼

= 〈L∼∼
∗−1
C

: B∼∼
(r) : L∼∼

∗
C

: β
∼

(r)〉 . (13)

3.4. Statistical representative volume element
When a single realization over the elementary volume V (e.g. polycrystalline aggregates at H0) is used,

a relatively limited number of grain orientations and grain neighborhoods are accounted for. This leads
to a bias in the estimation of the effective properties, as explained in (Kanit et al., 2003). The RVE must
contain a sufficiently large number of heterogeneities (e.g., grains, inclusions, fibers etc.) for the macroscopic340

properties to be independent of the boundary conditions applied to this volume. Kanit et al. (2003) proposed
a statistical strategy to determine the RVE size for elastic moduli.

In this work, this approach is extended to elasto-plasticity by considering n realizations of the mi-
crostructure in a volume with given size. This volume size is then increased to investigate the asymptotic
elasto-plastic stress (or strain):

Z(t) =
1

n

n∑
i=1

Z̃i(t), DZ(t)2 =
1

n

n∑
i=1

[Z̃i(t)− Z(t)]2 (14)

where Z̃i(t) is an apparent elasto-plastic stress (or strain) obtained for one realization, and Z(t) is its mean
value over n realizations at a given time t during loading. The variance DZ(t)2 denotes the fluctuations of

Z̃i(t). The number of realizations n is chosen so that the obtained mean value Z(t) does not vary any longer
up to a given precision when n is increased. This precision (i.e. relative error εrela(t)) of the estimation of
the effective property Z(t) is related to the standard deviation DZ(t) and the number of realizations n by:

εrela(t) =
2DZ(t)
√
nZ(t)

. (15)

Conventionally, if at any time t during the loading path, εrela(t) ≤ 1.5%, we consider that the RVE size
is reached. The overall effective elasto-plastic response is then defined by the mean value over n realizations,
Z(t) and the 95% confidence interval is given by [Z(t)− 2DZ(t), Z(t) + 2DZ(t)].345

From the Orientation Distribution Function described in Section 2.2, four sets of 10000 discrete orienta-
tions (for Cu-0, Cu-1, Cu-2 and Nb) are created by LaboTex 2. They are used to generate the microstructures
for the full-field/mean-field scale transition models. At scale H0, for the FEM for polycrystalline aggregates,
20 realizations were performed and found to fulfill the statistical requirements for all the loading conditions
considered in this work. This corresponds to a total of 4500 (20×225) crystallographic orientations chosen350

randomly from the full data set. In addition, 95% confidence intervals for the average stress σ∼ (and average
strain ε∼) deduced from these realizations will be plotted hereafter by error bars. Note that strain intervals
will only be shown at the ultimate loading stage for the sake of clarity. At scale H1, the statistical RVE
still requires 20 realizations for the PH1 Mosaic model, i.e. 2400 (20 × 120) crystallographic orientations
of Cu-0. For the PH1-β model, as a compromise between precision and CPU time, 120 grain orientations355

are considered in a single realization for the β0-model which serves as the local constitutive behavior of
H0-(Cu-0). Here, 20 realizations are required for the PH1-β model, the same as in the PH1 Mosaic model.
At H2, 20 realizations are also performed for the PH2-β model in which the β1-model and β0-model take
into account 240 orientations (120 for Cu-0, 120 for Nb) and 120 orientations (for Cu-1) respectively. Fur-
thermore, the same number of orientations (RVE size) is used in the mean-field β-models at all scales as in360

the corresponding full-field models. It turns out that, in contrast to the full-field simulations, the results
of β-models display negligible scatter, probably due to the large number of grain orientations considered.
For example, at H0, the β0-model includes for 4500 orientations, the same as the total number of grains
considered in FEM for polycrystalline aggregates. The uncertainty related to statistical RVE size (i.e. the
error bars in the homogenized stress-strain curves) will be shown in Section 4 and Section 5 for the model365

responses at H0 and at H1/H2 respectively.

2Software for crystallographic textures - http://www.labosoft.com.pl/.
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4. Homogenization at scale H0

4.1. Parameter identification for the single crystal plasticity model

Elasticity
C11 (GPa) C12 (GPa) C44 (GPa)

Cu 167.2 120.7 75.7
Nb 245.6 138.7 29.3

Ẽ1 (GPa) ν̃12 K̃23 (GPa) µ̃12 (GPa) µ̃23 (GPa)

(C̃∼∼
)H0-Nb 95.9 0.408 185.7 39.5 37.0

Single crystal plasticity
Isotropic hardening Kinematic hardening Viscosity

Q (MPa) b R0 (MPa)
6.0 15.0 118.0 or 170.0

C (MPa) D K (MPa· s1/n) n
4500.0 600.0 2.0 15.0

h1 h2 h3 h4 h5 h6
1.0 4.4 4.75 4.75 4.75 5.0

D∼∼
in β-models (D11 = D33 +D23 −D12, other components are zero)

D11 D12 D23 D33 D44 D55

200 200 185 215 70 240

Table 3: Model parameters used in this work for elasticity, single crystal plasticity and the β-models. The notations and values
for the independent moduli of the transverse isotropic H0-Nb material are taken from Gu et al. (2017a). The same parameter
combination of Dij is chosen for all the β-models at all scales. The CRSS R0 is 118.0 MPa for Cu-1 and Cu-2 polycrystalline
agregates but rises to 170 MPa for Cu-0 due to size effects (δ=310 nm).
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Figure 7: Identification of phenomenological parameters for single crystal plasticity: FEM results are compared to experimental
data for the pure highly hardened OFHC Cu agregate.

This section is devoted to the homogenization at scale H0, i.e. to the estimation of effective behavior
of polycrystalline Cu and Nb agregates separately. Table 3 provides the cubic elastic constants C∼∼

(Voigt370
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convention) of Cu and Nb single crystals. Previously, Gu et al. (2017a) has already predicted the effective
elastic properties of Cu-Nb wires at various scales via SSC homogenization scheme, accounting for the
specific morphological/crystallographic textures. Theses model results were validated systematically by
both macroscopic tensile tests and in-situ diffraction data with a good agreement. For the polycrystalline
Nb at H0, its five effective elastic moduli in the transverse isotropic stiffness (C̃∼∼

)H0-Nb are reported in Table375

3, based on Gu et al. (2017a). These elastic properties are used as the local behavior of Nb fibers in PH1-β
and PH1 Mosaic models.

We now proceed to the estimation of the effective elasto-plastic behavior of Cu polycrystals. At first, the
model parameters for the single crystal plasticity will be identified, then these parameters will be used for Cu-
Nb composite wires. In this work, the experimental stress-strain curve of a pure highly hardened OFHC Cu380

wire is chosen as the reference copper behavior. These pure Cu wires were obtained by severe cold-drawing
at room temperature, the diameter of cylindrical sample was reduced from 15 mm to 0.29 mm. It should be
noticed that, at the end of fabrication steps, Cu-Nb wires experience a similar process, i.e. supplementary
cold-drawing. Thus, it is believed that the pure highly hardened OFHC Cu exhibits a mechanical behavior
similar to the Cu components in Cu-Nb wires.385

Both EBSD and tension experiments for the pure Cu wires were carried out at Centre des Matériaux
Mines ParisTech. It was found that the pure Cu wires exhibit a 〈111〉-〈100〉 (50% for each) double fiber tex-
ture and elongated grain shape with respect to x1 axis, which is similar to the crystallographic/morphological
textures of Cu components in Cu-Nb wires. Monotonic tensile tests along x1 were performed with a strain
rate ε̇ ≈ 5×10−5 s−1 at 293 K. In an effort to determine the total specimen strain with a high accuracy390

during the tensile test on the wire, the Digital Image Correlation (DIC) technique was used, see e.g. Pan
et al. (2009). Fig. 7 shows the experimental results of the tensile test. The data processing of 2D DIC
leads to an uncertainty < ±0.02% for the longitudinal strain. The stress values are computed from the
tensile force and the corresponding uncertainty is estimated as ±15 MPa due to stress relaxation during
image acquisition. Moreover, the macroscopic longitudinal Young’s modulus E1 and yield stress σy (with395

a conventional criterion of 0.02% plastic strain) along the wire direction x1 are found respectively to be
∼130 GPa and ∼350 MPa. Thus, the pure Cu wires display a similar yield stress compared with the Cu
components in Cu-Nb wires estimated in Section 2.4. Finally, the specimen breaks at an applied strain
∼1.2%.

