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UAV Trajectory Planning for Delay Tolerant Communications

Daniel Bonilla Licea, M. Bonilla, Mounir Ghogho and M. Malabre

Abstract— In this paper, we address the problem of opti-
mizing a communication-aware trajectory for a quadrotor that
must transfer periodically (with fixed period T ) a maximum
amount of data from a source node (SN) to a destination
node (DN). The communications aspect is mathematically
stated by linking the bit rate to the channel capacity concept
from information theory. The trajectory is optimized using a
parametric approach using Fourier series in order to reduce
the computational load of the optimization process. We show
that the proposed trajectory results in a large increase of the
amount of transferred data, and can be easily tracked by the
quadrotor.

Index Terms— Trajectory planning, data ferry, delay tolerant
communications.

NOTATION

A zero dimension subspace is denoted by {0}, and the identity
operator is denoted by I, or In when its size, n×n, is specified. For
a full row (column) rank matrix X ∈ Rn×m, its right (left) inverses
are denoted by Xr (X`), i.e. XXr = In (X`X = Im). If X is
square and invertible, its inverse is denoted by X−1. xT stands for
the transpose of the matrix (or vector) x. s stands for the complex
variable of Laplace transform. Given a pair of mappings (A,B),
such that A : Rn → Rn and B : Rm → Rn, C(A,B) stands for the
controllability matrix C(A,B) =

[
B AB · · · A(n−1)B

]
.

Ψm(ξ) ∈ Rn·m×m[ξ] stands for:
[

Imξ Imξ
2 · · · Imξ

n
]T .

Further, c(ϑ) and s(ϑ) stand for cosine and sine of a given angle
ϑ, respectively; and s−1(ϑ) stands for arcsin(ϑ). The ceiling and
the floor functions are denoted as d·e and b·c respectively. x̂ stands
for the estimate of the variable x; E[·] stands for the statistical
expectation operator.

A vector function f(ε, t) ∈ Rn is said to be O(ε) over an
interval [t1, t2] if there exist positive constants K and ε∗ such that
‖f(ε, t)‖ ≤ Kε for all ε ∈ [0, ε∗] and for all t ∈ [t1, t2], see [4].

I. INTRODUCTION

The concept of communication-aware trajectory planning
for robots has recently attracted an increasing amount of
attention within the robotics, control and communications
communities. This interdisciplinary research field aims at
improving robots’ wireless communications performance by
controlling their position [16]-[18]. In this context, various
problems have been considered: the utilisation of a robot to
physically transfer data from the source to the destination
[16]; the optimization of a robot’s trajectory taking into
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account motion and communications energy [17]; the mini-
mization of energy consumption of a wireless sensor network
using autonomous mobile robots [19].

In this paper, we consider the following scenario. A
battery-powered source node (SN) has to periodically trans-
mit data to a destination node (DN), and the data transfer is
delay tolerant. The distance between SN and DN is assumed
too large for a direct communication as this would require
too much energy. The SN may be equipped with an energy
harvesting system to recharge its battery, but this recharging
is assumed insufficient to sustain direct communication with
the DN. A quadrotor acts as a dedicated data ferry [16]
between the SN and the DN, i.e. it collects data from the
SN and then moves towards the DN to deliver the data;
this process is performed periodically. In this paper, we
design the quadrotor’s trajectory to maximize the amount
of data transferred from the SN to the DN in each period,
while taking into account a realistic wireless communication
model as well as a realistic quadrotor dynamical model. To
the authors’ knowledge, this particular communication-aware
trajectory problem has not been addressed before.

This paper is organized as follows. In section II we first
describe the wireless channel model and then the quadrotor
dynamical model. In section III, we present a feedback
linearization method for the quadrotor’s model. In section IV,
we state the trajectory optimization problem. The solution
to this problem is described in section V. Conclusions are
drawn in section VI.

II. SYSTEM MODEL

A. Communications System Model

Let us denote the position of the SN and DN in the
x − y plane as p0 ∈ R2 and p1 ∈ R2 respectively. For
mathematical convenience and without loss of generality, we
set p0 = [D/2 0]T and p1 = [−D/2 0]T.

We assume that the heights of the SN and DN antennas
are the same and larger than those of most of the nearby
obstacles. In addition, the quadrotor is assumed to operate
on the horizontal plane defined by the positions of the SN
and DN antennas. The position of the quadrotor on this plane
is denoted by p(t) ∈ RT, namely: p(t) =

[
x(t) y(t)

]T
.

Therefore, we assume that here is a line of sight between the
quadrotor and both the SN and the DN. Hence, the wireless
channel can be modelled as an additive white Gaussian noise
(AWGN) channel with free-space pathloss only [13]. The
signal-to-noise ratio (SNR) of the signal received by the DN
from the quadrotor (i.e., the ratio of the power of the signal
received by the DN from the quadrotor to the power of the
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noise generated at the DN’s receiver) can then be expressed
as:

Γ(p(t),p1) = P/(‖p1 − p(t)‖22σ2), (2.1)

where σ2 is the noise power at the DN’s receiver and P is the
power of the signal transmitted by the quadrotor. We assume
that the SN and the quadrotor have the same transmit power,
P , and that the noise at the quadrotor’s and DN’s receivers
have the same power, σ2. The SNR of the signal received
by the quadrotor from the SN is thus given by Γ(p(t),p0).

Finally, the quadrotor’s communication system operates on
a semi-duplex mode1. So, we introduce the binary function
SW (t) that indicates the operational mode of the quadrotor’s
communications system at time t. If SW (t) = 1 (SW (t) =
0) the quadrotor’s communication system operates as a
transmitter (receiver) at time instant t.

