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ON THE x-COORDINATES OF PELL EQUATIONS WHICH ARE PRODUCTS OF TWO LUCAS NUMBERS

Let {Ln} n≥0 be the sequence of Lucas numbers given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0. In this paper, for an integer d ≥ 2 which is square-free, we show that there is at most one value of the positive integer x participating in the Pell equation x 2 -dy 2 = ±1 which is a product of two Lucas numbers, with a few exceptions that we completely characterize.

Introduction

Let {L n } n≥0 be the sequence of Lucas numbers given by L 0 = 2, L 1 = 1 and

L n+2 = L n+1 + L n
for all n ≥ 0. This is sequence A000032 on the Online Encyclopedia of Integer Sequences (OEIS). The first few terms of this sequence are [START_REF] Yu | The Diophantine equation f (x) = g(y)[END_REF][START_REF] Bravo | On the x-coordinates of Pell equations which are sums of two Tribonacci numbers[END_REF][START_REF] Ddamulira | On the x-coordinates of Pell equations which are sums of two Padovan numbers[END_REF][START_REF] Kafle | On the x-coordinates of Pell equations which are products of two Fibonacci numbers[END_REF][START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers[END_REF]29,47,76,123,199,322,521,843,1364,2207,3571, . . . .

{L n } n≥0 = 2, 1,
Putting (α, β) = 1 + √ 5 2 , 1 - √ 5 2
for the roots of the characteristic equation r 2 -r -1 = 0 of the Lucas sequence, the Binet formula for its general terms is given by L n = α n + β n , for all n ≥ 0.

(1.1)

Furthermore, we can prove by induction that the inequality

α n-1 ≤ L n ≤ α n+2 , (1.2) 
holds for all n ≥ 0. Let d ≥ 2 be a positive integer which is not a perfect square. It is well known that the Pell equation

x 2 -dy 2 = ±1 (1.3)
has infinitely many positive integer solutions (x, y). By putting (x 1 , y 1 ) for the smallest positive solution, all solutions are of the form (x k , y k ) for some positive integer k, where

x k + y k √ d = (x 1 + y 1 √ d) n for all k ≥ 1. (1.4)
Furthermore, the sequence {x k } k≥1 is binary recurrent. In fact, the following formula

x k = (x 1 + y 1 √ d) k + (x 1 -y 1 √ d) k 2 ,
holds for all positive integers k.

x n = F F m , (

where {F m } m≥0 is the sequence of Fibonacci numbers given by F 0 = 0, F 1 = 1 and F m+2 = F m+1 + F m for all m ≥ 0. They proved that equation (1.5) has at most one solution n in positive integers except for d = 2, 3, 5, for which case equation (1.5) has the solutions x 1 = 1 and x 2 = 3, x 1 = 2 and x 2 = 26, x 1 = 2 and x 2 = 9, respectively. There are many other researchers who have studied related problems involving the intersection sequence {x n } n≥1 with linear recurrence sequences of interest. For example, see [START_REF] Bravo | On the x-coordinates of Pell equations which are sums of two Tribonacci numbers[END_REF][START_REF] Ddamulira | On the x-coordinates of Pell equations which are sums of two Padovan numbers[END_REF][START_REF] Ddamulira | On the x-coordinates of Pell equations which are products of two Pell numbers[END_REF][START_REF] Ddamulira | On the x-coordinates of Pell equations which are k-generalized Fibonacci numbers[END_REF][START_REF] Kafle | On the x-coordinates of Pell equations which are Fibonacci numbers II[END_REF][START_REF] Kafle | x-Coordinates of Pell equations which are Tribonacci numbers II[END_REF][START_REF] Kafle | X-coordinates of Pell equations which are Lucas numbers[END_REF][START_REF] Luca | On the x-coordinates of Pell equations which are Tribonacci numbers[END_REF][START_REF] Luca | On the x-coordinates of Pell equations which are Fibonacci numbers[END_REF][START_REF] Rihane | The x-coordinates of Pell equations and Padovan numbers[END_REF].

Main Result

In this paper, we study a similar problem to that of Kafle et al. [START_REF] Kafle | On the x-coordinates of Pell equations which are products of two Fibonacci numbers[END_REF], but with the Lucas numbers instead of the Fibonacci numbers. That is, we show that there is at most one value of the positive integer x participating in (1.3) which is a product of two Lucas numbers, with a few exceptions that we completely cahracterize. This can be interpreted as solving the Diophantine equation

x k = L n L m , (2.1) 
in nonnegative integers (k, n, m) with k ≥ 1 and 0 ≤ m ≤ n. 

Preliminary Results

3.1.

Notations and terminology from algebraic number theory. We begin by recalling some basic notions from algebraic number theory.

Let η be an algebraic number of degree d with minimal primitive polynomial over the integers

a 0 x d + a 1 x d-1 + • • • + a d = a 0 d i=1 (x -η (i) ),
where the leading coefficient a 0 is positive and the η (i) 's are the conjugates of η. Then the logarithmic height of η is given by

h(η) := 1 d log a 0 + d i=1 log max{|η (i) |, 1} . 
In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}. The following are some of the properties of the logarithmic height function h(•), which will be used in the next sections of this paper without reference:

h(η ± γ) ≤ h(η) + h(γ) + log 2, h(ηγ ±1 ) ≤ h(η) + h(γ), (3.1) h(η s ) = |s|h(η) (s ∈ Z).
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3.2. Linear forms in logarithms. In order to prove our main result Theorem 2.1, we need to use several times a Baker-type lower bound for a nonzero linear form in logarithms of algebraic numbers. There are many such in the literature like that of Baker and Wüstholz from [START_REF] Baker | Logarithmic forms and Diophantine geometry[END_REF]. We start by recalling the result of Bugeaud, Mignotte and Siksek ( [START_REF] Bugeaud | Classical Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers[END_REF], Theorem 9.4, pp. 989), which is a modified version of the result of Matveev [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers[END_REF], which is one of our main tools in this paper.

Theorem 3.1. Let γ 1 , . . . , γ t be positive real numbers in a number field K ⊆ R of degree D, b 1 , . . . , b t be nonzero integers, and assume that

Λ := γ b 1 1 • • • γ bt t -1, (3.2) 
is nonzero. Then

log |Λ| > -1.4 × 30 t+3 × t 4.5 × D 2 (1 + log D)(1 + log B)A 1 • • • A t , where B ≥ max{|b 1 |, . . . , |b t |}, and 
A i ≥ max{Dh(γ i ), | log γ i |, 0.16}, for all i = 1, . . . , t.
When t = 2 and γ 1 , γ 2 are positive and multiplicatively independent, we can use a result of Laurent, Mignotte and Nesterenko [START_REF] Laurent | Formes linéaires en deux logarithmes et déterminants d' interpolation[END_REF]. Namely, let in this case B 1 , B 2 be real numbers larger than 1 such that

log B i ≥ max h(γ i ), | log γ i | D , 1 D , for i = 1, 2,
and put

b := |b 1 | D log B 2 + |b 2 | D log B 1 . Put Γ := b 1 log γ 1 + b 2 log γ 2 . (3.3) 
We note that Γ = 0 because γ 1 and γ 2 are multiplicatively independent. The following result is Corollary 2 in [START_REF] Laurent | Formes linéaires en deux logarithmes et déterminants d' interpolation[END_REF].