Several authors have identified some parameters of the single crystal Méric-Cailletaud model for recrys-400

tallized OFHC copper, generally with grain size ∼ 100µm, in various situations: Cu bicrystals under cyclic
tension-compression with εmin,max=±0.1% and ±0.5% (Méric et al., 1994); Cu polycrystals under monotonic
tension with εmax up to 10% and under cyclic loading with εmin,max=±0.5% (Šǐska et al., 2006; Musienko
et al., 2007); Textured Cu polycrystals under cyclic loading with εmin,max=±1.0% (Gérard, 2008; Gérard
et al., 2013). In the present work, the values Q, b, C, D and hij (interaction matrix) found by Musienko405

et al. (2007) are chosen as initial estimation. In fact, the combination of parameters by Gérard (2008) leads
to similar results. In the case of quasi-static mechanical tests (strain rate ε̇ < 10−2 s−1) at 293 K, strain
rate sensitivity of OFHC Cu is negligible (Meyers et al., 1995; Lu et al., 2001). Viscosity parameters K
and n are assigned to 2.0 MPa· s1/n and 15.0 respectively. Recrystallized OFHC copper studied in Musienko
et al. (2007) exhibits a yield stress σy ∼10 MPa much smaller than the one estimated in our case (σy up to410

350 MPa). In this work, R0 is identified as 118.0 MPa by fitting the model responses of FE polycrystals to
the tensile test data, with a satisfactory match, see Fig. 7. As for Cu-0 (δ=310 nm), an even higher yield
stress of 500 MPa is estimated, due to the grain size effects. This requires a CRSS R0 of 170 MPa. All the
model parameters of single crystal plasticity are summarized in Table 3. Except for R0, Cu-0, Cu-1 and
Cu-2 in Cu-Nb wires will share the same parameter combination.415

4.2. Results of FEM for polycrystals
In this section, the simulation results obtained by FEM for Cu polycrystals are provided. They will be

served as references for the parameter identification of the β-model. Results are provided considering the
crystallographic texture of Cu-0 indicated in Table 2 and single crystal parameters indicated in Table 3 with
R0 = 118 MPa (i.e. σy=350 MPa corresponding to δ=2.19µm). Taking into account the expected transverse420

anisotropic behavior, the four following loading conditions of the RVE are successively considered:
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• ε11=2% for the Longitudinal Tensile test (denoted LT hereafter);

• ε22=2% or ε33=2% for the Transverse Tensile tests (TT);

• ε23=1.5% for the Transverse Shear test (TS);

• ε12=1.5% or ε31=1.5% for the Longitudinal Shear test (LS).425

Fig. 8 shows successively the volume average stress-strain curves at scale H0-(Cu-0) for the four loading
conditions. In TT loaded along x2 or x3, the model responses are similar. For a single microstructure
realization, the deviation εrela is not negligible (∼ 5%) due to the limited number of crystallographic orien-
tations considered. Therefore, 225 grains are not sufficient to constitute an accurate RVE. TT results are
thus determined by the average model responses along x2 and x3 directions. A similar procedure is used for430

LS tests. Furthermore, in order to investigate the heterogeneities of model response at H0-(Cu-0), Fig. 9
shows the average stress-strain of 〈100〉 and 〈111〉 fiber components separately (denoted (σ∼-ε∼)H0-(〈100〉Cu-0)

and (σ∼-ε∼)H0-(〈111〉Cu-0) respectively).
As shown in Fig. 8(a) and (b), an anisotropic response at H0-(Cu-0) is observed, the effective behavior

in LT displaying a stronger response than the one in TT. Yield stresses of LT and TT are about 355 MPa435

and 300 MPa respectively. Fig. 9(a) and (b) reveal that the 〈111〉 fiber exhibits higher stress levels than the
〈100〉 fiber in LT. Conversely, 〈100〉 fibers tend to be stronger than 〈111〉 ones in TT. Also, the anisotropic
effective Young’s moduli of polycrystals Cu and the ones of individual fiber texture components can be
found in Gu et al. (2017a). In LT, all the grains experience the same axial strain so that plastic activity
occurs in 〈100〉 oriented grains at a higher strain ε11 (also, at a higher applied stress σ11) than in 〈111〉440

ones, as illustrated in Fig. 9(a). On the other hand, the yield stress of 〈111〉 is higher than 〈100〉, displaying
about 420 MPa and 270 MPa respectively. This phenomenon will receive further attention for analyzing
experimental data in Section 6.4.

4.3. Parameter identification for the β-models

The previous FEM full-field results at H0-(Cu-0) for polycrystals now serve as references for the identi-445

fication of the mean-field β0-model. The parameters to be identified are limited to the components of the
phenomenological tensor D∼∼

appearing in Eq. (10). All the test responses LT, TT, TS and LS discussed in

the previous section are used for the identification process of the β0-model. It is found that the parameters
D11, D12, D23 and D33 can be calibrated from the LT and TT overall responses. Moreover, D44 and D55

control respectively the responses for TS and LS. Optimal values for D44 and D55 can be found, but the com-450

bination of D11, D12, D23 and D33 is not unique, despite additional constraints have been introduced with
Eq. (12). Here, a value D11 is chosen to have a similar magnitude than D55. All the non-zero components
in D∼∼

are reported in Table 3.

As illustrated in Fig. 8 and Fig. 9, it is remarkable that the FEM for polycrystals and the β0-model
responses at H0-(Cu-0) are in a general good agreement, not only for the effective behavior, but also for455

the average behavior of each individual fiber texture components. These results demonstrate that the fast
computing β0-model is an efficient homogenization tool for polycrystals at H0. However, an overestimation
of hardening by the β0-model is observed in Fig. 9 compared with the reference, especially for the 〈100〉
fiber, with differences up to ∼ 15%, in TT, TS and LS. Conversely, the deviation between the FEM and
the β0-model responses in LT is rather small, ∼ 5%. We have checked that different Dij combinations will460

not reduce this deviation, showing that the found set of parameters is a compromise with respect to the
quality of stress prediction for the various tests. The limitations of β-model must be related to simplicity
of the explicit scale transition rule Eq. (8). In particular, it is believed that the observed error is mainly
caused by the fact that the considered elastic interaction (as in Kröner approach) is not fully corrected by
the introduction of internal variables β. This feature is amplified by the high contrast between the stress465

responses of the individual fiber textures.
The β0-model is also used to describe the elasto-plastic behavior of Cu-1 and Cu-2 which have different

textures. Based on the values calibrated for Cu-0, the parameters D∼∼
can still be slightly modified for
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Figure 8: Effective elasto-plastic behavior of the polycrystalline Cu-0, i.e. at scale H0-(Cu-0), obtained by the FEM for
polycrystals and the β0-model. Various loading conditions are presented: (a) Longitudinal Tensile (LT) test, (b) Transverse
Tensile (TT) test, (c) Tranverse Shear (TS) test and (d) Longitudinal Shear (LS) test. See Section 4.2 for the conventions of
loading conditions.
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Figure 9: Effective behavior of the individual 〈111〉 and 〈100〉 fiber textures at scale H0-(Cu-0), obtained by the FEM for
polycrystals and the β0-model. Various loading conditions are considered: (a) LT, (b) TT, (c) TS and (d) LS tests. Blue
stands for the 〈111〉 fiber texture and red for 〈100〉.
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various Cu components. However, very limited improvement is found by using D∼∼
calibrated specially for

Cu-1 or Cu-2. Similarly, D∼∼
can also be slightly modified for the β1-model and β2-model, with again limited470

improvement. Thus, for the sake of simplicity, the same parameter combination Dij is chosen for all the
β-models at all scales.