B. Quadrotor Dynamical Model

The dynamical model of the quadrotor considered in this
paper is given by (see Section 5 of [9] for details):

d2x/dt2 = −g(θ − q̄x) , d2θ/dt2 = ux/Iy + qθ ,

d2y/dt2 = g(φ+ q̄y) , d2φ/dt2 = uy/Ix + qφ ,

d2z/dt2 = uz/M + g + qz , d2ψ/dt2 = uψ/Iz + qψ ,

where M is the quadrotor’s total mass, the moments of inertia
about axis ox, oy and oz are2 Ix, Iy and Iz, the distance
of each rotor with respect to the centre of gravity of the
quadrotor is L. The motion of the quadrotor is described
with respect to a fixed orthogonal axis set (oxyz), where oz
points vertically up along the gravity vector

[
0 0 g

]T
.

The origin o is located at the same height as the SN and DN
antennas. The coordinates x, y and z refer to the position of
the centre of gravity of the quadrotor in the space where z is
its altitude. Note that p(t) in section II-A is given by [x, y]T.
The attitude of the quadrotor is described by the Euler angles
φ, θ and ψ, roll, pitch and yaw, measured respectively over
the axes oBxB , oByB and oBzB , with (oBxByBzB) being the
body axis system whose origin oB is given by the geometric
centre of the quadrotor [3]. ux, uy, uz and uψ are the control
actions; in [9], we show the relations between these control
actions and the thrusters of the four rotors.

The nonlinear signals, qx, qy, qz, qθ, qφ, and qψ , are:3

q̄x = (θ − c(φ)s(θ)c(ψ)− s(φ)s(ψ)) +
(c(φ)s(θ)c(ψ) + s(φ)s(ψ)) (uz/(Mg) + 1)

q̄y = (−φ− c(φ)s(θ)s(ψ) + s(φ)c(ψ)) +
(c(φ)s(θ)s(ψ)− s(φ)c(ψ)) (uz/(Mg) + 1)

qz = (1− c(φ)c(θ)) g + (c(φ)c(θ)− 1) (uz/M + g) ,
qη =

(
J−1(η)− J−1(0)

)
τ − J−1(η)C(η,dη/dt)dη/dt ,

(2.2)

1This means that the communication system can operate as either a
transmitter or a receiver at any given time, but not simultaneously.

2Due to the quadrotor’s symmetry, its cross inertia are zero.
3The uncertainty signals, qθ , qx, qφ and qy, correspond to the terms which

are neglected when linearizing around the equilibrium points (θ, x) = (0, 0)
and (φ, y) = (0, 0), and uz tends to −Mg.

where η =
[
φ θ ψ

]T
, qη =

[
qφ qθ qψ

]T
and J

and C(η,dη/dt) are the inertial and the Coriolis matrices
(see Appendix A of [9] for their definitions).

In this paper, for mathematical simplicity we assume
that the nonlinear signals are measured4. We propose the
following control laws for the z and ψ dynamics:

uz = M
([
−az2 −az1

]
xz − g − qz

)
,

uψ = Iz
([
−aψ2 −aψ1

]
xψ − qψ

)
,

(2.3)

where xz and xψ are the state vectors
[
z dz/dt

]T
and[

ψ dψ/dt
]T

, respectively, and πz(s) = s2 + az1s + az2
and πψ(s) = s2 +aψ1s+aψ2 are given Hurwitz polynomials.
Then, the trajectories z and ψ satisfy:

πz(d/dt)z = 0 and πψ(d/dt)ψ = 0.

Since πz(s) and πψ(s) are Hurwitz, we assume zero initial
conditions for z and ψ. Thus, we have that z = dz/dt = 0
and ψ = dψ/dt = 0, and also uz = −Mg. We then get the
following state space representations:

State Space Representation of the x – θ dynamics

dxθ/dt = Aθ xθ +Bθ (ux + qθ) , θ = Cθ xθ , (2.4)

dxx/dt = Ax xx +Bx (s(θ)c(φ)) , x = Cx xx , (2.5)

State Space Representation of the y – φ dynamics

dxφ/dt = Aφ xφ+Bφ (uy + qφ) , φ = Cθ xφ , (2.6)

dxy/dt = Ay xy +By (s(φ)) , y = Cy xy , (2.7)

where xθ, xx, xφ and xy are the state vectors:[
θ dθ/dt

]T
,
[
x dx/dt

]T
,
[
φ dφ/dt

]T
, and[

y dy/dt
]T

, respectively, the maps are defined as fol-
lows:

Aθ = Ax = Aφ = Ay =

[
0 1
0 0

]
, By = −Bx = gB2,

Bθ = I−1
y B2, Bφ = I−1

x B2, B2 =

[
0
1

]
,

Cθ = Cx = Cφ = Cy =
[

1 0
]
.

(2.8)

III. ε-RIGHT INVERSE FEEDBACK

Before stating the main problem addressed in this paper,
we present in this section a feedback method to linearize
the quadrotor’s dynamical model presented in the previous
subsection. This linear model will then be used for the
formulation of the main problem in the next section.

From (2.4) and (2.6), we note that qθ and qφ can be directly
compensated with the control actions ux and uy, respectively.
Then, from (2.5) and (2.7), we also note that qx and qy could
be compensated if we were able to synthesize right-inverses
for (2.4) and (2.6). But, the right-inverse of a strictly proper
system is a non-proper system, so we have to use a good
proper approximation of such a right-inverse.

4If this assumption does not hold, then the techniques presented in [9]
can be used for their compensation.
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In the following Theorem (proved in Appendix A), we
propose a state feedback which aims to approximately right
invert a given strictly proper system.

