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ON THE z—-COORDINATES OF PELL EQUATIONS WHICH ARE
PRODUCTS OF TWO LUCAS NUMBERS

MAHADI DDAMULIRA

ABSTRACT. Let {L,}n>0 be the sequence of Lucas numbers given by Lo = 2, L; = 1 and
Lpt2 = Lpy1 + Ly, for all n > 0. In this paper, for an integer d > 2 which is square-free,
we show that there is at most one value of the positive integer = participating in the Pell
equation z® — dy® = 41 which is a product of two Lucas numbers, with a few exceptions that
we completely characterize.

1. INTRODUCTION
Let {Ly,}n>0 be the sequence of Lucas numbers given by Lo =2, L; =1 and
Ln+2 = Ln+1 + Ly

for all n > 0. This is sequence A000032 on the Online Encyclopedia of Integer Sequences
(OEIS). The first few terms of this sequence are

{Ln}n>0 = 2,1,3,4,7,11,18,29,47,76,123,199, 322, 521, 843, 1364, 2207, 3571, . . ..
1 5 1—+/5
Putting (o, 8) = +2f, 2\f for the roots of the characteristic equation r?> —r —1 =10
of the Lucas sequence, the Binet formula for its general terms is given by
L, =a"+ 5", forall n>0. (1.1)
Furthermore, we can prove by induction that the inequality

"l <L, <ot (1.2)

holds for all n > 0.
Let d > 2 be a positive integer which is not a perfect square. It is well known that the Pell
equation

22 —dy? = +1 (1.3)

has infinitely many positive integer solutions (z,y). By putting (x1, y1) for the smallest positive
solution, all solutions are of the form (xy,yx) for some positive integer k, where

TE + yk\/& = (acl + ylx/g)” for all k> 1. (1.4)
Furthermore, the sequence {zj},>1 is binary recurrent. In fact, the following formula

_ (z1 + 1V + (21 — 1 Vad)*
2 b

holds for all positive integers k.
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Recently, Kafle et al. [11] considered the Diophantine equation
T = FyFp, (1.5)

where {F,}m>0 is the sequence of Fibonacci numbers given by Fy = 0, F; = 1 and Fy,40 =
Fp+1 + Fy, for all m > 0. They proved that equation (1.5) has at most one solution n in
positive integers except for d = 2,3, 5, for which case equation (1.5) has the solutions 21 = 1
and xo = 3, x1 = 2 and a2 = 26, 1 = 2 and x2 = 9, respectively.

There are many other researchers who have studied related problems involving the in-
tersection sequence {x,},>1 with linear recurrence sequences of interest. For example, see
[4,7,8,9,12, 13, 14, 16, 17, 19].

2. MAIN RESULT

In this paper, we study a similar problem to that of Kafle et al. [11], but with the Lucas
numbers instead of the Fibonacci numbers. That is, we show that there is at most one value
of the positive integer z participating in (1.3) which is a product of two Lucas numbers, with
a few exceptions that we completely cahracterize. This can be interpreted as solving the
Diophantine equation

xp = Lp Ly, (2.1)
in nonnegative integers (k,n,m) with £ > 1 and 0 < m < n.

Theorem 2.1. For each square-free integer d > 2 there is at most one integer k such that the
equation (2.1) holds, except for d € {2,3,5,15,17,35} for which x1 =1, x9 = 3,23 = 7,29 =
1393 (ford=2), x1 =2, o =7 (ford=3), x1 =2, v =9 (ford=5), xv1 =4, x5 = 15124
(for d =15), x4 =4, xo =33 (for d =17) and x1 = 6, x3 = 846 (for d =35).

3. PRELIMINARY RESULTS

3.1. Notations and terminology from algebraic number theory. We begin by recalling
some basic notions from algebraic number theory.

Let n be an algebraic number of degree d with minimal primitive polynomial over the
integers

d
CL().’L'd + alxdfl + -+ aqg =agp H({L‘ — n(i)),
i=1

where the leading coefficient aq is positive and the 7’

logarithmic height of n is given by

d
h(n) := % (logao + Zlog (max{|77(i)], 1})) )

=1

s are the conjugates of n. Then the

In particular, if » = p/q is a rational number with ged(p,q) = 1 and ¢ > 0, then h(n) =
log max{|p|, q}. The following are some of the properties of the logarithmic height function
h(-), which will be used in the next sections of this paper without reference:

h(nt~) < h(n)+h(y)+log2,
Ayl < h(n) + h(y), (3.1)
h(n®) = Islh(n) (s €Z).
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3.2. Linear forms in logarithms. In order to prove our main result Theorem 2.1, we need
to use several times a Baker—type lower bound for a nonzero linear form in logarithms of
algebraic numbers. There are many such in the literature like that of Baker and Wiistholz
from [2]. We start by recalling the result of Bugeaud, Mignotte and Siksek ([5], Theorem 9.4,
pp. 989), which is a modified version of the result of Matveev [18], which is one of our main
tools in this paper.

Theorem 3.1. Let v1,...,7: be positive real numbers in a number field K C R of degree D,
bi,...,bs be nonzero integers, and assume that

Ai=apteaf =1, (3.2)
is nonzero. Then
log |A| > —1.4 x 30'3 x %% x D*(1 + log D)(1 +log B) A - - - Ay,
where
B > max{|b1],...,|b¢|},
and

A; > max{Dh(~;), |log~il|,0.16}, forall i=1,...,t.

When ¢t = 2 and 71, 72 are positive and multiplicatively independent, we can use a result
of Laurent, Mignotte and Nesterenko [15]. Namely, let in this case By, Bs be real numbers
larger than 1 such that

logvi| 1
log B; > max{h(’yi), | OEVZ|’D} ) for i=1,2,

and put

bl Il
" DlogBy DlogBy’

Put
I := by log 1 + ba log 7e. (3.3)

We note that T # 0 because 1 and 79 are multiplicatively independent. The following result
is Corollary 2 in [15].

