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Let {P n } n≥0 be the sequence of Padovan numbers defined by P 0 = 0, P 1 = 1 = P 2 , and P n+3 = P n+1 + P n for all n ≥ 0. In this paper, we find all repdigits in base 10 which can be written as a sum of three Padovan numbers.

Introduction

Let {P n } n≥0 be the sequence of Padovan numbers given by P 0 = 0, P 1 = 1, P 2 = 1, and P n+3 = P n+1 + P n for all n ≥ 0. This is sequence A000931 on the On-Line Encyclopedia of Integer Sequences (OEIS) [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF]. The first few terms of this sequence are {P n } n≥0 = 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, . . . . A repdigit is a positive integer N that has only one distinct digit when written in base 10. That is, N is of the form

N = d 10 -1 9 ( 1 
)
for some positive integers d and with 1 ≤ d ≤ 9 and ≥ 2. The sequence of repdigits is sequence A010785 on the OEIS.

Main Result

In this paper, we study the problem of writing repdigits as sums of three Padovan numbers. More precisely, we completely solve the Diophantine equation:

N = P n 1 + P n 2 + P n 3 = d 10 -1 9 , ( 2 
)
in non-negative integers (N , n 1 , n 2 , n 3 , d, ) with n 1 ≥ n 2 ≥ n 3 ≥ 0, ≥ 2, and 1 ≤ d ≤ 9.

We discard the situations when n 1 = 1 and n 1 = 2 and just count the solutions for n 1 = 3 since P 1 = P 2 = P 3 = 1. For the same reasons, we discard the situation when n 1 = 4 and just count the solutions for n 1 = 5 since P 4 = P 5 = 2. Thus, we always assume that n 1 , n 2 , n 3 / ∈ {1, 2, 4}. Our main result is the following. This paper serves as a continuation of the results in [START_REF] Ddamulira | Repdigits as sums of three balancing numbers[END_REF][START_REF] Lomelí | Repdigits as sums of two Padovan numbers[END_REF][START_REF] Luca | Repdigits as sums of three Fibonacci numbers[END_REF][START_REF] Luca | Repdigits as sums of three Lucas numbers[END_REF][START_REF] Luca | Repdigits as sums of four Pell numbers[END_REF][START_REF] Normenyo | Repdigits as sums of three Pell numbers[END_REF]. The method of proof involves the application of Baker's theory for linear forms in logarithms of algebraic numbers, and the Baker-Davenport reduction procedure. Computations are done with the help of a simple computer program in Mathematica.

Preliminary results

The Padovan sequence

Here, we recall some important properties of the Padovan sequence {P n } n≥0 . The characteristic equation

x 3 -x -1 = 0
has roots α, β, and γ = β, where

α = r 1 + r 2 6 , β = -(r 1 + r 2 ) + √ -3(r 1 -r 2 ) 12 , (3) 
and

r 1 = 3 108 + 12 √ 69 and r 2 = 3 108 -12 √ 69. (4) 
Furthermore, the Binet formula is given by

P n = aα n + bβ n + cγ n for all n ≥ 0, (5) 
where

a = α + 1 (α -β)(α -γ ) , b = β + 1 (β -α)(β -γ ) , c = γ + 1 (γ -α)(γ -β) = b. (6)
Numerically, the following estimates hold:

1.32 < α < 1.33, 0.86 < |β| = |γ | = α -1 2 < 0.87, 0.72 < a < 0.73, 0.24 < |b| = |c| < 0.25. ( 7 
)
From ( 3), (4), and ( 7), it is easy to see that the contribution the complex conjugate roots β and γ , to the right-hand side of (5), is very small. In particular, setting

e(n) := P n -aα n = bβ n + cγ n it is seen that |e(n)| < 1 α n/2 , ( 8 
)
holds for all n ≥ 1. Furthermore, by induction, it can be proved that

α n-3 ≤ P n ≤ α n-1 holds for all n ≥ 1. ( 9 
)

