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Let {F n } n≥0 be the sequence of Fibonacci numbers defined by F 0 = 0, F 1 = 1 and F n+2 = F n+1 + F n for all n ≥ 0. In this paper, for an integer d ≥ 2 which is square-free, we show that there is at most one value of the positive integer x participating in the Pell equation x 2dy 2 = ±4 which is a sum of two Fibonacci numbers, with a few exceptions that we completely characterize.

Introduction

Let {F n } n≥0 be the sequence of Fibonacci numbers given by F 0 = 0, F 1 = 1 and F n+2 = F n+1 + F n for all n ≥ 0.

The Fibonacci sequence is sequence A000045 on the Online Encyclopedia of Integer Sequences (OEIS). The first few terms of this sequence are {F n } n≥0 = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, . . . . In this paper, we let U := {F n + F m : n ≥ m ≥ 0} be the sequence of sums of two Fibonacci numbers. The first few members of U are U = {0, 1, 2, 3, 4, [START_REF] Ddamulira | On the x-coordinates of Pell equations which are sums of two Padovan numbers[END_REF][START_REF] Ddamulira | On the x-coordinates of Pell equations which are kgeneralized Fibonacci numbers[END_REF][START_REF] Dossavi-Yovo | On the X-coordinates of Pell equations which are rep-digits[END_REF][START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF][START_REF] Luca | On the X-coordinates of Pell equations which are repdigits[END_REF][START_REF] Gúzman | Linear combinations of factorials and s-units in a binary recurrence sequence[END_REF][START_REF] Kafle | On the x-coordinates of Pell equations which are Fibonacci numbers II[END_REF][START_REF] Kafle | X-coordinates of Pell equations which are Lucas numbers[END_REF][START_REF] Luca | On the x-coordinates of Pell equations which are Tribonacci numbers[END_REF][START_REF] Luca | On the x-coordinates of Pell equations which are Fibonacci numbers[END_REF][START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers[END_REF]18,21,22,23,24,26,29,34,35, . . .}.

Let d ≥ 2 be a positive integer which is not a square. It is well known that the Pell equation

x 2 -dy 2 = ±4, (1) 
c Indian Academy of Sciences 1 has infinitely many positive integer solutions (x, y). By putting (x 1 , y 1 ) for the smallest positive solutions to [START_REF] Bravo | X-coordinates of Pell equations as sums of two tribonacci numbers[END_REF], all solutions are of the forms (x k , y k ) for some positive integer k, where

x k + y k √ d 2 =       x 1 + y 1 √ d 2       k for all k ≥ 1,
Furthermore, the sequence {x k } k≥1 is binary recurrent. In fact, the following formula

x k =       x 1 + y 1 √ d 2       k +       x 1 -y 1 √ d 2       k ,
holds for all positive integers k.

Recently, Gómez and Luca [START_REF] Gómez | Zeckendorf representations with at most two terms to xcoordinates of Pell equations[END_REF] studied the Diophantine equation

x k = F m + F n , with n ≥ m ≥ 0, (2) 
where x k are the x-coordinates of the solutions of the Pell equation x 2dy 2 = ±1 for some positive integer k and {F n } n≥0 is the sequence of Fibonacci numbers. They proved that for each square free integer d ≥ 2, there is at most one positive integer k such that x k admits the representation (3) for some nonnegative integers 0 ≤ m ≤ n, except for d ∈ {2, 3, 5, 11, 30}. Furthermore, they explicitly stated all the solutions for these exceptional cases.

In the same spirit, Bravo et al. [START_REF] Bravo | X-coordinates of Pell equations as sums of two tribonacci numbers[END_REF] studied the Diophantine equation x k = T m + T n , with n ≥ m ≥ 0.

(3) where x k are the x-coordinates of the solutions of the Pell equation x 2dy 2 = ±1 for some positive integer k and {T n } n≥0 is the sequence of Tribonacci numbers given by T 0 = 0, T 1 = 1 = T 2 and T n+3 = T n+2 + T n+1 + T n for all n ≥ 0. They proved that for each square free integer d ≥ 2, there is at most one positive integer k such that x k admits the representation (3) for some nonnegative integers 0 ≤ m ≤ n, except for d ∈ {2, 3, 5, 15, 26}. Furthermore, they explicitly stated all the solutions for these exceptional cases. Several other related problems have been studied where x k belongs to some interesting positive integer sequences. For example, see [START_REF] Gómez | Zeckendorf representations with at most two terms to xcoordinates of Pell equations[END_REF][START_REF] Ddamulira | On the x-coordinates of Pell equations which are sums of two Padovan numbers[END_REF][START_REF] Ddamulira | On the x-coordinates of Pell equations which are kgeneralized Fibonacci numbers[END_REF][START_REF] Dossavi-Yovo | On the X-coordinates of Pell equations which are rep-digits[END_REF][START_REF] Luca | On the X-coordinates of Pell equations which are repdigits[END_REF][START_REF] Kafle | On the x-coordinates of Pell equations which are Fibonacci numbers II[END_REF][START_REF] Kafle | x-Coordinates of Pell equations which are Tribonacci numbers II[END_REF][START_REF] Kafle | X-coordinates of Pell equations which are Lucas numbers[END_REF][START_REF] Luca | On the x-coordinates of Pell equations which are Tribonacci numbers[END_REF][START_REF] Luca | On the x-coordinates of Pell equations which are Fibonacci numbers[END_REF].

Main Result

In this paper, we study a problem related to that of Gómez and Luca [START_REF] Gómez | Zeckendorf representations with at most two terms to xcoordinates of Pell equations[END_REF], but for the Pell equation (1) instead of x 2dy 2 = ±1. Before formulating our main theorem, let us notice that our problem is a bit different from the previous ones in that there are infinitely many d's such that the equation

x k = F n + F m with n ≥ m ≥ 0
has at least two solutions (m, n, k). Indeed, take d = 5u 2 with some integer u ≥ 1. Then positive solutions integer solutions (x, y) to the Diophantine equation

x 2 -dy 2 = ±4 correspond to positive integer solutions (X, Y) := (x, uy) to X 2 -5Y 2 = ±4. It is well- known that these are parametrised by (X, Y) = (L n , F n ), where {L n } n≥0 is the Lucas com- panion of the Fibonacci sequence given by L 0 = 2, L 1 = 1 and L n+2 = L n+1 + L n for n ≥ 0. Furthermore, in this case L 2 n -5F 2 n = 4(-1
) n . Thus, the sign in the right-hand side is given by the parity of n. Now say u is fixed and F n = uy. Then y = F n /u and F n must be a multiple of u. It is well-known that u | F n is and only if z(u) | n, where z(u) is the smallest positive integer such that u | F . This always exists and is called the index of appearance of u in the Fibonacci sequence. We conclude that for d = 5u 2 , we have (x k , y k ) = (L z(u)k , F z(u)k /u). In particular, x k = L n k for some positive integer n k . Since L n = F n+1 + F n-1 holds for all n ≥ 1, it follows that for all values of k, x k is a sum of two Fibonacci numbers. This gives an infinite parametric family of exceptions which dod not exist in any of the cases treated by others.

