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Baseline microbiota composition modulates
antibiotic-mediated effects on the gut
microbiota and host
Aonghus Lavelle1, Thomas Walter Hoffmann2, Hang-Phuong Pham3, Philippe Langella2, Eric Guédon4 and
Harry Sokol1,2,5*

Abstract

Background: Normal mammalian development and homeostasis are dependent upon the gut microbiota.
Antibiotics, essential for the treatment and prophylaxis of bacterial infections, can have collateral effects on the gut
microbiota composition, which can in turn have far-reaching and potentially deleterious consequences for the host.
However, the magnitude and duration of such collateral effects appear to vary between individuals. Furthermore,
the degree to which such perturbations affect the host response is currently unclear. We aimed to test the
hypothesis that different human microbiomes have different responses to a commonly prescribed antibiotic and
that these differences may impact the host response.

Methods: Germ-free mice (n = 30) humanized with the microbiota of two unrelated donors (A and B) were
subjected to a 7-day antibiotic challenge with amoxicillin-clavulanate (“co-amoxiclav”). Microbiome and colonic
transcriptome analysis was performed, pre (day 0) and post antibiotics (day 8) and subsequently into recovery (days
11 and 18).

Results: Unique community profiles were evident depending upon the donor, with donor A recipient mice being
dominated by Prevotella and Faecalibacterium and donor B recipient mice dominated by Bacteroides and Parabacteroides.
Donor A mice underwent a marked destabilization of their microbiota following antibiotic treatment, while donor B mice
maintained a more stable profile. Dramatic and overlapping alterations in the host transcriptome were apparent following
antibiotic challenge in both groups. Despite this overlap, donor A mice experienced a more significant alteration in gene
expression and uniquely showed correlations between host pathways and key microbial genera.

Conclusions: Germ-free mice humanized by different donor microbiotas maintain distinct microbiome profiles, which
respond in distinct ways to antibiotic challenge and evince host responses that parallel microbiome disequilibrium. These
results suggest that inter-individual variation in the gut microbiota may contribute to personalized host responses
following microbiota perturbation.
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Background
The mammalian microbiome incorporates a vast and di-
verse range of microorganisms that have co-evolved to live
with us, contributing essential functions through their col-
lective genetic and metabolic repertoire [1]. Ecological di-
versity and inter-individual variation are hallmarks of the
healthy gut microbiome [2] and appropriate assembly of
microbial communities in infancy and their maintenance
in adulthood is of critical importance for metabolic [3]
and immune [4] maturation, with the microbiome playing
a role in both immune education and homeostasis. Many
common environmental exposures can have demonstrable
effects on the microbiome, including mode of birth deliv-
ery [5], antibiotic use [6, 7], reduced dietary diversity [8],
and prescription medications [9], and some associations
with these exposures and subsequent development of im-
mune, inflammatory, or metabolic conditions have been
made [7, 8, 10–13].
Antibiotic treatment, one of the fundamental medical

achievements of the past century, represents a notable ex-
ample of microbiome perturbation, with rapid and some-
times enduring changes to the community structure [14].
Antibiotic administration during the neonatal “window
period”—when the gut microbiota is in part responsible
for immune education [15]—may have long-term conse-
quences, and early life antibiotics have been associated
with increased risk of asthma, obesity, and Crohn’s disease
[6, 7, 11, 16]. Furthermore, antibiotic use is directly associ-
ated with the development of vancomycin-resistant
Enterococcus (VRE)[17], recurrent Clostridium difficile in-
fection (CDI)[18], and the emergence of antibiotic resist-
ance as a global health threat [19]. Notably, response and
recovery of human gut microbiota communities following
antibiotic treatment can be highly variable between indi-
viduals, as described in the context of responses to the
antibiotic ciprofloxacin [20] and the routine prescription
of antibiotics clarithromycin and metronidazole for the
treatment of Helicobacter pylori infection [21]. Whether
such changes are restricted to the microbiota or result in a
downstream alteration in intestinal host response as well
is not currently clear.
Due to the importance of the microbiota for host

homeostasis and the marked collateral effects of antibi-
otics on the microbiota, we posed the questions: (a) can
antibiotic administration result in correlated fluctuations
of the microbiota and host colonic transcriptome? and (b)
if so, is there evidence of a personalized response? To an-
swer these questions, we characterized the microbiota and
the colonic transcriptome of germ-free mice (GFM) hu-
manized with fecal samples from two unrelated healthy
human donors, before and after treatment with the broad-
spectrum antibiotic amoxicillin-clavulanate (i.e., co-amox-
iclav), commonly used to treat various infections in clin-
ical practice (Fig. 1a).