Theorem 3.2. With the above notations, assuming that n1,me are positive and multiplicatively
independent, then

21 17
log |T| > —24.34D* (max {log b +0.14, o 2}) log By log Bs. (3.4)

Note that with I" given by (3.3), we have el —1 = A, where A is given by (3.2) in case t = 2,
which explains the connection between Theorem 3.1 and Theorem 3.2.

3.3. Reduction procedure. During the calculations, we get upper bounds on our variables
which are too large, thus we need to reduce them. To do so, we use some results from the
theory of continued fractions.

For the treatment of linear forms homogeneous in two integer variables, we use the well-
known classical result in the theory of Diophantine approximation.
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Lemma 3.3. Let 7 be an irrational number, Z—g, %, Z—;, ... be all the convergents of the con-
tinued fraction of T and M be a positive integer. Let N be a nonnegative integer such that

gn > M. Then putting a(M) := max{a; : i =0,1,2,..., N}, the inequality

1

3> wanee

holds for all pairs (r,s) of positive integers with 0 < s < M.

For a nonhomogeneous linear form in two integer variables, we use a slight variation of
a result due to Dujella and Pethé (see [10], Lemma 5a). For a real number X, we write
|| X|| :== min{|X — n|: n € Z} for the distance from X to the nearest integer.

Lemma 3.4. Let M be a positive integer, % be a convergent of the continued fraction of the
irrational number T such that ¢ > 6M, and A, B, u be some real numbers with A > 0 and
B > 1. Let further € := ||uq|| — M||7q||. If € > 0, then there is no solution to the inequality

0<|ur —v+pl < AB™Y,
in positive integers u,v and w with

log(Ag/e)

u< M and w> log B

At various occasions, we need to find a lower bound for linear forms in logarithms with
bounded integer coefficients in three and four variables. In this case we use the LLL algorithm
that we describe below. Let 71,7, ...7: € R and the linear form

171+ x9m2 + -+ 1y with x| < X (3.5)
We put X := max{X;}, C > (tX)! and consider the integer lattice { generated by
b;:=e;+ |Cr;] for 1<j<t—1 and b;:=|Crley,
where C' is a sufficiently large positive constant.

Lemma 3.5. Let X1, Xo,..., X; be positive integers such that X := max{X;} and C > (tX)
is a fized sufficiently large constant. With the above notation on the lattice ), we consider a
reduced base {b;} to ) and its associated Gram-Schmidt orthogonalization base {b;}. We set

t—1 t
b1 b _ 2 _ A
lg?gt Gl 0:= ot Q= ZEZI X7 and R:= {1+ ZEZI Xi| /2

C1 ‘= I
1

If the integers x; are such that |x;| < X;, for 1 <i <t and 6> > Q + R?, then we have

\/7}%

iTi| =

For the proof and further details, we refer the reader to the book of Cohen. (Proposition
2.3.20 in [6], pp. 5863).
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3.4. Pell equations and Dickson polynomials. Here we give some relations about Pell
equations and Dickson polynomials that will be useful in the next section of this paper.

Let d > 2 be a squarefree integer. We put § := x1+ /27 — € for the smallest positive integer
1 such that

xt —dyt =, e e {£1}
for some positive integer y;. Then,
2+ ypVd = 6F and z — ypeVd = 1", where ni=ed L.

From the above, we get

2z, = 6% + (ed 1)k for all k>1. (3.6)

There is a formula expressing 2x; in terms of 2z; by means of the Dickson polynomial
Dy(2z1,€), where
[%/2] .
k (k-1 ; ;
D — PRV k—21'
e =3 (e

These polynomials appear naturally in many number theory problems and results, for example
in a result of Bilu and Tichy [3] concerning polynomials f(X), g(X) € Z[X] such that the
Diophantine equation f(z) = g(y) has infinitely many integer solutions (z,y).

Example 3.6. (i) k=2. We have
L2 (2 ' .
2x9 = Zz; 5 < ; >(—e)l(2951)2_2Z = 4z? — 2, s0 x9 =21 —e

(ii) k =3. We have

1 )
3 3—1 . o
2rg = E T < ; )(—e)’(2x1)3 %= (221)3 — 3e(221), so w3 =4z} — 3ex;.
i=0
4. BOUNDING THE VARIABLES

We assume that (z1,y;) is the smallest positive solution of the Pell equation (1.3). As in
Subsection 3.4, we set
23 — dy? =: e, e € {£1},
and put
0 :=x1 + \/;iyl and n:i=x1 — \/gyl =ed L.
From (1.4), we get

1
Tk =g (5k + nk) . (4.1)
Since § > 14 /2 > o?/2, it follows that the estimate
5k 5k
— <ap < — holds forall k> 1. (4.2)
o o
We let (k,n,m) := (ki,n;,m;) for i = 1,2 be the solutions of (2.1). By (1.2) and (4.2), we get
5k 5k
Q"2 < L L, =2 < — and — <= LpLm < Qntmtd (4.3)
o o
so
1
keilogd —6 <n+m < keilogd+1  where ¢ := i . (4.4)
og o
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To fix ideas, we assume that
n>m and k1 < ko.
We also put
ms = min{my,ma}, myg:=max{mi,ma}, n3:=min{ni,ne}, nyg:=max{n,na}.

Using the inequality (4.4) together with the fact that § > 1+ v/2 = a®/2 (so, ¢1logd > 3/2),
gives us that

gkg < kocylogd < 2no + 6 < 2ny4 + 6,
SO
ki < ko < %m +4. (4.5)

Thus, it is enough to find an upper bound on n4. Substituting (1.1) and (4.1) in (2.1) we get

S5 1) = (" + B (™ + 5. (16)
This can be regrouped as

§F2taT T — 1= =27 Ifa T 4 (Ba )" 4 (BaT )™ + (B,

Since 8 = —a~!, n = 5! and using the fact that 6¥ > a"*t™~1 (by (4.3)), we get

1 1 1 1

ko—1_ —n—-m

072 a - 1‘ S 285k qntm + a2n + a2m + a2(n+m)
o 3 6

20.2(n+m) + a2m < a2m’
In the above, we have also used the facts that n > m and (1/2)a + 3 < 6. Hence,

6

ko—1 —n—
‘52 ™ 1| < (4.7)
We let Ay :=6*271a™"™ — 1. We put
Iy :=klogd —log2 — (n+m)loga. (4.8)
Note that e'* —1 = Ay. If m > 100, then —f= < 3. Since |e'" — 1] < 1/2, it follows that
12
r
By recalling that (k,n,m) = (k;,n;, m;) for i = 1,2, we get that
12
|kilogd —log2 — (n; + m;)logal < ~m; (4.10)

holds for both ¢ = 1,2 provided mg > 100.