We assume that:
H1: kerB = {0}, kerCT = {0} and p ≥ m.
H2: The pair (A,B) is controllable.
H3: Σ(A,B,C) has no system zeros at the origin.

Theorem 1: Let us consider a system described by the
state space representation, Σ(A,B,C):

dx/dt = Ax+B u , y = Cx , (3.1)

where u ∈ Rm, x ∈ Rn and y ∈ Rp are the input, the state
and the output, respectively, A ∈ Rn×n, B ∈ Rn×m and C
∈ Rp×n. Then, a right inverse of (3.1) is:

Nr
d

dt
xr = Ar xr + Br ȳ , u = Cr xr , (3.2)

where:

Nr =

[
0 0
In 0

]
, Ar =

[
Cm 0
A B

]
, Br =

[
−Im

0

]
,

Cr =
[

0 Im
]
,

(3.3)
and Cm is a matrix composed by any m linearly independent
rows extracted from C.

Moreover, there exist two matrices, K1(ε) ∈ Rm×m and
K2(ε) ∈ Rn×m, parametrized by a given positive parameter
ε, with: K1(0) = 0, K2(0) = 0 and det(K1(ε)) 6= 0 for all
ε > 0, such that the descriptor representation:

Nr
d

dt
x̄r = Ar(ε) x̄r + Br ȳ , u = Cr x̄r , (3.4)

where:
Ar(ε) =

[
Cm K1(ε)
A (B +K2(ε))

]
, (3.5)

is proper, having the characteristic polynomial:

π̄(s) = det
(
sNr − Ar(ε)

)
= (ε s + 1)n , (3.6)

and satisfying

lim
ε→0
‖xr(t)− x̄r(t) ‖ = 0 . (3.7)

Furthermore, with the state feedback:

u = K̃−1
1 (ε) ȳ + (F0 + F1(ε))x , (3.8)

where
det (sIn − (A+BF0)) = sn , (3.9)

F1(ε) = −K̃−1
1 (ε)Cm

(
In + C(A+BF0, K̃2(ε)) C

r
(A+BF0, B)

)
,

(3.10)
and K̃1(ε) and K̃2(ε) are the matrices obtained when
applying the procedure (3.2) – (3.6) to the state space
representation Σ(A+BF0, B,C), we get:

C
(

s In −
(
A+B(F0 + F1(ε))

))−1

B K̃−1
1 (ε) =(

C (s In −A)
−1
B
)(

Cr
(
sNr − Ar(ε)

)−1 Br
)
.

(3.11)

�

Let us come back to the state space realizations (2.4)
and (2.6). Following the procedure sketched in the proof of
Theorem 1, we get from (2.8):5

K̃1(ε) = (`/Io) ε
2, K̃2(ε) =

[
2 (`/Io) ε

0

]
,

C(A, K̃2(ε)) =

[
2
(
`
Io

)
ε 0

0 0

]
, Cr(A,B) =

(
Io
`

) [ 0 1
1 0

]
,

(3.12)
where ε > 0. From (3.10) and (3.12), we get the following
control laws for the x – θ and y – φ dynamics:

ux = Iy
(
−qθ +

[
−1/ε2 −2/ε

]
xθ −

1

ε2
s−1

(
θ̄

c(φ)

))
,

uy = Ix
(
−qφ +

[
−1/ε2 −2/ε

]
xφ +

1

ε2
s−1(φ̄)

)
,

(3.13)
where ε is a positive parameter depending on the bandwidth
of the system represented by (2.4)–(2.7), and θ̄ and φ̄ are
the new control signals. Applying the control laws (3.13) to
(2.4)-(2.5) and (2.6)-(2.7), respectively, we get:

d2x/dt2 = g (s(θ)c(φ)) ,

(εd/dt+ 1)2 θ = s−1
(
θ̄/c(φ)

)
,

d2y/dt2 = g (s(φ)) ,

(εd/dt+ 1)2 φ = s−1(φ̄) .

(3.14)

The control signals s−1
(
θ̄/c(φ)

)
and s−1(φ̄) are related

to θx and φy by means of the low-pass filter 1/(ε s+1)2, with
the cut-off frequency: ωc = 1/ε. Thus, if the control signals,
s−1

(
θ̄/c(φ)

)
and s−1(φ̄), are bounded and band limited

signals, with a bandwidth ωq , then the cut-off frequency ωc
should be set sufficiently greater than ωq . In this case, (3.14)
can be expressed as follows:(

d2x/dt2 − g θ̄
)

= O(ε) ,
(
d2y/dt2 − g φ̄

)
= O(ε) .

(3.15)
Finally, in order to ensure the proper operation of the

quadrotor, we limit the range of variations of the pitch
and roll angles. Since both angles are decoupled in the
linearized model (3.15), we constrain them separately as
follows ‖φ̄‖∞ ≤ Φ and ‖θ̄‖∞ ≤ Θ. Now that we have a
linear model for the quadrotor’s position in the x− y plane
(i.e., p(t)), we proceed to state, in the next section, the main
problem addressed in this paper.

