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Abstract

When hydraulic Power Take Off (PTO) is used to convert the mechanical

energy of a wave energy converter into a more useful form of energy, the

PTO force needs to be controlled. Continuous controlled variation of the

PTO force can be approximated by a set of discrete values. This can be

implemented using either variable displacement pumps or several hydraulic

cylinders or several high pressure accumulators with different pressure levels.

This pseudo continuous control could lead to a complex PTO with a lot of

components. A simpler way for controlling this hydraulic PTO is declutching

control, which consists in switching on and off alternatively the wave energy

converter’s PTO. This can be achieved practically using a simple by-pass

valve. In this paper, the control law of the valve is determined by using the

optimal command theory. It is shown that, theoretically when considering

a wave activated body type of WEC, declutching control can lead to energy

absorption performance at least equivalent to that of pseudo-continuous con-
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trol. The method is then applied to the case of the SEAREV wave energy

converter, and it is shown than declutching control can even lead to a higher

energy absorption, both in regular and irregular waves.

Key words: wave energy converter, declutching control, hydraulic power

take off, optimal command

Introduction

Amongst the wide variety of Wave Energy Converter (WEC) concepts

that have been proposed, the class of so-called wave activated bodies WECs

uses wave induced motions of masses or large bodies to drive a Power Take

Off (PTO) system which transforms the primary mechanical energy of the

body into a final usable form, generally electricity. A lot of devices are

based on this concept, such as for example the WRASPA [Chaplin 2007],

the SEAREV [Josset 2007], or the Pelamis [Henderson 2006] whose first

units have been deployed into Scottish and Portuguese waters.

In many cases [Henderson 2006], [Josset 2007], the PTO is hydraulic. It

usually features one or several hydraulic cylinders, high pressure accumula-

tors and a hydraulic motor which drives an electrical generator. Figure (1)

shows a typical hydraulic PTO system. This seems to be a reasonable option,

at least at a prototype stage. There are many of the shelf hydraulic compo-

nents from the marine and offshore industry that are capable of dealing with

the large forces and slow motions usually occuring in wave energy conversion.

Moreover, high pressures accumulators allow storage of the energy extracted

from the waves, and thus contribute to the smoothing of the output power

delivered to the grid.
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Figure 1. Schematic representation of a hydraulic power take off for

wave energy conversion.

When designing such hydraulic PTOs, it is necessary to include compo-

nents allowing control of the force applied by the PTO to the prime mover

of the wave energy converter. In contrast with the smooth continuous force

applied by a linear damper, the force of a hydraulic PTO is a Coulomb

damping. This means that its modulus is a constant equal to the area of

the cylinder times the pressure difference between the high pressure (HP)

and low pressure (LP) accumulators. When the pressure difference between

the accumulators is too large, the PTO force can cancel the other external

forces (including the wave excitation force), hence preventing any motion of

the wave energy converter, which would result in a zero energy production.

On the other hand, if the pressure difference is too small, the PTO force

can become too small in comparison with what it should be to maximise the

energy absorption or to keep the amplitude of the motion in an acceptable

range.

These effects were observed by [Falcao 2007] on a generic heaving WEC

and by [Josset 2007] on the SEAREV WEC. It was found by both authors

that they can be counteracted using a slow control method consisting in

adapting the pressure in the HP accumulator and the flow in the hydraulic

motor to the sea state. By using this sea state dependent control, it was even

found that the output power can sometimes exceed that of an optimised

linear damping PTO. In [Falcao 2008], it is shown that phase control can
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successfully be achieved for a heaving buoy WEC with a hydraulic PTO

using a similar sea state dependent control. In this case, the control consists

in adapting the flow in the hydraulic motor and the flow from the hydraulic

cylinder.

By using several hydraulic cylinders and/or several HP accumulators with

different pressure levels in the hydraulic PTO, it is also possible to control the

PTO force in order to adapt it to each incoming wave and it is even possible

to mimic a continuous behaviour, as it seems to be done in the Pelamis for

example [Henderson 2006]. Later in this paper, this strategy for controlling

the PTO force will be called pseudo-continuous control. In comparison with

the sea state dependent control strategies, it brings a lot more complexity in

the PTO, raising technical issues such as a possibly higher risk of failure.

As an alternative to this, we consider another strategy of declutching

control, or unlatching as it was introduced by [Salter 2002]. It consists in

declutching the PTO - which means that the PTO force is set equal to 0 - dur-

ing some parts of the cycle. Technologically, it is very simple to implement,

as it needs only a by-pass valve in the circuit of the hydraulic cylinder. This

control has already been considered by [Justino 2000] for the Portuguese

oscillating water column in Pico : the relief valve was intended to control

the air flow through the Wells turbine in order to prevent it from exceeding

the aerodynamic stall-free range, and in this way reduce aerodynamic losses

in the turbine. However, it was not considered as a mean of controlling the

PTO force.