Linear forms in logarithms

Let η be an algebraic number of degree d with minimal primitive polynomial over the integers:

a 0 x d + a 1 x d-1 + • • • + a d = a 0 d i=1 (x -η (i) ),
where the leading coefficient a 0 is positive and the η (i) 's are the conjugates of η. Then the logarithmic height of η is given by

h(η) := 1 d log a 0 + d i=1 log max{|η (i) |, 1} .
In particular, if η = p/q is a rational number with gcd( p, q) = 1 and q > 0, then h(η) = log max{| p|, q}. The following are some of the properties of the logarithmic height function h(•), which will be used in the next sections of this paper without reference:

h(η 1 ± η 2 ) ≤ h(η 1 ) + h(η 2 ) + log 2, h(η 1 η ±1 2 ) ≤ h(η 1 ) + h(η 2 ), h(η s ) = |s|h(η) (s ∈ Z). ( 10 
)
For the proofs of [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II[END_REF] and further details, we refer the reader to the book of Bombieri and Gubler [START_REF] Bombieri | Heights in Diophantine Geometry[END_REF].

We recall the result of Bugeaud, Mignotte, and Siksek [2, Theorem 9.4, p. 989], which is a modified version of the result of Matveev [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II[END_REF], which is one of our main tools in this paper.

Theorem 2 Let η 1 , . . . , η t be positive real algebraic numbers in a real algebraic number field K ⊂ R of degree D K , b 1 , . . . , b t be nonzero integers, and assume that

Λ := η b 1 1 • • • η b t t -1, ( 11 
)
is nonzero. Then log |Λ| > -1.4 × 30 t+3 × t 4.5 × D 2 K (1 + log D K )(1 + log B)A 1 • • • A t , where B ≥ max{|b 1 |, . . . , |b t |}, and 
A i ≥ max{D K h(η i ), | log η i |, 0.
16}, for all i = 1, . . . , t.

Reduction procedure

During the calculations, we get upper bounds on our variables which are too large, thus we need to reduce them. To do so, we use some results from the theory of continued fractions.

For the treatment of linear forms homogeneous in two integer variables, we use the well-known classical result in the theory of Diophantine approximation. The following lemma is the criterion of Legendre.

Lemma 1 Let τ be an irrational number, p 0 q 0 , p 1 q 1 , p 2 q 2 , . . . be all the convergents of the continued fraction expansion of τ and M be a positive integer. Let N be a nonnegative integer such that q N > M. Then, putting a(M) := max{a i : i = 0, 1, 2, . . . , N }, the inequality:

τ - r s > 1 (a(M) + 2)s 2 ,
holds for all pairs (r , s) of positive integers with 0 < s < M.

For a nonhomogeneous linear form in two integer variables, we use a slight variation of a result due to Dujella and Pethő (see [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF]Lemma 5a]). For a real number X , we write X := min{|X -n| : n ∈ Z} for the distance from X to the nearest integer.

Lemma 2 Let M be a positive integer, p q be a convergent of the continued fraction expansion of the irrational number τ such that q > 6M, and A, B, μ be some real numbers with A > 0 and B > 1. Furthermore, let ε := μq -M τ q . If ε > 0, then there is no solution to the inequality:

0 < |uτ -v + μ| < AB -w , in positive integers u, v, and w with u ≤ M and w ≥ log(Aq/ε) log B .
Finally, the following Lemma is also useful. It is Lemma 7 in [START_REF] Sánchez | Linear combinations of factorials and s-units in a binary recurrence sequence[END_REF].

Lemma 3 If r 1, H > (4r 2 ) r , and H > L/(log L) r , then L < 2 r H (log H ) r .

