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Abstract
Analyzing the sub-level sets of the distance to a compact sub-manifold of Rd is a

common method in topological data analysis, to understand its topology. Therefore,
topological inference procedures usually rely on a distance estimate based on n
sample points [41]. In the case where sample points are corrupted by noise, the
distance-to-measure function (DTM, [16]) is a surrogate for the distance-to-compact-
set function. In practice, computing the homology of its sub-level sets requires to
compute the homology of unions of n balls ([28, 14]), that might become intractable
whenever n is large.

To simultaneously face the two problems of a large number of points and
noise, we introduce the k-power-distance-to-measure function (k-PDTM). This new
approximation of the distance-to-measure may be thought of as a k-pointbased
approximation of the DTM. Its sublevel sets consist in unions of k balls, and this
distance is also proved robust to noise. We assess the quality of this approximation
for k possibly drastically smaller than n, and provide an algorithm to compute this
k-PDTM from a sample. Numerical experiments illustrate the good behavior of
this k-points approximation in a noisy topological inference framework.

1 Introduction
Let M ⊂ Rd be a compact set whose topology is to be inferred from an n-sample
Xn = {X1, X2, . . . , Xn} drawn on M . The pioneering work [37] has paved the way of
topological inference, showing that the Devroye-Wise estimator

⋃n
i=1B(Xi, r), the union

of closed Euclidean balls of radius r centered at sampled points, has the same homology
as M , provided that M is a compact submanifold and r is well-chosen according to n.
This result can be thought of as a particular instance of topological inference based on
distance estimation: if dM denotes the distance to M , then dM is inferred via dXn , the
distance to sample points. The method exposed in [37] then boils down to infer the
homology of the 0-sublevel set of dM , d−1

M ((−∞, 0]) from the homology of the r-sublevel
set of dXn . A general framework for geometric inference based on distance function
estimation can be found in [16]. In a nutshell, [16, Proposition 4.3] states that if d̂ is an
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estimator for dM and M is smooth enough, then, for some r > 0, the r-sublevel set of d̂
has the same homology as M provided that ‖dM − d̂‖∞ is small enough.

This distance estimation problem has been thoroughly investigated through the lens
of Hausdorff set estimation: indeed, if M̂ is a set estimator, d̂ = dM̂ , and dH denotes
the Hausdorff distance, then dH(M̂,M) = ‖d̂ − dM‖∞. Optimal rates of convergence
for ‖d̂ − dM‖∞, in terms of sample size n have been derived under various types of
regularity assumptions on M and noise conditions. In the noise-free case, optimal rates
for ‖d̂− dM‖∞ are given in [39] whenever M satisfies some convexity-type assumptions,
whereas [27, 29, 2, 1] provide optimal rates when M is a smooth compact manifold. Note
that, in the smooth manifold case with noisy observations, additional results on optimal
rates for Hausdorff estimation can be found in [27]. All of these bounds can be combined
with the aforementioned result [16, Proposition 4.3] to assess that the homology of M
may be retrieved from the sublevel sets of d̂, provided that n is large enough.

However, when the sample size n is large, computing the homology from an n-
pointbased distance estimator d̂ may be computationally intractable. For instance, in
the simplest case where d̂ = dXn , a standard way to compute the homology of a sublevel
set of dXn is to build a Rips complex based on Xn whose homology can be efficiently
computed [41]. The construction of such a simplicial complex requires the computation
of pairwise distances, that is n2 distances. To reduce this computational cost, a practical
solution is to extract a coreset Xk ⊂ Xn such that ‖dXk − dM‖∞ is small enough to
ensure topological correctness, then to compute a Rips complex based on Xk. In the
noise-free case, extracting such a coreset boils down to find an ε-covering of Xn, where ε
is the desired sup norm precision. Using a uniform grid shows that an ε-covering with
k(ε) . ε−

1
d points at most exists, and can be found in practice using farthest point

sampling algorithm for instance [24]. Such a coreset may also be used to compute more
involved estimates for dM , as in [33].