Theorem 3.2. With the above notations, assuming that η 1 , η 2 are positive and multiplicatively independent, then

log |Γ| > -24.34D 4 max log b + 0.14, 21 D , 1 2 
2 log B 1 log B 2 . (3.4)
Note that with Γ given by (3.3), we have e Γ -1 = Λ, where Λ is given by (3.2) in case t = 2, which explains the connection between Theorem 3.1 and Theorem 3.2.

Reduction procedure.

During the calculations, we get upper bounds on our variables which are too large, thus we need to reduce them. To do so, we use some results from the theory of continued fractions.

For the treatment of linear forms homogeneous in two integer variables, we use the wellknown classical result in the theory of Diophantine approximation.
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Lemma 3.3. Let τ be an irrational number, p 0 q 0 , p 1 q 1 , p 2 q 2 , . . . be all the convergents of the continued fraction of τ and M be a positive integer. Let N be a nonnegative integer such that q N > M . Then putting a(M ) := max{a i : i = 0, 1, 2, . . . , N }, the inequality

τ - r s > 1 (a(M ) + 2)s 2 ,
holds for all pairs (r, s) of positive integers with 0 < s < M .

For a nonhomogeneous linear form in two integer variables, we use a slight variation of a result due to Dujella and Pethő (see [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF], Lemma 5a). For a real number X, we write ||X|| := min{|X -n| : n ∈ Z} for the distance from X to the nearest integer. Lemma 3.4. Let M be a positive integer, p q be a convergent of the continued fraction of the irrational number τ such that q > 6M , and A, B, µ be some real numbers with A > 0 and B > 1. Let further ε := ||µq|| -M ||τ q||. If ε > 0, then there is no solution to the inequality At various occasions, we need to find a lower bound for linear forms in logarithms with bounded integer coefficients in three and four variables. In this case we use the LLL algorithm that we describe below. Let τ 1 , τ 2 , . . . τ t ∈ R and the linear form

0 < |uτ -v + µ| < AB -w ,
x 1 τ 1 + x 2 τ 2 + • • • + x t τ t with |x i | ≤ X i . (3.5)
We put X := max{X i }, C > (tX) t and consider the integer lattice Ω generated by

b j := e j + Cτ j for 1 ≤ j ≤ t -1 and b t := Cτ t e t ,
where C is a sufficiently large positive constant.

Lemma 3.5. Let X 1 , X 2 , . . . , X t be positive integers such that X := max{X i } and C > (tX) t is a fixed sufficiently large constant. With the above notation on the lattice Ω, we consider a reduced base {b i } to Ω and its associated Gram-Schmidt orthogonalization base {b * i }. We set

c 1 := max 1≤i≤t ||b 1 || ||b * i || , θ := ||b 1 || c 1 , Q := t-1 i=1 X 2 i and R := 1 + t i=1 X i /2. If the integers x i are such that |x i | ≤ X i , for 1 ≤ i ≤ t and θ 2 ≥ Q + R 2 , then we have t i=1 x i τ i ≥ θ 2 -Q -R C .
For the proof and further details, we refer the reader to the book of Cohen. (Proposition 2.3.20 in [START_REF] Cohen | Number Theory. Volume I: Tools and Diophantine Equations Graduate Texts in Mathematics[END_REF], pp. 58-63).
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3.4. Pell equations and Dickson polynomials. Here we give some relations about Pell equations and Dickson polynomials that will be useful in the next section of this paper. Let d ≥ 2 be a squarefree integer. We put δ := x 1 + x 2 1 -for the smallest positive integer x 1 such that x 2 1 -dy 2 1 = , ∈ {±1} for some positive integer y 1 . Then,

x k + y k √ d = δ k and x k -y k √ d = η k , where η := δ -1 .
From the above, we get

2x k = δ k + ( δ -1 ) k for all k ≥ 1. (3.6)
There is a formula expressing 2x k in terms of 2x 1 by means of the Dickson polynomial D k (2x 1 , ), where

D k (x, y) = k/2 i=0 k k -i k -i i (-y) i x k-2i .
These polynomials appear naturally in many number theory problems and results, for example in a result of Bilu and Tichy [START_REF] Yu | The Diophantine equation f (x) = g(y)[END_REF] concerning polynomials f (X), g(X) ∈ Z[X] such that the Diophantine equation f (x) = g(y) has infinitely many integer solutions (x, y).

Example 3.6.

(i) k = 2. We have

2x 2 = 1 i=0 2 2 -i 2 -i i (-) i (2x 1 ) 2-2i = 4x 2 1 -2 , so x 2 = 2x 2 1 -.
(ii) k = 3. We have

2x 3 = 1 i=0 3 3 -i 3 -i i (-) i (2x 1 ) 3-2i = (2x 1 ) 3 -3 (2x 1 ), so x 3 = 4x 3 1 -3 x 1 .

Bounding the variables

We assume that (x 1 , y 1 ) is the smallest positive solution of the Pell equation (1.3). As in Subsection 3.4, we set

x 2 1 -dy 2 1 =: , ∈ {±1}, and put

δ := x 1 + √ dy 1 and η := x 1 - √ dy 1 = δ -1 . From (1.4), we get x k = 1 2 δ k + η k . (4.1) Since δ ≥ 1 + √ 2 > α 3/2 , it follows that the estimate δ k α 2 ≤ x k < δ k α holds for all k ≥ 1. (4.2)
We let (k, n, m) := (k i , n i , m i ) for i = 1, 2 be the solutions of (2.1). By (1.2) and (4.2), we get

α n+m-2 ≤ L n L m = x k < δ k α and δ k α 2 ≤ x k = L n L m ≤ α n+m+4 , (4.3) 
so

kc 1 log δ -6 < n + m < kc 1 log δ + 1 where c 1 := 1 log α . (4.4) 
To fix ideas, we assume that

n ≥ m and k 1 < k 2 .
We also put

m 3 := min{m 1 , m 2 }, m 4 := max{m 1 , m 2 }, n 3 := min{n 1 , n 2 }, n 4 := max{n 1 , n 2 }.
Using the inequality (4.4) together with the fact that δ