Results
In total, samples from 30 mice passed quality controls,
15 in each group. One animal from the donor B group
at day 0 (D0) was excluded due to low microarray signal
intensity values. Four hundred fifty-four OTUs (oper-
ational taxonomic units—see the “Methods” section for
the definition as we used the dada2 pipeline [22]), were
identified following filtering and were assigned to 51
genera (mean sequences per sample following filtering
6089, range 4219–8835, rarefaction curves presented in
Additional file 1: Figure S1A).

Baseline microbiome composition modulates
susceptibility and recovery following antibiotics exposure
Donor A recipient mice (donor A mice) had a markedly
different community compared to mice from donor B.
Donor A mice had a microbiota composition dominated
by Prevotella (mean 26.6% (SD 13.6%)) and Faecalibacter-
ium (mean 24.9% (SD 12.5%)), with Bacteroides (mean
17.3% (SD 7.8%)) being the third most dominant genus
(Additional file 2). In donor B mice, the dominant genera
were Bacteroides (mean 37.9% (SD 12.2%)) and Parabac-
teroides (mean 19.6% (SD 7.6%)), with less than 1% mean
abundance of both Faecalibacterium and Prevotella (Fig.
1b, c). Samples for each donor were aggregated at each
time point and submitted to enterotype clustering with
the MetaHIT data set [23, 24] (following manual filtering
to assure all genera matched) (Additional file 1: Figure
S1B). This confirmed clustering of donor A mice with the
Prevotella enterotype and donor B mice with the Bacter-
oides enterotype. Online reference-based enterotyping
[25] similarly classified these samples to the Prevotella
and Bacteroides enterotypes.
The response to antibiotic administration was markedly

different between the two donor groups. Immediately fol-
lowing co-amoxiclav treatment (D8—day 8), donor A
mice demonstrated an increase in Prevotella sequences
from baseline (D0) (from mean 27.4% (SD 5.9%) to mean
44.9% (SD 3.7%)) with a significant reduction in this genus
by late recovery (mean 13.9% (SD 7.7%)) and a corre-
sponding increase in Faecalibacterium OTUs at these
time points (D0—mean 13.1% (SD 10.5%), D8—mean
21.3% (SD 5%), D11 (day 11)—mean 23.6% (SD 13%), D18
(day 18)—mean 38.5% (SD 7.4%); Fig. 1b, Additional file
2). There was a trend of decreasing proportional abun-
dance in Bacteroides throughout the study in the donor B
group, although this did not reach significance at any time
point (D0—49.3% (SD 17.5%), D8—40.9% (SD 9.7%),
D11—31.9% (SD 12%), D18—32.2% (SD 4%)), while Para-
bacteroides remained largely stable throughout (Add-
itional file 2). Diversity was not significantly altered by
antibiotic treatment (Fig. 1d, Additional file 3). Comparing
different time points using DESeq2 for donor A mice,
there was a significant reduction in Clostridium XIVb at
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D8 from baseline (D0), a significant reduction in Rose-
buria at D8 from D0, a significant reduction in Prevotella
between D8 and D18, a significant increase in Blautia at
D18 compared to D8, and a significant increase in Dorea
at D18 compared to D8 (Fig. 2a).
In contrast to donor A mice, only one genus, Rumino-

coccus, increased significantly in donor B mice at D18
(Fig. 2b). Overall, there was a much more marked

disruption of the community structure in mice from
donor A mice when compared to donor B mice, evident
in PCoA plots of weighted unifrac distance (Fig. 2c). To
determine if there was a significant difference in terms of
the effect of donor and day post antibiotics, we performed
a two-way PERMANOVA, which indicated a significant
interaction between donor and day (Table 1). A post hoc
analysis demonstrated differences only for donor A, at