5. Scale transitions up to H1 and H2 for architectured Cu-Nb composites

Iterative scale transition steps are now performed up to H1 and H2 scales for the Cu-Nb wires arranged
in multiscale hexagonal fiber assemblies. In Section 5.1, the results at scale H1 obtained by full-field PH1-β475

and PH1 Mosaic models and mean-field β1-model are provided. The comparison of model responses reveals
a good agreement, however differences between these models are still observed, up to ∼15% in some cases.
In Section 5.2, the main factors that contribute to these deviations are analyzed. In Section 5.3, based
on the models at scale H1, scale transition steps up to H2 accounting for elasto-plasticity are proposed
(i.e. PH2-β and β2-model). Finally, in Section 5.4, the error propagation within a hierarchical multiscale480

modeling approach is discussed. This leads to the selection of the best-suited modeling strategy for Cu-Nb
composite wires.

5.1. Results at scale H1

The mean-field β0-model has been demonstrated to be an efficient homogenization tool to describe
the effective elasto-plastic behavior of pure polycrystalline Cu, in Section 4.3. Now, we proceed to the485

homogenization of the assembly of 851 elementary long fibers, i.e. scale H1. The PH1-β approach takes the
β0-model as local constitutive law for the Cu-0 matrix in the FE computation. In addition, an alternative
PH1 Mosaic model is proposed which takes the copper matrix as a grain microstructure directly. Both full-
field PH1-β and PH1 Mosaic models account for a periodic Cu-Nb hexagonal fiber distribution. Besides, in
order to save CPU time and to perform the scale transitions from H1 to H2, the simple mean-field β1-model490

will be used assuming a microstructure consisting of the sole random mixture of Cu and Nb phases (Section
3.3).

In Fig. 10, the effective elasto-plastic behavior at H1 is predicted by these three homogenization ap-
proaches for the LT, TT, TS and LS tests. A good agreement is seen among the model responses at H1,
even though deviations are observed, e.g. the β1-model displays a flatter plastic behavior in TS and LS,495

compared with the other two full-field model responses. In order to investigate the origins of these discrep-
ancies and to study the heterogeneities of model responses among the phases, stress-strain curves of each
individual component at H1, i.e. Nb and Cu-0, are plotted in Fig. 11. It is remarkable that all these three
models provide generally close results for both the effective behavior at H1 and the “local” behavior of each
individual component. The deviations among models will receive further attention in Section 5.2.500

For the LT test, the effective longitudinal Young’s modulus is found to be ∼110 GPa (97 GPa for Nb
and 149 GPa for Cu-0). Once plastic activity occurs in Cu-0, the effective tangent modulus at H1 becomes
∼73 GPa. The tensile stress of Nb component is as large as ∼2 GPa when (ε11)H1-Nb=2% is imposed. In
addition for LT, all components are subjected to a uniform longitudinal strain, i.e. (ε11)H1 =(ε11)H1-Nb

=(ε11)H1-(Cu-0). This is because the microstructure is made of elongated Nb fibers/Cu-0 tubes, and these505

components are deformed in parallel along the longitudinal direction. On the other hand, in TT, TS and
LS, strains in Nb/Cu-0 components are not uniform due to the heterogeneous architecture at H1, and also
due to the property contrast between elastic Nb and elasto-plastic Cu-0. At the ultimate loading stage,
Cu-0 undergoes an average strain up to ∼5%; in contrast, average strain in Nb is as small as ∼1% for TT
and ∼0.5% for TS and LS.510

5.2. Strain localization phenomena for shear loading conditions

The largest discrepancy between the responses of the H1 of PH1 Mosaic, PH1-β and β1-models is found
for transverse shear loading (TS), as it can be seen from Fig. 10(c) and Fig. 11(c). Both full-field PH1
Mosaic and PH1-β models predict a softening behavior of Cu-0 at H1. In contrast, the β1-model predicts a
slowly hardening response. The reason for this softening behavior is the formation of intense shear bands in515
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Figure 10: Effective elasto-plastic behavior at scale H1, obtained by the PH1 Mosaic, PH1-β, and β1-model. Various loading
conditions are presented: (a) LT, (b) TT, (c) TS and (d) LS tests.
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Figure 11: Effective behavior of the individual Cu-0 and Nb components at scale H1, obtained by the PH1 Mosaic, PH1-β,
and β1-model approaches. Various loading conditions are presented: (a) LT, (b) TT, (c) TS and (d) LS tests.
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Figure 12: Shear strain ε23 distribution predicted by the (a) PH1-β and (b) PH1 Mosaic models at scale H1 with an overall
effective transverse shear (ε23)H1=1.5% imposed in the TS test.

the Cu-0 matrix, as shown by the distribution of shear strain component ε23 predicted by PH1-β and PH1
Mosaic in Fig. 12(a) and Fig. 12(b), respectively. The observed localization bands tend to avoid the stiff Nb
fibers. The highest strain localization (local shear strain up to ∼15% and ∼10% for PH1-β and PH1 Mosaic
respectively) occurs at the intersection points of localization bands and Nb fibers. According to Idiart et al.
(2006), this phenomenon is often observed in full-field model responses due to the localization of strain field520

into bands running through the composite, along certain preferred orientations determined by the loading
conditions. Moreover, note that the homogeneous β0-model in PH1-β leads to a stronger strain localization
and a softer plastic behavior, compared with the heterogeneous tessellation of PH1 Mosaic. This is due
to the fact that grain boundaries represent obstacle to the shear band propagation, such grain boundaries
being absent in the β0-model in PH1-β. In addition, we have also verified that higher mesh density will also525

lead to a stronger strain localization, without changing the constitutive law of pure copper. Similar strain
localization phenomena also occurs for TT and LS tests. In contrast, this phenomenon is rather negligible
in LT test due to the uniform longitudinal strain prescribed in Cu and Nb.

On the other hand, the responses of mean-field β1-model does not display a softening at H1, as strain
localization only occurs in full-field models. As explained in Section 4.3, the β-models tend to overestimate530

hardening due to the model assumptions. Mean field homogenization models are not designed for capturing
localization effects. Furthermore, disregarding the hexagonal fiber assembly morphology at H1 in the β-
models is believed to be another factor contributing to the model response deviations.