Bounding the variables

We assume that n 1 ≥ n 2 ≥ n 3 . From ( 2) and ( 9), we have

α n 1 -3 ≤ P n 1 ≤ P n 1 + P n 2 + P n 3 = d 10 -1 9 ≤ 10 and 10 -1 ≤ d 10 -1 9 = P n 1 + P n 2 + P n 3 ≤ 3P n 1 < α n 1 +3 ,
where we use α 4 > 3. Thus

(n 1 -3) log α log 10 ≤ and -1 ≤ (n 1 + 3) log α log 10 .
Since log α/ log 10 = 0.122123 . . . < 1/5, we can conclude from the above that

(n 1 -3)/10 < < (n 1 + 8)/5. ( 12 
)
Running a Mathematica program in the range 0 ≤ n 3 ≤ n 2 ≤ n 1 ≤ 500, 1 ≤ d ≤ 9, and 1 ≤ ≤ 100 we obtain only the solutions listed in Theorem 1. From now on, we assume that n 1 > 500.

By using [START_REF] Luca | Repdigits as sums of three Lucas numbers[END_REF], equation ( 2) can be written as

aα n 1 + e(n 1 ) + aα n 2 + e(n 2 ) + aα n 3 + e(n 3 ) = d 10 -1 9 . ( 13 
)
We then consider (13) in three different cases as follows.

Case 1

We have that

aα n 1 + e(n 1 ) + aα n 2 + e(n 2 ) + aα n 3 + e(n 3 ) - d • 10 9 = - d 9 .
This is equivalent to

aα n 1 - d • 10 9 = - d 9 -a(α n 2 + α n 3 ) -e(n 1 ) -e(n 2 ) -e(n 3 ).
This shows that

aα n 1 - d • 10 9 ≤ d 9 + a(α n 2 + α n 3 ) + |e(n 1 )| + |e(n 2 )| + |e(n 3 )| < 1 + 2aα n 2 + 3α -n 3 /2 < 5aα n 2 ,
and so

aα n 1 - d • 10 9 < 5aα n 2 . ( 14 
)
We divide through (14) by aα n 1 to get

10 α -n 1 d 9a -1 < 5α n 2 -n 1 .
Thus, we have

10 α -n 1 d 9a -1 < 5 α n 1 -n 2 . ( 15 
)
We put

Λ 1 := 10 α -n 1 d 9a -1.
To apply Theorem 2, we need to check that Λ 1 = 0. Suppose that Λ 1 = 0, then we have

aα n 1 = 10 • d 9 . ( 16 
)
To see that this is not true, we consider the Q-automorphism σ of the Galois extension Q(α, β) over Q given by σ (α) := β and σ (β) := α. Now, since Λ 1 = 0, we get σ (Λ 1 ) = 0. Thus, conjugating the relation (16) under σ , and taking absolute values on both sides, we get 10

• d 9 = |σ (aα n 1 )| = |b||β| n 1 < |b| < 1 3 ,
which is false for ≥ 2 and d ≥ 1. Therefore, Λ 1 = 0. Therefore, we apply Theorem 2 with the data

t := 3, η 1 := 10, η 2 := α, η 3 := d 9a , b 1 := , b 2 := -n 1 , b 3 := 1.
It is a well-known fact that

a = α(α + 1) 3α 2 -1 ,
the minimal polynomial of a is 23x 3 -23x 2 + 6x -1 and has roots a, b, c. Since |b| = |c| < |a| = a < 1 (by ( 7)), we get

h(a) = 1 3 log 23.
Since η 1 , η 2 , η 2 ∈ Q(α), we take the field K := Q(α) with degree D K := 3. Since max{1, , n 1 } ≤ n 1 , we take B := n 1 . Further, the minimal polynomial of α over Z is x 3x -1 has roots α, β, γ with 1.32 < α < 1.33 and |β| = |γ | < 1. Thus, we can take h(α) = 1 3 log α. Similarly, h(10) = log 10 . Also, By comparing the above inequality with the right-hand side of (15) we get that n 1n 2 ≤ 6.18 × 10 14 log n 1 .

h(η 3 ) ≤ h(d) + h(9) + h(a) ≤ 4 log 3 + 1 
(17)

Case 2

We have that

aα n 1 + e(n 1 ) + aα n 2 + e(n 2 ) - d • 10 9 = - d 9 -aα n 3 -e(n 3 ).
This is equivalent to

a(α n 1 + α n 2 ) - d • 10 9 = - d 9 -aα n 3 -e(n 1 ) -e(n 2
)e(n 3 ).