Fig. 1 a Schematic of study design, including donor groups, antibiotic treatment, and recovery period as well as sampling points. b Barplots of
relative genus-level abundance of the 50 most abundant OTUs in each sample. c Differentially abundant genera by DESeq2 between donor
groups, including all time points. d Simpson diversity stratified by donor and time point
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Fig. 2 a Genera differentially abundant (adjusted P value < 0.01) in donor A mice by DESeq2. b Similar to a but for donor B mice. c Weighted
unifrac distance with per group. Results of the corresponding two-way PERMANOVA are presented in Table 1. d PCoA of weighted unifrac
distances for donor A alone, with genera that correlate significantly with PCoA axes (Spearman’s correlation, P value after correction 0.1) and
PERMANOVA R2 and P value for univariate comparison. e PCoA for donor B as in d with weighted unifrac distances. No significant correlations
were present. PERMANOVA R2 and P value for univariate comparison

Table 1 Results of two-way PERMANOVA of weighted unifrac distances (random seed for rooting tree, 1234). P values (***< 0.001,
*< 0.05)

df MeanSqs F model Post hoc test (FDR adjustment)

Main effects

Donor 1 0.492 55.787***

Day 3 0.0502 5.692***

Two-way interaction

Donor : Day 3 0.0236 2.674*

Contrasts
Donor A: D0 vs D18*
Donor A: D8 vs D11*
Donor A: D8 vs D18*
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pairwise contrasts between D0 vs D18, D8 vs D11, and D8
vs D18 (false discovery rate (FDR) P values < 0.05). Correl-
ation of the PCoA scores with genera demonstrated a
correlation between a number of key taxa, including Pre-
votella and Faecalibacterium, associated with the changes
in donor A mice (Fig. 2d). No correlations were evident
for donor B mice (Fig. 2e). While we did not have a no-
antibiotic control group, we designed the study such that
antibiotic-induced changes to the microbiota must occur
independently in two cages. To ensure this was the case,
we used a distance-based method to determine if within-
cage differences over time (Additional file 4: Figure S2A)
were significantly different from time point-specific dis-
tances, including between-cage effects at D8 (post antibi-
otics) (Additional file 4: Figure S2B and S2C). We
observed a significant shrinking in the distance post anti-
biotics in donor A mice but did not observe a similar

reduction in donor B mice, suggesting that the effects of
antibiotics in this group were not above the baseline
within-cage variability over the course of the study (Add-
itional file 4: Figure S2C).
Taken together, these results demonstrated a marked

effect of co-amoxiclav administration on the microbiota
of donor A mice, with notable shifts in the dominant
genus Prevotella and a number of less abundant genera.
In contrast, the microbiota profile of donor B mice
remained relatively unaffected.

Antibiotics induce dramatic changes on host
transcriptome, which overlap independently of baseline
microbiota composition
Gene expression was assessed initially with PCA for all
mice combined (Fig. 3a). This demonstrated a pattern
associated with antibiotic treatment, with the main

Fig. 3 a PCA plots of gene expression data following antibiotic treatments for all mice combined, clustered by day with respect to antibiotic
treatment. b Heatmap of differentially expressed genes at the D18 vs D0 contrast. c GO enrichment analysis, followed by submission to REVIGO,
stratified by contrast

Lavelle et al. Microbiome           (2019) 7:111 Page 5 of 13



separation between early (D0 and D8) and recovery (D11
and D18) time points. Figure 3b represents differentially
expressed genes between D18 and D0 (1845 in total), which
again demonstrate clear clustering between early (D0 and
D8) and recovery (D11 and D18) time points. Gene Ontol-
ogy (GO) analysis with the goana function in limma identi-
fied a large number of significant GO terms between
different contrasts, so the top 100 were submitted to
REVIGO and of the resulting output, those with a −
log10(P value) > 5 were plotted. This analysis demonstrated
significant changes in many terms, prominently biological
processes concerned with extracellular matrix organization,
cellular adhesion, signaling, cell migration, developmental
processes, and circadian rhythm (Fig. 3c).
A combined analysis of both groups in our study also

demonstrated significant differential gene expression al-
terations at D8 relating to genes associated with circa-
dian rhythm, consistent with previously reported
findings following antibiotic treatment, including altered
expression of Per genes, Cipc, Prkaa2, NR1D2/Rev-ErbA,
Ciart, NPAS2/CLOCK, NFIL3/E4BP4, and ARNTL/
BMAL1 [26] (Additional file 5: Figure S3). Recent work
has precisely explored the relationship between circadian
rhythm and the microbiome and identified diurnal bio-
geographic changes in microbial proximity to the epithe-
lium which orchestrate epithelial and host circadian
processes [27–29].
When the same analysis was repeated for each donor