In noisy settings, with observations of the type Xi = Yi + Ni, Yi on M and Ni
denoting Gaussian noise, using a covering of sample points as base points for a coreset
can lead to arbitrarily poor estimation of dM . The goal of this paper is to nonetheless
provide a coreset in such noisy situations, that is to build an approximation of dM , based
on the computation of a distance to k points, that may be proved close enough to dM to
allow further geometric inference.

To be more precise, we will build our k-points distance approximation as an approxi-
mation of the distance-to-measure [16], that may be thought of as a robust surrogate for
dM . Namely, for a Borel probability measure P on Rd, a mass parameter h ∈ [0, 1] and
x ∈ Rd, the distance of x to the measure P (DTM), dP,h(x) is defined by

d2
P,h(x) = Px,h‖x− ·‖2,

where Px,h is the probability distribution defined as the restriction of the distribution P
to the ball centered at x, with P -mass h, and with the notation Qf for the expectation
of the function f with respect to the distribution Q. When P is uniform enough on M
and M is regular enough, this distance is proved to approximate well the distance to M
([16, Proposition 4.9]) and is robust to noise ([16, Theorem 3.5]).

The distance-to-measure is usually inferred from Xn via its empirical counterpart,
called empirical DTM, replacing P by the empirical distribution Pn = 1

n

∑n
i=1 δXi , where

δx is the Dirac mass on x. As noted in [28], the sublevel sets of empirical DTM are
union of around

(
n
q

)
balls, with q = hn, which makes their computation intractable in

practice. To bypass this issue, approximations of the empirical DTM have been proposed
in [28] (q-witnessed distance) and [14] (power distance). Up to our knowledge, these
are the only available approximations of the empirical DTM. The sublevel sets of these
two approximations are union of n balls. Thus, it makes the computation of topological
invariants more tractable for small data sets, from alpha-shapes for instance (see, e.g.,
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[22]). Nonetheless, when n is large, there is still a need for an optimal set of points
allowing to efficiently compute an approximation of the DTM, as pointed out in [38]. Up
to our knowledge, the only results on such a reduction are on the negative side, exposing
a lower bound on the number of points k(ε) that are needed to build an ε-approximation
of the empirical DTM [36].

The main contribution of this paper is the construction (Section 2.3), for a distribution
P and a mass parameter h, of a k-power distance dP,h,k of the form

dP,h,k(x) =
√

min
i∈[[1,k]]

‖x− τi‖2 + ω2
P,h(τi),

that we call k-power-distance-to-measure, k-PDTM for short. We will prove that this
k-points power distance is robust to noise (Proposition 17), and is a provably good
approximation of the distance-to-measure (Proposition 14). This will allow us to give
bounds on ‖dP,h,k − dM‖∞ (Proposition 18) that can be used for further topological
inference based on the sublevel sets of dP,h,k. We then prove that its empirical counterpart
dPn,h,k is an optimal approximation of dP,h,k from an n-sample (Theorem 19 and
Proposition 21). At last we provide a Lloyd’s type algorithm [32] to compute in practice
such a k-power distance based on n sample points (Section 3.3), and numerically illustrate
its good performance in a framework of topological inference (Section 4).

The paper is organized as follows. Section 2 introduces definitions, notations and
base results that are required for the construction of the k-PDTM. A proper definition
of dP,h,k is given in Section 2.3, along with some basic properties. Section 3 exposes the
main theoretical results of the paper, that consist in guarantees for the k-PDTM in a
topological inference framework (Section 3.1), optimality of the sample approximation of
the k-PDTM (Section 3.2), and an algorithm to compute it (Section 3.3). Numerical
illustrations are given in Section 4, and Section 5, 6 gather the derivations of the main
results. Proof of technical intermediate results as well as additional figures are deferred
to the Appendix.