IV. PROBLEM STATEMENT

We now present the main problem addressed in this paper
which consists of the optimization of the quadrotor’s periodic
trajectory so that it maximizes the amount of information
transferred from the SN to the DN per period. Each period, of
duration T , is divided into two phases. During the first phase,

5Do: n = 2, m = 1, Aθ 7→ A, Bθ 7→ B, Cθ 7→ Cm, TL = I3, TR

=

 1 0 0
0 1 0
0 0 Io/`

, P =
[

0 0 1
]
, K1(ε) = ε2, and K2(ε) =[

2 ε
0

]
. Note that: F0 = 0.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 676 submitted to 2019 IEEE Conference on Decision and Control (CDC).
Received March 14, 2019.



the quadrotor receives data from the SN, and during the
second phase, it transfers all this data to the DN. To quantify
the achievable bit rate, we use Shannon channel capacity
formula for a time-invariant AWGN channel 6 [13]. Hence
the bit rates of the communications through the channels
SN-to-quadrotor (k = 0) and quadrotor-to-DN (k = 1) are:

R(p(t),pk) = B log2 (1 + Γ(p(t),pk)) , k = 0, 1 (4.1)

where B is the bandwidth of the signals used in the data
transmission. Hence, the upper bound of the number of bits
that can be transmitted during one period (with an arbitrarily
small error) from the SN to the quadrotor and from the
quadrotor to the DN are

∫ T
0

(1− SW (t))R(p(t),p0)dt and∫ T
0
SW (t)R(p(t),p1)dt respectively. Also, we remind the

reader that the quadrotor has to transmit to the DN all the
data received from the SN.

To simplify the problem, we assume that:

H4: The quadrotor cannot get closer than a distance dmin
from the SN and from the DN due to physical limitations
(e.g., fences, trees, cables, . . . ). We will refer to the circles
marking those limits as SN and DN borders.
So, the trajectory optimization problem mentioned above can
be formally stated as follows.

Problem 1: Optimize the quadrotor’s periodic trajectory
in order to maximize the upper bound on the number of bits
than can be transferred by the quadrotor from the SN to the
DN.

max
θ̄,φ̄,β,y0,vx0,v

y
0

∫ T

0

(1− SW (t))R(p(t),p0)dt (4.2)

subject to the following constraints

∫ T

0

(1− SW (t))R(p(t),p0)dt =

∫ T

0

SW (t)R(p(t),p1)dt

‖p(t)− p0 ‖2 ≥ dmin, ‖p(t)− p1 ‖2 ≥ dmin ∀t ∈ [0, T ]

d2x(t)/dt2 = gθ̄, d2y(t)/dt2 = gφ̄,

x(0) = x(T ) = x0, y(0) = y(T ) = y0,

dx(0)/dt = dx(T )/dt = vx0, dy(0)/dt = dy(T )/dt = vy0,

‖θ̄‖∞ ≤ Θ, ‖φ̄‖∞ ≤ Φ,

SW (t) = 0, ∀ t ∈ [0, βT ), SW (t) = 1, ∀ t ∈ [βT, T ),
(4.3)

where β ∈ (0, 1), x0, y0, vx0 and vy0 are parameters describing
the initial state of the quadrotor. �

Remark 1: (i) The first line of constraints ensures that all
the data collected by the quadrotor from the SN is transferred
to the DN. (ii) The second line of constraints ensures that the
quadrotor maintains a minimum distance of dmin from both
the SN and DN. (iii) The third line of constraints describe
the resulting dynamical model of the quadrotor after the

6The channel capacity determines the maximum bit rate achievable with
an arbitrarily small error rate when communicating through the considered
channel. A deeper discussion on the use of this formula in our communi-
cation scenario and its implications is outside the scope of this paper.

linearization through the feedback introduced in section III.
(iv) The fourth and fifth lines are required for the periodicity
of the trajectory. (v) The next line of constraints limits the
maximum variations of the pitch and roll angles. (vi) The
final set of constraints describes the intervals of time in which
the quadrotor’s communications system operates as a receiver
and then as a transmitter.

During t ∈ [0, βT ) (t ∈ [βT, T )) the quadrotor com-
municates with the SN (DN) with an instantaneous bit rate
R(p(t),p0) (R(p(t),p1)). Now, from the definitions of p0

and p1 in section II-A we note that

R(p(t),p0) > R(p(t),p1) for x(t) > 0

and
R(p(t),p1) > R(p(t),p0) for x(t) < 0 .

To solve (4.2), (4.3), it is clear that the optimum trajectory
must maximize R(p(t),p0) (R(p(t),p1) during t ∈ [0, βT )
(t ∈ [βT, T )). This implies that the optimum quadrotor’s
trajectory satisfies:

x(t) > 0 for t ∈ (0, βT ) and x(t) < 0 for t ∈ (βT, T ) .

Then, considering the periodicity of the trajectory, we have
that:

x(0) = x(βT ) = x(T ) = 0 ,

dx(0)/dt = dx(T )/dt ≥ 0 , dx(βT )/dt ≤ 0 ,

x(t) ≥ 0, ∀t ∈ [0, βT ) , x(t) ≤ 0, ∀t ∈ [βT, T ) .

(4.4)

In the following Theorem (proved in Appendix B), we
state some optimum trajectory properties which enable us to
further simplify Problem 1 before attempting to solve it.