We apply Theorem 3.1 on the left-hand side of (4.7). First, we need to check that A; # 0.
Well, if it were, then §¥a~"~™ = 2. However, this is impossible since 6*a """ is a unit while
2 is not. Thus, Ay # 0, and we can apply Theorem 3.1. We take the data

t:=3, m:=0, =2, y3:=a, b=k by:=-1, bg:=-n—m.
We take K := Q(+/d, ) which has degree D < 4 (it could be that d = 5 in which case
D = 2; otherwise, D = 4). Since § > 1 + /2 > a, the second inequality in (4.4) tells us that
k < n-+m, so we take B := 2n. We have h(y1) = h(5) = 1logd, h(v2) = h(2) = log2 and
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h(y3) = h(a) = %log a. Thus, we can take Ay := 2logd, Ay := 4log2 and A3 := 2log a. Now,
Theorem 3.1 tells us that

log |[A1] > —1.4x 300 x 3%5 x 4%2(1 4+ 1log4)(1 + log(2n))(2log §)(4log 2)(2log a)
> —2.92 x 103 1og §(1 + log(2n)).
By comparing the above inequality with (4.7), we get
2mloga —log 6 < 2.92 x 10"%log §(1 + log(2n)). (4.11)
Thus
m < 6.06 x 103 log 6(1 + log(2n)). (4.12)
Since, 6F < a™T™*6 we get that
klogd < (n+m+6)loga < (2n + 6) log a, (4.13)
which together with the estimate (4.12) gives
km < 5.84 x 101n(1 4 log(2n)). (4.14)
Let us record what we have proved, since this will be important later-on.
Lemma 4.1. If zp = L,L,, and n > m, then
m < 6.06 x 102 log 6(1 +log(2n)), km < 5.84 x 10"3n(1 +log(2n)), klogé < 4nloga.

Note that we did not assume that ms3 > 100 for Lemma 4.1 since we have worked with
the inequality (4.7) and not with (4.9). We now again assume that mg > 100. Then the two
inequalities (4.10) hold. We eliminate the term involving log é by multiplying the inequality
for i = 1 with ko and the one for ¢ = 2 with k;, subtract them and apply the triangle inequality
as follows

|(ko — k1)log2 — (ka(n1 + my) — k1(n2 + ma2)) log o
= |ka(k1logd — log2 — (ny + mq)loga) — k1 (kalogd —log2 — (ng + m2) log o)
< kg |k1logd —log2 — (n1 + mq)log a| + ki |kalog d — log2 — (ng + me) log o

12ky 12k 24 ko

< .
- a2m1 Oé2k2 a2m3

Thus,
24ko

a2m3 :

ITa| := [(ko2 — k1) log 2 — (k2(n1 + m1) — ki(na + me)) log a| < (4.15)

We are now set to apply Theorem 3.2 with the data
t:=2, v:=2, v:i=aq, by :=ko— k1, by:= kg(nl + ml) — k‘l(ng + mg).

The fact that 71 = 2 and 2 = « are multiplicatively independent follows because « is a unit
while 2 is not. We observe that ko — k1 < ko, whereas by the absolute value of the inequality
in (4.15), we have

log 2 24 ko
loga  a?m3log
because m3 > 10. We have that K := Q(«), which has D = 2. So we can take

| 1
log By = max{h(’yl), | 0g271|,2} =log?2,

|k2(n1+m1)—k1(n2+m2)| < (kg—kl) < 2ko,

MONTH YEAR 7
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and

1 1 1
log By = max{h(q/g), [ 1087, } ==

2 2 2’

Thus,
ko — k k —k k

_ |2 1| |k2(ni +ma) 1(ng + ma)| <yt 2 < 3ky.
2log By 2log By log 2

Now Theorem 3.2 tells us that with
Iy = (k‘g — k‘l) log2 — (]{72(711 + ml) — kl(ng + mz)) loga,

b/

we have
log |Ta| > —24.34 x 2* (max{log(3kz) + 0.14,10.5})% - (2log 2) - (1/2).
Thus,
log [Tz > —270 (max{log(3k2) + 0.14,10.5})2.
By comparing the above inequality with (4.15), we get
2mslog a — log(24ky) < 270 (max{log(3ks) 4 0.14,10.5}).
If ko < 10523, then log(3k2) + 0.14 < 10.5. Thus, the last inequality above gives
2mslog a < 270 x 10.5% 4+ log(24 x 10523),
giving m3 < 30942 in this case. Otherwise, ko > 10523, and we get
2malog a < 272(1 + log k2)? + log(24ks) < 280(1 + log k2)?,
which gives
my < 160(1 + log k2)?.
We record what we have proved

Lemma 4.2. If mg > 100, then either

(i) k2 < 10523 and ms < 30942 or
(ii) ko > 10523, in which case mz < 160(1 + log k2)?.