2 Notations, definitions and first results
2.1 Notations for the distance-to-measure
Throughout the paper, observations will be elements of the Euclidean space (Rd, ‖ · ‖).
The ball centered at c with radius r is denoted by B(c, r) = {x ∈ Rd | ‖x− c‖ < r} and
its closure by B(c, r). The sphere is denoted by S(c, r) =

{
x ∈ Rd | ‖x− c‖ = r

}
. As

well, if A ⊂ Rd, A denotes the closure of A, A◦ its interior, ∂A = A\A◦ its boundary and
Ac = Rd\A its complementary set in Rd. For any positive integer k, [[1, k]] = {1, 2, . . . , k}.
For any set A, A(k) stands for {t = (t1, t2, . . . , tk) | ∀i ∈ [[1, k]], ti ∈ A}, where two
elements are identified whenever they are equal up to a permutation of the coordinates.
Following the quantization terminology, elements of (Rd)(k) are called codebooks and their
k elements codepoints. For any distribution P and any integrable function f , the integral
of f with respect to P is denoted by Pf or

∫
f(u)P (du). We also denote supx |f(x)| by

‖f‖∞.
We consider probability distributions P with support Supp(P ) ⊂ Rd. The family of

these distributions is denoted by P(Rd). The subset of distributions P in P(Rd) with
finite moment of order 2 (P‖ · ‖2 <∞) is denoted by P2(Rd). The distribution whose
support is to be inferred is an element of PK(Rd) =

{
P ∈ P(Rd) | Supp(P ) ⊂ B(0,K)

}
for K > 0. To infer Supp(P ), we use a modified version Q of P . This measure Q is
assumed to be sub-Gaussian with variance V 2 > 0. That is, Q is a distribution in P(Rd)
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such that

Q(B(0, t)c) ≤ exp
(
− t2

2V 2

)
for all t > V . The set of such measures is denoted by P(V )(Rd). Given Xn =
{X1, X2, . . . , Xn} an n-sample from P , we denote by Pn = 1

n

∑n
i=1 δXi the corresponding

empirical distribution.
For P ∈ P2(Rd) and h ∈ (0, 1], we use the notation Ph(P ) for the set of distributions

Ph = 1
hµ with µ a submeasure of P (i.e. such that µ(B) ≤ P (B) for every Borel

set B ⊂ Rd) satisfying µ(Rd) = h. The set of all of their expectations is defined by
M̃h(P ) = {m(Ph) | Ph ∈ Ph(P )}, with the notation m(Ph) =

∫
uPh(du) for the mean

of Ph, v(Ph) =
∫
‖u−m(Ph)‖2Ph(du) for its variance and M(Ph) = ‖m(Ph)‖2 + v(Ph)

for its order 2 moment.
Some distributions in Ph(P ) will be of special interest. Denote by δP,h(x) = inf{r >

0 | P (B(x, r)) > h} the smallest radius of a ball centered at x ∈ Rd of P -mass h. Then,
local distributions are defined as restrictions of P to these balls.

Definition 1.
Let P ∈ P(Rd). The set of local distributions at a point x, with mass parameter h ∈ (0, 1],
denoted by Px,h(P ) is the set of distributions Px,h defined by Px,h = 1

hµ, where µ satisfies:

1. µ is a submeasure of P with P -mass h: 1
hµ ∈ Ph(P ).

2. µ coincides with P on B(x, δP,h(x)).

3. Supp(µ) ⊂ B(x, δP,h(x)).

Note that when P (∂B(x, δP,h(x))) = 0, the set of distributions Px,h(P ) is reduced
to a singleton {Px,h} with Px,h(B) = 1

hP (B ∩ B(x, δP,h(x))), for any Borel set B.
Accordingly, we may define a local mean as the expectation of a local distribution,
m(Px,h) =

∫
uPx,h(du) associated to some x ∈ Rd and h ∈ (0, 1]. The set of local means of

P with parameter h ∈ (0, 1] is defined byMh(P ) =
{
m(Px,h) | x ∈ Rd, Px,h ∈ Px,h(P )

}
.

Example 2 (Uniform distribution on a circle). Let P denote the uniform distribution
on the unit sphere S(0, 1) ⊂ R

2. Then, for every x 6= 0, Px,h(P ) is the singleton
{Px,h}, Px,h being the uniform distribution on the arc centered at x

‖x‖ subtending an
angle 2πh. For x = 0, P0,h(P ) coincides with Ph(P ). As a consequence, for x 6= 0,
m(Px,h) = sinc(hπ) x

‖x‖ and v(Px,h) = 1− sinc(hπ)2 where sinc : x 7→ sin(x)
x is the sinus

cardinal function. For x = 0, the set {m(P0,h) | P0,h ∈ P0,h(P )} coincides with the ball
B (0, sinc(hπ)) and v(P0,h) ≥ 1− sinc(hπ)2 with equality if and only if P0,h = Px,h for
some x 6= 0. Note that for such an example, M̃h(P ) coincides with the set of local means
Mh(P ).