group individually, more significantly differentially
expressed genes were detected in the donor A than
donor B group (Fig. 4a–c). While only a limited number
of differentially expressed genes were evident for donor
B mice, there was notable overlap in those genes that
were with donor A mice (Fig. 4c). Additionally, heat-
maps of contrasts D11 vs D8 (Fig. 4d) and D18 vs D8
(Fig. 4e) including these genes, while dominated by
donor A, still demonstrated clear clustering based on
early (D0, D8) and late (D11, D18) time points, again
suggesting that even though these genes did not meet
the threshold for differential expression for donor B,
there was a common pattern in response to co-amoxi-
clav. GO terms with at least four genes were submitted
to REVIGO (donor A, Fig. 4f; donor B, Fig. 4g) demon-
strated common activation of circadian rhythm terms at
D8 compared to recovery time points (D11 and D18),
while terms relating to immune system processes, cell
adhesion and response to stimulus were evident in
donor A mice at D18 when compared to the early time
points (D0 and/or D8).
Taken together, these results demonstrate a marked ef-

fect of co-amoxiclav administration on the colonic tran-
scriptome of humanized mice. Gene expression analysis
identified changes in genes involved in extracellular matrix
organization, cellular adhesion and motility, developmental

processes, circadian rhythm, and immune system pro-
cesses. While the pattern of gene expression was similar re-
gardless of the baseline (D0) microbiota, the degree of
change appeared to be more marked in mice humanized
by donor A than by donor B. As these were the mice that
had a more marked alteration in the microbiota compos-
ition in response to co-amoxiclav, we next investigated
whether correlation between the transcriptome and micro-
biota was evident.

Host transcriptome-microbiota correlation reveals marked
covariance between the microbiota and GO pathways in
donor A mice but not in donor B mice
Due to the large number of differentially expressed genes
across the different contrasts, we used Gene Set Variation
Analysis (GSVA) to identify gene pathways associated with
antibiotic treatment. To perform correlation with microbial
taxa, we used Hierarchical All-against-All significance test-
ing [30], a recently developed technique for determining
relationships between multi-omics datasets (Fig. 5, Add-
itional files 6 and 7). This method identifies significant cor-
relations between individual features of both datasets, as
well as identifying correlations between clusters of features.
Performed using Spearman’s correlation values on the
genus-level abundance from each donor and the corre-
sponding pathway abundance from GSVA, a large number
of correlations were evident for donor A mice following
multiple-hypothesis correction, including a number of
dominant and/or differentially abundant bacterial taxa
from that donor (Prevotella, Dorea, Faecalibacterium,
Blautia, and Roseburia). Figure 5 represents a network plot
of significant correlations between individual pathways and
bacterial genera for donor A mice. The pathways are col-
ored by high-level GO assignments. Furthermore, path-
way-bacteria correlations, including additional clusters
determined by HAllA, are represented in Additional file 6
(data) and Additional file 7: Figure S4. In contrast, no sig-
nificant correlations between pathway expression and the
microbiota were evident for donor B mice.
Taken together, these results demonstrate correlation

between host pathways and microbiome composition
was unique to donor A mice. However, as the anti-
biotic-induced changes in donor B mice were consider-
ably weaker, such correlations are harder to detect and
higher numbers of mice would probably be required in
this case.

Discussion
We report that GFM humanized with different human
donor microbiota maintain a unique community profile
and experience individualized responses to oral anti-
biotic administration. Mice humanized with donor A
microbiota were dominated by Prevotella and Faecali-
bacterium, with a lesser contribution from Bacteroidetes
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and underwent marked fluctuations in terms of their
dominant genera, most prominently Prevotella and Fae-
calibacterium, as well as in other lower abundance gen-
era within the community. It is notable that by D18, the
mean abundance of Prevotella was approximately half
that of baseline (D0), while the mean proportional abun-
dance of Faecalibacterium was almost three times the
baseline (D0) (Fig. 1b and Additional file 2), suggesting
that the donor A group had a lower resilience, without
return to baseline by the end of the study.
In contrast to donor A, donor B mice were much more

resilient to antibiotic administration, with the notable
exception of a late bloom in Ruminococcus sequences at
D18. Bacteroides was the dominant genus in this group
with Parabacteroides, the second most dominant genus.
As mentioned, there was a trend of decreasing

proportional abundance in Bacteroides throughout the
study in the donor B group, although this did not reach
significance. Notably, most dramatic changes in micro-
biota composition occurred in the recovery period.
We did not observe a significant change in α-diversity

over the duration of the study. We note that there were
only three baseline (D0) mice in each group and this
may have accounted for our inability to detect a signifi-
cant change. Furthermore, as we did not detect changes
in general in the donor B group, it is consistent that we
did not detect a change in α-diversity either. In terms
of donor A mice, we did note a drop-off in the Simpson
diversity at D18 (Fig. 1d) but changes in this donor
group appeared to be dominated by compositional
changes rather than a reduction in richness (unique
OTUs).