≥ 1 + √ 2 = α 3/2 (so, c 1 log δ > 3/2), gives us that 3 2 k 2 < k 2 c 1 log δ < 2n 2 + 6 ≤ 2n 4 + 6, so k 1 < k 2 < 4 3 n 4 + 4. (4.5)
Thus, it is enough to find an upper bound on n 4 . Substituting (1.1) and (4.1) in (2.1) we get

1 2 (δ k + η k ) = (α n + β n )(α m + β m ). (4.6)
This can be regrouped as

δ k 2 -1 α -n-m -1 = -2 -1 η k α -n-m + (βα -1 ) n + (βα -1 ) m + (βα -1 ) n+m .
Since β = -α -1 , η = εδ -1 and using the fact that δ k ≥ α n+m-1 (by (4.3)), we get

δ k 2 -1 α -n-m -1 ≤ 1 2δ k α n+m + 1 α 2n + 1 α 2m + 1 α 2(n+m) ≤ α 2α 2(n+m) + 3 α 2m < 6 α 2m ,
In the above, we have also used the facts that n ≥ m and (1/2)α + 3 < 6. Hence,

δ k 2 -1 α -n-m -1 < 6 α 2m . (4.7) We let Λ 1 := δ k 2 -1 α -n-m -1. We put Γ 1 := k log δ -log 2 -(n + m) log α. (4.8) Note that e Γ 1 -1 = Λ 1 . If m > 100, then 6 α 2m < 1 2 . Since |e Γ 1 -1| < 1/2, it follows that |Γ 1 | < 2|e Γ 1 -1| < 12 α 2m . (4.9) By recalling that (k, n, m) = (k i , n i , m i ) for i = 1, 2, we get that |k i log δ -log 2 -(n i + m i ) log α| < 12 α 2m i (4.10)
holds for both i = 1, 2 provided m 3 > 100.

We apply Theorem 3.1 on the left-hand side of (4.7). First, we need to check that Λ 1 = 0. Well, if it were, then δ k α -n-m = 2. However, this is impossible since δ k α -n-m is a unit while 2 is not. Thus, Λ 1 = 0, and we can apply Theorem 3.1. We take the data

t := 3, γ 1 := δ, γ 2 := 2, γ 3 := α, b 1 := k, b 2 := -1, b 3 := -n -m.
We take K := Q( √ d, α) which has degree D ≤ 4 (it could be that d = 5 in which case D = 2; otherwise, D = 4). Since δ ≥ 1 + √ 2 > α, the second inequality in (4.4) tells us that k < n + m, so we take B := 2n. We have h(γ

1 ) = h(δ) = 1 2 log δ, h(γ 2 ) = h(2) = log 2 and 6 VOLUME, NUMBER h(γ 3 ) = h(α) = 1 2 log α.
Thus, we can take A 1 := 2 log δ, A 2 := 4 log 2 and Note that we did not assume that m 3 > 100 for Lemma 4.1 since we have worked with the inequality (4.7) and not with (4.9). We now again assume that m 3 > 100. Then the two inequalities (4.10) hold. We eliminate the term involving log δ by multiplying the inequality for i = 1 with k 2 and the one for i = 2 with k 1 , subtract them and apply the triangle inequality as follows

A 3 := 2 log α. Now, Theorem 3.1 tells us that log |Λ 1 | > -1.4 × 30 6 × 3 4.5 × 4 2 (1 + log 4)(1 + log(2n))(2 log δ)(4 log 2)(2 log α) > -2.
|(k 2 -k 1 ) log 2 -(k 2 (n 1 + m 1 ) -k 1 (n 2 + m 2 )) log α| = |k 2 (k 1 log δ -log 2 -(n 1 + m 1 ) log α) -k 1 (k 2 log δ -log 2 -(n 2 + m 2 ) log α)| ≤ k 2 |k 1 log δ -log 2 -(n 1 + m 1 ) log α| + k 1 |k 2 log δ -log 2 -(n 2 + m 2 ) log α| ≤ 12k 2 α 2m 1 + 12k 1 α 2k 2 < 24k 2 α 2m 3 . Thus, |Γ 2 | := |(k 2 -k 1 ) log 2 -(k 2 (n 1 + m 1 ) -k 1 (n 2 + m 2 )) log α| < 24k 2 α 2m 3 . (4.15)
We are now set to apply Theorem 3.2 with the data

t := 2, γ 1 := 2, γ 2 := α, b 1 := k 2 -k 1 , b 2 := k 2 (n 1 + m 1 ) -k 1 (n 2 + m 2 ).
The fact that γ 1 = 2 and γ 2 = α are multiplicatively independent follows because α is a unit while 2 is not. We observe that k 2 -k 1 < k 2 , whereas by the absolute value of the inequality in (4.15), we have

|k 2 (n 1 + m 1 ) -k 1 (n 2 + m 2 )| ≤ (k 2 -k 1 ) log 2 log α + 24k 2 α 2m 3 log α < 2k 2 ,
because m 3 > 10. We have that K := Q(α), which has D = 2. So we can take

log B 1 = max h(γ 1 ), | log γ 1 | 2 , 1 2 = log 2,
and

log B 2 = max h(γ 2 ), | log γ 2 | 2 , 1 2 = 1 2 . Thus, b = |k 2 -k 1 | 2 log B 2 + |k 2 (n 1 + m 1 ) -k 1 (n 2 + m 2 )| 2 log B 1 ≤ k 2 + k 2 log 2 < 3k 2 .
Now Theorem 3.2 tells us that with 

Γ 2 = (k 2 -k 1 ) log 2 -(k 2 (n 1 + m 1 ) -k 1 (n 2 + m 2 )) log α,
2m 3 log α < 272(1 + log k 2 ) 2 + log(24k 2 ) < 280(1 + log k 2 ) 2 ,
which gives

m 3 < 160(1 + log k 2 ) 2 .
We record what we have proved Lemma 4.2. If m 3 > 100, then either

(i) k 2 ≤ 10523 and m 3 < 30942 or (ii) k 2 > 10523, in which case m 3 < 160(1 + log k 2 ) 2 .
Now suppose that some m is fixed in (2.1), or at least we have some good upper bounds on it. We rewrite (2.1) using (1.1) and (4.1) as