Theorem 2 (Optimum trajectory properties): If
y0 = −y1, vx0 = −vx1 and vy0 = −vy1, both phases of
the optimal trajectory must have the same duration, i.e.
β = 0.5. Hence, both phases of the optimum trajectory
[x∗ y∗]T are, ∀t ∈ [0, T/2), are related according to

x∗(t+ T/2) = −x∗ (t) , y∗(t+ T/2) = −y∗ (t) . (4.5)

�
Corollary 1: Under the conditions stated in Theorem 2,

the optimization problem (4.2)-(4.3) is simplified to:

max
θ̄,φ̄

∫ T/2

0

log2

(
1 +

P/σ2

(D/2− x(t))2 + y2(t)

)
dt (4.6)

subject to the following constraints

(D/2− x(t))2 + y2(t) ≥ d2
min ∀t ∈ [0, T/2],

d2x(t)/dt2 = gθ̄, d2y(t)/dt2 = gφ̄,

x(0) = x(T/2) = 0, y(0) = −y(T/2),

dx(0)/dt = −dx(T/2)/dt, dy(0)/dt = −dy(T/2)/dt,

‖θ̄‖∞ ≤ Θ, ‖φ̄‖∞ ≤ Φ,
(4.7)
�

Proof: By setting y0 = −y1, vx0 = −vx1 and vy0 = −vy1
according to Theorem 2, we have that β∗ = 0.5 in (4.2)-(4.3),
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i.e., both phases of the trajectory have the same duration.
In addition, both trajectory phases are related according to
(4.5). This relation automatically satisfies the constraint that
the quadrotor must transmit to the DN the same number of
bits received from the SN. Hence, by taking all this into
consideration, the optimization problem (4.2)-(4.3) becomes
(4.6)-(4.7) after setting y0 = −y1, vx0 = −vx1 and vy0 = −vy1.

V. PROBLEM SOLUTION

The optimization problem (4.6)-(4.7) could be solved nu-
merically using dynamic programming [14]. However, such
an approach is computationally too expensive. We derive a
suboptimal (but with much lower computational load than
dynamic programming) solution by approximating x and y
with a Fourier series of order N . The resulting optimization
problem is:

max
{ak,bk,ck,dk}Nk=1

∫ T/2

0

log2

(
1 +

P/σ2
n

(D/2− x̄(t))2 + ȳ2(t)

)
dt

(5.1)
subject to the following constraints

x̄(t) =
∑N
k=1 (ak cos(kωt) + bk sin(kωt)) ,

ȳ(t) =
∑N
k=1 (ck cos(kωt) + dk sin(kωt)) ,

‖x̄(t)‖∞ ≤ gΘ, ‖ȳ(t)‖∞ ≤ gΦ,

(D/2− x̄(t))2 + ȳ2(t) ≥ d2
min ∀t ∈ [0, T/2],∑

k∈EN
ak = 0,

∑
k∈ON

ak = 0,
∑
k∈EN

ck = 0,∑
k∈EN

kbk = 0,
∑
k∈EN

kdk = 0,
(5.2)

where ON and EN represent the set of all odd and even
numbers in the set {1, 2, · · · , N}. The first two lines of
constraints describe the parametric representation of the
trajectory using Fourier series of order N where ω = 2π/T .
The next line of constraints ensures that the quadrotor will
maintain a minimum distance of dmin from the SN and the
DN. Then, the next set of constraints on the Fourier series
coefficients ensure that the initial and final conditions on x̄(t)
and ȳ(t) (as well as on their derivative) are met7.

It is worth pointing out that one of the main advantages of
approximating the trajectory using the Fourier series is that
the resulting trajectory will be infinitely derivable and thus
it can be tracked by the quadrotor without any problem, see
(3.15).

A. Suboptimal Trajectory

In order to solve problem (5.1), (5.2), whose solution is
an approximation of the solution of (4.6), (4.7), we used
simulated annealing (SA) algorithm [15]. This optimization
algorithm combines a random and gradient-like search pro-
cedures in order to find the optimum value.

We solve (5.1), (5.2) for: P/σ2 = 103, D/2 = 400 [m],
T = 300 [s], dmin = 30 [m] and Θ = Φ = π/18. After

7To differentiate the actual quadrotor’s position p(t) = [x y]T from the
trajectory designed by solving (5.1), (5.2) we will denote the latter by
p̄(t) = [x̄ ȳ]T.

running multiple times the SA to optimize (5.1), (5.2), we
observed the presence of various local maxima. We present in
Table I the value J of the optimization target8 (i.e., the upper
bound on the number of bits transmitted during the trajectory,
normalized by the transmission bandwidth B) resulting from
the optimum trajectory for different values of N 9. For
comparison purposes, we also present R in Table I which
corresponds to the ratio of J over the upper bound on the
number of bits that the quadrotor would be able to transfer if
it remained still at the origin (i.e., if p̄(t) = [0 0]T for all t).
By observing R in Table I, we note that the set of considered
suboptimal trajectories produce a large improvement in the
amount of data transmitted with respect to the case in which
the quadrotor remains still at the origin. In Fig. 1 we observe,
for different values of N , the normalized channel capacity
that the quadrotor would see during the first phase of the
optimum trajectory.

We note from Fig. 1 that the channel capacity profile seen
by the quadrotor during the first phase 10 is divided in three
parts. In the first part the quadrotor accelerates to get as close
as possible from the SN (hence the fast initial increase of the
channel capacity). In the second part, the quadrotor tries to
stay as long as possible close to the SN (hence a duration
of high channel gain). Then in the third part the quadrotor
moves away quickly from the SN (towards the DN); by doing
this, the quadrotor can stay longer close to the SN and hence
maximize the number of bits received during the first phase
of the trajectory.

Note, from Fig. 1, that as N increases the rise on the
channel capacity tends to become sharper and to happen
earlier. Note also that as N increases, the initial rise on
the channel capacity profile will reach a limit once the
acceleration of the quadrotor reaches its limit. Also, as N
increases, the center of the channel capacity profile tends to
become flatter. All these elements help us to infer the shape
of the channel capacity profile resulting from the optimum
trajectory obtained by solving (4.2)-(4.3).