Fig. 4 Gene expression analysis for both donor groups individually. a PCA as in Fig. 3a, isolating donor A gene expression. b PCA for donor B
expression alone. c Contrasts with differential genes and the relative contribution from donor A and donor B. Red represents donor A, blue donor
B, and white overlap. d D11 vs D8 heatmap of differential gene expression. e D18 vs D8 heatmap of differential gene expression. f GO
enrichment analysis following submission to REVIGO, stratified by contrast for donor A. g As in f but for donor B
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Marked effects of antibiotics on the colonic transcrip-
tome were also demonstrated, again most notably in the
recovery period. In a pooled analysis, there was a signifi-
cant increase in many processes related to biological ad-
hesion and sensing (Fig. 3), perhaps due to stimulation
from a rebound recovery in bacteria following the with-
drawal of antibiotics. When analyzed individually, the
gene expression changes were more marked for donor A
mice, suggesting that the more dramatic perturbations
in composition associated with this donor group were
reflected in the transcriptome. Stronger evidence for this
conclusion can be drawn from the multiple correlations
detected between enriched GO pathways and the micro-
biota composition of donor A mice (Fig. 5), in contrast
to those of donor B. While these correlations only repre-
sent an association, it must also be noted that the total
bacterial load was not quantified in this study and as
such, the changes in composition may reflect significant

changes in mucosal-associated bacteria, which were per-
haps more dramatically altered in donor A mice.
Recently, a study has elegantly elucidated the effects of

an ablative cocktail of antibiotics on the colonic tran-
scriptome, identifying that depletion of the microbiota,
direct antibiotic effects on the host, and the effects of
antibiotic-resistant microbiota account for the alter-
ations [31]. This study also demonstrated downregula-
tion of immunity with antibiotic treatment, while
identifying significant direct toxicity of antibiotics on
mitochondrial function. Interestingly, a recent study in
healthy adults using a cocktail of antibiotics demon-
strated dramatic, rapid shifts in microbiome compos-
ition, followed by near-complete recovery within 6
months [32]. In contrast, our study utilized a more gen-
tle perturbation with a single antibiotic combination
commonly used in human medicine, in order to deter-
mine correlations between disturbances in the

Fig. 5 Network plot of significant correlations between GO pathways drawn from GSVA and genera abundance for donor A mice determined by
the HAllA method. Corresponding GO pathways are provided in Additional file 6
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microbiota and the transcriptome, in addition to their
relationships to baseline microbiota composition.
Our data suggest that while the response to antibiotics

is very different between groups of GFM humanized by
different donors, and therefore enterotypes, gene expres-
sion patterns in response to antibiotics are similar. How-
ever, the magnitude of the change detected was more
evident in the donor A group, suggesting that the mag-
nitude of microbiota perturbation influences the subse-
quent changes in gene expression. Such a conclusion fits
with numerous observations in murine models highlight-
ing the importance of the baseline microbiota, its impact
in a range of settings, and the requirement for methods
to quantify and standardize microbiome effects in ani-
mal models [33]. These data also suggest that in multi-
omics studies incorporating the microbiome, temporal
analysis within individuals may yield more insights than
aggregating data between individuals with very different
baseline microbiota compositions. This was clearly evi-
dent in our results, where aggregation of data led to a
complete loss of the covariance structure due to the dif-
ferent levels and responses of shared bacterial genera be-
tween donor groups. These findings would also fit more
broadly with emerging data indicating that our micro-
biome represents an important element of our personal-
ized response to environmental factors [34, 35].
A number of limitations should be noted in our study.