Now suppose that some m is fixed in (2.1), or at least we have some good upper bounds on
it. We rewrite (2.1) using (1.1) and (4.1) as

S0 1) = L™ + 8,

S0
1
2Ly, ta™m—1 = —fnkoz—" + (Ba™H",
m
Sincem >1, 8= —a"', n=ed" and 6¥ > a""" 1 we get
1 1 0" 1
k -1 _—n
o (2Lw) e 1| < SLndtar ot = qrmrm T o
a+1 6
w2 S e

where we have used the fact that n > m > 0 and o« + 1 < 6. Hence,

6

A = ]5'6 @Ln) 0™ = 1] < —. (4.16)
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We assume that n3z > 100. In particular, a% < % for n € {n1,n2}, so we get by the previous
argument that

12
T3] := |klogd —log(2L,,) — nlogal < o (4.17)

We are now set to apply Theorem 3.1 on the left-hand side of (4.16) with the data

t:=3, m:=90, Y2:=2Lp, v3:=a b=k, by:=-1, b3:=—n.
First, we need to check that Az := 6%(2L,,)'a™ — 1 # 0. If not, then 6 = 2L,,a™. The
left-hand side belongs to the field Q(\/ﬁ) but not rational while the right-hand side belongs to
the field Q(+/5). This is not possible unless d = 5. In this last case, d is a unit in Q(+/5) while
2L, is not a unit in Q(v/5) since the norm of this first element is 412, # +1. So, Az # 0.

Thus, we can apply Theorem 3.1. We have the field K := Q(v/d, v/5) which has degree D < 4.
We also have

h(12) = h(2Lm) = h(2) + h(Ly)
< log2+ (m+1)loga <2+ mloga
< 292 x 10%1log6(1 + log(2n)) by (4.12).
So, we take
1 1
h(y) = ilog 5, h(v2) =2.92 x 102 1logd(1 +log(2n)) and h(y3) = 510g .

Then,
Ay :=2logé, Ay:=1.18 x 10M1logd(1 +log(2n)) and Ajz:=2loga.
Then, by Theorem 3.1 we get
log|As] > —1.4x30°% x 3% x 4%2(1 + log 4)(1 + log n)(2log &)
x(1.18 x 10 1og §(1 + log(2n)))(2log a)
> —8.6 x 10%5(1 + log(2n))%(log 6)* log a.
Comparing the above inequality with (4.16), we get
2nloga —log6 < 8.6 x 10%°(1 + log(2n))*(log §)* log a,
which implies that
n < 4.3 x 10%°(1 4 log(2n))?(log ). (4.18)
We record what we have proved.

Lemma 4.3. If xp, = L, L,, with n > m > 1, then we have
n < 4.3 x 10%°(1 4 log(2n))?(log ).

Note that we did not use the assumption that mg > 100 of that ng > 100 for Lemma 4.3
since we worked with the inequality (4.16) not with the inequality (4.17). We now assume
that ng > 100 and in particular (4.17) holds for (k,n,m) = (k;,ni,m;) for both i = 1,2. By
the previous procedure, we also eliminate the term involving log d as follows

12ke 12k 24ko

|k2log (2L, ) — k11og(2Ly,,) — (koni — king) logal < T om < gans

(4.19)

We assume that a?" > 48ky. If we put
Ty := kolog(2Ly,) — k1log(2L,y,,) — (keny — king) log a,

MONTH YEAR 9
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we have that |['4] < 1/2. We then get that
48k,

‘A4‘ = ‘eF4 — 1’ < 2’F4‘ < o2 (4.20)
We apply Theorem 3.1 to
Ay = (2L )*2 (2L, ) 1o (e —kin2) g
First, we need to check that Ay # 0. Well, if it were, then it would follow that
Lk
—L = gk gRammkine, (4.21)
Ly,

We consider the following Lemma.

Lemma 4.4. The equation (4.21) has only many small positive integer solutions (ki,n;, m;)
for i ={1,2} with k1 < ko and m; < mg < 6. Futhermore, none of these solutions lead to a
valid solution to the original Diophantine equation (2.1).

Proof. We suppose that (4.21) holds and assume that gcd(ky, k2) = 1. Since af2m1—Fin2 ¢ Q,
it follows koni = kinsg. Thus, if one of the ny, ny is zero, so is the other. Since n; > m;
for i € {1,2}, it follows that ny = na = 0, m; = ma = 0, so xy, = T,, therefore k; = ka a
contradiction. Thus, n; and ng are both positive integers. Next Lﬁfl / Lf,%Q = 2k —k2 < 1. Thus,
Lﬁfl < Lf’le < Lfrfw 80 Ly, < Ly,. This implies that either (mj, ma) = (1,0) or m; < ma.
The case (m1,m2) = (1,0) gives 1/2% = 2k1=k2 Thus, ky = 2k; and since ged(ky, ko) = 1,
we get k1 = 1, ko = 2, so ng = 2n;1. But then z9 = x4, = Ly, Ly, = Lop, Lo = 2Ly, is
even, a contradiction since xo = 2z & 1 (by Example 3.6 (i)) is odd. Thus, m; < mg. If
mo > 6, the Carmichael Primitive Divisor Theorem for Lucas numbers shows that L,,, is
divisible by a prime p > 7 which does not divide L,,,. This is impossible since it contradicts
the assumption that (4.21) holds. Thus, ms < 6. Further since L2 /LK1 = 1/2k27F1 it follows

that L% | Lk2 | L¥1 'so Ly, | Lin,. So, there are three cases that we analyse:

Case 1. m; = 0, mg € {3,6}. If (my1,ma) = (0,3), then 2~2 /4k1 = 1/2ZFi—k2 — 1 joka=h1,
This gives 2ko = 3k; and since k; and ko are coprime, it follows that k1 = 2 and ko = 3.
Then z9 = zx, = Lyp, Ly, = Ly, Lo = 2Ly, is even, a contradiction since zg = 221 £ 1 is odd.
If (m1,m2) = (0,6), then 2¥2/18%1 = 1/2*2=%1 which is impossible since by looking at the
exponent of 3 we would get k1 = 0, a contradiction.