1 2 (δ k + η k ) = L m (α n + β n ), so δ k (2L m ) -1 α -n -1 = - 1 2L m η k α -n + (βα -1 ) n . Since m ≥ 1, β = -α -1 , η = εδ -1 and δ k > α n+m-1 , we get δ k (2L m ) -1 α -n -1 ≤ 1 2L m δ k α n + 1 α 2n ≤ α α 2(n+m) + 1 α 2n ≤ α + 1 α 2n < 6 α 2n
, where we have used the fact that n ≥ m ≥ 0 and α + 1 < 6. Hence,

|Λ 3 | := δ k (2L m ) -1 α -n -1 < 6 α 2n . (4.16)
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We assume that n 3 > 100. In particular, 6 α 2n < 1 2 for n ∈ {n 1 , n 2 }, so we get by the previous argument that

|Γ 3 | := |k log δ -log(2L m ) -n log α| < 12 α 2n . (4.17)
We are now set to apply Theorem 3.1 on the left-hand side of (4.16) with the data

t := 3, γ 1 := δ, γ 2 := 2L m , γ 3 := α, b 1 := k, b 2 := -1, b 3 := -n.
First, we need to check that Λ

3 := δ k (2L m ) -1 α -n -1 = 0. If not, then δ k = 2L m α m .
The left-hand side belongs to the field Q( √ d) but not rational while the right-hand side belongs to the field Q( √ 5). This is not possible unless d = 5. In this last case, δ is a unit in

Q( √ 5) while 2L m is not a unit in Q( √ 5 
) since the norm of this first element is 4L 2 m = ±1. So, Λ 3 = 0. Thus, we can apply Theorem 3.1. We have the field

K := Q( √ d, √ 5 
) which has degree D ≤ 4. We also have

h(γ 2 ) = h(2L m ) = h(2) + h(L m ) ≤ log 2 + (m + 1) log α < 2 + m log α ≤ 2
.92 × 10 13 log δ(1 + log(2n)) by (4.12).

So, we take

h(γ 1 ) = 1 2 log δ, h(γ 2 ) = 2.92 × 10 13 log δ(1 + log(2n)) and h(γ 3 ) = 1 2 log α.
Then, We record what we have proved.

A 1 := 2 log
Lemma 4.3. If x k = L n L m with n ≥ m ≥ 1, then we have n < 4.3 × 10 26 (1 + log(2n)) 2 (log δ) 2 .
Note that we did not use the assumption that m 3 > 100 of that n 3 > 100 for Lemma 4.3 since we worked with the inequality (4.16) not with the inequality (4.17). We now assume that n 3 > 100 and in particular (4.17) holds for (k, n, m) = (k i , n i , m i ) for both i = 1, 2. By the previous procedure, we also eliminate the term involving log δ as follows

|k 2 log(2L m 1 ) -k 1 log(2L m 2 ) -(k 2 n 1 -k 1 n 2 ) log α| < 12k 2 α 2n 1 + 12k 1 α 2n 2 < 24k 2 α 2n 3 . (4.19) We assume that α 2n 3 > 48k 2 . If we put Γ 4 := k 2 log(2L m 1 ) -k 1 log(2L m 2 ) -(k 2 n 1 -k 1 n 2 ) log α,
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we have that |Γ 4 | < 1/2. We then get that

|Λ 4 | := |e Γ 4 -1| < 2|Γ 4 | < 48k 2 α 2n 3 . (4.20)
We apply Theorem 3.1 to

Λ 4 := (2L m 1 ) k 2 (2L m 2 ) -k 1 α -(k 2 n 1 -k 1 n 2 ) -1.
First, we need to check that Λ 4 = 0. Well, if it were, then it would follow that

L k 2 m 1 L k 1 m 2 = 2 k 1 -k 2 α k 2 n 1 -k 1 n 2 . (4.21)
We consider the following Lemma. Proof. We suppose that (4.21) holds and assume that gcd(k

1 , k 2 ) = 1. Since α k 2 n 1 -k 1 n 2 ∈ Q, it follows k 2 n 1 = k 1 n 2 . Thus, if one of the n 1 , n 2 is zero, so is the other. Since n i ≥ m i for i ∈ {1, 2}, it follows that n 1 = n 2 = 0, m 1 = m 2 = 0, so x k 1 = x k 2 , therefore k 1 = k 2 a contradiction. Thus, n 1 and n 2 are both positive integers. Next L k 2 m 1 /L k 1 m 2 = 2 k 1 -k 2 < 1. Thus, L k 2 m 1 < L k 1 m 2 < L k 2 m 2 , so L m 1 < L m 2 . This implies that either (m 1 , m 2 ) = (1, 0) or m 1 < m 2 . The case (m 1 , m 2 ) = (1, 0) gives 1/2 k 1 = 2 k 1 -k 2 . Thus, k 2 = 2k 1 and since gcd(k 1 , k 2 ) = 1, we get k 1 = 1, k 2 = 2, so n 2 = 2n 1 . But then x 2 = x k 2 = L n 2 L m 2 = L 2n 1 L 0 = 2L 2n 1 is even, a contradiction since x 2 = 2x 1 ± 1 (by Example 3.6 (i)) is odd. Thus, m 1 < m 2 . If m 2 > 6,
the Carmichael Primitive Divisor Theorem for Lucas numbers shows that L m 2 is divisible by a prime p > 7 which does not divide L m 1 . This is impossible since it contradicts the assumption that (4.21) holds. Thus, m 2 ≤ 6. Further since

L k 2 m 1 /L k 1 m 2 = 1/2 k 2 -k 1 it follows that L k 1 m 1 | L k 2 m 1 | L k 1 m 2 , so L m 1 | L m 2 .
So, there are three cases that we analyse:

Case 1. m 1 = 0, m 2 ∈ {3, 6}. If (m 1 , m 2 ) = (0, 3), then 2 k 2 /4 k 1 = 1/2 2k 1 -k 2 = 1/2 k 2 -k 1 .
This gives 2k 2 = 3k 1 and since k 1 and k 2 are coprime, it follows that k 1 = 2 and k 2 = 3. Then

x 2 = x k 1 = L n 1 L m 1 = L n 1 L 0 = 2L n 1 is even, a contradiction since x 2 = 2x 1 ± 1 is odd. If (m 1 , m 2 ) = (0, 6), then 2 k 2 /18 k 1 = 1/2 k 2 -k 1 ,
which is impossible since by looking at the exponent of 3 we would get k 1 = 0, a contradiction. Case 2. m 1 = 2 and L m 2 is a power of 2. The case m 2 = 0 has been treated so the only other case left is m 2 = 3. In this case, 1/4

k 1 = 1/2 k 2 -k 1 , giving k 2 = 3k 1 . Thus, since gcd(k 1 , k 2 ) = 1, then k 1 = 1 and k 2 = 3. Since k 2 n 1 = k 1 n 2 , we get n 2 = 3n 1 . Thus, x 1 = L n 1 L 1 = L n 1 and x 3 = L 3n 1 L 3 = 4L 3n 1 . Now x 3 = x 1 (4x 2 1 ±
3) (by Example 3.6 (ii)) and the second factor is odd, so the power of 2 dividing 4L 3n 1 divides

