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An Efficient Solution to the Homography-Based Relative Pose Problem With a Common Reference Direction

In this paper, we propose a novel approach to two-view minimal-case relative pose problems based on homography with a common reference direction. We explore the rank-1 constraint on the difference between the Euclidean homography matrix and the corresponding rotation, and propose an efficient two-step solution for solving both the calibrated and partially calibrated (unknown focal length) problems. We derive new 3.5-point, 3.5-point, 4-point solvers for two cameras such that the two focal lengths are unknown but equal, one of them is unknown, and both are unknown and possibly different, respectively. We present detailed analyses and comparisons with existing 6-and 7-point solvers, including results with smart phone images.

Introduction

RANSAC [START_REF] Martin | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF] has been established as one of the most successful techniques for model estimation from data with outliers. Using a minimal point-correspondence is of extreme importance for handling large amounts of outliers in the image correspondences [START_REF] Fraundorfer | Visual odometry: Part ii: Matching, robustness, optimization, and applications[END_REF]. However, reducing the number of point correspondence requires reasonable assumptions or extra data, e.g., coplanar points, planar motion, pure rotation or translation, etc. When a common reference direction (e.g.,gravity) is known for both cameras, there is only one unknown rotation parameter [START_REF] Viéville | Computation of ego-motion and structure from visual and inertial sensors using the vertical cue[END_REF], and the relative pose of the cameras has only four degrees of freedom. In practice, modern cellphones or camera-IMU (inertial measurement unit) systems have accelerometers which can provide the gravity vector. Similar situations arise when we detect a vanishing point. On the other hand, in indoor and outdoor environments, planar parts of the scene are often dominant, such as floor, walls, doors, street or other general structures. In this paper, we assume that the scene contains at least one plane, and propose new homographybased minimal solvers to calibrated and partially calibrated relative pose estimation with a common reference direction. The main contributions of this paper are:

• A rank-1 constraint on the difference between the Euclidean homography matrix and the corresponding rotation is introduced to formulate the problem efficiently. • Based on this constraint, we propose an efficient twostep solution for eliminating part of the unknowns from the original equations. • This allows us to solve the homography-based relative pose problems with a common direction, including the calibrated case (3-point), two cameras with equal focal lengths (3.5-point), two cameras where one is calibrated and the other's focal length is unknown (3.5point), and two cameras with different focal lengths (4-point).

Related work

When the two cameras are semi-calibrated, in the sense that the only unknown intrinsic parameter are the focal lengths, at least seven point correspondences are needed to recover the motion and focal lengths of two cameras [START_REF] Richard | Estimation of relative camera positions for uncalibrated cameras[END_REF][START_REF] Bougnoux | From projective to euclidean space under any practical situation, a criticism of self-calibration[END_REF]. If the two cameras have the same focal length, at least six point correspondences are needed [START_REF] Stewénius | A minimal solution for relative pose with unknown focal length[END_REF][START_REF] Li | A simple solution to the six-point two-view focal-length problem[END_REF][START_REF] Hartley | An efficient hidden variable approach to minimal-case camera motion estimation[END_REF][START_REF] Kukelova | Polynomial eigenvalue solutions to minimal problems in computer vision[END_REF][START_REF] Kukelova | A clever elimination strategy for efficient minimal solvers[END_REF]. One the other hand, if 4 points are coplanar, only one extra point is enough [START_REF] Torii | The six point algorithm revisited[END_REF]. When one camera is fully calibrated and the other one's focal length is unknown, six point correspondences are needed as well [START_REF] Bujnak | 3d reconstruction from image collections with a single known focal length[END_REF][START_REF] Kukelova | Polynomial eigenvalue solutions to minimal problems in computer vision[END_REF][START_REF] Kukelova | A clever elimination strategy for efficient minimal solvers[END_REF]. Given a fully calibrated camera, it is well known that the relative pose problem can be solved using five point correspondences [START_REF] Nistér | An efficient solution to the five-point relative pose problem[END_REF][START_REF] Li | Five-point motion estimation made easy[END_REF][START_REF] Kukelova | Polynomial eigenvalue solutions to minimal problems in computer vision[END_REF]. If the points are coplanar, homography-based solver need four point correspondences [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]. Recently, it has been shown that with a common direction, the two-view relative pose problem can be solved with only three point correspondences using epipolar constraints [START_REF] Fraundorfer | A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles[END_REF][START_REF] Naroditsky | Two efficient solutions for visual odometry using directional correspondence[END_REF][START_REF] Sweeney | Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem[END_REF] or homographies [START_REF] Saurer | A homography formulation to the 3pt plus a common direction relative pose problem[END_REF][START_REF] Saurer | Homography based egomotion estimation with a common direction[END_REF]. In [START_REF] Banglei Guan | Visual odometry using a homography formulation with decoupled rotation and translation estimation using minimal solutions[END_REF], the author propose a homographybased relative pose estimation assuming a known vertical direction and a dominant ground plane.