The main aim of this paper is to prove the following result. Theorem 1. Let d ≥ 2 be an integer which is not a square. If d 5 , then is at most one positive integer k such that x k admits a representation as

x k = F n + F m (4) for some nonnegative integers 0 ≤ m ≤ n, except when d ∈ {2, 3, 7, 21, 26}.
For the exceptional values of d listed in Theorem 1, all solutions (k, n, m) are listed at the end of the paper. The main tools used in this paper are the lower bounds for linear forms in logarithms of algebraic numbers and the Baker-Davenport reduction procedure, as well as the elementary properties of Fibonacci numbers and solutions to Pell equations.

Preliminary results

The Fibonacci sequence

Here, we recall some important properties of the Fibonacci sequence {F n } n≥0 . The characteristic equation

x 2x -1 = 0 has roots α and β, where

α = 1 + √ 5 2 and β = 1 - √ 5 2
.

The Binet formula for its geneneral terms is given by

F n = α n -β n √ 5 for all n ≥ 0. (5) 
Furthermore, by induction, we can prove that α n-2 ≤ F n ≤ α n-1 holds for all n ≥ 1. (6) Let {L n } n≥0 be the sequence of Lucas numbers defined by L 0 = 2, L 1 = 1 and L n+2 = L n+1 + L n for all n ≥ 0. For all nonnegative integers n, the following hold.

L n = F n-1 + F n+1 (7) and L 2 n -5F 2 n = 4(-1) n . (8) 
The above identities will be useful in the next parts of this paper.

Linear forms in logarithms

Let η be an algebraic number of degree d with minimal primitive polynomial over the integers

a 0 x d + a 1 x d-1 + • • • + a d = a 0 d i=1 (x -η (i) ),
where the leading coefficient a 0 is positive and the η (i) 's are the conjugates of η. Then the logarithmic height of η is given by

h(η) := 1 d         log a 0 + d i=1 log max{|η (i) |, 1}         .
In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}. The following are some of the properties of the logarithmic height function h(•), which will be used in the next sections of this paper without reference:

h(η 1 ± η 2 ) ≤ h(η 1 ) + h(η 2 ) + log 2, h(η 1 η ±1 2 ) ≤ h(η 1 ) + h(η 2 ), (9) 
h(η s ) = |s|h(η) (s ∈ Z). We start by recalling the result of Bugeaud, Mignotte and Siksek ([3], Theorem 9.4, pp. 989), which is a modified version of the result of Matveev [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers[END_REF]. This result is one of our main tools in this paper. Theorem 2. Let η 1 , . . . , η t be positive real numbers in number field K ⊆ R of degree D K , b 1 , . . . , b t be nonzero integers, and assume that

Λ := η b 1 1 • • • η b t t -1, (10) 
is nonzero. Then

log |Λ| > -1.4 × 30 t+3 × t 4.5 × D 2 K (1 + log D K )(1 + log B)A 1 • • • A t , where B ≥ max{|b 1 |, . . . , |b t |},
and A i ≥ max{D K h(η i ), | log η i |, 0.
16}, for all i = 1, . . . , t.

Reduction procedure

During the calculations, we get upper bounds on our variables which are too large, thus we need to reduce them. To do so, we use some results from the theory of continued fractions.

For the treatment of linear forms homogeneous in two integer variables, we use the well-known classical result in the theory of Diophantine approximation. Lemma 3. Let τ be an irrational number, p 0 q 0 , p 1 q 1 , p 2 q 2 , . . . be all the convergents of the continued fraction of τ and M be a positive integer. Let N be a nonnegative integer such that q N > M. Then putting a(M) := max{a i : i = 0, 1, 2, . . . , N}, the inequality 2 , holds for all pairs (r, s) of positive integers with 0 < s < M.

τ - r s > 1 (a(M) + 2)s
For a nonhomogeneous linear form in two integer variables, we use a slight variation of a result due to Dujella and Pethő (see [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF], Lemma 5a). For a real number X, we write ||X|| := min{|X -n| : n ∈ Z} for the distance from X to the nearest integer. Lemma 4. Let M be a positive integer, p q be a convergent of the continued fraction of the irrational number τ such that q > 6M, and A, B, µ be some real numbers with A > 0 and B > 1. Let further ε := ||µq|| -M||τq||. If ε > 0, then there is no solution to the inequality At various occasions, we need to find a lower bound for linear forms in logarithms with bounded integer coefficients in three and four variables. In this case we use the LLL algorithm that we describe below. Let τ 1 , τ 2 , . . . τ t ∈ R and the linear form

0 < |uτ -v + µ| < AB -w ,
x 1 τ 1 + x 2 τ 2 + • • • + x t τ t with |x i | ≤ X i . (11) 
We put X := max{X i }, C > (tX) t and consider the integer lattice Ω generated by b j := e j + Cτ j for 1 ≤ j ≤ t -1 and b t := Cτ t e t , where C is a sufficiently large positive constant.

Lemma 5. Let X 1 , X 2 , . . . , X t be positive integers such that X := max{X i } and C > (tX) t is a fixed sufficiently large constant. With the above notation on the lattice Ω, we consider a reduced base {b i } to Ω and its associated Gram-Schmidt orthogonalization base {b * i }. We set

c 1 := max 1≤i≤t ||b 1 || ||b * i || , θ := ||b 1 || c 1 , Q := t-1 i=1 X 2 i and R := 1 2        1 + t i=1 X i        . If the integers x i are such that |x i | ≤ X i , for 1 ≤ i ≤ t and θ 2 ≥ Q + R 2 , then we have t i=1 x i τ i ≥ θ 2 -Q -R C .
For the proof and further details, we refer the reader to the book of Cohen. (Proposition 2.3.20 in ( [START_REF] Cohen | Number Theory. Volume I: Tools and Diophantine Equations Graduate Texts in Mathematics[END_REF], pp. 58-63).

Finally, the following lemma is also useful. It is Lemma 7 in [START_REF] Gúzman | Linear combinations of factorials and s-units in a binary recurrence sequence[END_REF].

Lemma 6. If r 1, H > (4r 2 ) r and H > L/(log L) r , then L < 2 r H(log H) r .