There are many other ways of controlling the PTO force of a wave energy

converter and one can refer to [Salter 2002] for an exhaustive review of all
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of them. However, we chose to focus here only on both pseudo-continuous

control and declutching control beacuse our aim is to show that, at least

theoretically, pseudo-continuous control can be advantageously replaced by

declutching control. Indeed, we show here that there is actually no need

for a complex hydraulic PTO featuring several HP accumulators or several

hydraulic cylinders as only one by-pass valve is conceptually sufficient in

order to achieve at least the same level of energy absorption. This is shown

theoretically in the first part of this paper by applying the optimal command

theory to the generic equations of floating wave energy converters, including

the hydraulic PTO. Then, the method is applied to the SEAREV WEC as

an example, and theoretical results are confirmed.

1. Governing equations

1.1. Equation of motion

Let us consider a generic wave energy converter composed of one or several

bodies moving under the action of incident waves. Let Ndof be the total

number of degrees of freedom of this wave energy converter. Assuming the

fluid to be non-viscid and incompressible, the flow to be irrotationnal and

the amplitude of motions and waves to be sufficiently small compared to

the wavelength , the classical linearized potential theory can be used as a

framework for calculation of the fluid-structure interactions. Hence, one can

write the equation of motion of the WEC in the time domain as:
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(M + [µ
∞

]) Ÿ+

∫ t

0

Krad (t − τ) Ẏ (τ) dτ + (KH + KA)Y = Fex + FPTO

(1)

with:

• Y, Ẏ, Ÿ being respectively the generalized position, velocity and accel-

eration vectors of the WEC.

• M the generalized mass matrix of the system.

• KH the hydrostatic stiffness matrix of the system.

• KA an additional stiffness matrix which represents the action of moor-

ings.

• [µ∞] the added mass matrix and Krad the radiation impulse response

matrix which represents the radiation of waves by the body after an im-

pulsive velocity at t = 0, according to the classical Cummins’ decompo-

sition [Cummins 1962]. Using Prony’s method [Duclos 2001], one can

further approximate each of the Krad,kl functions, components of Krad,

by a sum of Nkl complex functions Krad,kl(t) =
∑Nkl

j=1
σkljexp(iβkljt). As

a consequence of this approximation by series of exponential functions,

each convolution product can be replaced by a sum of Nkl additionnal

radiative complex states
∫ t

0
Kkl (t − τ) Ẏl (τ) dτ =

∑Nkl

j=1
Iklj with each

Iklj given by an ordinary differential equation İklj = βkljIklj + σkljẎl.
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Finally, one can get :
∫ t

0

Krad (t − τ) Ẏ (τ) dτ = [δ]I

İ= [β]I + [σ]Ẏ (2)

with I = (Iklj)1≤k≤Ndof ,1≤l≤Ndof ,1≤j≤Nkl
. More details on this method

can be found in [Babarit 2006].

• Fex is the excitation vector, associated to the action of incident and

diffracted wave fields upon the WEC. Using King’s approach [King 1987],

let Kex (t) be the force response associated to an impulsive elevation on

the free surface propagating along the x axis. Using the superposition

principle, owing to the global linearity of the problem solved here, the

generalized excitation force is then given by

Fex (t) =

∫ t

0

Kex (t − τ) η (τ) dτ (3)

with η(t) being the free surface elevation at a given reference loca-

tion. In case of regular wave, η(t) is an elementary sine function

a sin(ωt + ϕ) with a the amplitude of the wave, ω its circular fre-

quency and ϕ an initial phase. In case of random waves, η(t) will

be considered here as a sum of Nc elementary sinus functions whose

amplitudes (aj)j=1,Nc
are derived from the standard Pierson-Moskowitz

energy spectrum [Molin 2002] and whose phases (ϕj)j=1,Nc
are set ran-

domly.

• FPTO is the force vector associated to the action of the power take off.

If the PTO is a linear damper, FPTO is given by :

FPTO = BPTOẎ
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with BPTO being the PTO damping coefficient matrix.

1.2. Equation for the PTO

A linear damper is the classical basic approach for modeling the PTO of a

wave energy converter, leading to a global solution of the equation of motion

in the frequency domain. But in the real world, a hydraulic PTO system is

composed of non linear components such as the accumulator, which requires

to solve the problem in the time domain.