5.3. Iterative scale transition process up to H2

At scale H2, we suppose that 85 continuum cylinders are composed of two distinct zones: (1) the effective535

Cu-Nb composite zones containing 851 elementary long fibers (i.e. H1 zone); (2) the embedding matrix Cu-1.
At this scale, the full-field PH2-β and mean-field β2-models are introduced. It has been proved previously
that the β1-model and β0-model predict reliably the elasto-plastic behavior of H1 zone and polycrystalline
Cu, respectively. Thus, the PH2-β model takes these β-models as the local constitutive behavior of H1 zone
and Cu-1. In addition, a three-phase (i.e. Nb, Cu-0 and Cu-1) β2-model can also be defined to predict the540

elasto-plasticity at H2 without considering anymore the specific architecture.
The results of both models are reported here. The effective behavior and the average “local” behavior of

each individual component are plotted in Fig. 13 and Fig. 14, respectively. In the captions, homogenization
of the individual H1 zone and Cu-1 at H2 are denoted H2-(H1 zone) and H2-(Cu-1), respectively. It is found
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Figure 13: Effective elasto-plastic behavior at scale H2, obtained by the PH2-β and β2-model for various loading conditions:
(a) LT, (b) TT, (c) TS and (d) LS tests.
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Figure 14: Effective behavior of the individual H1 zones and Cu-1 components at scale H2, obtained by the PH2-β and
β2-model for various loading conditions: (a) LT, (b) TT, (c) TS and (d) LS tests.
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that the full-field and mean-field methods provide close results at H2. The differences do not exceed ∼ 15%,545

reached for some loading conditions like TS. The main reasons for such deviation are believed to be the same
as those discussed in Section 5.2 at H1, namely: (1) strain localization in the matrix; (2) absence of specific
account of the architecture according to the β2-model. In LT, the effective longitudinal Young’s modulus
and tangent modulus at H2 take the values ∼124 GPa (118 GPa in the H1 zone and 162 GPa in Cu-1) and
∼57 GPa respectively. Similar to the model responses at H1, for LT at H2, the imposed longitudinal strain550

is still uniform, i.e. (ε11)H2 =(ε11)H2-(H1 zone) =(ε11)H2-(Cu-1). In contrast, for TT, TS and LS, the average
strains of H1 zone and Cu-1 matrix along loading conditions are ∼1% and ∼3% respectively, at the ultimate
loading step.

5.4. Error propagation and discussion about the best-suited modeling strategy

In this work, three homogenization models were applied to perform the scale transitions up to H1/H2.555

The β1-model/β2-model essentially assume a random mixture of Cu and Nb phases, whereas the PH1
Mosaic, PH1-β (or PH2-β) models both take into account the hexagonal fiber assemblies with periodic
distribution. These models provide close results (differences <∼15%) at scales H1/H2, in spite of the very
different approximations of geometry.

Furthermore, error propagation needs to be discussed for hierarchical multiscale modeling, as the un-560

certainties will be accumulated by scale transition steps (Choi et al., 2008; McDowell, 2010). According to
Choi et al. (2008), the types of uncertainty are categorized as follows:

• Natural uncertainty: uncertainty due to the inherent randomness or unpredictability of a physical
system. Natural uncertainty related to the statistical RVE size has been estimated in Section 3.4 for
all the models considered in this work.565

• Model parameter uncertainty: incomplete knowledge of model parameters/inputs due to insufficient or
inaccurate data. Model uncertainties here are mainly associated with crystallographic/morphological
textures, initial residual stresses, parameters for single crystal plasticity and phenomenological D∼∼

of

the β-models. The textures used in this work are provided by EBSD data which was carefully measured
at all scales in Cu-Nb specimens (see Section 2.2). Initial residual stresses in this work are identified570

by the comparison between model responses at scale S2 and tensile test data of Cu-Nb wires, this
will be shown later in Section 6.2. The crystal plasticity parameters used in FEM for polycrystals are
found to fit well for the elasto-plastic behavior of pure Cu (Section 4.1). This is however probably
one way of improvement of the approach, since identification was limited to a tensile test and most
parameters were taken from literature. Finally, the tensor D∼∼

of the β-models was identified based on575

their full-field benchmarks in Section 4.3.

• Model structure uncertainty: uncertain model formulation due to approximations and simplifications.
In particular, the full-field models were shown to be prone to shear localization, whereas the β-models
cannot capture this phenomenon (Sections 5.2 and 5.3).

• Propagated uncertainty: this is an uncertainty expanded by a combination of the above three types580

of uncertainty in a chain of multiscale models. The interplay between architectures in the hierarchy is
found to be lost in the proposed β-models.

It is worth noting that, for the practical application to Cu-Nb wires for winding coils, only the longitudinal
mechanical properties are used in the design. As observed previously, the LT tests at all scales display only
small uncertainties <5%, which makes the proposed models accurate enough and suitable for the application.585

Finally, the computational efficiency must be considered for selecting the best-suited multi-scale modeling
strategy. At scale H0, the computational time ratio is on the order of 1 : 100 between the mean-field β0-
model and the full-field FEM for polycrystals. Moreover, at scale H1, this ratio becomes ∼ 1 : 100 : 1000 for
the β1-model, PH1 Mosaic and PH1-β respectively. The simulation of the TS test, for instance, by means
of these three models have taken about 40 minutes, 3 days and 1 month respectively, using the processors590

Intel R© CoreTM i7-6600U (Dual Core, 2.6GHz, 4M cache, 15W). It can be concluded that the β-models can
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be regarded as the best-suited models for Cu-Nb wires, with a good compromise in predictive capability and
computational efficiency.

6. Comparison with experiments

The predictions of the previous multiscale models are now validated using experimental data. The595

macroscopic response of the structural problem S2 is compared to monotonic tensile test data in 6.1. Initial
residual stresses are found to play an important role, particularly on the effective yield stress. This is
discussed in Section 6.2. Section 6.3 briefly describes the in-situ neutron diffraction tensile experiments,
carried out by Medy (2016). Section 6.4 demonstrates the predictive capability of our models for the in-situ
data. It also provides a quantitative understanding of the lattice strain evolution during uniaxial loading600

test in the multiscale nanocomposite.

6.1. Structural problem S2 and comparison with macroscopic tensile test
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Figure 15: (a) 1/4th FEM mesh of a cross-section of the S2 sample (the 3 elements in thickness are for illustration purposes
since results are invariant along the wire length, i.e. cross-section thickness); (b) Experimental comparison for the monotonic
LT test at S2. The dashed line in (b) shows the model prediction without taking into account the initial residual stresses.

As illustrated in Fig. 1(c) and detailed in Section 2.3, a real Cu-Nb wire can be seen as a single cylinder-
shaped structure at macro-scale (i.e. S2). Fig. 15(a) indicates 1/4th of the S2 sample cross-section with
the corresponding finite element mesh. In this model, the local properties of the inner Cu-Nb composite605

H2 zone and the external polycrystalline Cu-2 jacket are assigned to the β2-model (Section 5.3) and the
β0-model for H0-(Cu-2) (Section 4) respectively. In order to save CPU time, symmetric boundary conditions
are applied: U2 and U3 (displacement field along x2 and x3) are fixed to zero at the vertical planes x2=0 and
x3=0 respectively. A normal displacement is prescribed to the two terminal sections of this S2 specimen.
These sections are assumed to remain flat. From the computed axial force, the effective behavior of S2 is610

obtained, as illustrated by the dashed curve in Fig. 15(b).
Due to the high resistance of Cu-Nb wires (Thilly et al., 2002), slip between the specimen and the grips

was often observed during tensile tests, leading to a difficulty in strain measurement for the macroscopic
tensile curves recorded during in-situ diffraction tests (Vidal, 2006). Therefore, an complementary ex-situ
monotonic tensile test along x1 was carried out. In order to determine the strain along x1 with sufficient615
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accuracy, DIC (Digital Image Correlation) was used for Cu-Nb wires, as for the pure copper wires described
in section 4.1. The points in Fig. 15(b) refer to the experimental results. The macroscopic longitudinal
Young’s modulus E1 and yield stress σy along the wire direction x1 are found respectively to be ∼140 GPa
and ∼650 MPa (according to the criterion for macro-yield stress at a tangent modulus equaling to one third
of the elastic modulus following Thilly et al. (2009)). The model results without considering initial residual620

stresses are compared with experimental data in Fig. 15(b). It is found that they display very similar elastic
modulus and plastic hardening, however the effective yield stresses significantly differ. This comparison
leads to a critical assessment of the initial approach and raises the question of existence of residual stresses
originating from material processing. These initial stresses are identified in the next subsection.