These notions of local distributions and local means are required to define the notion
of distance-to-measure.

2.2 Definition of the distance-to-measure (DTM)
In the framework of geometric inference, to face the non-robustness to noise of the
function distance to a compact set, the notion of distance-to-measure (DTM ) has been
introduced in [16]. The DTM dP,h is a function defined on Rd, associated with a
probability distribution P and depending on a mass parameter h ∈ [0, 1]. A definition of
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the DTM in terms of submeasures is given in [16, Proposition 3.3]. For every x ∈ Rd,
h ∈ (0, 1] and Px,h ∈ Px,h(P ),

d2
P,h(x) = inf

Ph∈Ph(P )
Ph‖x− ·‖2 = Px,h‖x− ·‖2. (1)

Whenever h is small, the DTM provably approximates well the distance to the support
of P [16, Corollary 4.8 and Proposition 4.9], when P is a uniform distribution on a
submanifold for instance.

If a small h allows to approximate the distance to the support of P , larger values
for h make the DTM robust to small variations of the distribution P , in terms of the
Wasserstein metric. Indeed, according to [16], if P and Q are two probability distributions
on the space (Rd, ‖ · ‖) with finite second moment, then

‖dP,h − dQ,h‖∞ ≤
1√
h
W2(P,Q). (2)

Let us recall that the Wasserstein metric Wp is defined, for p ≥ 1, by

W p
p (P,Q) = inf

π∈Π(P,Q)
E(X,Y )∼π [‖X − Y ‖p] , (3)

where Π(P,Q) denotes the set of distributions on Rd ×Rd of random vectors (X,Y )
such that X ∼ P (i.e. X is a random variable of distribution P ) and Y ∼ Q.

According to (1), the distance-to-measure can be written as a power distance, that is
the square root of a function fτ,ω : x 7→ infi∈I ‖x− τi‖2 + ωi

2 for some set I, a family
of centers τ = (τi)i∈I and weights ω = (ωi)i∈I . Special instances of power distances
are k-power distances, indexed on a finite set of cardinal |I| = k. Concerning the
distance-to-measure, for every P ∈ P2(Rd) and x ∈ Rd, we have

d2
P,h(x) = inf

Ph∈Ph(P )
‖x−m(Ph)‖2 + v(Ph), (4)

where the minimum is attained at any measure Ph = Px,h in Px,h(P ). In this case, the
centers m(Ph) are elements of M̃h(P ). Note that according to the second equality of
Equation (1), Ph(P ) can be replaced by

⋃
x∈Rd Px,h(P ) in (4), so that the centers are

actually elements ofMh(P ). The following example gives some intuition on why the
distance-to-measure can be a convenient tool for geometric inference in noisy settings,
compared to classical quantization-based approaches.
Example 3 (Uniform distribution on a circle with noise). Let Qβ = β US(0,1) + (1 −
β)UB(0,1) be a noisy version of P = US(0,1), the uniform distribution on the circle, for
some β ∈ (0, 1). According to [16, Theorem 3.5, Corollary 4.8], since W2(Qβ , P ) ≤
√

1− β, we have ‖dQβ ,h − dS(0,1)‖∞ ≤ Ch +
√

1−β
h for some C > 0. Thus, for h >

81(1− β) and 1− β small enough, [16, Theorem 4.6] ensures that the r-sublevel sets of
dQβ ,h are homotopy equivalent to S(0, 1), for a range of r’s.