Proof of Theorem 1

Let (x 1 , y 1 ) be the smallest positive integer solution to the Pell quation (1). We Put

δ := x 1 + y 1 √ d 2 and σ = x 1 -y 1 √ d 2 . ( 12 
)
From which we get that

δ • σ = x 2 1 -dy 2 1 4 =: , where ∈ {±1}. (13) 
Then

x k = δ k + σ k . ( 14 
)
Since δ ≥ α, it follows that the estimate

δ k α < x k < αδ k holds for all k ≥ 1. ( 15 
)
We assume that (k 1 , n 1 , m 1 ) and (k 2 , n 2 , m 2 ) are triples of integers such that

x k 1 = F n 1 + F m 1 and x k 2 = F n 2 + F m 2 (16) We assume that 1 ≤ k 1 < k 2 .
Furthermore, by the well-known properties of solutions to Pell equations, we may assume that gcd(k 1 ,

k 2 ) = 1. That is, if gcd(k 1 , k 2 ) = , we then write k 1 = k 1 , k 2 = k 2 .
We replace d by d := dy 2 . Then the smallest solution (x 1 , y 1 ) of the Pell equation

x 2 -d y 2 = ±4 is (x , 1). Furthermore, x k 1 = x k 1 and x k 2 = x k 2 .
This justifies our claim that we may assume that gcd(k 1 , k 2 ) = 1.

Next, F 1 = F 2 = 1, so it follows that we may assume that m i ≥ 2 if m i 0. Thus, we either have

(m i , n i ) = (0, n i ) with n i ≥ 2 or 2 ≤ m i ≤ n i . If m = n, then F m + F n = 2F n . If n = 2, then 2F n = F 3 . Otherwise, 2F n = F n+1 + F n-2 and n ≥ 3. Thus, we may always assume that m i < n i for i = 1, 2. Finally, if m = n -1, then F m + F n = F n-1 + F n = F n+1 .
Thus, if 2 ≤ m i < n i , we may assume that m i and n i are not consecutive. In particular, either (m i , n i ) = (0, 2). or n i ≥ 3. Let us treat the case (m i , n i ) = (0, 2). In this case,

x k = F 2 0 + F 2 2 = 1. Thus, 1 2 -dy 2 = ±4.
The only possibility is the signin the right-hand side, for which d = 5, a case which we have excluded.

Thus,

n i ≥ 3 for i = 1, 2.
Using the inequalities ( 6) and ( 15), we get from ( 16) that

δ k α ≤ x k = F n + F m ≤ F n + F n-2 ≤ α n and α n-2 ≤ F n + F m = x k ≤ αδ k .
The above inequalities give (n -3) log α < k log δ < (n + 1) log α. Dividing through by log α and setting c 2 := 1/ log α, we get that -3 < c 2 k log δn < 1, and since α 3/2 > 2, we get |nc 2 k log δ| < 3. (17) Furthermore, k ≤ n, for if not, we would then get that α n+1 ≤ δ n+1 ≤ δ k < α n+1 , a contradiction. Besides, given that k 1 < k 2 , we have by ( 6) and ( 16) that

α n 1 -2 ≤ F n 1 ≤ F n 1 + F m 1 = x k 1 < x k 2 = F n 2 + F m 2 ≤ F n 2 + F n 2 -2 ≤ α n 2 -1 + α n 2 -3 < α n 2 .
Thus, we get that

n 1 < n 2 + 2. ( 18 
)

An inequality for n and k

Using the equations ( 5) and ( 14) and ( 16), we get

δ k + σ k = F n + F m = α n -β n √ 5 + α m -β m √ 5 . So, δ k - α n + α m √ 5 = -σ k - β n + β m √ 5
, and by ( 6), we have

δ k • √ 5 • α -n (1 + α m-n ) -1 -1 ≤ √ 5 δ k (α n + α m ) + |β| n + |β| m α n + α m ≤ √ 5α α n (α n + α m ) + 1 α n+m ≤ 1 α n       √ 5 α n + α m + 1 α m       < 2 α n .
The numerator 1.5 above comes from the fact that m ≥ 0 and n ≥ 3. Thus, we have

δ k ( √ 5)α -n (1 + α m-n ) -1 -1 < 2 α n . ( 19 
) Put Λ 1 := δ k ( √ 5)α -n (1 + α m-n ) -1 -1 and Γ 1 := k log δ + log( √ 5) -n log α -log(1 + α m-n ). Since |Λ 1 | = |e Γ 1 -1| < 1
2 for n ≥ 3 (because n ≥ 3 and α 3 > 4, so 2/α n ≤ 2/α 3 < 1/2), and since the inequality |y| < 2|e y -1| holds for all y ∈ -1 2 , 1 2 , it follows that e |Γ 1 | < 2 and so

|Γ 1 | < e |Γ 1 | |e Γ 1 -1| < 4 α n . Thus, we get that k log δ + log( √ 5) -n log α -log(1 + α m-n ) < 4 α n . (20) 
We apply Theorem 2 on the left-hand side of (19) with the data:

t := 4, η 1 := δ, η 2 := √ 5, η 3 := α, η 4 := 1 + α m-n , b 1 := k, b 2 := 1, b 3 := -n, b 4 := -1.
Furthermore, we take the number field K := Q( √ d, α) which has degree D K := 4. Since max{1, k, n} ≤ n, we take B := n. First we note that the left-hand side of ( 19) is non-zero, since otherwise,

δ k = 1 √ 5 (α n + α m ).
The left-hand side belongs to the quadratic field Q( √ d) and is not rational while the righthand side belongs to the field Q( √ 5). This is not possible since d 5. Thus, Λ 1 0 and we can apply Theorem 2.

We have

h(η 1 ) = h(δ) = 1 2 log δ, h(η 2 ) = h( √ 5) = 1 2 log 5 and h(η 3 ) = h(α) = 1 2 log α. On the other hand, h(η 4 ) = h(1 + α m-n ) ≤ h(1) + h(α m-n ) + log 2 = (n -m)h(α) + log 2 = 1 2 (n -m) log α + log 2.
Thus, we can take

A 1 := 2 log δ, A 2 := 2 log 5, A 3 := 2 log α, A 4 := 2(n -m) log α + 4 log 2. Now, Theorem 2 tells us that log |Λ 1 | > -1.4 × 30 7 × 4 4.5 × 4 2 (1 + log 4)(1 + log n)(2 log δ) ×(2 log 5)(2 log α)(2(n -m) log α + 4 log 2) > -3.4 × 10 16 (n -m) log n log δ log α.
Comparing the above inequality with (19), we get n log αlog 2 < 3.4 × 10 16 (nm) log n log δ log α.

Hence, we get that n < 3.5 × 10 16 (nm) log n log δ.