Let us consider here the typical hydraulic PTO shown in figure (1). It is

composed of a hydraulic cylinder, a high pressure accumulator, a low pressure

fluid tank and a hydraulic motor coupled to a generator. The displacement of

the hydraulic motor is chosen variable, allowing a control of the output flow

from the HP accumulator. Let p(t) be the pressure in the HP accumulator,

let V (t) be its volume of gas. Let p0 be the pressure in the LP accumulator.

We assume that the volume of the LP accumulator is large enough for its

pressure to remain constant. Let Sc the cross-sectional area of the cylinder

and vm the maximum displacement of the variable displacement hydraulic

motor.

With these notations, the fluid flow from the high pressure accumulator

to the hydraulic motor is qm = umvmΩ, with Ω the rotational velocity of

the motor and um ∈ [0, 1] the control variable on the displacement of the

motor. Let J be the index of the degree of freedom driving the motion

of the hydraulic cylinder. The flow from the cylinder to the high pressure

accumulator is qp = ucSc|ẎJ |, in which uc is the control variable for the

cylinder. If uc is set equal to 1, the cylinder is either fully operating, pumping

oil into the high pressure accumulator; either locked in position because the
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PTO force exceeds the hydrodynamic force. If uc is equal to 0, the cylinder

is by-passed. In the latter case, the cylinder is declutched from the WEC

and the mechanical energy of the system is not extracted.

The variation of the gas volume in the high pressure accumulator is given

by the sum of the flow coming from the cylinder plus the flow going out to

the hydraulic motor:

V̇ = qp + qm = −ucSc|ẎJ | + umvmΩ (4)

We assume the compression in the high pressure accumulator to be isentropic,

which leads to:

ṗ = −γp
V̇

V
(5)

with γ = 1.4 in case of nitrogen.

When |ẎJ | > 0, the J th component of the PTO force applied to the WEC

is:

FPTO,J = −ucSc(p − p0)sign(ẎJ) (6)

since ẎJ is the component of the velocity vector corresponding to the velocity

of the cylinder by definition of index J . When |ẎJ | = 0, equation (6) is

no longer applicable. Two cases can occur: either the pressure in the HP

accumulator is too high for the hydraulic cylinder to be able to operate and

then the acceleration of the productive motion |ŸJ | is also equal to 0; or it is

not, and then |ŸJ | > 0.

In the first case, since |ŸJ | = 0, the value of the PTO force can be deduced

from equation (1). So, FPTO,J = −Fh,J in which Fh,J is the force vector

associated with the sum of all forces (including inertia forces) acting on the

system except the PTO force Fh = Fex−[δ]I−(KH +KA)Y−(M + [µ
∞

]) Ÿ.
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In the second case, since |ŸJ | > 0, |FPTO,J | = ucSc(p− p0) and one can show

that the sign of FPTO,J is the opposite of the sign of Fh,J .

Finally, when |ẎJ | = 0, one can write:

FPTO,J = −min (|Fh,J |, ucSc(p − p0)) sign(Fh,J) (7)

1.3. State equation.

Using equations (4), (5), (1), (2) and given control laws for the control

variable uc of the hydraulic cylinder and um the hydraulic motor, one can sim-

ulate numerically the full behaviour of the wave energy converter, including

its PTO. However, in order to be able to use the optimal command method

later in this paper, the equation of motion is re-written under a classical state

equation form.

Let

X =
(

Y Ẏ V p I

)t

(8)

be the extended state vector. Using equations (1), (2), (4) and (5), one can

write:

Ẋ = f(X, uc, um) (9)

with X(0) = X0 and f(X, uc, um) as given in appendix.

1.4. Equations for the control

1.4.1. Control of the hydraulic motor um.

The instantaneous power absorbed by the hydraulic power take off is

PPTO = Ft
PTOẎ. Using equations (6) and (7), one can re-write it PPTO =

−ucSc(p − p0)|ẎJ | whatever |ẎJ |.
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The energy extracted from the waves over the time range [t − ∆t, t] is

E =
∫ t

t−∆t
PPTO(τ)dτ . The instantaneous power delivered to the grid by the

hydraulic motor is Pm = (p − p0)umvmΩ. In order to smooth the electricity

produced, the control variable um is determined such that the instantaneous

power produced by the motor is equal to the ”instantaneous” mean power

extracted from the waves over the time window ∆t:

umvmΩ(p − p0)∆t = E (10)

In this study, ∆t is set equal to the whole duration of the simulation

because the sea state does not change during the simulations. In real sea sit-

uations, one should set the time window according to the temporal coherence

of the sea state.