6.2. Identification of initial residual stresses625

Component Nb Cu-i (i=0,1,2)
(σres)11 +250 MPa -200 MPa
(ε0)11 -0.26% 0.12%

(ε0)22,33 0.104% -0.040%

Table 4: Initial residual stresses and eigenstrains used in the individual polycrystalline Cu/Nb components. These values are
chosen in such a way that model results fit the data of macroscopic LT test. Signs +/− indicate that Nb and Cu components
are in axial tension and compression respectively. In this work, the two Cu-Nb composite samples with different diameters are
assumed to exhibit the same initial residual stresses and eigenstrains in each component.

Both initial residual stresses σ∼res
and yield stress of polycrystalline Cu component σCu

y determine the
apparent yield stress of Cu-Nb wires, as shown in Fig. 15(b). However, the exact values of σ∼res

are not
known yet for the Cu-Nb Filamentary wires N=852 studied in this work. Instead, (σres)11 of Nb is chosen
to be +250 MPa in tension which is assumed to be equal to the one in N=554 type of Cu-Nb wires, as
measured by X-ray diffraction by Vidal (2006). To ensure macroscopic equilibrium of the whole Cu-Nb630

wires, i.e. (σ∼res
)S2=0∼, (σres)11 is determined as -200 MPa in compression for Cu components. σ∼res

in
transverse directions and in shear directions are assumed to be zero, due to lack of data. It will be shown
that this approximation is sufficient to predict the longitudinal elasto-plastic behavior of Cu-Nb wires based
on the available mechanical data.

Initial residual stresses σ∼res
, are usually generated by appropriate eigenstrains ε∼0

(called also “stress-free635

strains”) in each component, based on the thermo-elastic like homogenization problems, e.g. Masson et al.
(2000); Brenner et al. (2004). For the detailed derivations, refer to AppendixA.1. In the present work, ε∼0
is identified in such a way that the generated stress σ∼res

takes the required value. All the related non-zero
components in σ∼res

and ε∼0
are reported in Table 4. The eigenstrain prescribed in Nb components, (ε0)11,

takes a negative value. Due to the interaction between Nb and Cu (i.e. equilibrium of the composite), Nb640

will be in axial tension with positive (σres)11. Similarly, (ε0)11 of Cu takes a positive value. With these
values of σ∼res

, the model responses at S2 display a good agreement with the tensile test data, as shown by
Fig. 15(b). By comparing the dashed and solid stress-strain curves (without vs. with σ∼res

accounted for),
the impact of residual stresses is found to be as large as ∼100 MPa.

Some arguments in Medy (2016) suggest that (σres)11 in large Cu channels may not be as high as645

-200 MPa, estimated by preliminary neutron diffraction tests. Therefore, an axial compression value of -
100 MPa for Cu components is also used. In this case, a tension of +125 MPa for Nb is determined to fulfill
a zero (σ∼res

)S2. It is found that, if the yield stress value is modified to σCu
y =450 MPa, the homogenization

at S2 still predicts the same tensile results. This confirms the empirical formula proposed in Vidal et al.
(2009): the sum of σCu

y and |(σCu
res)11| equal to a constant for Cu-Nb wires, here σCu

y +|(σres)Cu
11 | ≈ 550MPa.650

Thus, there still exists various possible combinations of (σres)
Cu
11 and σCu

y . Further X-ray/neutron diffraction

experiments are in preparation for investigating (σres)11 of both Cu and Nb precisely. The σ∼res
and σCu

y

proposed respectively in Table 4 and Table 2 are used throughout this work.
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Figure 16: Experimental comparison with the in-situ neutron diffraction tensile experiments (data obtained by Medy (2016)):
applied macroscopic monotonic longitudinal stress (σ11)S2 vs. incremental longitudinal mean elastic trains of individual 〈111〉
Cu, 〈100〉 Cu and 〈110〉 Nb fiber textures, i.e. ∆(ε

〈111〉Cu
e )L, ∆(ε

〈100〉Cu
e )L and ∆(ε

〈110〉Nb
e )L.

6.3. In-situ neutron diffraction tensile experiments

Besides the macroscopic tensile tests, an in-situ neutron diffraction tensile experiment was performed by655

Medy (2016) on the Cu-Nb Filamentary wires N=852 at 6T1 diffractometer of Orphée-LLB (CEA Saclay,
France). The sample diameter, applied strain rate and temperature were 2.10 mm, 10−5 s−1 and 293 K
respectively. The detailed information on the setup can be found in Medy (2016).

By analyzing the shift of {hkl} Bragg peaks, neutron diffraction provides information about the incre-
mental mean elastic strain within the diffracting volume. Diffraction volume is constituted by all grains660

fulfilling Bragg conditions, i.e. exhibiting an {hkl} plane perpendicular to diffraction vector G . Medy
(2016) took advantage of the strong crystallographic texture of the specimen for the analysis: for Cu, the
double 〈100〉 and 〈111〉 fibers lead to respectively a significant proportion of {200} and {111} planes perpen-
dicular to the wire axis x1; similarly for Nb, the strong 〈110〉 fibers lead to {220} planes perpendicular to
x1. Taking the diffraction vector G //x1 and performing diffraction on these lattice planes allows estimating665

the incremental longitudinal mean elastic strain, i.e. ∆(ε
〈111〉Cu
e )L, ∆(ε

〈100〉Cu
e )L and ∆(ε

〈110〉Nb
e )L, within

the corresponding diffraction volumes, for individual 〈111〉 Cu, 〈100〉 Cu and 〈110〉 Nb fibers respectively.
The incremental elastic strain is defined as ∆εe = εe − εe(t < 0) where εe(t < 0) indicates the elastic strain
before loading. The presence of initial residual stresses leads to εe(t < 0) 6= 0 for Cu-Nb wires (refer to Ap-
pendixA.1). However, the absolute experimental values of εe(t < 0) remain unknown, only the incremental670

values ∆εe are reported in Medy (2016). Measurements of absolute strains require complex calibration of
reference lattice spacing, not tackled in the present work.

Fig. 16 shows the lattice strain evolution of the individual fiber texture components in terms of the
applied tensile stress (σ11)S2. The fitting of Bragg peak position leads to an uncertainty of ∼ ±0.05%
for determining (εe)L. In addition, long exposure time in neutron diffraction experiments led to stress675

relaxation during the measurement. Therefore, an uncertainty of ±15 MPa for the applied tensile stress
(σ11)S2 is associated.
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6.4. Comparison with in-situ experiments

According to Upadhyay et al. (2016); Gu et al. (2017a), a comparison with diffraction data requires (1)
to compute the mean stresses acting on H2 zone and Cu-2 as a function of tensile strain by FEM S2; (2)680

to compute the corresponding stress and strain concentration within the grains, by means of the β-models
in H2 zone and Cu-2 separately; (3) to isolate the diffraction volume and calculate the mean elastic strain
along the direction of diffraction vector G in this volume; (4) to gather the mean incremental elastic strains
for the individual fiber textures. The results obtained in that way are shown in Fig. 16, with an excellent
match for all three analyzed components.685

Based on Fig. 15 and Fig. 16, one can conclude that the proposed elasto-plastic models not only predict
the correct effective behavior, but also provide a good estimation of the stress and strain distributions within
Cu and Nb fiber components. Slight deviations between experiments and theory can still be observed,
especially regarding the overestimated hardening after some strain level in Fig. 15 and overestimated yield
in Cu components in Fig. 16. They can be attributed to the following reasons: (1) High density of micro-690

defects introduced in the fabrication process, particularly during the severe plastic deformation. These
defects probably reduce the ductility of Cu-Nb wires, and lead the deviations between experimental data
and model predictions, especially when the applied strain >1%; (2) model parameters of single crystal
plasticity were fitted for the highly hardened pure Cu, instead of the actual polycrystalline Cu components
in Cu-Nb wires; (3) simplifications within the β-models; (4) crystallographic textures used in models are695

obtained from the sample with a diameter of 4.50 mm, instead of the smaller samples for mechanical tests.