The most closely related work to ours for the calibrated case is by Saurer et al. [START_REF] Saurer | A homography formulation to the 3pt plus a common direction relative pose problem[END_REF][START_REF] Saurer | Homography based egomotion estimation with a common direction[END_REF]. In [START_REF] Saurer | Homography based egomotion estimation with a common direction[END_REF] the authors generate a 443 × 451 G-J (Gauss-Jordon) elimination template using [START_REF] Kukelova | Automatic generator of minimal problem solvers[END_REF]. The two-step solution proposed in Section 4 gives a template with size 24 × 34. Since the computational complexity of G-J elimination is o(n 3 ), the speedup is significant. However, for the calibrated relative pose with known direction, essential-matrix based solvers are more efficient, e.g., the solver proposed by Sweeney et al. [START_REF] Sweeney | Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem[END_REF] only needs to solve a quadratic eigenvalue problem.

For the partially calibrated two-view relative pose problem with equal focal lengths, the most closely related work to ours is Malis et al. [START_REF] Malis | Camera self-calibration from unknown planar structures enforcing the multiview constraints between collineations[END_REF]. They compute the homography between two views, then try all the possible focal lengths and choose the one which minimizes the cost function. In fact, their method needs multiple views to improve accuracy. Other related works are the 6-point solvers [START_REF] Stewénius | A minimal solution for relative pose with unknown focal length[END_REF][START_REF] Li | A simple solution to the six-point two-view focal-length problem[END_REF][START_REF] Hartley | An efficient hidden variable approach to minimal-case camera motion estimation[END_REF][START_REF] Kukelova | Polynomial eigenvalue solutions to minimal problems in computer vision[END_REF][START_REF] Kukelova | A clever elimination strategy for efficient minimal solvers[END_REF], which are all based on rank-2 and trace constraints, and the 5-point (4 coplanar points plus 1 point out of the plane) solver [START_REF] Torii | The six point algorithm revisited[END_REF]; for the one unknown focal length problem, the most closely related work is the single-side 6-point solver [START_REF] Bujnak | 3d reconstruction from image collections with a single known focal length[END_REF][START_REF] Kukelova | Polynomial eigenvalue solutions to minimal problems in computer vision[END_REF][START_REF] Kukelova | A clever elimination strategy for efficient minimal solvers[END_REF]; for the varying focal lengths problem, it is the 7-point solver using Bougnoux formula [START_REF] Bougnoux | From projective to euclidean space under any practical situation, a criticism of self-calibration[END_REF]. Compared to the SOTA (state-of-the-art) solvers, the partially calibrated solver proposed in Sec. 4 has two advantages. 1) It needs 3.5 or 4 instead of 6 or 7 points, which is important for RANSAC, 2) it is more accurate.

Problem formulation

Let π denote the observed plane and n = [n x , n y , n z ] T be its unit normal vector in the first camera frame. The distance from the optical center of the first camera to the plane is denoted by d. Suppose this plane is observed from two views with projection matrices

P 1 = K 1 [ I | 0 ] and P 2 = K 2 [R | t ],
where K 1 , K 2 are the camera intrinsic matrices and {R, t} are the rotation matrix and translation vector, respectively. The homography for points belonging to the plane between consecutive frames is defined as follows:

λm 2 = Gm 1 , (1) 
with

G ∼ K 2 HK -1 1 , ( 2 
)
where λ is a scale factor, ∼ indicates equality up to a scale factor, and

m 1 = [u 1 , v 1 , 1] T and m 2 = [u 2 , v 2 , 1]
T are the homogeneous coordinates of the point in the first and second images. H, the so-called Euclidean homography matrix is defined by