1.4.2. Pseudo-continuous control of the PTO force.

In this study, we consider first a pseudo-continuous control aiming at

mimicking a continuous force Fcon(t), as shown in figure (2). Notice that,

at this point of the paper, there are no restrictions on the mathematical

expression of this continuous force. In particular, it could include a term

proportional to the velocity of the hydraulic cylinder, but also a reactive

part proportional to its position or acceleration.

Figure 2. Principle of the pseudo-continuous control of the force of a

hydraulic PTO.

One can imagine achieving this pseudo-continuous control by means of

several by-pass valves coupled with several HP accumulators with different
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pressure levels or several hydraulic cylinders, or even directly by using a

pump with variable displacement such as the Digital Displacement pump

developed by the company Artemis Intelligent Power for example. Whatever

the technical solution, one can write the PTO force as follows:

|FPTO| = ucSc(p − p0) (11)

with uc ∈
{

u1, u2, . . . , uNq

}

the Nq discrete control levels for the PTO force

such as ∀1 ≤ q ≤ Nq, uq ∈ [0, 1] and with u1 and uNq
being such as u1 = 0 and

uNq
= 1. In the case of several hydraulic cylinders, Sc would be the maximal

area achievable (i.e all hydraulic cylinders working together) and in the case

of several HP pressure accumulators, p would be the highest pressure.

Without any loss of generality, one can assume u1 ≤ u2 ≤ . . . ≤ uNq
. At

time t, the value of the control variable is then given by :

uc = uq with q/ uq ≤
Fcon(t)

Sc(p − p0)
< uq+1 (12)

Notice that when Fcon(t) > Sc(p − p0), the control variable saturates at

uc = 1.

1.4.3. Declutching control

Following [Babarit 2006], one can use the optimal command theory based

on Pontryagin principle [Hoskin 1986] in order to compute control law for

uc which maximises the extracted energy from the waves over a given time

interval.

Let define the optimisation problem:

max
uc

E = −

∫ tf

0

PPTOdτ (13)
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with uc ∈ [0, 1]

We define the hamiltonian H(t):

H = −PPTO + Λtf (14)

with Λ the adjoint states vector. One can show that, when |ẎJ | > 0, it is

linear with respect to the control variable uc :

H = ucsign(ẎJ)h(X,Λ) + g(X,Λ) (15)

with g and h scalar functions depending on both X and Λ. Their formulas

are given in appendix.

When |ẎJ | = 0, it is given by:

H = min (|Fh,J |, ucSc(p − p0)) sign(Fh,J)h(X,Λ) + g(X,Λ) (16)

From the maximum principle [Borne et al. 1990], the command is op-

timal when it maximizes the hamiltonian H . Hence, the equation for the

control variable uc(t) is:

uc =











max
q

uq if sign(ẎJ)h(X,Λ) > 0

min
q

uq else
(17)

when |ẎJ | > 0 and:

uc =











max
q

uq if sign(Fh,J)h(X,Λ) > 0

min
q

uq else
(18)

when |ẎJ | = 0.
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Since we assumed that max
q

uq = 1 and min
q

uq = 0, these criteria can be

rewritten:

uc =



















1 if sign(ẎJ)h(X,Λ) > 0 and |ẎJ | > 0

1 if sign(Fh,J)h(X,Λ) > 0 and |ẎJ | = 0

0 else

(19)

From this last equation, it follows that :

• the optimal value for the control variable uc is either 0 either 1, depend-

ing on the criterion of equation (19). Thus, intermediate states for

the control variable uc in the range ]0, 1[ are never reached as

optimal values. This means that the force applied by the PTO on the

WEC should be either a zero force or the maximum force available and

that pseudo-continuous control is not an optimal way for controlling the

system. In other words, this shows that there is no need for several HP

accumulators working at different pressure levels or several hydraulic

cylinders, since at least an equivalent level of energy can theoretically

be absorbed using:

1. only one HP pressure accumulator with the highest pressure

2. only one hydraulic cylinder whose area is Sc

3. declutching control with an optimal command.

• When relative velocity of the cylinder reaches zero, the value of the

control variable uc can behave in two ways. If the cylinder velocity just

before it reaches zero and the force Fh,J are of opposite sign, then the

value of uc changes immediately. Otherwise, this change is delayed until

the sign of sign(Fh,J)h(X,Λ) changes. Either way, these changes are
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smooth for the PTO as they occur when the velocity is zero. However,

the other changes, occuring when |ẎJ | > 0 and determined by the

zero crossings of the function h, may lead to high stress levels of the

mechanical components of the PTO since they could happen when the

velocity is high. For a practical application of declutching control, this

should be taken into consideration in the sizing of the PTO.