Now let τ ∗ be a minimizer of the k-means criterion Qβ minj∈[[1,k]] ‖ · −τj‖2, in other
words, an optimal k-points codebook for Qβ. The following Lemma shed some light on
the approximation properties of the distance to τ ∗ function.
Lemma 4.
Let dτ∗ denote the distance to τ ∗ function. Then, for k large enough,

sup
x∈S(0,1)

|dτ∗(x)− dS(0,1)(x)| ≤ C
(

1
k2 + (1− β)

) 1
3

.

for some constant C > 0. On the other hand, for every ρ > 0, there exists kρ,β such that,
for all k ≥ kρ,β, τ ∗ has at least one codepoint in B(0, ρ).
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A direct consequence of Lemma 4 is

sup
k≥0
‖dS(0,1) − dτ∗‖∞ ≥ sup

k≥0
|dS(0,1)(0)− dτ∗(0)| = 1.

A proof of Lemma 4 is given in Section A.1 of the Appendix. The intuition behind
Lemma 4 is that though optimal codebooks designed via classical quantization can yield
provably good covering of topological structures such as manifolds, they are also likely
to have codepoints far from the structure in some noisy cases. In this case, geometric
inference based on the sublevel sets of dτ∗ might lead to poor results.

2.3 Definition of the k-PDTM
As illustrated above, in Example 3, the distance-to-measure may be thought of as a
robustified version of the distance-to-compact-set, designed for geometric inference in
noisy settings. According to (4), its sub-level sets are unions of balls centered at elements
of M̃h(P ). As noted in [28], in general, for empirical distributions based on n points
{X1, . . . , Xn}, this amount of balls is finite but may be large (of order

(
n
nh

)
, where h is

the mass parameter of the DTM). Approximations of the DTM consisting in reducing this
number of balls to the sample size n are exposed in [28, 14]. In this paper, we propose
to reduce this number of balls to some k ∈ N∗ possibly much smaller than the sample
size, resulting in an approximation of the distance-to-measure that we prove accurate
enough for further topological inference. This section is devoted to the introduction of
such an approximation, namely the k-PDTM.

The k-PDTM is an approximation of the DTM obtained after reducing the set of
submeasures Ph(P ) (or equivalently, the set of centers M̃h(P )) to a set of k well-chosen
submeasures (or k centers) in the definition of the DTM (4). As an answer to [38], such
a set of k centers may be considered as a coreset for the DTM. These k submeasures are
obtained by minimizing the following criterion R.

Definition 5.
For P ∈ P2(Rd) and P = (Pi)i∈[[1,k]] ∈ Ph(P )(k), we define R(P) by

R(P) = P min
i∈[[1,k]]

‖ · −m(Pi)‖2 + v(Pi).

The following Proposition 6 ensures that there exist optimal submeasures with respect
to the risk R.

Proposition 6.
If P ∈ P2(Rd), then the minimum of R is attained in Ph(P )(k). We denote by P∗ any
such minimizer.

The proof of Proposition 6 is to be found in Section 5.1. These optimal submeasures
allow us to define the k-PDTM as follows.

Definition 7.
The k-PDTM is any function dP,h,k : Rd 7→ R defined by

d2
P,h,k(x) = min

i∈[[1,k]]
‖x−m(P ∗i )‖2 + v(P ∗i ),

for some P∗ = (P ∗1 , . . . , P ∗k ) ∈ arg minP∈Ph(P )(k) R(P).

The k-PDTM is a k-power distance which graph lies above the graph of the DTM. It
is not necessarily uniquely defined, since several minimizers of R may exist. Its sublevel
sets are unions of k balls. Besides, the k centers of the k-PDTM yield a decomposition
of the space Rd into k cells, and consequently, a decomposition of P into k weighted
Voronoi measures.
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Definition 8.
A set of weighted Voronoi measures associated to a distribution P ∈ P2(Rd), k submea-
sures (Pi)i∈[[1,k]] ∈ Ph(P )(k) and h ∈ (0, 1] is a collection

{
P̃1,h, P̃2,h, . . . P̃k,h

}
of k ∈ N∗

non-negative submeasures of P such that
∑k
i=1 P̃i,h = P and

∀x ∈ Supp(P̃i,h), ‖x−m(Pi)‖2 + v(Pi) ≤ ‖x−m(Pj)‖2 + v(Pj), ∀j ∈ [[1, k]].