In Fig. 1, we also present the path (for t ∈ [0, T/2])
described by the quadrotor’s optimum trajectory for N = 6.
The reason why the quadrotor moves on a straight line
tangential to the SN border rather than on a straight line
orthogonal to the SN border is the fact that the constraints
on the pitch and roll angles are independent (i.e., ‖φ̄‖∞ < Φ
and ‖θ̄‖∞ < Θ).

Finally, we have to mention that the delay introduced by
this method into the transmission of the data from the SN
to the DN via the quadrotor is T/2=150s. Note that such
delays are acceptable in for delay-tolerant applications.

8We present the largest maximum that we have found after running the
SA algorithm numerous times.

9Due to the initial and final state constraints on the trajectory, the values
of the Fourier series coefficients are the same for N = 1 and N = 2.

10The trajectory of the transmission phase is not shown since it is
symmetric to the trajectory during the reception phase according to Theorem
2.
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TABLE I
Maxima J AND R vs N

N 1 3 4 5 6 7
J 54.96 95.43 101.98 111.72 115.38 120.71
R 40.75 70.78 76.60 82.88 85.46 89.32

Fig. 1. Top: path described by optimum p̄(t) for N = 6 and
t ∈ [0, T ], SN and DN are marked in red and minimum distance
between these nodes and the quadrotor is marked by gray circles.
Bottom: instantaneous bit rate achievable for different values of N
and t ∈ [0, T/2].

B. Suboptimal Trajectory Tracking

In order for the quadrotor to track the suboptimal trajectory
p̄(t) we use a control scheme composed by an internal
static state feedback (ISSF), coming from xθ and xφ, and
an external dynamic state feedback (EDSF), coming from
xx and xy.

a) Internal static state feedbacks: The ISSF are com-
posed by (3.13). We set: ε = 1/100.

b) External Dynamic state feedbacks: The EDSF are
composed by the cascade of a state feedback with a lead
network:

(d/dt+ 1/(10 ε))(vi − ūi) = −(d/dt+ b)
[
f1 f2

]
xi,

(5.3)
where: i ∈ {x, y}, vx = θ̄ and vy = φ̄.

From (5.3) and (3.15), we get the following transfer
functions (i ∈ {x, y}):

Ti(s) =
g(10εs + 1)

(ε2s + 1)2(10εs + 1)s2 + g(f1 + f2 s)(s + b)

≈ g

(1 + kc)s2 + kc(b+ f1/f2)s + kc b f1/f2

≈ g/(1 + kc)

(s + ā)2
, kc = 10 εf2g.

(5.4)

Following a root locus design, we have chosen f1 = 0.5944,
f2 = 1.1888 and b = 2.4423,. For the closed loop poles
location: {−130.73, −38.78, −38.78, −0.85, −0.85}. We
set: ā = 0.85.

Thus, doing:11

ūx = ((1 + kc)/g)
(
d2x̄/dt2 + 2 ādx̄/dt+ ā2 x̄

)
,

ūy = ((1 + kc)/g)
(
d2ȳ/dt2 + 2 ā dȳ/dt+ ā2 ȳ

)
,
(5.5)

11Since x̄ and ȳ are expressed by Fourier series, then their time derivatives
are easily computed.

Fig. 2. Quadrotor’s behaviour during the tracking of p̄(t) for t ∈ [0, T/2]:
(a) y vs. x [m]. (b) ‖p(t)−p0‖2 [m]. (c) ‖p(t)−p̄(t)‖2/ ‖p̄(t)‖2 [m]. (d)
pitch θ and roll φ angles [◦]. (e) R(p(t),p0)/B in blue; R(p̄(t),p0)/B
in red .

we finally get:

x = x̄ + kx e−ā t +O(ε), x = x̄ + ky e−ā t +O(ε), (5.6)

where kx and ky are constants depending on the initial
conditions.

Finally, we compare how well the quadrotor can track12

p̄(t) for N = 6. To do this, we consider a quadrotor
model with parameter values extracted from a laboratory
prototype (see [9]): M = 1.36 [kg], g = 9.81 [m s−2], Ix =
0.0134 [kg m2], Iy = 0.0140 [kg m2], Iz = 0.0256 [kg m2], L
= 0.0245[m].

From Figs. 2, we observe that the quadrotor has no
problem in following the trajectory designed (p̄(t)) (tracking
error below 1%). The constraints regarding the maximum roll
and pitch angle variations are met and the quadrotor gets
closer to the SN than allowed only by a small distance (see
Fig. 2 (b)). In Fig. 2 (e), we observe the instantaneous bit
rate profile experienced by the quadrotor during the trajectory
tracking which is significantly similar to the one associated
to p̄(t). Finally, the optimization target evaluated on p̄(t)
is J = 115.38 bits per Hz and on p(t) is J = 117.5 bits
per Hz. Therefore, we can say that from a communications
perspective, the performance of the trajectory described by
the quadrotor (p(t)) is close enough to the performance of
the trajectory designed p̄(t).

VI. CONCLUSION
We successfully optimized a periodic trajectory for a

quadrotor so that it maximizes the amount of data transferred

12The Fourier coefficients, for N = 6, obtained by executing the SA
algorithm to solve (5.1), (5.2) are:

(a1, b1, c1, d1) = (−2.0907, 478.1504, 0.1765, −35.3231),
(a2, b2, c2, d2) = (−10.4373, 3.0189, −1.7834, −0.6714),
(a3, b3, c3, d3) = (2.0285, 136.9332, −0.6628, −7.8130),
(a4, b4, c4, d4) = (−0.0737, −1.1088, 1.7767, 0.2081),
(a5, b5, c5, d5) = (0.0621, 43.6466, −0.2366, −1.8607),
(a6, b6, c6, d6) = (10.5110, −0.2671, 0.0066, 0.0851).