Finally, we need a last equation for describing the behaviour of the adjoint

state vector Λ. According to [Borne et al. 1990], it is given by :

Λ̇ = −
∂H

∂X
(20)

with Λ(tf ) = 0 as we chose the final condition X(tf) to be free.

2. Application to the SEAREV wave energy converter

The SEAREV wave energy converter is a floating device completely closed

fitted with a large and heavy pendular wheel as shown in figure (3). Under

waves action, the hull and the wheel start to move, each one with its own

motion. The relative motion α between the floating device and the wheel

is used to drive the hydraulic power take-off consisting of two radial piston

pumps, of a high pressure accumulator, of a variable displacement hydraulic

motor and of a low pressure oil tank (see figure (4)).

Figure 3. Schematic representation of the SEAREV wave energy con-

verter and notations used.
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Figure 4. Schematic representation of the hydraulic PTO of the SEAREV

wave energy converter. A radial piston pump is used instead of a hydraulic

cylinder.

The equation of motion of the SEAREV with its hydraulic PTO was writ-

ten under the form of equation (9) in a previous study [Josset 2007]. Compu-

tation of the hydrodynamic coefficients [µ∞] and the impulse response func-

tions Krad and Kex was done using the BEM code ACHIL3D [Clément 1997].

Characteristics of the SEAREV’s PTO are given in table (1).

Table 1. Characteristics of the SEAREV’s hydraulic PTO.

A Runge-Kutta 2nd order scheme is used to integrate the equation of

motion in order to perform time domain simulations of the SEAREV WEC.

In case of pseudo-continuous control, we chose to mimic the behaviour of a

linear damper, i.e FPTO = −BPTOα̇, in which the damping coefficient BPTO

was optimised in a previous study [Babarit 2005]. Practically, uc is discre-

tised in Nq discrete values uq = q−1

Nq−1
and uq is calculated at each time step

according to equation (12). An example of the PTO force applied on the

SEAREV when using this pseudo-continuous control with Nq = 10 is shown

in figure (5).

Figure 5. Comparison of the PTO force achieved with the SEAREV’s

hydraulic PTO controlled with the pseudo-continuous control and the PTO

force achieved with a linear damper. In this example, the PTO force is dis-
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cretised in 10 levels.

In case of declutching control, an iterative scheme following [Babarit 2006]

is used to compute the optimal control law for uc. First, the equation of mo-

tion is computed by integrating equation (9) forward for t ∈ [0, tf ]. Then,

once the motion has been determined, the adjoint state vector can be com-

puted by integrating backwards equation (20) from t = tf to t = 0. Knowing

both X and λ, one can deduce a new control law at each time step according

to equation (19), and then iterate the process.

This scheme can be difficult to implement in practice because it needs

the knowledge of the future of the excitation force, which requires prediction

of the incoming wave. This could be done using various techniques, such as

Kalman filtering (successfully used by Budal et al. in [Budal and Falnes 1983])

or wave propagation numerical model (promising results of deterministic

wave propagation have been reported recently in [Blondel 2008]) for exam-

ple. However, these considerations are beyond the scope of this study, in

which the optimal command method with the iterative scheme described

above is used in order to achieve comparisons between the energy absorbed

with pseudo-continuous control and declutching control.

2.1. Regular waves

Figure (6) shows a result of a time domain simulation of the motion of

the SEAREV WEC with pseudo-continuous control and with declutching

control. In this simulation, the parameter Nq was set equal to 10 and the

incident waves are regular. Its period is 8.2 seconds and its amplitude 0.5

meter. For such a simulation, the required CPU time is a few minutes on a
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3.4GHz Pentium(R) PC.

Figure 6. Time domain simulation of the motion of the SEAREV WEC

with a hydraulic PTO controlled with the pseudo-continuous control (solid

line) and with declutching control (dashed line). From top to the bottom,

the figure shows the incoming wave, the relative motion of the wheel, the

PTO force and the absorbed energy from the waves. In this example, the

wave period is 8.2 seconds and the wave amplitude is 0.5 meter.

One can see in this figure that the amplitude of the relative (productive)

motion jumps from about 10 degrees with the pseudo-continuous control to

more than 40 degrees with the declutching control. At the same time, the

amplitude of the PTO force is amplified by a factor of about 3. In the bot-

tom figure, one can see that the cumulative effect of the amplification of the

amplitude of the motion and the PTO force results finally in a doubling of

the extracted energy from the waves.