Case 2. m; = 2 and L,,, is a power of 2. The case ma = 0 has been treated so the
only other case left is mo = 3. In this case, 1/4" = 1/2F2=%1 giving ky = 3k;. Thus, since
ged(ki, ko) = 1, then ky = 1 and ko = 3. Since kani = king, we get ng = 3nj. Thus,
w1 = Ly, Ly = Ly, and 23 = L3y, L3 = 4L3,,. Now x3 = x1(42? £+ 3) (by Example 3.6 (ii))
and the second factor is odd, so the power of 2 dividing 4Ls,,, divides x; = L,,. But 4L3,, is
a multiple of 8 since Ls,, is even. Thus, 8 | L,,, which is false.

Case 3. m; = 2 and ma = 6. We get 3%2/(2.3%)" = 1/2k2=%1_ Looking at the exponent
of 3, we get ko = 2k; and loking at the exponent of 2 we also get ko = 2k, so k1 = 1 and
ko = 2. Also, ng = 2n;. Thus, 1 = Ly, Ly, = 3Ly, and x9 = Ly, Ly,, = 18Ls,, is even, a
contradiction with the fact that zo = 22?2 £+ 1 is odd. g

So, by Lemma 4.4 we have A4y # 0. Thus, we can now apply Theorem 3.1 with the data

t .= 3, Y1 = 2Lm1, Y2 = 2Lm2, Y3 = Q, b1 = ]{72,
b2 = —]{21, bg = —(k‘gnl — kan).
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We have K := Q(+v/5) which has degree D := 2. Also, using (4.5), we can take B := 4n2.
We can also take A; := 2(2 + mjloga) < 4mjloga, Ay := 2(2 + maloga) < 4mgyloga and
Az :=log . Theorem 3.1 gives that

log|As| > —1.4x30%x 3% x 22(1 4 log 2)(1 + log(4n3))(4m; log a)(4my log a) log a,
> —3.44 x 102myma(1 + log(2n4)).
By comparing this with the inequality (4.20), we get
2n3 log a — log(48ks) < 3.44 x 10 2mymy(1 + log(2n4)).

Since ko < 4ng and ng > 10, we get that log(48k2) < 2(1 + log(2n4)). Thus,
n3 < 3.58 x 102mymy(1 + log(2ny)). (4.22)

All this was done under the assumption that a?”3 > 48k,. But if that inequality fails, then
n3 < c1log(48ks) < 12(1 + log(2n4)),

which is much better than (4.22). Thus, (4.22) holds in all cases. Next, we record what we
have proved.

Lemma 4.5. Assuming that ng > 100, then we have
n3 < 3.58 x 10"2myma(1 + log(2n4)).

We now start finding effective bounds for our variables.
Case 1. my < 100.
Then m; < 100 and me < 100. By Lemma 4.5, we get that

n3 < 3.58 x 100(1 + log(2n4)).
By Lemma 4.1, we get
log§ < 4ngzloga < 6.89 x 10'9(1 + log(2n4)).
By the inequality (4.4), we have that
n ng+my — 1
kocy logé
1.72 x 10%7¢; (1 + log(2n4))*(log 6)®  (by (4.5) and Lemma 4.3)

ANVANRVAR VAN

(1.72 x 10%"(1 + log(2n4))?)(6.89 x 10'°(1 + log(2n4)))?

log
< 117 x 10 log(1 + log(2n4))°.
With the help of Mathematica, we get that ny < 4.6 x 10%%. Thus, using (4.5), we get
max{kg,n4} < 4.6 x 103,
We record what we have proved.
Lemma 4.6. If m4 := max{my, mo} < 100, then
max{kg, n4} < 4.6 x 10%.

Case 2. my > 100.
Note that either mg < 100 or m3 > 100 case in which by Lemma 4.2 and the inequality
(4.5), we have m3 < 160(1 + log(4n4))? provided that m, > 10000, which we now assume.
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We let i € {1,2} be such that m; = ms3 and j be such that {i,j} = {1,2}. We assume that
n3 > 100. We work with (4.17) for ¢ and (4.10) for j and noting the conditions n; > 100 and
m; = my > 100 are fullfilled. That is,

12

|kilog 8 +log(2Lm,) —nilogal < —,
12

[kjlogd —log2 — (n; +mj)logal < —-.

By a similar procedure as before, we eliminate the term involving log §. We multiply the first
inequality by k;, the second inequality by k;, subtract the resulting inequalities and apply the
triangle inequalty to get

12k, 12k;
|kjlog(2Lyy,,) — kilog2 — (kjn; — ki(nj +m;))loga| < a2m]¢ "
24ko

< (4.23)

o2min{n;,m;}’
Assume that a2™n{nimi}t 5 48k, We put
I's .= kj IOg(QLmZ) — kijlog2 — (kjnl — kl(nj + m])) log a.
We can write A := (2L, )% 2 Fiqkimi=ki(n;+m5)) _ 1 Under the above assumption and using
(4.23), we get that
48ko

o2min{n;,m;} "

We are now set to apply Theorem 3.1 on As. First, we need to check that Az # 0. Well, if
it were, then we would get that

L, = 25hs glbmiitny+m)), (4.25)

|As| = Je'® — 1] < 2|T'5] < (4.24)

We consider the following lemma.

Lemma 4.7. The equation (4.25) has only many small positive integer solutions
(ki, kj,mi,ng,mg,my) fori,j = {1,2} with ki < ka and m; < mo < 6. Futhermore, none of
these solutions lead to a valid solution to the original Diophantine equation (2.1).