Thus, it follows that

a(α n 1 + α n 2 ) - d • 10 9 ≤ d 9 + aα n 3 + |e(n 1 )| + |e(n 2 )| + |e(n 3 )| < 1 + aα n 3 + 3α -n 3 /2 < 3aα n 3 ,
and so

a(α n 1 + α n 2 ) - d • 10 9 < 3aα n 3 . ( 18 
)
We divide through (14) by a(α n 1 + α n 2 ) to get

10 α -n 2 d 9a(1 + α n 1 -n 2 ) -1 < 3α n 3 -n 2 1 + α n 1 -n 2 .
This means that

10 α -n 2 d 9a(1 + α n 1 -n 2 ) -1 < 3 α n 2 -n 3 . ( 19 
)
We put

Λ 2 := 10 α -n 2 d 9a(1 + α n 1 -n 2 ) -1.
As before, to apply Theorem 2, we need to check that Λ 2 = 0. Suppose that Λ 2 = 0, then we have

a(α n 1 + α n 2 ) = 10 • d 9 . ( 20 
)
To see that this is not true, we again consider the Q-automorphism σ of the Galois extension Q(α, β) over Q given by σ (α) := β and σ (β) := α. Now, since Λ 2 = 0, we get σ (Λ 2 ) = 0. Thus, conjugating the relation (20) under σ , and taking absolute values on both sides, we get 10

• d 9 = |σ (a(α n 1 + α n 2 ))| = |b|(|β| n 1 + |β| n 2 ) < 2|b| < 2 3 ,
which is false for ≥ 2 and d ≥ 1. Therefore, Λ 2 = 0. Therefore, we apply Theorem 2 with the data

t := 3, η 1 := 10, η 2 := α, η 3 := d 9a(1 + α n 1 -n 2 ) , b 1 := , b 2 := -n 2 , b 3 := 1.
Since η 1 , η 2 , η 2 ∈ Q(α), we take the field K := Q(α) with degree D K := 3. Since max{1, , n 2 } ≤ n 1 , we take B := n 1 . Further,

h(η 3 ) ≤ h(d) + h(9) + h(a) + h(1 + α n 1 -n 2 ) ≤ 4 log 3 + 1 3 log 23 + (n 1 -n 2 ) log α + log 2
< 1.77 × 10 14 log n 1 (by (17)). > -1.98 × 10 28 (log n 1 ) 2 log α.

Thus, we can take

By comparing the above inequality with the right-hand side of (19), we get that

n 2 -n 3 ≤ 2 × 10 28 (log n 1 ) 2 . ( 21 
)

Case 3

We have that

aα n 1 + e(n 1 ) + aα n 2 + e(n 2 ) + aα n 3 + e(n 3 ) - d • 10 9 = - d 9 .
This is equivalent to

a(α n 1 + α n 2 + α n 3 ) - d • 10 9 = - d 9 -e(n 1
)e(n 2 )e(n 3 ).

Thus, we have

a(α n 1 + α n 2 + α n 3 ) - d • 10 9 ≤ d 9 + |e(n 1 )| + |e(n 2 )| + |e(n 3 )| < 1 + 3α -n 3 /2 < 3,
and so

a(α n 1 + α n 2 + α n 3 ) - d • 10 9 < 3. ( 22 
)
We divide through (14) by a(α

n 1 + α n 2 + α n 3 ) to get 10 α -n 3 d 9a(1 + α n 1 -n 3 + α n 2 -n 3 ) -1 < 3α -n 1 (1 + α n 2 -n 1 + α n 3 -n 1 )
.