Only two donors groups were available for analysis and
therefore findings relating to the behavior of individual
genera, both in their response to antibiotics and their as-
sociation with host transcriptome response, cannot ne-
cessarily be extrapolated to include a range of donor
microbiome compositions. Furthermore, varying doses
of antibiotics, administration protocols, and antibiotic
cocktails have been used in previous studies, limiting
direct comparisons. It is important to note that we did
not sequence the original donor communities and there-
fore we cannot characterize precisely the true extent of
engraftment of strains or the resulting compositional
similarity to the original fecal sample. We have based
our conclusions on this model protocol as it is estab-
lished in our facility in multiple studies that replicate
phenotypic traits of the donor [36–39], as well as from
other groups, where seminal findings have established
that up to 85% of human taxa can be established follow-
ing oral gavage [40]. However this study and other simi-
lar studies have used higher initial concentrations, and
other studies have used higher quantities again [41], as
well as repeated dosing schedules [42]. We do however
note that the microbiota communities in our study clus-
tered closely with human donors from the MetaHIT
consortia, suggesting we had recapitulated an adequate
proportion of the donor microbiota in each group. In
addition to these specific points in relation to our study,

humanized GFM also suffer from a number of limitations,
including the effects of a non-native microbiota and im-
paired immune development in the humanized mouse in-
testine and these must also be acknowledged [43].
In addition, we did not use a no-antibiotic control group

but instead housed mice in one of two separate cages for
each donor group. This design implicitly required that
changes be consistent across cages in each donor group.
We acknowledge however that this represents a limitation
in our study. We have used the cage effects in the study to
demonstrate significant convergence of microbiota com-
munities in donor A post antibiotics (D8) and not in
donor B. However, conclusions from both the microbiota
and host transcriptome must take into account the lack of
a no-antibiotic control group.
Finally, recent work has demonstrated the importance

of bacterial load in characterizing the microbiome, and
changes in total bacterial counts in both donor groups
may have contributed to some of the effects seen [44].

Conclusions
In summary, we have demonstrated that a commonly
prescribed antibiotic can exert significant effects on the
gut microbiota, in concert with colonic gene expression.
Notably, while the host response appeared to be con-
served, the degree of activation was related to the degree
of microbiota perturbation, resulting in correlations be-
tween host transcriptome and the microbiota unique to
one donor community. These findings offer a window
into the role that our microbiome plays in mediating our
personalized response to medications such as antibiotics.

Materials and methods
Study design
All procedures in relation to the care and use of laboratory
animals were carried out in accordance with European
guidelines and the local ethics committee approved this
study. Germ-free male 6-week-old mice (n = 31) were
transferred into two sterile separate isolators (Table 2;
ANAXEM, INRA, Jouy-en-Josas, France) for the 10-week
duration of the study and had ad libitum access to irradi-
ated feeds and sterile water. Mice were observed once a
day to ensure their welfare. For colonization, GFM were
inoculated orally with 250 μl of a 10−2 dilution of whole
fecal homogenate from two healthy adults (termed donors
A and B) with no history of intestinal problems or intake
of antibiotics 3months prior to the beginning of the study,
resulting in a single donor fecal microbiota transplant-
ation per isolator (donor A (n = 15) and donor B (n =
16)). Mice in each isolator were housed in two separate
cages (Table 2), with the aim to have four mice per time
point (two per cage) following antibiotics in each group.
The human donors who provided a fecal sample gave their
verbal consent to do so. Fifty-six days after microbiota

Lavelle et al. Microbiome           (2019) 7:111 Page 9 of 13



inoculation, samples were acquired at baseline (day 0
(D0); donor A (n = 3), donor B (n = 4)), followed by the
administration of the penicillin antibiotic amoxicillin in
combination with the β-lactamase inhibitor clavulanic acid
once a day (80mg and 10mg/kg) to all remaining mice.
We chose this antibiotic as it is a commonly prescribed,
broad-spectrum human antibiotic, and treatment was
continued for a total of 7 days, similar to the duration of a
typical treatment for a community infection [45], followed
by sampling at days 8 (D8), 11 (D11), and 18 (D18) (Fig.
1a). We choose this dose as it is intermediate between
doses used in previous rodent studies [46, 47] and is the
current recommended dosing for children under 40 kg
body weight in France [48].

Sampling
At each time-point, a subset of animals was sacrificed
(see Table 1), the large intestine (colon) was removed
and luminal contents acquired and processed for the ex-
traction of community microbial DNA. RNA extraction
proceeded directly from the large intestine. We did not
have prior data to estimate the duration of the recovery
period to monitor and so early recovery (D11, 3 days
post-cessation of antibiotics) and late recovery (D18, 10
days post-cessation of antibiotics) time points were
chosen.