Figure 7. PTO force with declutching control and velocity of the relative

motion between the hull and the pendular wheel. One can observe that each

zero-crossing of the velocity leads to a change in the state of the controller

from declutching to operating.

In order to achieve a better understanding of the behaviour of the PTO

when it is controlled using declutching, we plotted in the same figure (7)

the velocity of the relative motion of the wheel and the PTO force. One
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can observe that each zero-crossing of the velocity leads to a change in the

controller state. This corresponds to what was found with the theoretical

approach of section 1.4.3.. One should also notice the non-linear shape of

the velocity.

In this example, it appears that the PTO is switched on each time the

sign of the velocity changes. This is a very simple criterion which could be

used practically. Unfortunately, regarding the times of declutching (related

to the sign of the h function), this figure does not give any useful information

about what makes the controller decide to switch off the PTO and it seems

difficult to find a heuristic criterion for declutching as simple as for clutching.

Let Cw be the capture width ratio of the SEAREV. It is defined as the

ratio of the mean power extracted over a 600 second simulation (P̄PTO) to

the wave power available in a wave front the width of the device (Pw), with:

Pw = 30
1

8π
ρwg2a2Tw

where ρw is the density of water, g is the gravity, a is the wave amplitude

and Tw is the wave period. Figure (8) shows the capture width Cw in regular

waves for pseudo-continuous control (with Nq = 10) and for declutching

control. Three wave amplitudes are considered: 0.5, 1 and 2m. Since the

system is non-linear, wave amplitude has an influence on the capture width.

As expected from the theory, one can observe that, for almost all the

wave periods considered, declutching control yields a capture width at least

as large as that of pseudo-continuous control. There are few exceptions to

this for waves whose amplitude is 1 m and whose period is around 6.6 s

or 7.6 s. It is not clear what happens for these configurations, but it may

be explained by a convergence of the optimisation iterative process to a
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local maximum instead of the global one. However, from an overall point of

view, the theoretical result stating that declutching control can be at least

equivalent to pseudo-continuous control is verified.

In this figure, one can also see the influence of the wave amplitude on

the capture width. It appears that, whatever the control, the capture width

decreases with the wave amplitude for short periods, but it increases for

longer wave periods around 8 s. This is an interesting result as long wave

periods and large amplitudes are usually correlated. It appears also that de-

clutching control improves the capture width in small waves in comparison

with pseudo-continuous control. However, it seems that the capture width

with declutching control converges asymptotically to the capture width with

pseudo-continuous control when the wave amplitude increases.

Figure 8. Capture width ratio of the SEAREV WEC with pseudo-

continous and declutching control in regular waves The capture width is

plotted against wave period. From top to bottom, the amplitude of the

wave is respectively 0.5 m, 1 m and 2 m. For almost all the wave periods

considered, declutching control yields an equivalent or better efficiency than

pseudo-continuous control.

To assess the influence of the number Nq of levels of discretisation for

the pseudo-continuous control, figure (9) shows the capture width ratio of

the SEAREV WEC controlled with pseudo-control with Nq = 1,Nq = 5,

Nq = 10 and with declutching control.

One can see that this influence is very small. For Nq = 5 and Nq = 10,
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differences between the results are undistinguishable. For Nq = 1, which

means only one level of discretisation of the PTO force, one can observe

that, if the capture width is slightly reduced for periods between 6 and 8

seconds, it is surprisingly increased for periods below 6 s and between 8 s

and 8.5 s. In figure (10), one can see that the amplitude of the motion with

Nq = 1 is larger than with Nq = 10 for a regular wave whose period is 5.5

s and amplitude is 1 m. This leads to this increase in the capture width of

the system.

From an overall point of view, it appears that declutching control leads to

a higher capture width in comparison with pseudo-continuous control. How-

ever, one should notice that for pseudo-continuous control, numerous levels

of discretisation Nq do not seem to have a strong influence on the capture

width ratio in case of the SEAREV WEC. Practically, it is an interesting

result as it shows that even the simple pseudo-continuous control calculated

according to equation (12) does not need numerous of level of discretisation.

Figure 9. Capture width ratio of the SEAREV WEC with pseudo-

continous control with 1, 5 and 10 levels of discretisation of the PTO force

and with declutching control. Capture width values are plotted against wave

period for 1 m wave amplitude. In this example, the number of discretisation

levels Nq has only a small influence on the capture width ratio.