(21) We now return to the equation x k = F n + F m and rewrite it as

δ k - α n √ 5 = -σ k - β n √ 5 + F m ,
we obtain

δ k • √ 5 • α -n -1 ≤ 1 α n-m       1 α + 1 α n+m + √ 5 δ k α m       < 2 α n-m . ( 22 
)
The numerator 2 in the right-hand side above comes from the fact that m ≥ 0, n ≥ 3,

δ ≥ 1 + √ 2. Put Λ 2 := δ k • √ 5 • α -n -1 and Γ 2 := k log δ + log( √ 5) -n log α. If n -m ≥ 3, then 2/α n-m ≤ 2/α 3 < 1/2, so |e Λ 2 -1| < 1 2 . It follows that k log δ + log( √ 5) -n log α = |Γ 2 | < e |Λ 2 | |e Λ 2 -1| < 4 α n-m .
(23) We show that (23) holds for nm = 2 as well. Well, the case (m, n) = (0, 2) is not allowed (since d = 5). The case (m, n) = (1, 3) reduces to (m, n) = (0, 4) by our conventions, for which x k = F 4 = 3, so 3 2 -dy 2 k = ±4, and since d 5, we get d = 13, so δ k = (3+ √ 13)/2. One checks that (23) holds in this particular case as well. In the same way, (m, n) = (2, 4) gives x k = F 2 + F 4 = 4, so 4 2dy 2 k = ±4 and since d 5, we get dy 2 k = 12. Thus, δ k = 2 + √ 3 and one checks that (23) holds in this case as well. Finally, for m ≥ 3, we have n + m = (m + 2) + m ≥ 8, and now the factor 2 in the numerator of the right-hand side of ( 22) can be replaced by 1. Since 1/α n-m ≤ 1/α 2 < 1/2, it follows that (23) holds also in this case (even with the better numerator of 2 in the right-hand side instead of 4).

Furthermore, Λ 2 0 (so (25)

Γ 2 0), since δ k Q(α)

Absolute bounds

We recall that (k, n, m)

= (k i , n i , m i ), where 0 ≤ m i ≤ n i , for i = 1, 2 and 1 ≤ k 1 < k 2 .
Further, n i ≥ 2 for i = 1, 2. We return to (23) and write

Γ (i) 2 := k i log δ + log √ 5 -n i log α < 4 α n i -m i , for i = 1, 2.
We do a suitable cross product between Γ (1) 2 , Γ (2) 2 and k 1 , k 2 to eliminate the term involving log δ in the above linear forms in logarithms:

|Γ 3 | := (k 2 -k 1 ) log √ 5 + (k 1 n 2 -k 2 n 1 ) log α = |k 2 Γ (1) 2 -k 1 Γ (2) 2 | ≤ k 2 |Γ (1) 2 | + k 1 |Γ (2) 2 | ≤ 4k 2 α n 1 -m 1 + 4k 1 α n 2 -m 2 ≤ 8n 2 α λ , (26) 
where λ := min 1≤i≤2 {n im i }.

We need to find an upper bound for λ. If 8n 2 /α λ > 1/2, we then get

λ < log(16n 2 ) log α < 3 log(16n 2 ). ( 27 
) Otherwise, |Γ 3 | < 1 2 , so e Γ 3 -1 = √ 5 k 2 -k 1 α k 1 n 2 -k 2 n 1 -1 < 2|Γ 3 | < 16n 2 α λ . ( 28 
)
We apply Theorem 2 with the data:

t := 2, η 1 := √ 5, η 2 := α, b 1 := k 2 -k 1 , b 2 := k 1 n 2 -k 2 n 1 .
We take the number field K := Q(α) and D K := 2. We begin by checking that e Γ 3 -1 0 (so Γ 3 0). This is true because α and √ 5 are multiplicatively independent, since α is a unit in the ring of integers Q(α) while the norm of

√ 5 is -5 ±1. We note that k 2 -k 1 < k 2 < n 2 .
Further, from (26), we have

|k 2 n 1 -k 1 n 2 | < (k 2 -k 1 ) log √ 5 log α + 8k 2 α λ log α < 15k 2 < 15n 2
given that λ ≥ 1. So, we can take B := 15n 2 . By Theorem 2, with A 1 := log 5 and A 2 := log α, we have that

log |e Γ 3 -1| > -1.4 × 30 5 × 2 4.5 × 2 × (1 + log 2)(1 + log(15n 2 ))(log 5)(log α)
> -1.7 × 10 10 log(15n 2 ) log α.

By comparing this with (28), we get λ log αlog(16n 2 ) < 1.7 × 10 10 log(15n 2 ) log α, which implies that λ < 1.8 × 10 10 log(15n 2 ).

(29)

Note that (29) is better than (27), so (29) always holds. Without loss of generality, we can assume that λ = n im i , for i = 1, 2 fixed.

We set {i, j} = {1, 2} and return to (20) to replace (k, n, m) = (k i , n i , m i ):

|Γ (i) 1 | = k i log δ + log( √ 5) -n i log α -log(1 + α m i -n i ) < 4 α n i , (30) 
and also return to (23), replacing with (k, n, m) = (k j , n j , m j ):

|Γ ( j) 2 | = k j log δ + log( √ 5) -n j log α < 4 α n j -m j . (31) 
We perform a cross product on (30) and (31) in order to eliminate the term on log δ:

|Γ 4 | := (k i -k j ) log( √ 5) + (k j n i -k i n j ) log α + k j log(1 + α m i -n i ) = k i Γ ( j) 2 -k j Γ (i) 1 ≤ k i Γ ( j) 2 + k j Γ (i) 1 < 4k i α n j -m j + 4k j α n i < 8n 2 α ν (32) 
with ν := min{n i , n jm j }. As before, we need to find an upper bound on ν. If 8n 2 /α ν > 1/2, then we get

ν < log(16n 2 ) log α < 3 log(16n 2 ). (33) 
Otherwise, |Γ 4 | < 1/2, so we have

e Γ 4 -1 = √ 5 k i -k j α k j n i -k i n j (1 + α m i -n i ) k j -1 ≤ 2|Γ 4 | < 16n 2 α ν . (34) 
In order to apply Theorem 2, first if e Γ 4 = 1, we obtain

( √ 5) k j -k i = α k j n i -k i n j (1 + α -λ ) k j . ( 35 
)
Let us show that the above equation is impossible. Since the right-hand side is an algebraic integer (because α is a unit), it follows that k j > k i . We take norms (in