H = (R - 1 d tn T ). (3) 
In this paper, we assume that the views have a common reference direction. We can use a vanishing point or the gravity direction obtained by an IMU on mobile phones and robots for this direction. Without loss of generality, we can align the y-axes of the two cameras to the common reference direction (see Figure 1). Using this direction, we can compute the rotation matrices R 1 , R 2 of the two cameras for the alignment. Applying the rotations to the normalized image points we obtain

λR T 2 K -1 2 m 2 = H y R T 1 K -1 1 m 1 , (4) 
where

H y = (R y - 1 d t n T ), (5) 
with

R y = ⎡ ⎣ cos θ 0 sinθ 0 1 0 -sin θ 0 cosθ ⎤ ⎦ , (6) 
R = R 2 R y R T 1 , t d = R 2 t d , n = R 1 n . ( 7 
)
Our aim is to estimate the relative pose using homography.

Our approach: Rank-1 constraint

Given two matching image points

m 1 = [u 1 , v 1 , 1] T and m 2 = [u 2 , v 2 , 1]
T , the homography constraint (1) can also be written as

0 0 0 -u 1 -v 1 -1 v 2 u 1 v 2 v 1 v 2 u 1 v 1 1 0 0 0 -u 2 u 1 -u 2 v 1 -u 2 g = 0, (8) g = [g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 ] T . ( 9 
)
By stacking the constraint rows for n point correspondences, (8) leads to a system of equations of the form

Ag = 0, ( 10 
)
where A is a 2n × 9 matrix. Then g and the 2D homography matrix G can be formulated as the null space of A.

Based on (1), ( 2), ( 4) we obtain the relationship between the Euclidean homography H y and 2D homography G

H y ∼ R T 2 K -1 2 GK 1 R 1 , ( 11 
)
where ∼ indicates equality up to a scale factor. Unlike the essential matrix which obeys rank-2 and trace constraints, there are no explicit constraints for a Euclidean homography matrix. In this case, we define a new matrix Q

Q = R T 2 K -1 2 GK 1 R 1 -kR y , ( 12 
)
which is the difference between the homography matrix H y and the corresponding rotation R y . Note that there is a scalar k in front of the rotation matrix, because [START_REF] Banglei Guan | Visual odometry using a homography formulation with decoupled rotation and translation estimation using minimal solutions[END_REF] is up to scale. Using [START_REF] David A Cox | Using algebraic geometry[END_REF], we obtain

Q = -kt n T , ( 13 
)
and Q has rank 1 (when t = 0, rank(Q) = 0, which means a pure rotation, which will be discussed in Section 5). In particular, each of the 2 × 2 submatrices of Q must have zero determinant. For succinct representation, let c = k cos θ, s = k sin θ, and we obtain

Q = ⎡ ⎣ h 1 -c h 2 h 3 -s h 4 h 5 -k h 6 h 7 +s h 8 h 9 -c ⎤ ⎦ , ( 14 
)
with

k 2 = c 2 + s 2 . ( 15 
)
This expression can reduce the degree of the monomials. Since each 2 × 2 submatrices of Q must vanish, ( 14) leads to the following system of nine equations

h 1 (h 5 -k) -c(h 5 -k) -h 2 h 4 = 0, ( 16 
) h 9 (h 5 -k) -c(h 5 -k) -h 6 h 8 = 0, ( 17 
) h 3 (h 5 -k) -s(h 5 -k) -h 2 h 6 = 0, ( 18 
) h 7 (h 5 -k) + s(h 5 -k) -h 4 h 8 = 0, ( 19 
) sh 4 -ch 6 + h 1 h 6 -h 3 h 4 = 0, ( 20 
) sh 6 + ch 4 + h 6 h 7 -h 4 h 9 = 0, ( 21 
) sh 2 + ch 8 + h 2 h 7 -h 1 h 8 = 0, (22) sh 8 -ch 2 + h 2 h 9 -h 3 h 8 = 0, (23) h 1 h 9 -h 3 h 7 -ch 1 -ch 9 -sh 3 +sh 7 +k 2 = 0. ( 24 
)
We need to solve the system of 10 equations ( 15)- [START_REF] Viktor Larsson | Efficient solvers for minimal problems by syzygy-based reduction[END_REF]. Efficient two-step solution However, a well known property of a Euclidean homography matrix is that it can be decomposed into rotation, translation and normal of the plane {R, t, n} using the SVD. Once the Euclidean homography matrix is determined, the rotation matrix can be extracted too. It means that we do not need to calculate the unknowns of the homography matrix and the rotation matrix simultaneously. In equation ( 16)-( 24), we can divide them into two subsets: the homography components {h, k} and the rotation components {c, s}. In this case, we can try to eliminate the rotation components first instead of solving the 10 polynomial equations directly.