x 1 = L n 1 . But 4L 3n 1 is a multiple of 8 since L 3n 1 is even. Thus, 8 | L n 1 , which is false. Case 3. m 1 = 2 and m 2 = 6. We get 3 k 2 /(2.3 2 ) k 1 = 1/2 k 2 -k 1 .
Looking at the exponent of 3, we get k 2 = 2k 1 and loking at the exponent of 2 we also get k 2 = 2k 1 , so k 1 = 1 and k 2 = 2. Also, n 2 = 2n 1 . Thus,

x 1 = L n 1 L m 1 = 3L n 1 and x 2 = L n 2 L m 2 = 18L 2n 1 is
even, a contradiction with the fact that x 2 = 2x 2 1 ± 1 is odd. So, by Lemma 4.4 we have Λ 4 = 0. Thus, we can now apply Theorem 3.1 with the data

t := 3, γ 1 := 2L m 1 , γ 2 := 2L m 2 , γ 3 := α, b 1 = k 2 , b 2 := -k 1 , b 3 := -(k 2 n 1 -k 1 n 2 ).
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We have K := Q( √ 5) which has degree D := 2. Also, using (4.5), we can take B := 4n 2 4 . We can also take

A 1 := 2(2 + m 1 log α) ≤ 4m 1 log α, A 2 := 2(2 + m 2 log α) ≤ 4m 2 log α and A 3 := log α. Theorem 3.1 gives that log |Λ 4 | > -1.4 × 30 6 × 3 4.5 × 2 2 (1 + log 2)(1 + log(4n 2 4 ))(4m 1 log α)(4m 2 log α) log α, > -3.44 × 10 12 m 1 m 2 (1 + log(2n 4 )).
By comparing this with the inequality (4.20), we get 2n 3 log α -log(48k 2 ) < 3.44 × 10 12 m 1 m 2 (1 + log(2n 4 )).

Since k 2 < 4n 4 and n 4 > 10, we get that log(48k 2 ) < 2(1 + log(2n 4 )). Thus, < 1.17 × 10 78 log(1 + log(2n 4 )) 5 .

n 3 < 3.58 × 10 12 m 1 m 2 (1 + log(2n 4 )). ( 4 
With the help of Mathematica, we get that n 4 < 4.6 × 10 89 . Thus, using (4.5), we get max{k 2 , n 4 } < 4.6 × 10 89 .

We record what we have proved. We let i ∈ {1, 2} be such that m i = m 3 and j be such that {i, j} = {1, 2}. We assume that n 3 > 100. We work with (4.17) for i and (4.10) for j and noting the conditions n i > 100 and m j = m 4 > 100 are fullfilled. That is,

|k i log δ + log(2L m i ) -n i log α| < 12 α 2n i , |k j log δ -log 2 -(n j + m j ) log α| < 12 α 2m j
. By a similar procedure as before, we eliminate the term involving log δ. We multiply the first inequality by k j , the second inequality by k i , subtract the resulting inequalities and apply the triangle inequalty to get

|k j log(2L m i ) -k i log 2 -(k j n i -k i (n j + m j )) log α| < 12k j α 2m i + 12k i α 2l j < 24k 2 α 2 min{n i ,m j } . (4.23)
Assume that α 2 min{n i ,m j } > 48k 2 . We put

Γ 5 := k j log(2L m i ) -k i log 2 -(k j n i -k i (n j + m j )) log α.
We can write Λ 5 := (2L m i ) k j 2 -k i α (k j n i -k i (n j +m j )) -1. Under the above assumption and using (4.23), we get that

|Λ 5 | = |e Γ 5 -1| < 2|Γ 5 | < 48k 2 α 2 min{n i ,m j } . ( 4 

.24)

We are now set to apply Theorem 3.1 on Λ 5 . First, we need to check that Λ 5 = 0. Well, if it were, then we would get that

L k j m i = 2 k i -k j α (k j n i -k i (n j +m j )) .
(4.25)

We consider the following lemma.

Lemma 4.7. The equation (4.25) has only many small positive integer solutions (k i , k j , n i , n j , m i , m j ) for i, j = {1, 2} with k 1 < k 2 and m 1 ≤ m 2 ≤ 6. Futhermore, none of these solutions lead to a valid solution to the original Diophantine equation (2.1).

Proof. Suppose that (4.25) holds and assume that gcd(k

1 , k 2 ) = 1. Since α (k j n i -k i (n j +m j )) ∈ Q, then k j n i = k i (n j + m j ). Next L k j m i = 2 k i -k j . Thus, k i ≥ k j , so i = 2, j = 1, k 2 > k 1 and m 2 = 1. Since L m 2 > 1 is a power of 2, it follows that m 2 ∈ {0, 3}. Suppose m 2 = 0. Then L k 1 m 2 = 2 k 1 = 2 k 2 -k 1 , so k 2 = 2k 1 . Hence, k 1 = 1 and k 2 = 2. Further, n 2 = 2(n 1 + m 1 ). Thus, x 2 = x k 2 = L n 2 L m 2 = 2L 2(n 1 +m 1 ) is even, which false because x 2 = 2x 2 1 ± 1 is odd. Suppose next that m 2 = 3. Then 4 k 1 = 2 k 2 -k 1 . Thus, k 2 = 3k 1 , so k 1 = 1 and k 2 = 3. Next, n 2 = 3(n 1 + m 1 ). Hence, x 1 = x k 1 = L n 1 L m 1 and x 3 = x k 2 = L n 2 L m 2 = 4L 3(n 1 +m 1 )
. By the previous argument in the proof of Lemma 4.4, 8 divides

x 3 = x 1 (4x 2 1 ± 1), so 8 | x 1 . Since x 1 = L n 1 L m 1 and 8 L n for any n, it follows that L n 1 and L m 1 are both even. Thus, 3 | n 1 , 3 | m 1 . Further, one of L n 1 , L m 1 is a multiple of 4, so one of n 1 , m 1 is odd. Suppose both are odd. Then 4 | L n 1 , 4 | L m 1 so 16 | x 1 | x 3 | 4L 3(n 1 +m 1 )
. This implies that 4 | L 3(n 1 +m 1 ) , which is false because 3(n 1 + m 1 ) is an even multiple of 3, and 2 L 6m for any m. Suppose now that one of n 1 , m 1 is an even multiple of 3, and the other is odd. Then ord 2 (x 1 ) = 3, where ord 2 (x) is the exponent at which 2 appears in the factorization of x. Hence,

3 = ord 2 (x 3 ) = ord 2 (4L 3(n 1 +m 1 ) ) = 2 + ord 2 (L 3(n 1 +m 1 ) ),
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This was when m j = min{n i , m j }. Now we assume that n i = min{n i , m j }. Then we get n i < 1.72 × 10 15 (1 + log(2n 4 )) 3 . 