Q( √ 5 
)) and absolute values in both sides of (35). We then get

5 k j -k i = ((1 + α λ )(1 + β λ )) k j =            L k j λ if λ ≡ 1 (mod 2); L 2k j λ/2 if λ ≡ 0 (mod 4); (5F 2 λ/2 ) k j if λ ≡ 2 (mod 4). ( 36 
)
The above equation is impossible since the exponent of 5 in the left-hand side is positive and smaller than k j , while in the right-hand side, ether it is at least k j (if λ ≡ 2 (mod 4)) or is 0 (if λ 2 (mod 4)), because 5 never divides L n for any positive integer n. Hence, e Γ 4 1. We apply Theorem 2 with the data:

t := 3, η 1 := √ 5, η 2 := α, η 3 := 1 + α -λ , b 1 := k i -k j , b 2 := k j n i -k i n j , b 3 := k j , We take D K := 2, A 1 := log 5, A 2 := log α, A 3 := λ log α + 2 log 2 ≤ 2λ log α, and B := 15n 2 . By Theorem 2, we get that log |e Γ 4 -1| > -1.4 × 30 6 × 3 4.5 × 2(1 + log 2)(1 + log(15n 2 ))(log 5)(log α)(2λ log α) > -3.0 × 10 12 λ log(15n 2 ) log α.
By comparing this with (34) together with the inequality (29), we get ν log αlog(16n 2 ) < 3.0 × 10 12 λ log(15n 2 ) log α, ν := min{n i , n jm j } < 3.2 × 10 12 λ log(15n 2 ) < 5.8 × 10 22 (log(15n 2 )) 2 .

(37)

Further, it also holds when the inequality (33) holds. So the above inequality holds in all cases. Note that the case {i, j} = {2, 1} leads to n 1 -m 1 ≤ n 1 ≤ n 2 +2 whereas {i, j} = {1, 2} lead to ν = min{n 1 , n 2m 2 }. Hence, either the minimum is n 1 , so n 1 < 5.8 × 10 22 (log(15n 2 )) 2 , (38) or the minimum is n jm j and from the inequality (29) we get that max 1≤ j≤2 {n jm j } < 5.8 × 10 22 (log(15n 2 )) 2 .

(39)

Next, we assume that we are in the case (39). We evaluate (30) in i = 1, 2 and make a suitable cross product to eliminate the term involving log δ:

|Γ 5 | := (k 1 -k 2 ) log( √ 5) + (k 2 n 1 -k 1 n 2 ) log α +k 2 log(1 + α m 1 -n 1 ) -k 1 log(1 + α m 2 -n 2 ) = k 1 Γ (2) 1 -k 2 Γ (1) 1 ≤ k 1 Γ (2) 1 + k 2 Γ (1) 1 < 8n 2 α n 1 .
(40) In the above inequality we used the inequality (18) to conclude that min{n 1 , n 2 } ≥ n 1 -3 as well as the fact that n i ≥ 3 for i = 1, 2. Next, we apply a linear form in four logarithms to obtain an upper bound to n 1 . As in the previous calculations, we pass from (40) to

e Γ 5 -1 = √ 5 k 1 -k 2 α k 2 n 1 -k 1 n 2 (1 + α m 1 -n 1 ) k 2 (1 + α m 2 -n 2 ) -k 1 -1 < 16n 2 α n 1 , (41) 
which is implied by (40) except if n 1 is very small, say n 1 ≤ 3 log(16n 2 ).

(42) Thus, we assume that (42) does not hold, therefore (41) holds. Then to apply Theorem 2, we first justify that e Γ 5 1. Otherwise, (

√ 5) k 2 -k 1 = α k 2 m 1 -k 1 m 2 (1 + α n 1 -m 1 ) k 2 (1 + α n 2 -m 2 ) -k 1 , (43) 
We need to check that the equation ( 43) has no positive integer solutions. We let K := Q( √ 5). We use, as we did in (36), that for any positive integer k,

N K/Q (1 + α k ) =              L k , if k ≡ 1 (mod 2), L 2 k/2 , if k ≡ 0 (mod 4), 5F 2 k/2 , if k ≡ 2 (mod 4).
Now, we assume that (43) holds and take norms and absolute values on both sides to get

5 k 2 -k 1 = N K/Q √ 5 k 2 -k 1 = N K/Q (α) k 2 m 1 -k 1 m 2 |N K/Q (1 + α n 1 -m 1 )| |N K/Q (1 + α n 2 -m 2 )| = E k 2 n 1 -m 1 E k 1 n 2 -m 2
,

where E k ∈ L k , L 2 k/2 , 5F 2 k/2
according to the residue class of k modulo 4. Since 5 divides the left-hand side above which is an integer, 5 divides the numerator of the right-hand side. Since 5 L m for any m, it follows that E n 1 -m 1 = 5F 2

(n 1 -m 1 )/2 . Then the exponent of 5 in the numerator of the right-hand side is at least k 2 > k 2k 1 , we infer that 5 should also divide the denominator of the right-hand side meaning

E n 2 -m 2 = 5F 2 (n 2 -m 2 )/2 . But then we get F 2k 2 (n 1 -m 1 )/2 = F 2k 1 (n 2 -m 2 )/2 . Since k 2 > k 1 , we either have F (n 1 -m 1 )/2 < F (n 2 -m 2 )
/2 or both sides are 1. The only distinct Fibonacci numbers which are multiplicatively dependent are 2 and 8 = F 6 , but then

n 2 -m 2 = 12, so E n 2 -m 2 = L 2 (n 2 -m 2 )/2 (instead of 5F 2 (n 2 -m 2 )/2
), a contradiction. Hence, F (n 1 -m 1 )/2 = F (n 2 -m 2 )/2 = 1 and since (n im i )/2 is odd (in order for E n i -m i = 5F 2 (n i -m i )/2 to hold), we get n im i = 2. Thus,

x k i = F n i + F n i -2 = L n i -1 for i = 1, 2. Further, 1 + α n i -m i = 1 + α 2 = √ 5α for i = 1, 2 so (43) becomes √ 5 k 2 -k 1 = α k 2 m 1 -k 1 m 2 ( √ 5α) k 2 ( √ 5α) -k 1 = √ 5 k 2 -k 1 α k 2 (m 1 +1)-k 1 (m 2 +1) . We now get k 1 (n 2 -1) = k 2 (n 1 -1) (because n i -1 = m i + 1 for i = 1, 2) and since gcd(k 1 , k 2 ) = 1, we have k 1 = (n 1 -1)
/ and k 2 = (n 2 -1)/ for some number . Thus, n 1 -1 = k 1 and n 2 -1 = k 2 . So, we get

x k i = δ k i + σ k i = (α ) k i + (β ) k i for i = 1, 2.
Then

δ k i -(α ) k i = (δ -α )(δ k i -1 + • • • + (α ) k i -1 ) = -σ k i + (β ) k i .
Assume now that k 2 ≥ 3. We then get