By exploiting relationship among these nine equations: ( 16)-( 17), ( 18)+( 19), (20) 2 +(21) 2 , (22) 2 +(23) 2 and substituting (16) ( 18) into ( 24), we get a total of 5 polynomial equations without the rotation parameters {c, s}

(h 1 -h 9 )(h 5 -k)-h 2 h 4 +h 6 h 8 = 0, (h 3 +h 7 )(h 5 -k)-h 2 h 6 -h 4 h 8 = 0, k 2 (h 2 2 +h 2 8 )-(h 1 h 8 -h 2 h 7 ) 2 -(h 3 h 8 -h 2 h 9 ) 2 = 0, (25) k 2 (h 2 4 +h 2 6 )-(h 1 h 6 -h 3 h 4 ) 2 -(h 4 h 9 -h 6 h 7 ) 2 = 0, (h 5 -k)(h 2 7 +h 2 9 -k 2 )+(h 3 -h 7 )h 4 h 8 -(h 1 +h 9 )h 6 h 8 =0.
The system of polynomial equations ( 25) can also be generated using the computer algebra system Macaulay2 [START_REF] Daniel R Grayson | Macaulay 2, a software system for research in algebraic geometry[END_REF].

Calibrated case

With 3 point correspondences, the general solution of g in ( 10) is a 3-dimensional null space that can be written as

g = αg a + βg b + g c , (26) 
Substituting ( 26) into the new system of polynomial equations (25), we get 5 equations in three unknowns {α, β, k}. The degrees of these 5 equations are {2, 2, 4, 4, 3}, respectively. Now we solve the system of equations ( 25) using action matrix method [START_REF] David A Cox | Using algebraic geometry[END_REF]. As described in [START_REF] Byröd | Fast and stable polynomial equation solving and its application to computer vision[END_REF], we found that, in order to create the action matrix, we need to generate additional equations by multiplying the initial equations with monomials. The degrees of the additional equations are up to four, which means that we need to multiply the first and second equations in [START_REF] Viktor Larsson | Beyond grobner bases: Basis selection for minimal solvers[END_REF] with {k, α, β, k 2 , α 2 , β 2 , kα, kβ, αβ} and the last one in [START_REF] Viktor Larsson | Beyond grobner bases: Basis selection for minimal solvers[END_REF] with {k, α, β}. There are in total 26 polynomials with 35 monomials. After removing 2 unnecessary equations and 1 monomial which is not used in the action matrix, we obtain a 24 × 34 template for the G-J elimination. Then we construct the 10 × 10 action matrix for solving {k, α, β}.

The template size of the solver is much smaller than that of [START_REF] Saurer | Homography based egomotion estimation with a common direction[END_REF], which is 443 × 451. Since the computational complexity of G-J elimination is o(n 3 ), the speedup is significant. Once {α, β, k} are calculated, {c, s} can be linearly obtained from two of the nine equations ( 16)- [START_REF] Viktor Larsson | Efficient solvers for minimal problems by syzygy-based reduction[END_REF]. Finally the translation and normal vector can be extracted from matrix Q. We do not need to use the SVD to compute {R, t, n}.

Once H y is calculated, the rotation is uniquely determined, with two possible opposite translations. Note that although the proposed solver is much more efficient than the SOTA homography-based solver [START_REF] Saurer | Homography based egomotion estimation with a common direction[END_REF] (600x speedup in practice), there are more efficient solvers based on the essential matrix if one wants to solve for relative pose with known direction, e.g., the one proposed by Sweeney et al. [START_REF] Sweeney | Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem[END_REF]. The solver [START_REF] Sweeney | Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem[END_REF] only needs to solve a quadratic eigenvalue problem and the only difference is that the homography-based solvers simultaneously calculate the normal of the plane. Since both formulations are solving the same problem with 3 point correspondences, they should return very similar results. In this case, for the calibrated relative pose estimation, we recommend [START_REF] Sweeney | Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem[END_REF]. We just show an efficient solution to the formulation which is used in [START_REF] Saurer | Homography based egomotion estimation with a common direction[END_REF].