Proof. Suppose that (4.25) holds and assume that ged(ky, ko) = 1. Since a/kini—ki(ni+m;)) ¢ Q,
then kjn; = k;j(n; + mj). Next Lfi{i = 2ki=ki Thus, k; > kj, s0i =2, j =1, ks > k; and
ma # 1. Since L,,, > 1 is a power of 2, it follows that mqs € {0,3}. Suppose mg = 0. Then
Lff,%Q =20 = 2F2=k1 g5 ky = 2k;. Hence, k1 = 1 and ky = 2. Further, ny = 2(ny + my).
Thus, zo = xg, = LpyLimy = 2L, 4m,) 1s even, which false because zo = 227 4+ 1 is odd.
Suppose next that me = 3. Then 451 = 2¥2=F1 Thus, ky = 3k, so k1 = 1 and ky = 3. Next,
ng = 3(n1 +my). Hence, x1 = xy, = Ly, Ly, and 23 = xp, = Lny Liny = 4L3(5, 4m,)- By the
previous argument in the proof of Lemma 4.4, 8 divides x3 = x1(42? + 1), so 8 | 1. Since
1 = Ly, Ly, and 8 t L,, for any n, it follows that L,, and L,,, are both even. Thus, 3 | nq,
3 | my. Further, one of L,,, L,,, is a multiple of 4, so one of nj, m; is odd. Suppose both
are odd. Then 4 | Ly, 4 | Ly, 50 16 | 1 | 3 | 4L3(,44m,)- This implies that 4 | L3y, 41m,),
which is false because 3(n; +my) is an even multiple of 3, and 2||Lg, for any m. Suppose now
that one of nj, m; is an even multiple of 3, and the other is odd. Then ordy(z;) = 3, where
orda(z) is the exponent at which 2 appears in the factorization of x. Hence,

3= Ordg(l‘g) = ord2(4L3(n1+m1)) =2+ OrdQ(L3(nl+ml)),
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giving orda(L3z(n,4m,;)) = 1, which is again false since 3(n; + m1) is an odd multiple 3, so a
number of the form 3 + 6m, and for such numbers we have 4||L3;¢,,. Hence, in all instances
we have gotten a contradiction. O

Thus, by Lemma 4.7 we have thatl As # 0. So, we can apply Theorem 3.1 with the data
t:=3, m:=2Ly, v:=2 y3:=a b =k,
by := —k;, b3 := —(kjni — ki(nj + m3>)

From the previous calculations, we know that K := Q(y/2) which has degree D = 2 and
Ay == 4m;loga, Ay :=2log?2 and Az := loga. We also take B := 4n?. By Theorem 3.1, we
get that

log|As| > —1.4x30%x 3%5 x 22(1 +log 2)(1 + log(4n?))(4m; log o) (2log 2) log v,
> —5.18 x 102m;(1 + log(2n4)).
Comparing the above inequality with (4.24), we get
2min{n;, m;}loga — log(48ks) < 5.12 x 10™2m;(1 + log(2n4)).
Since my4 > 100, we get using (4.5) ( k2 < 4ny) that,

min{n;,n;} < 5.38 x 10"2(160(1 + log(4n4))?)(1 + log(2n4)) + %1 log(192ny),

which implies that
min{n;, m;} < 1.72 x 10'°(1 + log(2n4))>. (4.26)

All this was under the assumptions that ns > 10000, and that o2™i{%mi} > 48k,. But, still
under the condition that ng > 10000, if a2™{"imi} < 48k, then we get an inequality for
min{n;,n;} which is even much better than (4.26). So, (4.26) holds provided that n4 > 10000.
Suppose say that min{n;, m;} = m;. Then we get that

mg < 160(1 + log(4ns))?,  myg < 1.72 x 10'°(1 + log(2n4))>.
By Lemma 4.5, since m3 > 100, we get

n3 < (3.58 x 10'%)(160(1 + log(4n4))?)(1 + log(2n4))
x1.72 x 10" (1 + log(2n4))?
< 1.98 x 10%°(1 + log(2n4))".

Together with Lemma 4.1, we get
log § < 3.80 x 10%°(1 4 log(2n4))®,
which together with Lemma 4.3 gives
ng < 4.30 x 10%5(1 + log(2n4))?(3.80 x 10%°(1 4 log(2n4))%)?,
which implies that
ng < 6.21 x 10%7(1 + log(2n4))'4. (4.27)

With the help of Mathematica we get that ns < 1.30 x 10'22. This was proved under the
assumption that ng > 10000, but the situation ngs < 10000 already provides a better bound
than ng < 1.30 x 10122, Hence,

max{kg,n1,n2} < 1.30 x 1022, (4.28)
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This was when m; = min{n;, m;}. Now we assume that n; = min{n;,m;}. Then we get
n; < 1.72 x 10"(1 + log(2n4))>.
By Lemma 4.1, we get that
log § < 3.31 x 10"(1 + log(2n4))>.
Now by Lemma 4.3 together with Lemma 4.1 to bound I4 give
ng < 4.30 x 10%°(1 + log(2n4)))?(3.31 x 10"(1 + log(2n4))?)?
< 4.72 x 10°7(1 + log(2n4)) .

This gives, ng < 2.44 x 1089 which is a better bound than 1.30 x 10?2, We record what we
have proved.

Lemma 4.8. If my := max{my, ma} > 100 and n3 := min{ny,ns} > 100, then

max{ko,n1,n2} < 1.30 x 1022,

It now remains the case when my > 100 and n3 < 100. But then, by Lemma 4.1, we get
logé < 192 and now Lemma 4.1 together with Lemma 4.3 give

ng < 1.56 x 10%1 (1 + log(2n4))?,

which implies that ns < 103 and further max{ki,ni,no}t < 10%°. We record what we have
proved.

Lemma 4.9. If my > 100 and ng < 100, then
max{k‘l, ni, ng} < 1040.

5. THE FINAL COMPUTATIONS

5.1. The first reduction. In this subsection we reduce the bounds for ki, mq, n1 and
ko, mo, ng to cases that can be computationally treated. For this we return to the inequalities
for I'y, I'y and I's.

We return to (4.15) and we set s := ko — k1 and r := ko(n1 +mq) — k1(n2 +ms2) and divide
both sides by slog a to get
24ko

a?msglog o’

log2 r

5.1
loga s (5.1)

We assume that 3 is so large that the right-hand side of the inequality in (5.1) is smaller than
1/(2s?). This certainly holds if

a®™3 > 48k3 [ log . (5.2)
Since ko < 1.3 x 1022, it follows that the last inequality (5.2) holds provided that ms > 589,
log 2

which we now assume. In this case r/s is a convergent of the continued fraction of 7 := los o
and s < 1.30 x 10'?2. We are now set to apply Lemma 3.3.