Thus, it follows that

10 α -n 3 d 9a(1 + α n 1 -n 3 + α n 2 -n 3 ) -1 < 5 α n 1 . ( 23 
)
We put

Λ 3 := 10 α -n 3 d 9a(1 + α n 1 -n 3 + α n 2 -n 3 ) -1.
As before, in order to apply Theorem 2 we need to check that Λ 3 = 0. Suppose that Λ 3 = 0, then we have

a(α n 1 + α n 2 + α n 3 ) = 10 • d 9 . ( 24 
)
To see that this is not true, we again consider the Q-automorphism σ of the Galois extension Q(α, β) over Q given by σ (α) := β and σ (β) := α. Now, since Λ 3 = 0, we get σ (Λ 3 ) = 0. Thus, conjugating the relation (24) under σ , and taking absolute values on both sides, we get 10

• d 9 = |σ (a(α n 1 + α n 2 + α n 3 ))| = |b|(|β| n 1 + |β| n 2 + |β| n 3 ) < 3|b| < 1,
which is false for ≥ 2 and d ≥ 1. Therefore, Λ 2 = 0. Therefore, we apply Theorem 2 with the data:

t := 3, η 1 := 10, η 2 := α, η 3 := d 9a(1 + α n 1 -n 3 + α n 2 -n 3 ) , b 1 := , b 2 := -n 3 , b 3 := 1.
Since η 1 , η 2 , η 2 ∈ Q(α), we take the field K := Q(α) with degree D K := 3. Since max{1, , n 3 } ≤ n 1 , we take B := n 1 . Furthermore

h(η 3 ) ≤ h(d) + h(9) + h(a) + h(1 + α n 1 -n 3 + α n 2 -n 3 ) ≤ 4 log 3 + 1 3 log 23 + ((n 1 -n 3 ) + (n 2 -n 3 )) log α + 2 log 2 < 6.6 log 3 + ((n 1 -n 2 ) + 2(n 2 -n 3 )) log α < 1.
72 × 10 28 (log n 1 ) 2 (by (17) and ( 21)).

Thus, we can take A 1 := 3 log 10, A 2 := log α, and A 3 := 5.16 × 10 28 (log n 1 ) 2 . So, Theorem 2 tells us that the left-hand side of ( 23) is bounded below by

log |Λ 3 | > -1.4 × 30 6 × 3 4.5 × 3 2 (1 + log 3)(1 + log n 1 )(3 log 10) × (log α)(5.16 × 10 28 (log n 1 ) 2 ) > -1.92 × 10 42 (log n 1 ) 3 log α.
By comparing the above inequality with the right-hand side of (19), we get that

n 1 ≤ 1.94 × 10 42 (log n 1 ) 3 . ( 25 
)
Now, we apply Lemma 3 on the above inequality (25) with the data: r := 3, H := 1.94 × 10 42 , and L := n 1 . We obtain that n 1 < 2.7 × 10 48 . We now record what we have proved.

Lemma 4 Let (N , n 1 , n 2 , n 3 , d, ) be the nonnegative integer solutions to the Diophantine equation (2) with n 1 ≥ n 2 ≥ n 3 ≥ 0, 1 ≤ d ≤ 9, and ≥ 2. Then, we have

< n 1 < 3 × 10 48 .

Reducing the bounds

The bounds obtained in Lemma 4 are too large to carry out meaningful computations on the computer. Thus, we need to reduce these bounds. To do so, we return to (15), (19), and (23) and apply Lemma 2 via the following procedure. First, we put

Γ 1 := log 10 -n 1 log α + log d 9a , 1 ≤ d ≤ 9.
For technical reasons, we assume that n 1 -n 2 ≥ 20 and go to (15). Note that e

Γ 1 -1 = Λ 1 = 0. Thus, Γ 1 = 0. If Γ 1 < 0, then 0 < |Γ 1 | < e |Γ 1 | -1 = |Λ 1 | < 5 α n 1 -n 2 .
If Γ 1 > 0, then we have that |e Γ 1 -1| < 1/2. Hence e Γ 1 < 2. Thus, we get that

0 < Γ 1 < e Γ 1 -1 = e Γ 1 |Λ 1 | < 10 α n 1 -n 2 .
Therefore, in both cases, we have that

0 < |Γ 1 | = log 10 -n 1 log α + log d 9a < 10 α n 1 -n 2 .
Dividing through the above inequality by log α, we get

0 < log 10 log α -n 1 + log(d/(9a)) log α < 10 α n 1 -n 2 log α . ( 26 
)
If we put τ := log 10 log α and μ(d