Partially calibrated case

Assuming the only unknown camera parameter is the focal length. For most CCD or CMOS cameras, it is reasonable to assume the cameras have square-shaped pixels, and the principal point coincides with the image center [START_REF] Hartley | An efficient hidden variable approach to minimal-case camera motion estimation[END_REF]. In addition, smart phones, tablets are special because the relationship between the axes of the camera and the IMU are usually approximate to 0 • , ±90 • , 180 • [START_REF] Kukelova | Closed-form solutions to minimal absolute pose problems with known vertical direction[END_REF][START_REF] Banglei Guan | Minimal solutions for the rotational alignment of imu-camera systems using homography constraints[END_REF]. Therefore, for uncalibrated smart phones and tablets we can directly use the images and gravity direction.

Equal and unknown focal length: f +H+f 3.5-point

The first situation is when the two cameras have the same focal length, and this is a 7-DOF problem. In this case, we need at least 3.5 point correspondences (we still need to sample 4 point correspondences, but only need one equation from the last correspondence) and the general solution of g in ( 10) is a 2-dimensional null space that can be expressed by

g = ηg a + g b . ( 27 
)
H y can be formulated with {f, η} using [START_REF] Banglei Guan | Visual odometry using a homography formulation with decoupled rotation and translation estimation using minimal solutions[END_REF], and then substituting H y into (25) results in a system of 5 equations with 3 unknowns: the focal length f , the scalar η of the null space g a and the scale factor k of the rotation matrix. In order to solve the system efficiently, we use an automatic generator for the polynomial equations, e.g., [START_REF] Viktor Larsson | Efficient solvers for minimal problems by syzygy-based reduction[END_REF][START_REF] Viktor Larsson | Beyond grobner bases: Basis selection for minimal solvers[END_REF][START_REF] Larsson | Uncovering symmetries in polynomial systems[END_REF].

We obtain a template of size 152 × 176, and the system has 24 solutions. In practice, 4 of these solutions have been found to be always imaginary. The remaining pose and normal can be extracted as in the calibrated case.

One unknown focal length: H+f 3.5-point

We also address the problem where the first camera is calibrated and the only unknown is the focal length of the second camera. In this case, the general solution for g can be expressed by [START_REF] Li | A simple solution to the six-point two-view focal-length problem[END_REF] as well. Then H y can be formulated with {f, η} using [START_REF] Banglei Guan | Visual odometry using a homography formulation with decoupled rotation and translation estimation using minimal solutions[END_REF]. Substituting H y into the equation system [START_REF] Viktor Larsson | Beyond grobner bases: Basis selection for minimal solvers[END_REF] we may obtain a G-J elimination template of size 64 × 76, and the system has up to 12 solutions.

Different and unknown focal lengths: f 1 +H+f 2 4-point

For two cameras with different focal lengths, we have an 8-DOF problem and we need at least 4 points. With 4 point correspondences, g is uniquely determined and H y can be formulated with f 1 , f 2 using [START_REF] Banglei Guan | Visual odometry using a homography formulation with decoupled rotation and translation estimation using minimal solutions[END_REF]. Substituting H y into (25) results in a system of 5 equations with 3 unknowns: the focal lengths f 1 , f 2 and the scalar k of the rotation matrix. The remaining steps are the same as the equal and unknown focal length case. Solving the system of equations ( 25) re-sults in a template of size 33 × 41, and the system has 8 solutions. See the supplementary material for more details.

We need to mention that the 4-point (f 1 Hf 2 ) solver has multiple physically possible solutions. The 3.5-point solvers have one parameter in the 2-dimensional null space, and a unique solution can be found using RANSAC. However, with 4 points the 2D homography is uniquely determined, and the f 1 Hf 2 solver has up to 8 solutions. Under positive focal length and depth constraint, there may still be multiple (usually two) physical possible solutions. This is similar to the standard 4-point homography algorithm which has two physically possible poses [START_REF] Olivier | Motion and structure from motion in a piecewise planar environment[END_REF][START_REF] Malis | Deeper understanding of the homography decomposition for vision-based control[END_REF]. In order to choose the good solution, it is necessary to have additional information such as an estimate of the normal to the target plane [START_REF] Malis | Dynamic estimation of homography transformations on the special linear group for visual servo control[END_REF], or using the points out of this plane.