Furthermore, both experiments and theory show that the increasing of ∆(ε
〈111〉Cu
e )L and ∆(ε

〈100〉Cu
e )L

saturate at 0.004 and 0.006 respectively, corresponding to (σ11)S2=450 MPa and 550 MPa. This means that
plastic activity occurs in 〈100〉 oriented grains at a higher macroscopic applied stress than in 〈111〉 grains in
tensile loading along the wire direction. A similar phenomenon was observed for pure Cu polycrystals at H0700

in LT, as mentioned in Section 4.2. Based on Fig. 9(a), this is because 〈100〉 oriented grains exhibit a lower
stiffness and thus are subjected to a lower stress, and then reach their yield limit at a later stage despite
their lower yield stress. On the other hand, the good agreement between experiments and theory confirms
the assumption of elastic behavior for Nb. Larger stress levels are required to activate plasticity in Nb.

7. Conclusions705

This work focuses on multiscale modeling of the elasto-plastic behavior of architectured and nanostruc-
tured Cu-Nb composite wires. The main conclusions of the study are the following:

(1) Hierarchical homogenization strategy. As the specimens exhibit several characteristic scales, an original
iterative scale transition elasto-plastic homogenization approach was proposed considering the specific
texture and architecture of Cu-Nb wires.710

(2) Full field vs. mean field method. In order to investigate the links between the effective material
behavior and the wire microstructure, full-field finite element homogenization was carried out at first.
The mean-field β-models were then proposed to save computational time and appropriately calibrated
to perform iterative scale transition steps. Reasonable agreement was found between the full-field and
reduced order models at all the considered scales.715

(3) Model responses vs. data of macroscopic tensile test and in-situ test. Mechanical modeling was ex-
perimentally validated by both macroscopic tensile test and in-situ neutron diffraction test where the
mean elastic strains were measured in the individual copper and niobium texture components.

(4) Initial residual stresses were to be taken into account in order to reach agreement between model and
experiments. They are related to material processing of the Cu-Nb wires.720

(5) Plastic activity in different Cu/Nb texture components. In Cu-Nb wires, polycrystalline Cu exhibits
a double 〈100〉-〈111〉 fiber texture. Experiments and theory show consistently that plastic activity
occurs in 〈100〉 oriented grains at a higher applied macroscopic stress than in 〈111〉 grains in tensile
loading along the wire direction.
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Only tensile tests can be performed in-situ with such thin wires. Here, several in-situ tensile tests have725

been performed for each type of wire and provide the same results with respect to the evolution of lattice
strain evolution with respect to applied stress. The experimental error on lattice strain values is estimated
to be smaller than 4% in such tests so that the good agreement between experimental and simulation results
is already a great achievement, in favor of the accuracy of the proposed model. Further work is in progress
in the following directions:730

(1) Even though grain size effect has been taken into account in this work for Cu-Nb Filamentary wires
N=852, its impact on effective material behavior is not significant, as the volume fraction of fine Cu
components is rather small (∼15%). In contrast, other types of Cu-Nb wires, such as the Filamentary
wires N=853 (see Gu et al. (2017b) for the material descriptions), exhibit a higher volume fraction of
ultra-fine Cu grains. The importance of size effects will be studied by multiscale modeling for these735

Cu-Nb wires.

(2) Careful measurements of residual stresses are still needed by X-ray or neutron diffraction for the
Cu-Nb wires studied in this work. In addition, simulation of material processing could also help
determining quantitatively the residual stresses but this remains a very demanding task involving
grain fragmentation and recrystallization.740

(3) Various loading conditions, such as the TT test or torsion, can be performed by ex-situ or in-situ
experiments. Such additional complex tests are necessary to validate the full elasto-plastic multi-scale
modeling approach. Finally, cyclic tensile tests were also performed for Cu-Nb wires by Thilly et al.
(2009). Significant “Bauschinger effect” was observed, demonstrating strong kinematic hardening.
The model can also be used for comparisons with this data.745

Finally, the theoretical models will be used to optimize the microstructure parameters in the fabrication
process of Cu-Nb wires.
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AppendixA. Derivation of mean-field β-model755

AppendixA.1. Thermo-elastic standard self-consistent scheme

In polycrystals, the local elastic stiffness tensor C∼∼
(x ) is a uniform property inside the grains. The

quantity C∼∼
(x ) can therefore be replaced by the corresponding homogeneous values C∼∼

(r) of the considered

mechanical phase (r). Local and effective thermo-elastic constitutive relations write respectively:

σ∼
(r) = C∼∼

(r) :
(
ε∼
(r) − ε∼

(r)
0

)
, σ∼ = C̃∼∼

:
(
ε∼− ε̃∼0

)
(A.1)

where .(r) indicates the average over the volume of phase (r), e.g. ε∼
(r) =

〈
ε∼(x )

〉
(r)

. In addition, ε∼
(r)
0

denotes a uniform eigenstrain associated with temperature changes in thermo-elasticity. In this work, ε∼
(r)
0

are initially implemented in composite Cu-Nb wires to generate the residual stresses. According to e.g.
Masson et al. (2000); Castelnau (2011), it can be shown that the effective elastic tensor C̃∼∼

and the effective

stress-free strain ε̃∼0
read:

C̃∼∼

−1
= 〈C∼∼

(r)−1 : B∼∼
(r)〉 , ε̃∼0

= 〈ε∼
(r)
0 : B∼∼

(r)〉 (A.2)
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where B∼∼
(r) denotes the stress concentration tensor determined by the pure elastic SSC scheme. In addition,

according to the definition of B∼∼
(r), σ∼

(r) can be expressed as:

σ∼
(r) = B∼∼

(r) : σ∼ + σ∼
(r)
res

(A.3)

with σ∼ and σ∼
(r)
res

being respectively the macroscopic applied stress and initial residual stresses in phase (r).
To estimate the phase-average stress and strain, phase (r) is treated according to the SSC scheme as an
ellipsoidal inclusion embedded in an HEM (Homogeneous Equivalent Medium) whose behavior represents
that of the polycrystal. Eshelby’s inclusion formalism (Eshelby, 1957) is used to describe the interaction
between each phase and the aggregate. According to e.g. (François et al., 1998; Qu and Cherkaoui, 2006;

Nemat-Nasser and Hori, 2013), B∼∼
(r) is derived as:

B∼∼
(r) = C∼∼

(r) :
[
I∼∼

+ S∼∼Esh
: C̃∼∼

−1
:
(
C∼∼

(r) − C̃∼∼

)]−1
: C̃∼∼

−1
(A.4)

with I∼∼
the fourth order identity tensor and S∼∼Esh

the Eshelby tensor. In addition, S∼∼Esh
is calculated as

function of C̃∼∼
and aspect ratio `/d for a spheroidal inclusion after (Mura, 1987; Suvorov and Dvorak, 2002).