We write 7 := [ap; a1, az,as,...] = [1,2,3,1,2,3,2,4,2,1,2,11,2,1,11,1,1,134,2,2, .. ] for
the continued fraction of 7 and py/qy for the k—th convergent. We get that r/s = p;/q; for
some j < 237. Furthermore, putting a(M) := max{a; : j = 0,1,...,237}, we get a(M) := 880.
By Lemma 3.3, we get

1 1

= <
882s2  (a(M) +2)s? —

T ’ 24]6‘2
a?m3sloga’
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giving
882 x 24k3 - 882 x 24 x (1.30 x 10122)2
log log

2ms

)

leading to mas < 1190. We record what we have just proved.
Lemma 5.1. We have mg := min{my, mo} < 1190.

If my = mgs, then we have i = 1 and j = 2, otherwise mo = mg implying that we have ¢ = 2
and j = 1. In both cases, the next step is the application of Lemma 3.5 (LLL algorithm) for
(4.23), where n; < 1.30 x 1012 and |k;jn; — ki(n; +m;)| < 10116, For each m; € [1,1190] and

I's := kjlog(2Ly,) — kilog2 — (kjn; — ki(nj +m;))log o, (5.3)
we apply the LLL-algorithm on I's with the data
t:=3, 7 :=1log(2L,,), m:=log2, m3:=loga
xr1 = kj, x9 = —k;, x3:= k:jni — ki(nj + mj).
Further, we set X := 10''® as an upper bound to |z;| for i = 1,2,3, and C = (5X)°. A

computer search in Mathematica allows us to conclude, together with the inequality (4.23),
that

24k,

2 x 107480 < min IT5| < STy Pyp—
1<min{n;,m;}<1190 o2 min{n;,m;}

(5.4)

Thus, min{n;, m;} < 1419. We assume first that ¢ = 1, j = 2. Thus, n; < 1419 or m; =
min{n;,m;} < 1419.
Next, we suppose that m; = min{n;, m;} < 1419. Since m; := mg < 1190, we have
ms = min{my,ma} <1190 and my := max{mi, mao} < 1419.
Now, returning to the inequality (4.19) which involves
Iy := kolog(2Ly,, ) — k1log(2Ly,,) — (kani — king) log v, (5.5)

we use again the LLL algorithm to estimate the lower bound for |T'4| and thus, find a bound
for n; that is better than the one given in Lemma 4.8. We distinguish the cases mz < my4 and
m3 = Mmy.

5.1.1. The case ms < my. We take my := mg € [1,1190] and mgy := my € [ms + 1,1419] and
apply Lemma 3.5 with the data:

t:=3, 11 :=2Ly,, m:=2L,, 73:=Iloga,
I = kQ, T9 = —kl, o = k‘lng — k‘gnl.

We also put X := 106 and C := (20X)Y. After a computer search in Mathematica together
with the inequality (4.19), we can confirm that

2 x 107120 < min IT4| < 24koa™2"3,
1<m3<1190
m3+1<m4<1419

This leads to the inequality
o™ < 12 x 10120y,

Sustituting for the bound ks given in Lemma 4.8, we get that ny := ng < 2950.
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5.1.2. The case m3z = my. . In this case m; = my < 1419 and we have
Iy := (k2 — k1) log(2Ly,, ) — (kani — king) log o # 0.
This is similar to the case we have handled in the previous steps and yields the bound on ny
which is less than 2950. So in both cases we have n; < 2950. From the fact that
logd < k1logd < 4n;loga < 5678,
and by considering the inequality given in Lemma 4.3, we conclude that
ng < 1.4 x 10%*(1 + log(2n2))?,
which with the help of Mathematica yields ny < 1.12 x 103®. We summarise the first cycle of
our reductions.
max{ki,mi1} <n; <2950 and max{ks,ma} <mng < 1.12 X 1038, (5.6)

From (5.6), we note that the upper bound on ng represents a very good reduction of the bound
given in Lemma 4.8. Hence, we expect that if we restart our reduction cycle with the new
bound on ng, then we get better bounds on n; and na. Thus, we return to the inequality (5.1)
and take M :=1.12 x 1038. A computer seach in Mathematica reveals that

qs2 > M >ng >ky— ki and a(M) = max{ai:O §i§82} = a1 = 134,

from which it follows that m3 < 100. We now return to (5.3) and we put X := 1.12 x 10%°
and C := (20X)® and then apply the LLL algorithm in Lemma 3.5 to mg € [1,100]. After a
computer search in Mathematica, we get

1.04x 107 < min  |Ty| < 24kga~2min{nims}
1<m3<100
then min{n;, m;} < 410. By continuing under the assumption that m; := min{n;, m;} < 426,

we return to (5.5) and put X := 1.12 x 10%0, C := (20X)® and M := 1.12 x 1038 for the case
mg < my and the case mg = my. After a computer search, we confirm that

439%x 10718 <« min  |Ty| < 24koa 723, (5.7)
1<m3<100
m3+1<my4<426

This gives n1 < 494 which holds in both cases. Hence, by a similar procedure given in the
first cycle, we get that ny < 3 x 1036,
We record what we have proved.

Lemma 5.2. Let (k;j,n;,m;} be a solution to the Diophantine equation xy, = Ly, Lyy,,, with
0<m; <n; fori=1,2 and 1 < k1 < ko, then

max{ki,mi1} <n; <494 and max{ks,ma} <my <3 x 1036,

5.2. The final reduction. Returning back to (4.9) and (4.17) and using the fact that (z1,y1)
is the smallest positive solution to the Pell equation (1.3), we obtain

xrp = %(5]6 +n") = % <<$1 +y1\/g)k + (331 —yl\/@k)

1 (CRRTEERy I R B B

Thus, we return to the Diophantine equation zy, = Ly, L,,, and consider the equations
P (x1) = Ly Liny,  and P (21) = Ly Loy, (5.8)
with &y € [1,500], my € [0,500] and ny € [m; + 1,500].
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Besides the trivial case k; = 1, with the help of a computer search in Mathematica on the
above equations in (5.8), we list the only nontrivial solutions in Table 1 below. We also note

that

74+ 5V2 = (1+V2)>?,

so these solutions come from the same Pell equation with d = 2.