Figure 10. Time-domain simulation of the relative motion between the

hull and the pendular wheel in a regular wave of 5.5 s period and 1m ampli-

tude . Three control approaches are considered: pseudo-continuous control

21



with 1 and 10 levels of discretisation of the PTO force and declutching con-

trol.

2.2. Irregular waves

Figure (11) shows a 600 s time- domain simulation of the SEAREV WEC

with pseudo-continuous control (Nq = 10) and with declutching control, in

irregular waves. A Pierson Moskowitz spectrum was used for the generation

of the random incident wave field with a peak period Tp = 10 s and a signif-

icant height Hs = 2 m. With these parameters, the power in the incoming

wave is about 16 kW/m.

Figure 11. Time-domain simulation of the relative motion between the

hull and the pendular wheel in irregular waves. Two control approaches are

considered: pseudo-continuous control (solid line) and declutching control

(dashed line). The peak period of the spectrum is 10 s and the significant

wave height is 2 m.

In this example, the mean power production with pseudo-continuous con-

trol is 67 kW, whereas we achieved 90 kW with declutching control, i.e. an

increase of more than 34%. With a pseudo-continous control with Nq = 1

and the same irregular wave field, the mean power production achieved is 61

kW. Declutching control therefore leads to a power production increase of

more than 47% compared with pseudo-continuous control with Nq=1. Hence,

one can see that declutching control seems to be a more efficient way of con-

trolling the system in irregular waves in comparison with pseudo-continuous
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control. In the plot showing the time series of the relative motion, one can

see the amplification of motion achieved by declutching control compared to

that associated with pseudo-continuous control.

Figure 12. Time-domain simulation of the hdyraulic PTO SEAREV

WEC with declutching control in an irregular wave. The peak period of the

wave is Tp = 10 s and the significant height Hs = 2m.

Figure (12) shows the behaviour of the hydraulic PTO during the first

300 seconds of simulation of the system controlled with declutching control.

One can see that, after the transient associated with the starting of the sys-

tem, the pressure in the HP accumulator oscillates between 220 bars and 250

bars. This leads to a useful gas volume of about 400 liters. With a PTO

defined that way and a hydraulic motor displacement um controlled accord-

ing to equation (10), one can see on the bottom figure that we achieved a

satisfactory smoothing of the power delivered to the grid.

Figure 13. Ratios charts of the mean absorbed power by the SEAREV

WEC with a hydraulic PTO controlled by declutching and the mean ab-

sorbed power with a pseudo-continuous control. In the top figure, the pseudo-

continous control was computed with the discretisation parameter Nq = 10

and in bottom figure, Nq was set to one.

Figure (13) shows the ratio of the mean absorbed power by the SEAREV

controlled by declutching to the mean absorbed power with a pseudo-continuous
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control. Two values for the discretisation parameter Nq of the pseudo-

continuous control were considered, 1 and 10. Mean power values for each

sea state defined by Tz and Hs have been derived from a 600 s time-domain

simulation of the motion.

Again, as expected from the theory, one can see that whatever the sea

state is, the absorbed power with declutching control is always at least as high

as the absorbed power with pseudo-continuous control. Like in regular waves,

it appears that the ratio is close to 1 (although higher than 1) for moderate

to highly energetic sea states when the wave period is within the bandwith of

the system. When the wave period is far from the bandwidth of the system

or in small waves, one can see that the ratio increases significantly to reach in

some cases values above 2. This shows that declutching control could possibly

be an alternative way for controlling the motion of wave energy converters

(at least the SEAREV) in order to improve the overall energy absorption.

By comparing the top and bottom figures, one can see that, in contrast

with the case of regular waves, the number of level of discretisation Nq has

now a more significant influence on the capture width of the system, espe-

cially in low-energy sea states.

Conclusion

In this paper, two strategies for controlling the force applied by a hy-

draulic PTO were considered. The first one is a pseudo-continuous control,

which consists in mimicking a continuous behaviour. The second one is a

declutching control, which consists in isolating the cylinder from the high

pressure side of the hydraulic circuit at precise times that are determined
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using the optimal command method. The main advantage of this second

control strategy is that it requires only one by-pass valve whereas the other

one needs several hydraulic components, leading to a more complex system

and a higher risk of failure.

By means of the optimal command method, it is shown theoretically that

this declutching control is able to lead to energy absorption levels at least as

high as that of pseudo-continuous control. The methodology is then applied

to the practical case of the SEAREV wave energy converter, and it is shown

than declutching control can even lead to a higher energy absorption both in

regular and irregular waves.