Gene expression
Total RNA was isolated from the large intestine with the
RNeasy Mini Kit (Qiagen, Courtaboeuf, France) accord-
ing to the manufacturer’s instructions. RNA 6000 Nano
chips on a Bioanalyzer 2100 (Agilent Technologies, Les
Ulis, France) were used to assess RNA integrity. Gene
expression profiling was performed with the SurePrint
G3 Mouse GE 8x60 K Microarray (Design ID: 028005,
Agilent Technologies). Further details are provided in
supplementary methods in Additional file 8.

DNA extraction and sequencing
Fecal samples were weighed and resuspended in 250 μl
of 4M guanidine thiocyanate in 0.1M Tris at pH 7.5
(Sigma) and 40 μl of 10% N-lauroyl sarcosine (Sigma) for
10 min at room temperature. Five hundred microliters of
5% N-lauroyl sarcosine in 0.1M phosphate buffer (pH
8.0) was then added and incubated at 70 °C for 1 h. A

mixture of sterilized silica beads (0.1- and 0.6-mm diam-
eter) was added and the tube shaken three times at 6.5
m/s for 30 s in a FastPrep apparatus (MP Biomedicals).
Fifteen milligrams of polyvinylpolypyrrolidone was then
added to the tube, and this was vortexed and centrifuged
at 20,000×g for 5 min. Following the recovery of the
supernatant, the pellets were washed with 500 μl of
TENP (50 mM Tris (pH 8), 20 mM EDTA (pH 8), 100
mM NaCl, 1% polyvinylpolypyrrolidone) and centrifuged
for 5 min at 20,000×g and the new supernatant was
added to the first supernatant. The washing step was re-
peated twice. The pooled supernatant was centrifuged
briefly to remove particles and then split into two 2-ml
tubes. Precipitation of nucleic acids was performed by
adding one volume of isopropanol for 10 min at room
temperature with centrifugation at 20,000×g for 10 min.
Pellets were then resuspended and pooled in 450 μl of
100 mM phosphate buffer at pH 8 and 50 ml of 5-M po-
tassium acetate. The tube was placed on ice overnight
and then centrifuged for 30 min at 20,000×g. The super-
natant was subsequently transferred to a new tube con-
taining 20 μl of RNase (1 mg/ml) and incubated at 37 °C
for 30 min. Nucleic acid precipitation was performed by
adding 50 μl of 3-M sodium acetate and 1ml of absolute
ethanol. The tube was incubated for 10 min at room
temperature and the nucleic acids were recovered by
centrifugation at 20,000×g for 15 min. The resulting
DNA pellet was finally washed with 70% ethanol and
then dried and resuspended in 100 μl of Tris–EDTA
(TE) buffer.
Amplicon libraries for barcoded 454 pyrosequencing

were generated by PCR of the V3–V4 hypervariable re-
gion of the 16S gene with the primers 343F 5′-TACG
GGAGGCAGCAG-3′ and 806R 5′-GGACTACCAGGG
TATCTAAT-3′. Barcodes are available in the supple-
mentary methods (Additional file 8).

Bioinformatic and statistical analysis
Transcriptome analysis
Following the pre-processing of raw transcriptome data
(described in detail in Additional file 8), statistical ana-
lysis was performed in the R statistical environment (R
version 3.6.0) [49].

Differential gene expression analysis
Principal component analysis was performed using the
ade4 (v1.7-13) [50] and factoextra (v1.0.5) packages in R.
Differential gene expression was performed using the
limma package (v3.36.5) and the eBayes test [51].
Multiple testing corrections were made using the Benja-
mini-Hochberg method (adjusted P values < 0.05). Dif-
ferentially enriched pathways in the Gene Ontology
(GO) databases were identified using the goana function
in the limma package. To remove redundancy, GO

Table 2 Number of samples according to time points, donors,
and cages

Donor Cage D0 D8 D11 D18

A 1 2 2 2 2

A 2 1 2 2 2

B 1 2 2 2 2

B 2 2 2 2 2
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terms that were significantly enriched (adjusted P value
< 0.01) were submitted to REVIGO [52] and the output
presented by way of – log10 (P value).