) := log(d/(9a)) log α , 1 ≤ d ≤ 9,
we can rewrite (26) as

0 < | τ -n 1 + μ(d)| < 36 • α -(n 1 -n 2 ) . ( 27 
)
We now apply Lemma 2 on (27). We put M := 3 × 10 48 . A quick computer search in Mathematica reveals that the convergent

p 106 q 106 = 177652856036642165557187989663314255133456297895465 21695574963444524513646677911090250505443859600601
of τ is such that q 106 > 6M and ε(d) ≥ 0.0129487 > 0. Therefore, with A := 36 and B := α, we calculated each value of log(36q 106 /ε(d))/ log α and found that all of them are at most 432. Thus, we have that n 1n 2 ≤ 432. In the case n 1n 2 < 20, we have n 1n 2 < 20 < 432. Thus, n 1n 2 ≤ 432 holds in both cases. Next, we put

Γ 2 := log 10 -n 2 log α + log d 9a(1 + α n 1 -n 2 ) , 1 ≤ d ≤ 9.
For technical reasons, as before we assume that n 2n 3 ≥ 20 and go to (19). Note that e Γ 2 -1 = Λ 2 = 0. Thus,

Γ 2 = 0. If Γ 2 < 0, then 0 < |Γ 2 | < e |Γ 2 | -1 = |Λ 2 | < 3 α n 2 -n 3 .
If Γ 2 > 0, then we have that |e Γ 2 -1| < 1/2. Hence e Γ 2 < 2. Thus, we get that

0 < Γ 2 < e Γ 2 -1 = e Γ 2 |Λ 2 | < 6 α n 2 -n 3 .
Therefore, in both cases, we have that

0 < |Γ 2 | = log 10 -n 1 log α + log d 9a(1 + α n 1 -n 2 ) < 6 α n 2 -n 3 .
Dividing through the above inequality by log α, we get

0 < log 10 log α -n 2 + log(d/(9a(1 + α n 1 -n 2 ))) log α < 6 α n 2 -n 3 log α . ( 28 
)
We put

τ := log 10 log α and μ(d, k) := log(d/(9a(1 + α k )) log α , 1 ≤ d ≤ 9, 1 ≤ k ≤ 432,
where k := n 1n 2 . We can rewrite (28) as

0 < | τ -n 2 + μ(d, k)| < 22 • α -(n 2 -n 3 ) . ( 29 
)
We now apply Lemma 2 on (29). We put M := 3 × 10 48 . A quick computer search in Mathematica reveals that the 106-th convergent of τ is such that q 106 > 6M and ε(d, k) ≥ 0.000134829 > 0 for all 1 ≤ d ≤ 9 and 1 ≤ k ≤ 432 except for the case ε [START_REF] Luca | Repdigits as sums of four Pell numbers[END_REF][START_REF] Normenyo | Repdigits as sums of three Pell numbers[END_REF], which is always negative. Therefore, with A := 22 and B := α we calculated each value of log(22q 106 /ε(d, k))/ log α and found that all of them are at most 446. Thus, we have that n 2n 3 ≤ 446.

The problem in the case of ε [START_REF] Luca | Repdigits as sums of four Pell numbers[END_REF][START_REF] Normenyo | Repdigits as sums of three Pell numbers[END_REF] is due to the fact that

1 α 9 = 2α 3 + 1 α(α + 1)(α 11 + 1) . ( 30 
)
Thus, if we consider the identity (30), the inequality (28) becomes

0 < τ - (n 2 + 9) < 6 α n 2 -n 3 log α . ( 31 
)
In this case, we apply the classical result from Diophantine approximation given in Lemma 1. We assume that n 2n 3 is so large that the right-hand side of the inequality in (31) is smaller than 1/(2 2 ). This certainly holds if

α n 2 -n 3 > 12 / log α. ( 32 
)
Since < n 1 < 3 × 10 48 , it follows that the last inequality (32) holds provided that n 2n 3 ≥ 415, which we now assume. In this case r /s := (n 2 + 9)/ is a convergent of the continued fraction of τ := log 10/ log α and < 3 × 10 48 . We are now set to apply Lemma 1.