δ 2 |δ -α | < |δ -α ((δ k 2 -1 + • • • + (α ) k 2 -1 ) ≤ δ -k 2 + (α ) -k 2 . Now δ ≥ α, so δ -k 2 + (α ) -k 2 ≤ 2/α 3 . Hence, δ 2 |δ -α | < 2/α 3 giving |δ -α | < 2/α 5 . Thus, α ≥ δ -2/α 5 . Thus, (α ) -k 2 ≤ (α ) -3 ≤ (δ -2/α 5 ) -3 < 2δ -3 ,
where we used the fact that δ δ -2/α 5 3 > 2, which follows because δ > α and α/(α -2/α 5 ) < 2 1/3 . We thus get that

δ 2 |δ -α | ≤ δ -k 2 + (α ) -k 2 ≤ 3δ -3 ,
giving |δ -α | < 3δ -5 . Assume δ α . Then δα is an algebraic integer of degree at most 4 and its conjugates are among σα , σβ and δβ . These have absolute values at most 1/δ + α < δ + 1/δ + 3/δ 5 ≤ δ + (1/α + 3/α 5 ) < δ + 1, 2 and δ + 1 respectively. Computing the norm of the algebraic integer δα , we get

1 ≤ |N K/Q (δ -α )| ≤ (3δ -5 )(2(δ + 1) 2 ), giving δ < 2.31. Here, K = Q( √ d, √ 5 
). The only value of δ < 2.31 is α (the next value of δ is 1

+ √ 2 > 2.4
). This shows that k 2 ≥ 3 is not possible. Thus, k 1 = 1, k 2 = 2, and so n 1 -1 = and n 2 -1 = 2 . So, we get

x 1 = L and x 2 = L 2 . Now putting x 2 1 -dy 2 1 = 4 , it follows that x 2 = x 2 1 -2 , so L 2 2 = L 2 -2 . Since in fact L 2 = L 2 -2(-1)
, it follows that = (-1) . Thus, L 2dy 2 1 = 4(-1) and comparing it with the identity L 2 -5F 2 = 4(-1) , we get dy 2 1 = 5F 2 , so d = 5u 2 for some integer u (which in this case is F /y 1 ), which is not the case. Thus, e Γ 5 1.

Thus, we apply Theorem 2 on the left-hand side of the inequalities (41) with the data t := 4,

η 1 := √ 5, η 2 := α, η 3 := 1 + α m 1 -n 1 , η 4 := 1 + α m 2 -n 2 , b 1 := k 2 -k 1 , b 2 := k 2 n 1 -k 1 n 2 , b 3 := k 2 , b 4 := -k 1 .
We take D K := 2, a 1 := log 5, A 2 := log α, A 3 := 2(n 1m 1 ) log α, A 3 := 2(n 2m 2 ) log α, and B := 15n 2 . By Theorem 2, we get

log |e Γ 5 -1| > -1.4 × 30 7 × 4 4.5 × 2 2 (1 + log 2)(1 + log(15n 2 ))(log 5)(log α) × (2(n 1 -m 1 ) log α)(2(n 2 -m 2 ) log α) > -3.2 × 10 14 (n 1 -m 1 )(n 2 -m 2 ) log(15n 2 ) log α.
By comparing this with (41) together with the inequalities (29) and (39), we get n 1 < 3.3 × 10 14 (n 1m 1 )(n 2m 2 ) log(15n 2 ) < 3.5 × 10 47 (log(15n 2 )) 4 .

(44) In the above we used the facts that min 1≤i≤2 {n im i } < 1.8 × 10 10 log(15n 2 ) and max 1≤i≤2 {n im i } < 5.8 × 10 22 (log(15n 2 )) 2 .

This was obtained under the assumption that the inequality (42) does not hold. If (42) holds, then so does (44). Thus, we have that inequality (44) holds provided that inequality (39) holds. Otherwise, inequality (38) holds which is a better bound than (44). Hence, conclude that (44) holds in all posibble cases.

We have, log δ ≤ k 1 log δ ≤ (n 1 + 1) log α < 1.7 × 10 49 (log(15n 2 )) 4 . By substituting this into (25) we get 15n 2 < 3.6 × 10 126 (log(15n 2 )) 10 , and then, by Lemma 6, with the data r := 10, H := 3.6 × 10 126 and L := 15n 2 , we get that 15n 2 < 1.6 × 10 154 . This immediately gives that n 2 < 1.1 × 10 153 and n 1 < 5.6 × 10 57 .

We record what we have proved. In this section we reduce the bounds for n 1 and n 2 given in Lemma 8 to cases that can be computationally treated. For this, we return to the inequalities for Γ 3 , Γ 4 and Γ 5 .

Lemma 8. Let (k i , n i , m i ) be a solution to x k i = F n i + F m i , with 0 ≤ m i ≤ n i for i ∈ {1, 2}, d 5 and 1 ≤ k 1 < k 2 , then max{k 1 , m 1 } ≤ n 1 <

The first reduction

We divide through both sides of the inequality (26) by (k 2k 1 ) log α. We get that log(

√ 5) log α - k 2 n 1 -k 1 n 2 k 2 -k 1 < 8n 2 α λ (k 2 -k 1 ) log α with λ := min 1≤i≤2 {n i -m i }. (45) 
We assume that λ ≥ 10. Below we apply Lemma 3. We put τ := log( √ 5) log α , which is irrational and compute its continued fraction [a 0 ; a 1 , a 2 , . . .] = [1; 1, 2, 19, 2, 9, 1, 1, 3, 1, 9, 1, 2, 6, 1, 1, 1, 5, 1, 14, 29, 1, 2, 1, 4, 2, 1, . . .] and its convergents 

p 0 q 0 , p 1 q 1 , p 2 q 2 , . . . =
τ - k 2 n 1 -k 1 n 2 k 2 -k 1 > 1 332(k 2 -k 1 ) 2 . ( 46 
)
Hence, combining the inequalities (45) and (46), we obtain α λ < 5519n 2 (k 2k 1 ) < 5.52 × 10 311 , so λ ≤ 1491. This was obtained under the assumption that λ ≥ 10, Otherwise, λ < 10 < 1491 holds as well. Now, for each n i -

m i = λ ∈ [1, 1491] we estimate a lower bound |Γ 4 |, with Γ 4 = (k i -k j ) log( √ 5) + (k j n i -k i n j ) log α + k j log(1 + α m i -n i ) ( 47 
) given in the inequality (32), via the procedure described in Subsection 3.3 (LLL-algorithm). We recall that Γ 4 0.

We apply Lemma 5 with the data:

t := 3, τ 1 := log( √ 5 
), τ 2 := log α, τ 3 := log(1 + α -λ ),

x 1 := k i -k j , x 2 := k j n i -k i n j , x 3 := k j .
We set X := 15×10 154 as an upper bound to |x i | < 15n 2 for all i = 1, 2, 3, and C := (10X) 5 .