Improving numerical stability

In order to improve the numerical stability, the points should be normalized [START_REF] Richard | In defence of the 8-point algorithm[END_REF]. We use the varying focal lengths problem as an example. First we translate the origin to the image center, then scale the points so that the average distance from the origin is equal to √ 2. In this case, we may obtain two transformation matrices:

T 1 = diag(σ 1 , σ 1 , 1), T 2 = diag(σ 2 , σ 2 , 1)
. Applying the transformation to the image points, and the corresponding camera matrices become

K -1 1 = diag(1, 1, σ 1 f 1 ), K -1 2 = diag(1, 1, σ 2 f 2 ).
Once the equations are solved, the focal length only need to be divided by σ 1 , σ 2 . This normalization is necessary. We show more details in the supplementary material.

Degenerate configurations

In our case, there are three kinds of degeneracies. The first is caused by the data, e.g., three or more points collinear, which leads to a rank loss of the matrix A in [START_REF] Daniel R Grayson | Macaulay 2, a software system for research in algebraic geometry[END_REF]. It can be easily eliminated by RANSAC [START_REF] Martin | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF] or its variants [START_REF] Lebeda | Fixing the locally optimized ransac-full experimental evaluation[END_REF][START_REF] Raguram | Usac: a universal framework for random sample consensus[END_REF]. The second one is induced by the formulation. In (13), we have mentioned that a pure rotation will result in rank(Q) = 0. In this case, the zero determinant of the 2 × 2 submatrices of Q is not a full constraint, since every element of Q should be zero. However, based on experiments we find that the proposed solvers can deal with the pure rotation case. The last one is that arbitrary planar motions when the optical axes lie in the plane are critical motions for the standard 6-point and 7-point solvers [START_REF] Kahl | Critical motions in euclidean structure from motion[END_REF]. The proposed fHf solver can deal with this case (non-zero rotation angle). The 3.5-point Hf solver can deal with pure translation (except for R 1 = R 2 = I, t y = 0). For more details see the supplementary material.

Experiments

In this section, we test the solvers on synthetic data with known ground truth. The data with different noise levels are used to evaluate the numerical stability and precision. For the equal focal length problem, since [START_REF] Li | A simple solution to the six-point two-view focal-length problem[END_REF][START_REF] Stewénius | A minimal solution for relative pose with unknown focal length[END_REF][START_REF] Hartley | An efficient hidden variable approach to minimal-case camera motion estimation[END_REF][START_REF] Kukelova | A clever elimination strategy for efficient minimal solvers[END_REF] use the same formulation and constraints (rank-2 and trace constraints of the essential matrix), so we only compare with one of them, the SOTA solver [START_REF] Kukelova | A clever elimination strategy for efficient minimal solvers[END_REF]. In addition, we also compare with the 4-plus-1 solver (4 coplanar points plus 1 point out of the plane) [START_REF] Torii | The six point algorithm revisited[END_REF]. For the one unknown focal length problem, [START_REF] Bujnak | 3d reconstruction from image collections with a single known focal length[END_REF] and [START_REF] Kukelova | A clever elimination strategy for efficient minimal solvers[END_REF] also use same formulation and constraints, so we only compare with SOTA [START_REF] Kukelova | A clever elimination strategy for efficient minimal solvers[END_REF]. For the varying focal lengths problem, we compare with the 7-point solver using Bougnoux formula [START_REF] Bougnoux | From projective to euclidean space under any practical situation, a criticism of self-calibration[END_REF]. Since we still need to sample 4 points for the 3.5-point solvers, we show the results of both the minimal case and the 4 points case which uses SVD to compute the 2-dimensional null space. The synthetic data are generated in the following setup. We sample 200 3D points distributed on a random but feasible plane. The focal length of the camera is randomly generated: f g ∈ [300, 3000] pixels with a field of view of 90 degrees, and the resolution of the image is set to 2f ×2f . The rotation error ξ R , translation error ξ t and focal length error ξ f are defined as:

• ξ R = arccos((tr(R g R T e ) -1)/2), • ξ t = arccos((t T g t e )/( t g t e )), • ξ f = |fe-fg| fg
, where R g , t g , f g represent the ground-truth rotation, translation and focal length, and R e , t e , f e are the estimated rotation, translation and focal length, respectively. Note that, for our solvers, we measure the full rotation and translation errors based on the noisy (roll, pitch) angles (using ( 7)).