By Lemma

The final computations

5.1. The first reduction. In this subsection we reduce the bounds for k 1 , m 1 , n 1 and k 2 , m 2 , n 2 to cases that can be computationally treated. For this we return to the inequalities for Γ 2 , Γ 4 and Γ 5 .

We return to (4.15) and we set s := k 2 -k 1 and r := k 2 (n 1 + m 1 ) -k 1 (n 2 + m 2 ) and divide both sides by s log α to get log 2 log α -r s < 24k 2 α 2m 3 s log α .

(5.1)

We assume that l 3 is so large that the right-hand side of the inequality in (5.1) is smaller than 1/(2s 2 ). This certainly holds if . .] for the continued fraction of τ and p k /q k for the k-th convergent. We get that r/s = p j /q j for some j ≤ 237. Furthermore, putting a(M ) := max{a j : j = 0, 1, . . . , 237}, we get a(M ) := 880. By Lemma 3. If m 1 = m 3 , then we have i = 1 and j = 2, otherwise m 2 = m 3 implying that we have i = 2 and j = 1. In both cases, the next step is the application of Lemma 3.5 (LLL algorithm) for (4.23), where n i < 1.30 × 10 112 and |k j n i -k i (n j + m j )| < 10 116 . For each m j ∈ [START_REF] Baker | The equations 3x 2 -2 = y 2 and 8x 2 -7 = z 2[END_REF]1190] and

α 2m 3 > 48k 2 2 / log α. ( 5 
Γ 5 := k j log(2L m i ) -k i log 2 -(k j n i -k i (n j + m j )) log α, (5.3) 
we apply the LLL-algorithm on Γ 3 with the data

t := 3, τ 1 := log(2L m i ), τ 2 := log 2, τ 3 := log α x 1 := k j , x 2 := -k i , x 3 := k j n i -k i (n j + m j ).
Further, we set X := 10 116 as an upper bound to |x i | for i = 1, 2, 3, and C := (5X) 5 . A computer search in Mathematica allows us to conclude, together with the inequality (4.23), that 2 × 10 -480 < min

1≤min{n i ,m j }≤1190 |Γ 5 | < 24k 2 α 2 min{n i ,m j } .
(

Thus, min{n i , m j } ≤ 1419. We assume first that i = 1, j = 2. Thus, n 1 ≤ 1419 or m j = min{n i , m j } ≤ 1419.

Next, we suppose that m j = min{n i , m j } ≤ 1419. Since m 1 := m 3 ≤ 1190, we have 

t := 3, τ 1 := 2L m 1 , τ 2 := 2L m 2 , τ 3 := log α, x 1 := k 2 , x 2 := -k 1 , x 2 := k 1 n 2 -k 2 n 1 .
We also put X := 10 116 and C := (20X) 9 . After a computer search in Mathematica together with the inequality (4.19), we can confirm that 2 × 10 -1120 ≤ min 

1≤m 3 ≤1190 m 3 +1≤m 4 ≤1419 |Γ 4 | < 24k 2 α -
4 := (k 2 -k 1 ) log(2L m 1 ) -(k 2 n 1 -k 1 n 2 ) log α = 0.
This is similar to the case we have handled in the previous steps and yields the bound on n 1 which is less than 2950. So in both cases we have n 1 ≤ 2950. From the fact that log δ ≤ k 1 log δ ≤ 4n 1 log α < 5678, and by considering the inequality given in Lemma 4.3, we conclude that

n 2 < 1.4 × 10 34 (1 + log(2n 2 )) 2 ,
which with the help of Mathematica yields n 2 < 1.12 × 10 38 . We summarise the first cycle of our reductions. max{k 1 , m 1 } ≤ n 1 < 2950 and max{k 2 , m 2 } ≤ n 2 < 1.12 × 10 38 .

(5.6)

From (5.6), we note that the upper bound on n 2 represents a very good reduction of the bound given in Lemma 4.8. Hence, we expect that if we restart our reduction cycle with the new bound on n 2 , then we get better bounds on n 1 and n 2 . Thus, we return to the inequality (5.1) and take M := 1.12 × 10 38 . A computer seach in Mathematica reveals that

q 82 > M > n 2 > k 2 -k 1 and a(M ) := max{a i : 0 ≤ i ≤ 82} = a 12 = 134,
from which it follows that m 3 ≤ 100. We now return to (5.3) and we put X := 1.12 × 10 40 and C := (20X) 5 and then apply the LLL algorithm in Lemma 3.5 to m 3 ∈ [1, 100]. After a computer search in Mathematica, we get 1.04 × 10 -139 < min

1≤m 3 ≤100 |Γ 4 | < 24k 2 α -2 min{n i ,m j } ,
then min{n i , m j } ≤ 410. By continuing under the assumption that m j := min{n i , m j } ≤ 426, we return to (5.5) and put X := 1.12 × 10 40 , C := (20X) 5 and M := 1.12 × 10 38 for the case m 3 < m 4 and the case m 3 = m 4 . After a computer search, we confirm that 4.39 × 10 -168 < min

1≤m 3 ≤100 m 3 +1≤m 4 ≤426 |Γ 4 | < 24k 2 α -2n 3 .
(5.7)

This gives n 1 ≤ 494 which holds in both cases. Hence, by a similar procedure given in the first cycle, we get that n 2 < 3 × 10 36 .

We record what we have proved.

Lemma 5.2. Let (k i , n i , m i } be a solution to the Diophantine equation

x k i = L n i L m i , with 0 ≤ m i ≤ n i for i = 1, 2 and 1 ≤ k 1 ≤ k 2 , then max{k 1 , m 1 } ≤ n 1 ≤ 494 and max{k 2 , m 2 } ≤ n 2 < 3 × 10 36 .
5.2. The final reduction. Returning back to (4.9) and (4.17) and using the fact that (x 1 , y 1 ) is the smallest positive solution to the Pell equation (1.3), we obtain

x k = 1 2 (δ k + η k ) = 1 2 x 1 + y 1 √ d k + x 1 -y 1 √ d k = 1 2 x 1 + x 2 1 ∓ 1 k + x 1 -x 2 1 ∓ 1 k := P ± k (x 1 ).
Thus, we return to the Diophantine equation x k 1 = L n 1 L m 1 and consider the equations We again apply Lemma 3.4 to the above inequality (5.12), for t = 1, 2, . . . , 10, m 2 = 1, 2, . . . , b t , with M := 3 × 10 36 .