A computer in Mathematica search allows us to conclude, together with the inequality (32), that 2 × 10 -653 < min 

5 : = (k 2 -k 1 ) log( √ 5) + (k 2 n 1 -k 1 n 2 ) log α +k 2 log(1 + α m 1 -n 1 ) -k 1 log(1 + α m 2 -n 2 ) 0,
(48) we use again the LLL-algorithm to estimate the lower bound for |Γ 5 | and thus, find a bound for n 1 that is better than the one given in Lemma 8.

We distinguish the cases λ < χ and λ = χ.

The case λ < χ.

We take λ ∈ [1, 1491] and χ ∈ [λ + 1, 3855] and apply Lemma 5 with the data: t := 4,

τ 1 := log( √ 5), τ 2 := log α, τ 3 := log(1 + α m 1 -n 1 ), τ 4 := log(1 + α m 2 -n 2 ), x 1 := k 2 -k 1 , x 2 := k 2 n 1 -k 1 n 2 , x 3 := k 2 , x 4 := -k 1 .
We also put X := 15 × 10 154 and C := (20X) 9 . After a computer search in Mathematica together with the inequality (40), we can confirm that 10 -1312 < min 1≤λ≤1491 λ+1≤χ≤3855

|Γ 5 | < 8n 2 α -n 1 . (49) 
This leads to the inequality α n 1 < 8 × 10 1312 n 2 .

(50) Subsitituting for the bound n 2 given in Lemma 8, we get that n 1 ≤ 7019.

The case λ = χ.

In this case, we have

Γ 5 := (k 2 -k 1 ) log(1/ √ 5) + log(1 + α m 1 -n 1 ) + (k 2 n 1 -k 1 n 2 ) log α 0. We divide through the inequality 40 by (k 2 -k 1 ) log α to obtain log(1/ √ 5) + log(1 + α m 1 -n 1 ) log α - k 2 n 1 -k 1 n 2 k 2 -k 1 < 8n 2 α n 1 (k 2 -k 1 ) log α . (51) 
We now put

τ λ := log(1/ √ 5) + log(1 + α -λ ) log α
and compute its continued fractions [a (λ) 0 , a (λ) 1 , a (λ) 2 , . . .] and its convergents [p (λ) 0 /q (λ) 0 , p (λ) 1 /q (λ) 1 , p (λ) 2 /q (λ) 2 , . . .] for each λ ∈ [START_REF] Bravo | X-coordinates of Pell equations as sums of two tribonacci numbers[END_REF]1491]. Furthermore, for each case we find an integer t λ such that q (λ) Besides the trivial case k 1 = 1, with the help of a computer search in Mathematica on the above equations in (53), we list the only nontrivial solutions in Table 1. We also note that 3 + 2 Therefore, max{b t,n 2 -m 2 : t = 1, 2, . . . , 9 and n 2m 2 = 1, 2, . . . b t } ≤ 215. Thus, by Lemma 4, we have that n 2 ≤ 215, for all t = 1, 2, . . . , 9, and by the inequality (18) we have that n 1 ≤ n 2 + 2. From the fact that δ k ≤ α n+1 , we can conclude that k 1 < k 2 ≤ 104. Collecting everything together, our problem is reduced to search for the solutions for [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers[END_REF] 

t λ > M := 10 154 > n 2 > k 2 -k 1 and calculate a(M) := max 1≤λ≤1491 a (λ) i : 0 ≤ i ≤ t λ . A computer
√ 2 = (1 + √ 2) 2 ,

  in positive integers u, v and w with u ≤ M and w ≥ log(Aq/ε) log B .

√ 5 ,

 5 by the previous argument. We now apply Theorem 2 to the left-hand side of (22) with the data t := 3, η 1 := δ, η 2 := η 3 := α, b 1 := k, b 2 := 1, b 3 := -n. Thus, we have the same A 1 , A 2 , A 3 , B as before. Then, by Theorem 2, we conclude that log |Λ 2 | > -2.4 × 10 14 log n log δ log α. By comparing with (22), we get nm < 2.5 × 10 14 log n log δ. (24) We replace the bound (24) on nm in (21) and use the fact that δ k < α n+1 , to obtain bounds on n and k in terms of log n and log δ. We now record what we have proved so far. Lemma 7. Let (k, n, m) be a solution to the equation x k = F n + F m with 0 ≤ m ≤ n and d 5 , then k < 4.2 × 10 30 (log n) 2 log δ and n < 8.8 × 10 30 (log n) 2 (log δ) 2 .

1≤λ≤1491|Γ 4 |

 4 < 8n 2 α -ν , with ν := min{n i , n jm j } which leads to ν ≤ 3855. As we have noted before, ν = n 1 (so n 1 ≤ 3855) or ν = n jm j .Next, we suppose that n jm j = ν ≤ 3855. Since λ ≤ 1491, we have λ := min 1≤i≤2 {n im i } ≤ 1491 and χ := max 1≤i≤2 {n im i } ≤ 3855. Now, returning to the inequality (40) which involves Γ

  search in Mathematica reveals that for λ = 61, t λ = 276 and i = 224, we have that a(M) = a(61) 224 = 121895. Hence, combining the conclusion of Lemma 3 and the inequality (51), we getα n 1 < 16.62 × 121897n 2 (k 2k 1 ) < 2.02 × 10 314 , := P ± k (x 1 ).Thus, we return to the Diophantine equation x k 1 = P n 1 + P m 1 and consider the equationsP + k 1 (x 1 ) = F n 1 + F m 1 and P - k 1 (x 1 ) = F n 1 + F m 1 ,(53)with k 1 ∈ [1, 1844], m 1 ∈ [0, 1844] and n 1 ∈ [m 1 + 2, 1844].

8 . 2 + F 2 , x 2 = 6 = F 5 + F 2 = F 4 + F 4 ,x 3 =

 8222652443 in the following range 1 ≤ k 1 ≤ k 2 ≤ 110, 0 ≤ m 1 ≤ n 1 ≤ 220 and 0 ≤ m 2 ≤ n 2 ≤ 220. After a computer search on the equation (16) on the above ranges, we obtained the following solutions, which are the only solutions for the exceptional d cases we have stated in Theorem 1:For the +4 case:(d = 2) x 1 = 6 = F 5 + F 2 = F 4 + F 4 , x 2 = 34 = F 9 + F 0 = F 8 + F 7 ; (d = 3) x 1 = 4 = F 4 + F 2 = F 3 + F 3 , x 2 = 14 = F 7 + F 2 ; (d = 7) x 1 = 16 = F 7 + F 4 , x 2 = 254 = F 13 + F 8 ; (d = 21) x 1 = 5 = F 5 + F 0 = F 4 + F 3 , x 2 = 23 = F 8 + F 3 , x 3 = 110 = F 11 + F For the -4 case: (d = 2) x 1 = 2 = F 3 + F 0 = F 14 = F 7 + F 2 , x 4 = 34 = F 9 + F 0 = F 8 + F 7 ; (d = 26) x 1 = 10 = F 6 + F 3 = F 5 + F 5 , x 2 = 102 = F 11 + F 7 .This completes the proof of Theorem 1.