We generated 2,000 random scenes with 3D points on different planes and different transformations between two views. For each solver, we test 5 times on one scene and obtain 10,000 results for each solver. Since the solvers have multiple solutions, by evaluating the geometric error of the fit of each solution with respect to a set of points, we can pick the best one. We evaluate each solver under image noise (point location) with different standard deviation and increased (roll, pitch) noise. The (roll, pitch) noise can be considered as the direction error. We focus on sideways (parallel to the scene) and forward (along the z-axis) motions. The base line between two cameras is set to be 10 percent of the average scene distance. Additionally, the cameras are rotated around every axis. This is similar to [START_REF] Nistér | Four points in two or three calibrated views: Theory and practice[END_REF][START_REF] Fraundorfer | A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles[END_REF]. We compare the proposed 3.5-point and 3.5-point (SVD) solver with the 6-point solver [START_REF] Kukelova | A clever elimination strategy for efficient minimal solvers[END_REF] and 5-point solver [START_REF] Torii | The six point algorithm revisited[END_REF]. We also evaluate the 6-and 5-point solver with general scenes (with 200 extra non-planar points generated randomly). Figure 4 and Figure 5 show the estimated rotation, translation and focal length errors under sideways and forward motion for the one unknown focal length problem. Figure 6 and Figure 7 show the estimated rotation, translation and focal length errors under sideways and forward motion for the different focal lengths problem. In general, under perfect direction information the proposed solvers outperform the standard solvers. Sideways motion seems to be more challenge for the 6-and 7-point solvers. Feature points lie in a plane is a degenerate configuration for the standard methods. Our solvers are focus on this case. Under small (roll, pitch) noise, the proposed solvers are still comparable to the standard algorithms with general scenes (50% of the points lie in a plane). It is practical since good accelerometers today have noise levels of around 0.02 degrees in the computed angles [START_REF] Fraundorfer | A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles[END_REF]. The only drawback of our solvers may be that the translation part is slightly sensitive to direction noise. The experiments also show that using 4 points to compute the 2-dimensional null space is much better than the minimal 3.5-point case.

Real data

To illustrate the usefulness of the proposed solvers, we captured the images and the corresponding gravity vector using an uncalibrated iphone 6S which has a precision of Seq. 3.5-point Malis [START_REF] Malis | Camera self-calibration from unknown planar structures enforcing the multiview constraints between collineations[END_REF] 8. We extracted SURF [START_REF] Bay | Surf: Speeded up robust features[END_REF] feature points and descriptors of all images. The ground truth focal length of our mobile phone is 4.2mm (3442 pixels at the resolution of 4032 × 3024). We randomly sample 2 images C κ 2 times for each sequence (κ is the number of images in this sequence). For the single-side and varying focal lengths problems, we resize the resolution of the second view to half the original size. We use RANSAC with a number of iterations fixed to 1000. As shown in the synthetic experiments, the 5-point solver performs very similar to the 6-point solver. So we compare our solvers with the standard 6-point solver, the single-side 6point solver, the homography-based sampling method and the 7-point solver. Since the comparisons of rotation and translation have already been shown in the extensive synthetic experiments, we only show the focal length comparison because rotation and translation is usually good once we have a good focal length estimate. Table 1 shows the median error (%) in the estimated focal lengths. As we can see, the proposed solvers perform very well when the scene contains one dominant plane even without calibration of relative rotation of IMU and camera inside the smart phone. The standard solvers fail with most cases when most feature points lie in a plane. Recall that the standard solvers are general methods, and there are also a lot of factors which may influence the performance, e.g., the quality of the plane, motions. The proposed solvers need direction information, which is largely motivated by the availability of smart phones, tablets. 