Microbiome analysis
Demultiplexing of pyrosequencing fasta and quality files
was performed with QIIME (v1.9.1) [53] and FASTQ
files were created which were loaded into R and ana-
lyzed using the DADA2 package (v1.10.0), optimized for
pyrosequencing output [54] (see Additional file 8) to
give a table of amplicon sequence variants (referred to
as operational taxonomic units (OTUs) throughout).
Taxonomic assignments were performed using the RDP
v16 (Ribosomal Database Project) training set specially
formatted for the DADA2 package [55]. Phylogenetic
tree construction utilized the DECIPHER [56] and Phan-
gorn [57] packages. All subsequent microbiome analyses
were performed through the phyloseq (v1.24.2) and
vegan (v2.5-5) packages in R [22, 58, 59].
Alpha diversity was presented using the Simpson di-

versity index. Differential abundance between donor
groups and between different time points within donor
groups was assessed using DESeq2 (v1.24.0) (FDR P
values < 0.01) and significance was confirmed by Mann-
Whitney testing [60]. Beta diversity was assessed with
principle coordinate analysis (PCoA) of weighted unifrac
distances [61] on proportional abundance data (propor-
tion normalized). A two-way PERMANOVA was per-
formed, using donor and day as main effects and the
interaction between donor and day as the interaction
term. Post hoc pairwise testing was performed using the
“pairwise.perm.manova” function from the RVAideMe-
moire package (v 0.9-73) [62]. Spearman’s correlation of
genus-level microbial taxa was also performed against
the first two principal coordinate axes for each donor
group individually to illustrate bacterial genera associ-
ated with major variation. P values were adjusted with
the Benjamini-Hochberg method and correlations with
adjusted P values < 0.1 were retained. Graphs were made
using ggplot2 (v3.1.1) [63] (Additional file 9).

Correlation of microbiota and transcriptome
To determine if there was evidence of the correlation
between antibiotic-induced changes in the microbiota
and the transcriptome, we firstly used Gene Set Vari-
ation Analysis (GSVA) to identify enriched GO pathways
across the entire transcriptome data set, using the R
package GSVA (v1.32.0) [64]. GO pathways were derived
from a murine version of the Molecular Signatures Data-
base (MSigDB) [65]. GSVA output was then submitted
to limma to determine differentially expressed pathways.
This allowed for dimensionality reduction, reducing the
total number of transcripts (18,217) and differentially
expressed genes (3630) to 182 differentially expressed

pathways across all contrasts. Due to the extreme differ-
ences in microbiota composition between the two donor
groups, pathway scores were correlated with genus-level
bacterial abundance for each group individually. Correl-
ation was performed using the Hierarchical All-against-
All (HAllA) approach developed for multiomics data
sets [30], having discarded pathways with log fold
changes of < 0.5. Benjamini-Hochberg-adjusted P values
of < 0.1 were retained from the results and were plotted
using ggraph and igraph [66] (Additional file 10).

Additional files

Additional file 1: Figure S1. A. Rarefaction curves for 16S sequences
per sample. Observed species and Shannon diversity are presented. B.
Data from MetaHIT and this study submitted to enterotyping with mean
abundance at each time point for each donor group, demonstrating
clustering of donor A with the Prevotella enterotype and donor B with
the Bacteroides enterotype. (TIFF 1269 kb)

Additional file 2: Tables of proportional abundance of different genera
in the different donor groups. (XLSX 18 kb)

Additional file 3: Results from statistical tests of significance for
different diversity metrics. (XLSX 8 kb)

Additional file 4: Figure S2. Distance-based analysis examining the
effects of antibiotics within and between cages. Schematic of the
weighted unifrac distances between time points within individual cages
for a donor group (S2A) and the distances at individual time points,
including those between cages (S2B). In S2C, these distances are plotted
for both donor groups, indicating a significant shrinking in distance post
antibiotics (D8) in donor A mice, while there is no significant difference
for donor B mice. (TIFF 1150 kb)

Additional file 5: Figure S3. Heatmap of differentially abundant genes
relating to the circadian rhythm at the contrasts for both donor groups
(all mice) combined. (TIFF 943 kb)

Additional file 6: Output from HAllA correlations of GSVA and genus
abundance. (XLSX 43 kb)

Additional file 7: Figure S4. Heatmap output from Hierarchical All-
against-All significance procedure for donor A. (PDF 138 kb)

Additional file 8: Supplementary methods and pyrosequencing
barcodes. (DOCX 118 kb)

Additional file 9: Output describing the code used for microbiota
analysis. (HTML 3490 kb)

Additional file 10: Output describing the code used for transcriptome
analysis. (HTML 2420 kb)
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