(5.7)
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from a source node to a destination in a delay tolerant
application. The optimized trajectory results in a significant
increment on the amount of data transferred and is easily
trackable by the quadrotor. The trajectory is parametrized
with a Fourier series whose parameters are optimized. This
parametric approach results also in a low computational load.
Future work will address the issue of multiple maxima within
the optimization problem, the energy consumption of the
quadrotor and experimental validation.

APPENDIX

A. Proof of Theorem 1

a) Right Inverse: In the Fact 1 of [5], we proved that
(3.2) is a one side inverse of (3.1) (see also Lemma 3 of
[8]).

b) Proper Approximation: Let us note that Nr is a
nilpotent matrix and that H3 implies the invertibility of Ar.

There then exist changing bases matrices, TL and TR, such
that the regular pencil [ sNr − Ar(ε) ] is transformed in its
Weierstrass form [10]: TL [ sNr − Ar ]TR = [ sNr − I ].

Following the procedure proposed in Theorem 2.1 of [6],
we get the proper pencil [ sNr − J(ε) ], where: J(ε) = I +
K(ε)P , P ∈ Rm×n is the natural projection on kerNr, and

the matrix, K(ε) =

[
K1(ε)
K2(ε)

]
, K1(ε) ∈ Rm×m, K2(ε)

∈ R(n−m)×m, is a matrix, parametrized by a given positive
parameter ε, such that: det (sNr − J(ε)) = (ε s+1)n, K1(ε)
= ε Im and K(0) = 0.

Coming back to the initial bases (in the domain and the
co-domain), we get (3.4) – (3.6), together with: K1(0) = 0
and K2(0) = 0. (3.7) is also proved in Theorem 2.1 of [6].

On the other hand, since (3.4) is an internally proper13

description for all ε > 0, we have from Proposition 9 of
[7], that: ker

[
In 0

]
⊕ ker

[
Cm K1(ε)

]
= R(n+m),

namely: ker
[

In 0
]
∩ ker

[
Cm K1(ε)

]
= {0}, which

implies: kerK1(ε) = {0} for all ε > 0.
c) ε-Right Inverse Feedback: H2 implies the existence

of F0 satisfying (3.9), and the existence of a right inverse
Cr(A0, B), where A0 = A+BF0, namely: C(A0, B)Cr(A0, B) =
In. Defining the first state feedback: u = u0 + F0x, we get:

dx/dt = A0 x+B u0 .

From the inversion Lemma and recalling the Cayley-
Hamilton Theorem, we deduce (see for example [11], [12]):

x(s) = (s In −A0)
−1
B u0(s) =

n∑
i=1

Ai−1
0 B s−i u0(s) ,

x(s) = C(A0, B) Ψm(s−1)u0(s) ,

Ψm(s−1)u0(s) = Cr(A0, B)x(s) .
(A.1)

On the other hand, applying the procedure (3.2) – (3.6) to
Σ(A0, B,C), we get, after algebraic reductions, the follow-

13The pencil
[

sNr − Ar(ε)
]

is regular and it has no infinite zeros of
order greater than one (there are no derivators) [2], [1].

ing right inverse approximation:

d
dt x̄r =

(
A0 − (B + K̃2(ε))K̃−1

1 (ε)Cm

)
x̄r

+(B + K̃2(ε))K̃−1
1 (ε) ȳ ,

u0 = −K̃−1
1 (ε)Cm x̄r + K̃−1

1 (ε) ȳ .

(A.2)

Inverting once again the right inverse approximation (A.2),
we get after algebraic reductions (see Fact 1 of [5] or Lemma
3 of [8]):

d
dt ζ̄ = A0 ζ̄ +

(
B + K̃2(ε)

)
u0 , ȳ = Cm ζ̄ + K̃1(ε)u0 .

(A.3)
From (A.3) and (A.1), we finally get:

K̃1(ε)u0(s)− ȳ(s) =

= −Cm (sIn −A0)
−1
(
B + K̃2(ε)

)
u0(s) ,

= −Cm
n∑
i=1

Ai−1
0

(
B + K̃2(ε)

)
s−iu0(s) ,

= −Cm
(
C(A0, B) + C(A0, K̃(ε))

)
Ψm(s−1)u0(s) ,

= −Cm
(

Im + C(A0, K̃2(ε))C
r
(A0, B)

)
x(s) . �

B. Proof of Theorem 2

During t ∈ [0, βT ) the quadrotor receives data from the
SN and during t ∈ [βT, T ) it transmits the data to the DN.
Let us denote the periodic trajectory of the quadrotor as
f(t) = f1(t) ∀t ∈ [0, βT ) and f(t) = f2(t) ∀t ∈ [βT, T )
where f(t) = [x(t) y(t)]T. Now, considering (4.4) we can
write the initial and final conditions of f1(t) and f2(t)
as f1(0) = [0, y0]T, f1(βT ) = [0, y1]T, df1(0)/dt =
[vx0, v

y
0]T, df1(βT )/dt = [vx1, v

y
1]T, f2(βT ) = [0, y1]T,

f2(T ) = [0, y0]T, df2(βT )/dt = [vx1, v
y
1]T and df2(T )/dt =

[vx0, v
y
0]T.