We write τ := [a 0 ; a 1 , a 2 , a 3 , . . .] = [8; 5, 3, 3, 1, 5, 1, 8, 4, 6, 1, 4, 1, 1, 1, 9, 1, 4, 4, 9, . . .] for the continued fraction expansion of τ and p k /q k for the k-th convergent. We get that r /s = p j /q j for some j ≤ 106. Furthermore, putting a(M) := max{a j : j = 0, 1, . . . , 106}, we get a(M) := 564. By Lemma 1, we get Finally, we put

1 566 2 = 1 (a(M) + 2) 2 ≤ τ - r s < 6 α n 2 -n 3 log
Γ 3 := log 10 -n 3 log α + log d 9a(1 + α n 1 -n 3 + α n 2 -n 3 ) , 1 ≤ d ≤ 9.
We use the assumption that n 1 > 500 and go to (23). Note that e Γ 3 -1 = Λ 3 = 0. Thus, Γ 3 = 0. If Γ 3 < 0, then

0 < |Γ 3 | < e |Γ 3 | -1 = |Λ 3 | < 5 α n 1 .
If Γ 3 > 0, then we have that |e Γ 3 -1| < 1/2. Hence e Γ 3 < 2. Thus, we get that

0 < Γ 3 < e Γ 3 -1 = e Γ 3 |Λ 3 | < 10 α n 1 .
Therefore, in both cases, we have that (34)

We now apply Lemma 2 on (34). We put M := 3 × 10 48 . A quick computer search in Mathematica reveals that the 106-th convergent of τ is such that q 106 > 6M and ε(d, k, s) ≥ 0.000125 > 0. Therefore, with A := 36 and B := α we calculated each value of log(36q 106 /ε(d, k, s))/ log α and found that all of them are at most 485. Thus, n 1 ≤ 485. This contradicts our assumption that n 1 > 500. Hence, Theorem 1 holds.

3 log 23 < 5 log 3 Thus, we can take A 1 :

 31 = 3 log 10, A 2 := log α and A 3 := 15 log 3. So, Theorem 2 tells us that the left-hand side of (15) is bounded below by log |Λ 1 | > -1.4 × 30 6 × 3 4.5 × 3 2 (1 + log 3)(1 + log n 1 )(3 log 10)(log α)(15 log 3) > -6.16 × 10 14 log n 1 log α.

A 1 :

 1 = 3 log 10, A 2 := log α and A 3 := 5.31 × 10 14 log n 1 . So, Theorem 2 tells us that the left-hand side of (19) is bounded below by log |Λ 2 | > -1.4 × 30 6 × 3 4.5 × 3 2 (1 + log 3)(1 + log n 1 )(3 log 10)(log α)(5.31 × 10 14 log n 1 )

0 < |Γ 3 |< 10 α n 1 .

 31 = log 10n 3 log α + log d 9a(1 + α n 1 -n 2 + α n 2 -n 3 )Dividing through the above inequality by log α, we get0 < log 10 log α n 3 + log(d/(9a(1 + α n 1 -n 3 + α n 2 -n 3 )) α and μ(d, k, s) := log d/(9a(1 + α k + α s )) log α , 1 ≤ d ≤ 9, where 1 ≤ k := n 1n 3 = (n 1n 2 ) + (n 2n 3 ) ≤878 and 1 ≤ s := n 2n 3 ≤ 446. We can rewrite (33) as 0 < | τn 3 + μ(d, k, s)| < 36 • α -n 1 .

  This implies that n 2n 3 ≤ 435. Thus, in both cases we have that n 2n 3 ≤ 446. In the case n 2n 3 < 20, we get that n 2n 3 < 20 < 446. Thus, n 2n 3 ≤ 446 holds in all cases.

					α	,
	which gives				
	α n 2 -n 3 <	566 × 6 log α	<	566 × 6 × 3 × 10 48 log α	.
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