  10 58 and max{k 2 , m 2 } ≤ n 2 < 10 154 . 5. Reducing the bounds for n 1 and n 2

  Furthermore, we note that taking M := 10 154 (by Lemma 8), it follows that q 297 > M > n 2 > k 2k 1 and a(M) := max{a i : 0 ≤ i ≤ 297} = a 170 = 330. Thus, by Lemma 3, we have that

	1, 2,	5 3	,	97 58	,	199 119	,	1888 1129	,	2087 1248	,	3975 2377	,	14012 8379	,	17987 10756	,	175895 105183	, . . . .

Table 3 .

 3 so these solutions come from the same Pell equation when d = 2. By replacing (k, n, m) := (k 2 , n 2 , m 2 ) in the inequality (20), we can write -n 2 , for t = 1, 2, . . . , 9. (56) With the above notations, we can rewrite (56) as 0 < |k 2 τ tn 2 + µ t,n 2 -m 2 | < A t B -n 2 t , for t = 1, 2, . . . 9. (57) We again apply Lemma 4 to the above inequality (57), for t = 1, 2, . . . , 9, n 2m 2 = 1, 2, . . . , b t , with M := 4.2 × 10 38 . We take ε= ε t,n 2 -m 2 := ||µ t q (t,n 2 -m 2 ) || -M||τ t q (t,n 2 -m 2 ) || > 0, and b = b t,n 2 -m 2 := log(A t q (t,n 2 -m 2 ) s t / t,n 2 -m 2 )/ log B t .With the help of Mathematica, we obtain the results in Table3. Final reduction computation results

	k 2 α We now put log δ t log α -n 2 + log ( √ 5)/(1 + α -(n 2 -m 2 ) ) log α < 4 log α τ t := log δ t log α , µ t,n 2 -m 2 := log ( √ 5)/(1 + α -(n 2 -m 2 ) ) log α and (A t , B t ) :=	4 log α	, α .
	t	1	2	3	4	5	6	7	8	9
	ε > 0.0019 0.0008 0.0006 0.0005 0.0017 0.0026 0.0016 0.0038 0.0071
	b	207	215	211	213	204	205	209	204	202
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so n 1 ≤ 1503. Hence, we obtain that n 1 ≤ 7019 holds in all cases (ν = n 1 , λ < χ or λ = χ). By the inequality [START_REF] Rihane | The x-coordinates of Pell equations and Padovan numbers[END_REF], we have that log δ ≤ k 1 log δ ≤ (n 1 + 1) log α < 3378. By considering the second inequality in (25), we can conclude that n 2 ≤ 1.0×10 38 (log n 2 ) 2 , which immediately yields n 2 < 3.5 × 10 40 , by a simple application of Lemma 6. We summarise the first cycle of our reduction process as follows:

n 1 ≤ 7019 and n 2 ≤ 3.5 × 10 40 .

(52) From the above, we note that the upper bound on n 2 represents a very good reduction of the bound given in Lemma 8. Hence, we expect that if we restart our reduction cycle with the new bound on n 2 , then we get a better bound on n 1 . Thus, we return to the inequality (45) and take M := 3.5 × 10 40 . A computer search in Mathematica reveals that q 86 > M > n 2 > k 2k 1 and a(M) := max{a i : 0 ≤ i ≤ 86} = a 21 = 29, from which it follows that λ ≤ 400. We now return to (47) and we put X := 5.25 × 10 41 and C := (10X) 5 and then apply the LLL algorithm in Lemma 5 to λ ∈ [START_REF] Bravo | X-coordinates of Pell equations as sums of two tribonacci numbers[END_REF]400]. After a computer search, we get 1 × 10 -172 < min 1≤λ≤400

then ν ≤ 1022. By continuing under the assumption that n jm j = ν ≤ 1022, we return to (48) and put X := 5.25 × 10 41 , C := (10X) 9 and M := 3.5 × 10 40 for the case λ < χ and λ = χ. After a computer search, we confirm that 2 × 10 -344 < min 1≤λ≤400 λ+1≤χ≤1022

gives n 1 ≤ 1844, and a(M) = a (117) 55 = 30400, leads to n 1 ≤ 415. Hence, in both cases n 1 ≤ 1844 holds. This gives n 2 ≤ 4.2 × 10 38 by a similar procedure as before.

We record what we have proved.

Lemma 9. Let (k i , n i , m i ) be a solution to x i = F n i + F m i , with 0 ≤ m i ≤ n i for i = 1, 2 and 1 ≤ k 1 < k 2 and where d 5 , then max{k 1 , m 1 } ≤ n 1 ≤ 1844 and max{k 2 , m 2 } ≤ n 2 ≤ 4.2 × 10 38 .

The final reduction

Returning back to ( 12) and ( 14) and using the fact that (x 1 , y 1 ) is the smallest positive solution to the Pell equation (1), we obtain log α

for t = 1, 2, . . . 9. We put

We note that τ t is transcendental by the Gelfond-Schneider's Theorem and thus, τ t is irrational. We can rewrite the above inequality, (54) as

t , for t = 1, 2, . . . , 9.

(55) We take M := 4.2 × 10 38 which is the upper bound on n 2 according to Lemma 9 and apply Lemma 4 to the inequality (55). As before, for each τ t with t = 1, 2, . . . , 9, we compute its continued fraction [a (t) 0 , a (t) 1 , a (t) 2 , . . .] and its convergents p (t) 0 /q (t) 0 , p (t) 1 /q (t) 1 , p (t) 2 /q (t) 2 , . . .. For each case, by means of a computer search in Mathematica, we find and integer s t such that q (t) s t > 2.52 × 10 39 = 6M and t := ||µ t q (t) || -M||τ t q (t) | > 0. We finally compute all the values of b t := log(A t q (t) s t / t )/ log B t . The values of b t correspond to the upper bounds on n 2m 2 , for each t = 1, 2, . . . , 9, according to Lemma 4. With the help of Mathematica we got that the maximum value of n 2m 2 is 201 for t ∈ [START_REF] Bravo | X-coordinates of Pell equations as sums of two tribonacci numbers[END_REF][START_REF] Luca | On the X-coordinates of Pell equations which are repdigits[END_REF]. The results of the computation for each t are recorded in Table 2