P + k 1 (x 1 ) = L n 1 L m 1 and P - k 1 (x 1 ) = L n 1 L m 1 , (5.8 
We take ε t,m 2 := ||µ t q (t,m 2 ) || -M ||τ t q (t,m 2 ) || > 0, and b t = b t,m 2 := log(A t q (t,m 2 ) st / t,m 2 )/ log B t /2.

The case δ 7 = 2 + √ 5 is again treated individually by a similar procedure as in the previous step. With the help of Mathematica, we record the results of the computation in This completes the proof of Theorem 2.1.

Theorem 2 . 1 .

 21 For each square-free integer d ≥ 2 there is at most one integer k such that the equation (2.1) holds, except for d ∈ {2, 3, 5, 15, 17, 35} for whichx 1 = 1, x 2 = 3, x 3 = 7, x 9 = 1393 (for d = 2), x 1 = 2, x 2 = 7 (for d = 3), x 1 = 2, x 2 = 9 (for d = 5), x 1 = 4,x 5 = 15124 (for d = 15), x 1 = 4, x 2 = 33 (for d = 17) and x 1 = 6, x 3 = 846 (for d = 35).

  in positive integers u, v and w with u ≤ M and w ≥ log(Aq/ε) log B .

Lemma 4 . 1 .

 41 If x k = L n L m and n ≥ m, then m < 6.06 × 10 13 log δ(1 + log(2n)), km < 5.84 × 10 13 n(1 + log(2n)), k log δ < 4n log α.

  δ, A 2 := 1.18 × 10 14 log δ(1 + log(2n)) and A 3 := 2 log α. Then, by Theorem 3.1 we get log |Λ 3 | > -1.4 × 30 6 × 3 4.5 × 4 2 (1 + log 4)(1 + log n)(2 log δ) ×(1.18 × 10 14 log δ(1 + log(2n)))(2 log α) > -8.6 × 10 26 (1 + log(2n)) 2 (log δ) 2 log α. Comparing the above inequality with (4.16), we get 2n log α -log 6 < 8.6 × 10 26 (1 + log(2n)) 2 (log δ) 2 log α, which implies that n < 4.3 × 10 26 (1 + log(2n)) 2 (log δ) 2 . (4.18)

Lemma 4 . 4 .

 44 The equation (4.21) has only many small positive integer solutions (k i , n i , m i ) for i = {1, 2} with k 1 < k 2 and m 1 ≤ m 2 ≤ 6. Futhermore, none of these solutions lead to a valid solution to the original Diophantine equation (2.1).

Lemma 4 . 6 .

 46 If m 4 := max{m 1 , m 2 } ≤ 100, then max{k 2 , n 4 } < 4.6 × 10 89 . Case 2. m 4 > 100. Note that either m 3 ≤ 100 or m 3 > 100 case in which by Lemma 4.2 and the inequality (4.5), we have m 3 ≤ 160(1 + log(4n 4 )) 2 provided that m 4 > 10000, which we now assume.

Lemma 4 . 9 .

 49 If m 4 > 100 and n 3 ≤ 100, then max{k 1 , n 1 , n 2 } < 10 40 .

Lemma 5 . 1 .

 51 We have m 3 := min{m 1 , m 2 } ≤ 1190.

m 3 : 3 = m 4 . 5 . 1 . 1 .

 334511 = min{m 1 , m 2 } ≤ 1190 and m 4 := max{m 1 , m 2 } ≤ 1419. Now, returning to the inequality (4.19) which involvesΓ 4 := k 2 log(2L m 1 ) -k 1 log(2L m 2 ) -(k 2 n 1 -k 1 n 2 ) log α,(5.5)we use again the LLL algorithm to estimate the lower bound for |Γ 4 | and thus, find a bound for n 1 that is better than the one given in Lemma 4.8. We distinguish the cases m 3 < m 4 and m The case m 3 < m 4 . We take m 1 := m 3 ∈ [1, 1190] and m 2 := m 4 ∈ [m 3 + 1, 1419] and apply Lemma 3.5 with the data:

  2n 

3 . 5 . 1 . 2 .

 3512 This leads to the inequalityα 2n 3 < 12 × 10 1120 k 2 .Sustituting for the bound k 2 given in Lemma 4.8, we get that n 1 := n 3 ≤ 2950.MONTH YEAR The case m 3 = m 4 . . In this case m 1 = m 2 ≤ 1419 and we have

Γ

  

( 2 . 1 ) in the following ranges 1 ≤ k 1 < k 2 ≤

 21112 200, 0 ≤ m 1 ≤ n 1 ≤ 200 and 0 ≤ m 2 ≤ n 2 ≤ 200.After a computer search on the equation (2.1) on the above ranges, we obtained the following solutions, which are the only solutions for the exceptional d cases we have stated in Theorem 2.1:For the +1 case:(d = 3) x 1 = 2 = L 1 L 0 , x 2 = 7 = L 4 L 1 ; (d = 15) x 1 = 4 = L 3 L 1 = L 0 L 0 , x 5 = 15124 = L 11 L 9 ; (d = 35) x 1 = 6 = L 2 L 0 , x 3 = 846 = L 8 L 6 .For the -1 case:(d = 2) x 1 = 1 = L 3 L 3 , x 2 = 3 = L 2 L 1 , x 3 = 7 = L 4 L 1 , x 9 = 1393 = L 11 L 4 ; (d = 5) x 1 = 2 = L 1 L 0 , x 2 = 9 = L 2 L 2 ; (d = 17) x 1 = 4 = L 3 L 1 = L 0 L 0 , x 2 = 33 = L 5 L 2 .

  92 × 10 13 log δ(1 + log(2n)).

	By comparing the above inequality with (4.7), we get	
	2m log α -log 6 < 2.92 × 10 13 log δ(1 + log(2n)).	(4.11)
	Thus	
	m < 6.06 × 10 13 log δ(1 + log(2n)).	(4.12)
	Since, δ k < α n+m+6 , we get that	
	k log δ < (n + m + 6) log α ≤ (2n + 6) log α,	(4.13)
	which together with the estimate (4.12) gives	

km < 5.84 × 10 13 n(1 + log(2n)).

(4.14)

Let us record what we have proved, since this will be important later-on.

  .22) All this was done under the assumption that α 2n 3 > 48k 2 . But if that inequality fails, thenn 3 < c 1 log(48k 2 ) < 12(1 + log(2n 4 )),which is much better than (4.22). Thus, (4.22) holds in all cases. Next, we record what we have proved.

Lemma 4.5. Assuming that n 3 > 100, then we have

n 3 < 3.58 × 10 12 m 1 m 2 (1 + log(2n 4 )).