Let us propose the following alternative optimization prob-
lem. During t ∈ [0, βT ) the quadrotor receives data from
the SN with bit rate R(p(t),p0). During t ∈ [βT, T ] the
quadrotor also receives data from the DN but with bit rate
R(p(t),p1). The problem is to maximize the data received
by the quadrotor during t ∈ [0, T ] with the constraint that the
data received from the DN and the SN must be identical. And
we also take into account the constraints (4.4) and the ones
defined in (4.2), (4.3). This alternative optimization problem
is equivalent to (4.2), (4.3) (i.e., they have the same solution).
This problem can be written as two coupled optimization
problems. The first one is:

max
θ̄,φ̄,β

∫ βT

0

log2

(
1 +

P/σ2

(D/2− x(t))2 + y2(t)

)
dt (B.1)

subject to the constraints

(D/2− x(t))2 + y2(t) ≥ dmin, x(t) ≥ 0,∀t ∈ [0, βT ]

d2x(t)/dt2 = gθ̄, d2y(t)/dt2 = gφ̄,

x(0) = x(βT ) = 0, y(0) = y0, y(βT ) = y1,

dx(0)/dt = vx0 ≥ 0, dx(βT )/dt = vx1 ≤ 0,

dy(0)/dt = vy0, dy(βT )/dt = vy1,
(B.2)
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and the second one:

max
θ̄,φ̄,β

∫ T

βT

log2

(
1 +

P/σ2

(D/2 + x(t))2 + y2(t)

)
dt (B.3)

subject to the constraints

(D/2 + x(t))2 + y2(t) ≥ dmin x(t) ≤ 0, ∀t ∈ [βT, T ]

d2x(t)/dt2 = gθ̄, d2y(t)/dt2 = gφ̄,

x(βT ) = x(T ) = 0, y(βT ) = y1, y(T ) = y0,

dx(βT )/dt = vx1 ≤ 0, dx(T )/dt = vx0 ≥ 0,

dy(βT )/dt = vy1, dy(T )/dt = vy0,
(B.4)

Both optimization problems are coupled by the initial and
final conditions (i.e., y0, y1, vx0, vy0, vx1 and vy1 ) as well as
by the fact that the quadrotor must receive the same amount
of data from the SN and the DN:∫ βT

0

R(p(t),p0)dt =

∫ T

βT

R(p(t),p1)dt. (B.5)

Let us refer to the optimum trajectory solving (B.1), (B.2)
as g∗1(t; 0, βT ) =

[
x∗1(t) y∗1(t)

]T
which is defined over

t ∈ [0, βT ] and with initial and final conditions:

x∗1(0) = 0, y∗1(0) = y0, x∗1(βT ) = 0, y∗1(βT ) = y1,
dx∗1(0)/dt = vx0, dy∗1(0)/dt = vy0,

dx∗1(βT )/dt = vx1, dy∗1(βT )/dt = vy1.

Then, let us refer to the optimum trajectory solving (B.3),
(B.4) as g∗2(t;βT, T ) =

[
x∗2(t), y∗2(t)

]T
which is defined

over t ∈ [βT, T ] and with initial and final conditions:

x∗2(βT ) = 0, y∗2(βT ) = y1, x∗2(T ) = 0, y∗2(T ) = y0,
dx∗2(βT )/dt = vx1, dy∗2(βT )/dt = vy1

dx∗2(T )/dt = vx0, dy∗2(T )/dt = vy0.

Now, let us define the following trajectory for t ∈ [βT, T ]:

g∗3(t; βT, T ) , g∗2((1 + β)T − t; βT, T ); (B.6)

with initial and final conditions:
x∗3(βT ) = x∗3(T ) = 0, y∗3(βT ) = y∗2(T ), y∗3(T ) = y∗2(βT )
dx∗3(βT )/dt = −dx∗2(T )/dt, dy∗3(βT )/dt = dy∗2(T )/dt

dx∗3(T )/dt = −dx∗2(βT )/dt, dy∗3(T )/dt = −dy∗2(βT )/dt.
(B.7)

So, if the trajectory g∗2(t; βT, T ) is solution to (B.3),
(B.4) then the trajectory g∗3(t; 0, (1 − β)T ), defined over
t ∈ [0, (1 − β)T ], is solution to the following optimization
problem:

max
θ̄,φ̄,β

∫ (1−β)T

0

log2

(
1 +

P/σ2

(D/2 + x(t))2 + y2(t)

)
dt (B.8)

subject to the following constraints

(D/2 + x(t))2 + y2(t) ≥ dmin x(t) ≤ 0, ∀t ∈ [0, (1− β)T ]

d2x/dt2 = gθ̄, d2y(t)/dt2 = gφ̄,

x(0) = x((1− β)T ) = 0, y(0) = y0, y((1− β)T ) = y1,

dx(0)/dt = −vx0 ≥ 0, dx((1− β)T )/dt = −vx1 ≤ 0,

dy(0)/dt = −vy0, dy((1− β)T )/dt = −vy1,
(B.9)

Comparing (B.1), (B.2) with (B.8), (B.9) we observe that
g∗3(t+ βT ; βT, T ) and g∗1(t; 0, βT ) are related as follows:

x∗3(t+ βT ) = −x∗1
(
t(1−β)
β

)
, y∗3(t+ βT ) = y∗1

(
t(1−β)
β

)
(B.10)

Now, if:

y0 = −y1, vx0 = −vx1, vy0 = −vy1, (B.11)

then, by combining (B.6), (B.7), (B.10) and (B.11), we get
(4.5). So, if the relations described in (B.11) hold, then (4.5)
also holds and then by applying this to (B.3), (B.4) and then
comparing it to (B.1), (B.2) we note that the solution to the
pair of optimization problems (B.1), (B.2) and (B.3), (B.4)
(coupled by the initial and final conditions as well as by
(B.5)) requires that both phases of the trajectory have the
same duration and so the optimum β∗ = 0.5. �
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