If the considered volume is a RVE, one gets:

〈B∼∼
(r)〉 = I∼∼

. (A.5)

Before loading (i.e. t <0), the macroscopic stress σ∼ = 0∼ to ensure equilibrium. This leads to ε∼=ε̃∼0
and

σ∼
(r)=σ∼

(r)
res

by using Equations (A.1) and (A.3) respectively. Furthermore, σ∼
(r)
res

can be written as follows
based on the interaction equation of the pure elastic SSC before loading (Brenner et al., 2004):

σ∼
(r)
res

=
(
C∼∼

(r)−1 +C∼∼
∗−1
)−1

:
(
ε̃∼0
− ε∼

(r)
0

)
(A.6)

where the effective stress-free strain ε̃∼0
is given in Eq. (A.2). The “Hill’s constraint tensor” C∼∼

∗ is given by

C∼∼
∗ = C̃∼∼

:
(
S∼∼
−1
Esh
− I∼∼

)
. (A.7)

At t <0, it is worth noting that ε∼
(r) 6= ε∼

(r)
0 . Based on Eq. (A.1):

ε∼
(r) = C∼∼

(r)−1 : σ∼
(r)
res

+ ε∼
(r)
0 (A.8)

where σ∼
(r)
res

can be calculated in Eq. (A.6). Thus before loading, local strain ε∼
(r) is the sum of the stress-free

strain ε∼
(r)
0 and an elastic part C∼∼

(r)−1 : σ∼
(r)
res

necessary to ensure stress equilibrium.

AppendixA.2. Hill’s elasto-plastic homogenization model

Hill (1965); Turner and Tomé (1994) introduced an incremental self-consistent homogenization model for
the elasto-plastic behavior of polycrystalline aggregates. The linearized local and effective rate-independent
constitutive relations are written respectively:

σ̇∼
(r) = L∼∼

(r) : ε̇∼
(r), σ̇∼ = L̃∼∼

: ε̇∼ (A.9)

where σ̇∼ and ε̇∼ are the stress and strain rate tensors and L∼∼
the tensor of tangent elasto-plastic moduli.

Similarly to the elastic SSC scheme, in Hill’s model, stress equilibrium is solved for one phase embedded in
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the HEM using the Eshelby formalism. The stress rate and strain rate are related through the following
interaction equation: 

σ̇∼ − σ̇∼
(r) = −L∼∼

∗ :
(
ε̇∼− ε̇∼

(r)
)
,

L∼∼
∗ = L̃∼∼

:
(
S∼∼
−1
Esh
− I∼∼

)
.

(A.10)

It is worth noting that the Eshelby tensor S∼∼Esh
is determined by the effective elasto-plastic instantaneous

moduli L̃∼∼
and `/d. In this elasto-plastic model, ε∼

(r) is decomposed into elastic part ε∼
(r)
e

and plastic part

ε∼
(r)
p

. Thus, we can express ε∼
(r) and σ∼

(r) accounting for initial residual stresses

ε∼
(r) = ε∼

(r)
e

+ ε∼
(r)
p
, σ∼

(r) = C∼∼
(r) :

(
ε∼
(r)
e
− ε∼

(r)
0

)
(A.11)

where the used Hooke law is equivalent to the local thermo-elastic constitutive relation in Eq. (A.1). In760

addition, at t <0, ε∼
(r)
p

=0∼ and σ∼
(r)=σ∼

(r)
res

, leading to ε∼
(r)=ε∼

(r)
e

=C∼∼
(r)−1 : σ∼

(r)
res

+ ε∼
(r)
0 as in the elastic case, see

Eq. (A.8).
The results derived in the following steps are valid for Hill’s homogenization approach but they will also

be used in the β-model described in section AppendixA.4 below. The effective strain is decomposed into a
macroscopic elastic strain tensor ε̃∼e

(6= ε∼e
) and a macroscopic plastic strain ε̃∼p

( 6= ε∼p
), i.e.

ε∼ = ε̃∼e
+ ε̃∼p

+ ε̃∼0
, σ∼ = C̃∼∼

: ε̃∼e
. (A.12)

At t <0, one has σ∼=0∼, ε̃∼e
=ε̃∼p

=0∼ and ε∼=ε̃∼0
which is computed by means of Eq. (A.2). Then derivatives of

the above two equations with respect to time give:
ε̇∼
(r) = ε̇∼

(r)
e

+ ε̇∼
(r)
p
,

σ̇∼
(r) = C∼∼

(r) : ε̇∼
(r)
e
,


ε̇∼ = ˙̃ε∼e

+ ˙̃ε∼p
,

σ̇∼ = C̃∼∼
: ˙̃ε∼e

.

(A.13)

Multiplying Eq. (A.10) by S∼∼Esh
: L̃∼∼

−1
and then substituting Eq. (A.13) into Eq. (A.10):

S∼∼Esh
: L̃∼∼

−1
: σ̇∼

(r) = S∼∼Esh
: L̃∼∼

−1
: σ̇∼ +

(
I∼∼
− S∼∼Esh

)
:
(
ε̇∼− ε̇∼

(r)
)

= S∼∼Esh
: L̃∼∼

−1
: σ̇∼ +

(
I∼∼
− S∼∼Esh

)
:
(
C̃∼∼

−1
: σ̇∼ + ˙̃ε∼p

−C∼∼
(r)−1 : σ̇∼

(r) − ε̇∼
(r)
p

)
from which the following relation is obtained:[

S∼∼Esh
: L̃∼∼

−1
+
(
I∼∼
− S∼∼Esh

)
: C∼∼

(r)−1
]

: σ̇∼
(r) =[

S∼∼Esh
: L̃∼∼

−1
+
(
I∼∼
− S∼∼Esh

)
: C̃∼∼

−1]
: σ̇∼ +

(
I∼∼
− S∼∼Esh

)
:
(

˙̃ε∼p
− ε̇∼

(r)
p

)
Thus, Eq. (A.10) can be rewritten as:

σ̇∼
(r) = a∼∼

(r)−1
L

:
[
ã∼∼L

: σ̇∼ +
(
I∼∼
− S∼∼Esh

)
:
(

˙̃ε∼p
− ε̇∼

(r)
p

)]
(A.14)

with the notations 
a∼∼
(r)

L
= S∼∼Esh

: L̃∼∼

−1
+
(
I∼∼
− S∼∼Esh

)
: C∼∼

(r)−1 ,

ã∼∼L
= S∼∼Esh

: L̃∼∼

−1
+
(
I∼∼
− S∼∼Esh

)
: C̃∼∼

−1
.

(A.15)
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AppendixA.3. Kröner’s assumption765

In Kröner (1961), ε∼p
was treated as an eigenstrain, and the accommodation by the matrix surrounding

the inclusion was assumed to be purely elastic. In this formulation, L∼∼
∗ in Eq. (A.10) was replaced by

C̃∼∼
:
(
S∼∼
−1
Esh
− I∼∼

)
, where S∼∼Esh

is calculated with respect to the elastic stiffness tensor C̃∼∼
instead of the tangent

elastoplastic moduli L̃∼∼
. Kröner’s assumption is used here to simplify Hill’s elasto-plastic homogenization

model. Thus a∼∼
(r)

L
and ã∼∼L

in Eq. (A.15) become:
a∼∼
(r)

L
= S∼∼Esh

: C̃∼∼

−1
+
(
I∼∼
− S∼∼Esh

)
: C∼∼

(r)−1 ,

ã∼∼L
= C̃∼∼

−1
.

(A.16)

Substituting Eq. (A.16) into Eq. (A.14):

σ̇∼
(r) = B∼∼

(r) :
[
σ̇∼ +L∼∼

∗
C

:
(

˙̃ε∼p
− ε̇∼

(r)
p

)]
(A.17)

where B∼∼
(r) is the stress concentration tensor of elastic problems (determined in Eq. (A.4)) and the tensor

L∼∼
∗
C

is expressed as follows:

L∼∼
∗
C

= C̃∼∼
:
(
I∼∼
− S∼∼Esh

)
= C∼∼

∗ : S∼∼Esh
. (A.18)

Moreover, the computations of the Eshelby tensor S∼∼Esh
will receive further attention in AppendixA.4 for

both Kröner’s elasto-plastic homogenization model (Kröner, 1961) and the β-model.
The interaction equation Eq. (A.17) is purely elastic following Kröner’s assumption. The latter has770

been shown to result in a too stiff overall response and the internal stresses are significantly overestimated
(Berveiller and Zaoui, 1978; Masson and Zaoui, 1999). Compared with Hill’s model of AppendixA.2, the
nonlinearity of the operator multiplying the difference between global and local plastic strain tensors is not
taken into account. Nevertheless, this assumption can be taken as a new starting point for an alternative ap-
proach, i.e. the β-models, where the nonlinearity is transferred to the term that represents the heterogeneity775

of plastic strain.