Fast implementation

Since the uncalibrated solvers need to sample 4 points, for the 3.5pt solvers we can first use the standard 4-point homography algorithm to reject outliers. It is very fast since we only need to calculate the null space of an 8 × 9 matrix. In addition, the standard 4-point homography algorithm has unique solution. Second, using the 3.5pt solvers to select the solution with most inliers using RANSAC based on the inlier set. The 4 point correspondences which return the most inliers for the standard 4-point homography do not necessarily mean they are the best choice for the 3.5pt solvers. Because the 3.5pt solvers need 2-dimensional null space. So we still need to use RANSAC with the inlier set. Once the inlier set is known, the number of iterations would not be large. In contrast, the 6-and 7-point solvers need to estimate the hypothesis for every RANSAC loop and verify all the possible solutions with more iterations. The experiments were run on a laptop computer with an Intel Core i5-8300H 2.3GHz CPU using Matlab, and only the polynomial solvers were used mex files (based on Eigen linear algebra library [13]) for speed up. The runtime of one hypothesis estimation for the uncalibrated solvers are 1.4ms, 0.157ms, 0.056ms, respectively.

Conclusion

In this paper, we propose new minimal solvers for homography-based relative pose estimation with a common direction, among which, the proposed partially calibrated solvers can be used in the structure-from-motion pipelines for uncalibrated smart phones, tablets. They mainly correspond to three real-life applications. (i) scenes captured by a smart device with unknown but fixed focal length, (ii) scenes captured by multiple devices but one of them is calibrated, (iii) scenes captured with a zoom camera or multiple uncalibrated smart devices. We believe that the proposed solvers can be used as alternative solutions to increase the speed and robustness of structure-from-motion systems for smart phones, tablets.

Figure 1 :

 1 Figure 1: One can calculate the roll, pitch angles of the camera coordinate with respect to the world coordinate (gravity) using the IMU data, and align the y-axes with the gravity.

Figure 2 :Figure 3 :

 23 Figure 2: Rotation and translation errors for equal and unknown focal length problem, respectively. (a) Sideways motion. (b) Forward motion. From top to bottom: increased image noise, increased Pitch noise and 0.5 pixel standard deviation image noise, increased Roll noise with constant 0.5 pixel standard deviation image noise.

Figure 4 :Figure 5 :

 45 Figure 4: Rotation and translation errors for one unknown focal length problem, respectively. (a) Sideways motion. (b) Forward motion. From top to bottom: increased image noise, increased pitch noise and 0.5 pixel standard deviation image noise, increased roll noise with constant 0.5 pixel standard deviation image noise.

Figure 2 and

 2 Figure 2 and Figure 3 show the estimated rotation, translation and focal length errors under sideways and forward motion for the equal and unknown focal length problem. The figures are plotted using boxplot function in Matlab. The bottom and top edges of the box indicate the lower and upper quartile, and the central mark indicates the median. The points plotted individually are considered as outliers.We compare the proposed 3.5-point and 3.5-point (SVD) solver with the 6-point solver[START_REF] Kukelova | A clever elimination strategy for efficient minimal solvers[END_REF] and 5-point solver[START_REF] Torii | The six point algorithm revisited[END_REF]. We also evaluate the 6-and 5-point solver with general
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 67 Figure 6: Rotation and translation errors for different and unknown focal length problem, respectively. (a) Sideways motion. (b) Forward motion. From top to bottom: increased image noise, increased pitch noise and 0.5 pixel standard deviation image noise, increased roll noise with constant 0.5 pixel standard deviation image noise.

Figure 8 :

 8 Figure 8: Example images of the 8 sequences.

Table 1 :

 1 Median relative error (%) in the estimated focal lengths on the 8 sequences.1 • . 8 short sequences with more than 150 images were captured and each contains one dominant plane. Example images of the sequences are shown in Figure

				6-point [22]	3.5-point 6-point [22]	4-point	7-point [2]
	1	11.3	43.4	7.8	2.1	0.2	(3.7, 3.4) (30.0, 32.8)
	2	4.9	38.7	62.1	2.3	50.6	(6.5, 4.7) (55.3, 55.7)
	3	9.7	37.2	48.5	6.6	43.7	(3.3, 6.3) (68.3, 65.9)
	4	6.2	57.6	68.3	1.1	13.0	(3.7, 3.8) (76.9, 72.0)
	5	5.1	44.7	63.6	2.8	69.2	(3.3, 5.5) (73.4, 77.3)
	6	5.2	53.7	53.4	1.6	19.2	(3.1, 3.2) (60.6, 61.1)
	7	5.9	46.9	60.6	1.5	14.5	(2.6, 3.2) (64.2, 63.8)
	8	3.2	16.2	89.3	1.3	74.5	(0.6, 1.0) (70.0, 68.5)
		(a) Equal focal length		(b) One unknown focal length	(c) Varying focal lengths
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