We now start finding effective bounds for our variables. Case 1. m 4 ≤ 100. Then m 1 < 100 and m 2 < 100. By Lemma 4.5, we get that n 3 < 3.58 × 10 16 (1 + log(2n 4 )).

By Lemma 4.1, we get log δ < 4n 3 log α < 6.89 × 10 16 (1 + log(2n 4 )).

By the inequality (4.4), we have that

n 4 ≤ n 4 + m 4 -1 < k 2 c 1 log δ < 1.

72 × 10 27 c 1 (1 + log(2n 4 )) 2 (log δ) 3 (by (4.5) and Lemma 4.3) < 1 log α (1.72 × 10 27 (1 + log(2n 4 )) 2 )(6.89 × 10 16 (1 + log(2n 4 ))) 3

  4.1, we get that log δ < 3.31 × 10 15 (1 + log(2n 4 )) 3 . Now by Lemma 4.3 together with Lemma 4.1 to bound l 4 give n 4 < 4.30 × 10 26 (1 + log(2n 4 ))) 2 (3.31 × 10 15 (1 + log(2n 4 )) 3 ) 2 < 4.72 × 10 57 (1 + log(2n 4 )) 10 . This gives, n 4 < 2.44 × 10 80 which is a better bound than 1.30 × 10 122 . We record what we have proved. Lemma 4.8. If m 4 := max{m 1 , m 2 } > 100 and n 3 := min{n 1 , n 2 } > 100, then max{k 2 , n 1 , n 2 } < 1.30 × 10 122 . It now remains the case when m 4 > 100 and n 3 ≤ 100. But then, by Lemma 4.1, we get log δ < 192 and now Lemma 4.1 together with Lemma 4.3 give n 4 < 1.56 × 10 31 (1 + log(2n 4 )) 2 , which implies that n 4 < 10 36 and further max{k 1 , n 1 , n 2 } < 10 40 . We record what we have proved.

  .2) Since k 2 < 1.3 × 10 122 , it follows that the last inequality (5.2) holds provided that m 3 ≥ 589, which we now assume. In this case r/s is a convergent of the continued fraction of τ := log 2

	log α
	and s < 1.30 × 10 122 . We are now set to apply Lemma 3.3.
	We write τ := [a 0 ; a 1 , a 2 , a 3 , . . .] = [1, 2, 3, 1, 2, 3, 2, 4, 2, 1, 2, 11, 2, 1, 11, 1, 1, 134, 2, 2, .

Table 2 .

 2 Besides the trivial case k 1 = 1, with the help of a computer search in Mathematica on the above equations in (5.8), we list the only nontrivial solutions in Table1below.By a similar procedure given in Subsection 5.1 with M := 3 × 10 36 , we get that q 77 > M and a(M ) := max{a i : 0 ≤ i ≤ 77} = 134. From this we can conclude that m 2 ≤ 96.The results of the computation for each t are recorded in Table 2 below. First reduction computation results By replacing (k, n, m) := (k 2 , n 2 , m 2 ) in the inequality (4.17), we can write With the above notations, we can rewrite (5.11) as 0 < |k 2 τ t -n 2 + µ t,m 2 | < A t B -2n 2

	16

)

with k 1 ∈ [1, 500], m 1 ∈ [0, 500] and n 1 ∈ [m 1 + 1, 500].

t , for t = 1, 2, . . . 10.

(5.12)

Table 3

 3 

	below.										
	t	1	2	3	4	5	6	7	8	9	10
	ε t,m 2 > 0.0145 0.0002 0.0006 0.0034 0.0106 0.0005 -0.0009 0.0019 0.0010
	b t,m 2	97	103	102	99	99	100	102	100	99	100

Table 3 .

 3 Final reduction computation results 18 VOLUME, NUMBER Therefore, max{b t,m 2 : t = 1, 2, . . . , 10 and m 2 = 1, 2, . . . b t } ≤ 103. Thus, by Lemma 3.4, we have that n 2 ≤ 103, for all t = 1, 2, . . . , 10. From the fact that δ k ≤ α n+m+6 , we can conclude that k 1 < k 2 ≤ 198. Collecting everything together, our problem is reduced to search for the solutions for
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giving ord 2 (L 3(n 1 +m 1 ) ) = 1, which is again false since 3(n 1 + m 1 ) is an odd multiple 3, so a number of the form 3 + 6m, and for such numbers we have 4 L 3+6m . Hence, in all instances we have gotten a contradiction. Thus, by Lemma 4.7 we have that1 Λ 5 = 0. So, we can apply Theorem 3.1 with the data

From the previous calculations, we know that K := Q( √ 2) which has degree D = 2 and A 1 := 4m i log α, A 2 := 2 log 2 and A 3 := log α. We also take B := 4n 2 4 . By Theorem 3.1, we get that

Comparing the above inequality with (4.24), we get 2 min{n i , m j } log α -log(48k 2 ) < 5.12 × 10 12 m i (1 + log(2n 4 )).

Since m 4 > 100, we get using (4.5) ( k 2 < 4n 4 ) that,

All this was under the assumptions that n 4 > 10000, and that α 2 min{n i ,m j } > 48k 2 . But, still under the condition that n 4 > 10000, if α 2 min{n i ,m j } < 48k 2 , then we get an inequality for min{n i , n j } which is even much better than (4.26). So, (4.26) holds provided that n 4 > 10000.

Suppose say that min{n i , m j } = m j . Then we get that 

From the above tables, we set each δ := δ t for t = 1, 2, . . . 10. We then work on the linear forms in logarithms Γ 1 and Γ 2 , in order to reduce the bound on n 2 given in Lemma 5.2. From the inequality (4.10), for (k, n, m) := (k 2 , n 2 , m 2 ), we write

for t = 1, 2, . . . 10. We put

and (A t , B t ) := 12 log α , α .

We note that τ t is transcendental by the Gelfond-Schneider's Theorem and thus, τ t is irrational. We can rewrite the above inequality, (5.9) as

, for t = 1, 2, . . . , 10.

(5.10)

We take M := 3 × 10 36 which is the upper bound on n 2 according to Lemma 5.2 and apply Lemma 3.4 to the inequality (5.10). As before, for each τ t with t = 1, 2, . . . , 10, we compute its continued fraction [a

2 , . . .] and its convergents p

2 /q (t) 2 , . . .. For each case, by means of a computer search in Mathematica, we find and integer s t such that

We finally compute all the values of b t := log(A t q (t) st / t )/ log B t /2. The values of b t correspond to the upper bounds on m 2 , for each t = 1, 2, . . . , 10, according to Lemma 3.4.

Note that we have a problem at δ 7 := 2 + √ 5. This is because