AppendixA.4. Formulation of β-models

AppendixA.4.1. General β-model

According to (Cailletaud, 1992; Forest and Pilvin, 1996; Sai et al., 2006; Besson et al., 2009; Martin
et al., 2014; Cailletaud and Coudon, 2016; Coudon et al., 2018), the heuristic β-models introduce interphase

accommodation variables β
∼

(r) to replace the local plastic strain ε∼
(r)
p

in Eq. (A.17). Under small-strain

conditions, i.e. with negligible microstructure evolution, B∼∼
(r) and L∼∼

∗
C

can be considered as constant. After

time integration of Eq. (A.17), the scale transition interaction equation of the β–model is obtained:

σ∼
(r) = B∼∼

(r) :
[
σ∼ +L∼∼

∗
C

:
(
β̃
∼
− β

∼

(r)
)]

+ σ∼
(r)
res
, (A.19)

which accounts for both elastic and plastic local heterogeneity. In this relation, the tensors B∼∼
(r), L∼∼

∗
C

and

σ∼
(r)
res

are still given by Eq. (A.4), (A.18) and (A.6) respectively. In Eq. (A.19), σ∼
(r) is initialized as σ∼

(r)
res

780

before loading. In a similar way as for plastic strain ε∼
(r)
p

, the β
∼

(r) variables are also initialized at 0∼. In the

elastic regime, Eq. (A.19) reduces to Eq. (A.3).
Furthermore, it should be noticed that in the β and Kröner’s elasto-plastic models, S∼∼Esh

is computed

by using C̃∼∼
instead of L̃∼∼

) as in Hill’s approach. In this way, considerable CPU time can be saved since S∼∼Esh
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is evaluated only once. In contrast, Hill’s model (AppendixA.2) requires the computation of S∼∼Esh
at each785

loading step due to the evolution of L̃∼∼
along the deformation path.

Inspired by the kinematic hardening evolution rule in Lemaitre and Chaboche (1994), a time-independent
non-linear evolution equation for the β–variables is used:

β̇
∼

(r)
= ε̇∼

(r)
p
−D∼∼ : β

∼

(r)‖ε̇∼
(r)
p
‖ (A.20)

where the plastic strain rate is the driving force and the tensor D∼∼
denotes a constant phenomenological

tensor whose components must be calibrated in order to correct the approximation introduced for S∼∼Esh
.

The form of D∼∼
and its identification are presented and discussed in Sections 3.3 and 4.3 respectively.

‖ε̇∼
(r)
p
‖ =

√
2

3
(ε̇(r)p )ij(ε̇

(r)
p )ij . (A.21)

Finally, the homogenization condition σ∼ = 〈σ∼(r)〉 is used to determine the effective accommodation variable

β̃
∼

after combining Eq. (A.19) and (A.5) and accounting for 〈σ∼(r)
res
〉=0∼:

β̃
∼

= 〈L∼∼
∗−1
C

: B∼∼
(r) : L∼∼

∗
C

: β
∼

(r)〉 . (A.22)

The macroscopic plastic strain response ε̃∼p
can be computed by substituting Eq. (A.11) and (A.12) into

Eq. (A.19):

C∼∼
(r)
(
ε∼
(r) − ε∼

(r)
p
− ε∼

(r)
0

)
= B∼∼

(r) : C̃∼∼

(
ε∼− ε̃∼p

− ε̃∼0

)
+B∼∼

(r) : L∼∼
∗
C

:
(
β̃
∼
− β

∼

(r)
)

+ σ∼
(r)
res

⇔(
C∼∼

(r)−1 : B∼∼
(r) : C̃∼∼

)
: ε̃∼p

= ε∼
(r)
p
− ε∼

(r) + ε∼
(r)
0 +

(
C∼∼

(r)−1 : B∼∼
(r) : C̃∼∼

)
: ε∼

−
(
C∼∼

(r)−1 : B∼∼
(r) : C̃∼∼

)
: ε̃∼0

+C∼∼
(r)−1 : B∼∼

(r) : L∼∼
∗
C

:
(
β̃
∼
− β

∼

(r)
)

+C∼∼
(r)−1 : σ∼

(r)
res

⇔

〈C∼∼
(r)−1 : B∼∼

(r) : C̃∼∼
〉 : ε̃∼p

= ε∼p
− ε∼ + 〈ε∼

(r)
0 〉+ 〈C∼∼

(r)−1 : B∼∼
(r) : C̃∼∼

〉 : ε∼

− 〈C∼∼
(r)−1 : B∼∼

(r) : C̃∼∼
〉 : ε̃∼0

+ 〈C∼∼
(r)−1 : B∼∼

(r) : L∼∼
∗
C

:
(
β̃
∼
− β

∼

(r)
)
〉+ 〈C∼∼

(r)−1 : σ∼
(r)
res
〉

The following two relations are derived from Eq. (A.2) and Eq. (A.8):

〈C∼∼
(r)−1 : B∼∼

(r) : C̃∼∼
〉 = I∼∼

, ε̃∼0
= 〈ε∼

(r)
0 〉+ 〈C∼∼

(r)−1 : σ∼
(r)
res
〉 .

The second equation provides the macroscopic eigenstrain as a function of local eigenstrains and residual
stresses. Finally, the expression of the macroscopic plastic strain ε̃∼p

can be reduced to:

ε̃∼p
= ε∼p

+ 〈C∼∼
(r)−1 : B∼∼

(r) : L∼∼
∗
C

:
(
β̃
∼
− β

∼

(r)
)
〉 . (A.23)

AppendixA.4.2. β-model with homogeneous local elastic behavior

The previous general formulation represents in fact a new extension of the β-model taking into account
the heterogeneous local elasticity (Ausias et al., 2007; Cailletaud and Coudon, 2016; Coudon et al., 2018)
and initial residual stresses σ∼

(r)
res

. In the present section, the earlier versions of β-models, e.g. (Sai et al.,
2006; Martin et al., 2014), are derived from the previous general formulation in the particular case of
homogeneous elastic behavior. According to the earlier versions, it is assumed that the main source of
mechanical heterogeneity is plasticity more than elasticity (Cailletaud, 1992; Besson et al., 2009). In other
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words, the polycrystalline aggregate exhibit a homogeneous local elastic behavior: C∼∼
(r)=C∼∼

=C̃∼∼
. The stress

concentration tensor B∼∼
(r) in Eq. (A.4) becomes the identity I∼∼

, and β̃
∼

reduces to the average 〈β
∼

(r)〉 = β
∼

.

Therefore, Eq. (A.19) can be simplified as follows (assuming here σ∼
(r)
res

=0∼):

σ∼
(r) = σ∼ +L∼∼

∗
C

:
(
β
∼
− β

∼

(r)
)

(A.24)

where L∼∼
∗
C

and β
∼

(r) are still given by Eq. (A.18) and (A.20) respectively.790

In particular, if the phenomenological tensor D∼∼
in Eq. (A.20) vanishes, we get β

∼

(r) = ε∼
(r)
p

and therefore

β
∼

= ε∼p
. In this case, the β-model reduces to Kröner’s elasto-plastic homogenization model (Kröner, 1961):

σ∼
(r) = σ∼ +L∼∼

∗
C

:
(
ε∼p
− ε∼

(r)
p

)
. (A.25)
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