X
Qr (1) (1)

- ld ; ki 1w d )
L %1 N 2 1 1 2 1+2
2 2 1 3 2++/3

2 1 5 24+5
2 5 2 6 54 2v6

2 7 5 2 7+ 5v2
2 10 3 11 10 + 311

2 4 1 17 44+ /17
2 4 1 15 44++/15
5 6 1 by 6+ V35 2 260 1 677 26 + V677

2 179 1 32042 179 + /32042

TABLE 1. Solutions to Py (z1) = Ly, L,

From the above tables, we set each § := §; for t = 1,2,...10. We then work on the linear
forms in logarithms I'y and I's, in order to reduce the bound on ns given in Lemma 5.2. From
the inequality (4.10), for (k,n,m) := (ka, n2, ma), we write

log ¢ log 2 12 _9
k — m2 .
*log (nz +m2) + log(a—1) < log o “ ’ (59)
fort=1,2,...10.
We put
log 6+ log 2 12
= = —— d A B = .
Tt log o’ Mt log(a—1) and (A, Bt) loga’a

We note that 73 is transcendental by the Gelfond-Schneider’s Theorem and thus, 7; is irrational.
We can rewrite the above inequality, (5.9) as

0 < |kame — (n2 +ma) + | < AtB;2m2, for t=1,2,...,10. (5.10)

We take M := 3 x 103 which is the upper bound on n, according to Lemma 5.2 and apply
Lemma 3.4 to the inequality (5.10). As before, for each 7, with t = 1,2,...,10, we compute
its continued fraction [a(()t), agt), ag), ...] and its convergents p(()t) / q(()t)7 pgt) / q%t), pgt)/ qg) ,.... For
each case, by means of a computer search in Mathematica, we find and integer s; such that

gV >18x10%° =6M  and & = ||mg?|| — M||mg?| > 0.
We finally compute all the values of b, := Llog(Atqg? /€t)/log Bi]/2. The values of b; corre-

spond to the upper bounds on mg, for each t = 1,2,...,10, according to Lemma 3.4.
Note that we have a problem at §7 := 2 + /5. This is because

2
2+\/5:2<1+\/5> = 2a2.

2

So in this case we have I'y := (k2 — 1)log 2 — (ng + ma — 2k2) log . Thus,
12
(ko — 1)a?m2 log a

log2  no+ mo — 2k
log o ko — 1
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By a similar procedure given in Subsection 5.1 with M := 3 x 1036, we get that ¢;7 > M and
a(M) := max{a; : 0 <i < 77} = 134. From this we can conclude that mg < 96.
The results of the computation for each ¢ are recorded in Table 2 below.

t 5,5 St qs, E¢ > bt
1 2+43 68 2.07577 x 1057 0.319062 94
2 5+2V6 91 8.19593 x 1037 0.087591 97
3 104311 67 2.25831 x 10%® 0.316767 96
4 44415 70 2.78896 x 1037 0.329388 94
5 6++35 74 1.75745 x 10%%  0.409752 96
6 1++2 76 2.02409 x 10%7 0.263855 94
7 245 - = — 96
8 4417 78 4.76137 x 1037 0.131771 96
9 264677 65 3.17521 x 1037 0.356148 94
10 179 ++/32042 77 3.45317 x 1037 0.384127 94

TABLE 2. First reduction computation results

By replacing (k,n,m) := (ka,n2, mg) in the inequality (4.17), we can write

log d log(2L 12
k80 108(20ma) | a2, (5.11)
log log(a™1) log
fort=1,2,...,10.
We now put
log 0, log(2L,y,,) 12
= = - d (A, By) = —— .
Tt loga’ Ht,mo log(a—1) an (A, Bt) 10ga,04
With the above notations, we can rewrite (5.11) as
0 < |kame — ng + pemy| < AeB; "2, for t=1,2,...10. (5.12)

We again apply Lemma 3.4 to the above inequality (5.12), for
t=1,2,...,10, mo=1,2,...,b, with M :=3x10%,
We take
etz = ||| = Mg || > 0,
and
by = bimy = |1og(Aigt™) [ermy )/ log By /2.

The case 07 = 2 + /5 is again treated individually by a similar procedure as in the previous
step. With the help of Mathematica, we record the results of the computation in Table 3
below.

t 1 2 3 4 ) 6 7 8 9 10
€t,my > | 0.0145 0.0002 0.0006 0.0034 0.0106 0.0005 — 0.0009 0.0019 0.0010
bt me 97 103 102 99 99 100 102 100 99 100

TABLE 3. Final reduction computation results
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Therefore, max{bym, :t=1,2,...,10 and mo=1,2,...b;} < 103.

Thus, by Lemma 3.4, we have that no < 103, for all £ = 1,2,...,10. From the fact that
ok < ™16 we can conclude that k; < ko < 198. Collecting everything together, our
problem is reduced to search for the solutions for (2.1) in the following ranges

1§k71<k72§200, 0<mp <nj; <200 and 0 < mg < ng < 200.

After a computer search on the equation (2.1) on the above ranges, we obtained the following
solutions, which are the only solutions for the exceptional d cases we have stated in Theorem
2.1:

For the +1 case:

(d=3) r1=2=11Ly, xo=7T= L4lLn;
(d =15) x1 =4 = L3l = LoLg, x5=15124 = Lq1Lg;
(d = 35) x1=6=Lolgy, x3=846= LgLg.
For the —1 case:
(d=2) 21 =1=1L3Ls, x9=3=1Lsly, wx3=7=1L4L1, x9=1393 = Ly1Ly4;
(d=5) 1 =2=11Lyg, x3=9= LoLo;
(d=17) x1 =4 = L3y = LogLg, x3=33= LsLo.
This completes the proof of Theorem 2.1. O
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