However, it exists also other control strategies for hydraulic PTO, such

as the latching control proposed by [Falcao 2008]. Future work will be done

in order to determine which one of these strategies brings the higher capture

width. One should also notice that the method used here cannot be imple-

mented as such in the real world, as it requires the future knowledge of the

excitation force. Hence, future work will be required in order to find a causal

strategy to implement this control method in practical applications.
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Appendix

Using equations (1), (2), (4) and (5), one can show that function f of

equation (9) is

f(X, uc, um) =























Ẏ

(M + [µ
∞

])−1 (Fex − [δ]I − (KH + KA)Y + FPTO)

−ucSc|ẎJ | + umvmΩ

γ
p

V
(ucSc|ẎJ | − umvmΩ)

[β] I + [σ] Ẏ























(21)

In the hamiltonian, equation (19), the g and h functions are given by :

g(X,Λ) = Λt























Ẏ

(M + [µ
∞

])−1 (Fex − [δ]I − (KH + KA)Y)

umvmΩ

−γ
p

V
umvmΩ

[β] I + [σ] Ẏ























(22)

h(X,Λ) =
(

Sc(p − p0)(ẎJ − λ) + ẎJ(γ
p

V
Λ2Ndof +2 − Λ2Ndof+1)

)

(23)

with the λ scalar function given by :

λ =
(

ΛNdof+1
· · · Λ2Ndof

)

(M + µ∞)−1 κ (24)

and κ a vector such as:

κi =







1 if i = J

0 else
(25)
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Figure 1: Schematic representation of a hydraulic PTO for wave energy conversion.
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Figure 2: Principle of the pseudo-continuous control of the force of a hydraulic PTO.
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Figure 3: Schematic representation of the SEAREV wave energy converter and notations

used.



Figure 4: Schematic representation of the hydraulic PTO of the SEAREV wave energy

converter. A radial piston pump is used instead of a hydraulic cylinder.



HP volume 2 m3

Initial HP pressure 200 bars

Maximum HP pressure 350 bars

LP pressure 15 bars

Sc 402118 cm3

vm 701.75 cm3

Ω 1500 rpm

Table 1: Characteristics of the SEAREV hydraulic PTO
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Figure 5: Comparison of the PTO force achieved with the SEAREV’s hydraulic PTO

controlled with the pseudo-continuous control and the PTO force achieved with a linear

damper. In this example, the PTO force is discretised in 10 levels.
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Figure 6: Time domain simulation of the motion of the SEAREV WEC with a hydraulic

PTO controlled with the pseudo-continuous control (solid line) and with declutching con-

trol (dashed line). From top to the bottom, the figure shows the incoming wave, the

relative motion of the wheel, the PTO force and the absorbed energy from the waves. In

this example, the wave period is 8.2 seconds and the wave amplitude is 0.5 meter.
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Figure 7: PTO force with declutching control and velocity of the relative motion between

the hull and the pendular wheel. One can observe that each zero-crossing of the velocity

leads to a change in the state of the controller from declutching to operating.
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Figure 8: Capture width ratio of the SEAREV WEC with pseudo-continous and declutch-

ing control in regular waves. The capture width is plotted against wave period. From top

to bottom, the amplitude of the wave is respectively 0.5 m, 1 m and 2 m. For almost all

the wave periods considered, declutching control yields an equivalent or better efficiency

than pseudo-continuous control.
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Figure 9: Capture width ratio of the SEAREV WEC with pseudo-continous control with

1, 5 and 10 levels of discretisation of the PTO force and with declutching control. Capture

width values are plotted against wave period for 1 m wave amplitude. In this example, the

number of discretisation levels Nq has only a small influence on the capture width ratio.
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lar wheel in a regular wave of 5.5 s period and 1 m amplitude . Three control approaches

are considered: pseudo-continuous control with 1 and 10 levels of discretisation of the

PTO force and declutching control.
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Figure 11: Time-domain simulation of the relative motion between the hull and the pen-

dular wheel in irregular waves. Two control approaches are considered: pseudo-continuous

control (solid line) and declutching control (dashed line). The peak period of the spectrum

is 10 s and the significant wave height is 2 m.
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Figure 12: Time-domain simulation of the hydraulic PTO SEAREV WEC with declutch-

ing control in an irregular wave. The peak period of the wave is Tp = 10 s and the

significant height Hs = 2m.
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Figure 13: Ratios charts of the mean absorbed power by the SEAREV WEC with a

hydraulic PTO controlled by declutching and the mean absorbed power with a pseudo-

continuous control. In top figure, the pseudo-continous control was computed with the

discretisation parameter Nq = 10 and in bottom figure, Nq was set to one.