Note that a set of weighted Voronoi measures can always be assigned to any
P ∈ P2(Rd) and (Pi)i∈[[1,k]] ∈ Ph(P )(k). Indeed, Rd may be splitted into weighted
Voronoi cells associated to the centers (m(Pi))i∈[[1,k]] and weights (v(Pi))i∈[[1,k]] ([9,
Section 4.4.2]), with ties arbitrarily broken. The following key property of weighted
Voronoi measures implies that minimizers P∗ of the criterion R are actually elements of(⋃

t∈Rd Pt,h(P )
)(k). With a slight abuse of notation, for every t ∈ (Rd)(k), we denote

the quantity R(Pt1,h, . . . , Ptk,h) by R(t), where Pti,h ∈ Pti,h(P ).

Proposition 9.
Let P ∈ P2(Rd), and (Pi)i∈[[1,k]] ∈ Ph(P )(k). Then

R(m(P̃1,h), . . . ,m(P̃k,h)) ≤ R(P1, . . . , Pk),

with equality if and only if, for all i ∈ [[1, k]] such that P̃i,h(Rd) 6= 0, we have Pi ∈
Pm(P̃i,h),h(P ).

The proof of Proposition 9 is deferred to Section 5.2. This proposition provides
a natural and tractable procedure for computing local optima of the criterion R, cf.
Algorithm 1 in Section 3.3. Indeed, Proposition 9 shows that minimizing R over the
set of k submeasures boils down to minimize t 7→ R(t) over (Rd)(k). An alternative
definition of the k-PDTM in terms of local distributions may be stated accordingly.

Corollary 10.
The k-PDTM is any function dP,h,k : Rd 7→ R defined by

d2
P,h,k(x) = min

i∈[[1,k]]
‖x−m(Pt∗

i
,h)‖2 + v(Pt∗

i
,h)

for some t∗ = (t∗1, . . . , t∗k) ∈ arg mint∈(Rd)(k) R(t).

This definition of the k-PDTM in terms of local means and variances is very convenient
for the purpose of its computation, but the more general definition of the k-PDTM in
terms of submeasures (Definition 7) is also crucial. Indeed, from Definition 7 we may
also state an alternative parametrization of the k-PDTM by elements τ = m(Ph) of
M̃h(P ) that will allow for a geometric interpretation of the k-PDTM. The corresponding
variances v(Ph) will be obtained as images ωP,h(τ) of the function ωP,h defined for every
τ in Rd by

ω2
P,h(τ) = sup

x∈Rd
d2
P,h(x)− ‖x− τ‖2.

Lemma 11.
If P ∈ P2(Rd), then ωP,h(τ) < +∞ if and only if τ ∈ M̃h(P ). Moreover, if τ ∈ M̃h(P ),
then there exists Ph ∈ Ph(P ) such that τ = m(Ph) and ω2

P,h(τ) = v(Ph). More precisely,
ω2
P,h(τ) = infPh∈Ph(P ),m(Ph)=τ v(Ph).

The proof of Lemma 11 is deferred to Section 5.3. The natural reparametrization of
the criterion R with the set of centers follows.
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Theorem 12.
Let P ∈ P2(Rd). Then t∗ ∈ arg mint∈(Rd)(k) R(t) if and only if(

m(Pt∗1 ,h), . . . ,m(Pt∗
k
,h)
)
∈ arg min

τ∈(Rd)(k)
P min
i∈[[1,k]]

‖ · −τi‖2 + ω2
P,h(τi).

The proof of Theorem 12 is to be found in Section 5.4. Theorem 12 states that the
k-PDTM is a solution of a weighted k-meantype criterion. According to Lemma 11,
the regularization terms ωP,h(τi) force the optimal codebooks τ ∗ to be in M̃h(P )(k).
Intuitively, elements τ such that ωP,h(τ) is small will be favoured. Such τ ’s gather a
proportion h of the mass of P on their neighborhood. On the contrary, for elements
τ such that ωP,h(τ) is large, the corresponding weighted Voronoi measures will not be
massive, and the ball associated to such τ ’s will appear in the r-sublevel set of the
function x 7→ ‖ · −τ‖2 + ω2

P,h(τ) for large r’s only. A direct consequence of Theorem
12 is that the squared k-PDTM may be interpreted as the closest squared k-power
distance to the squared DTM from above, in terms of L1(P ) norm. This interpretation
comes from the straightforward inequality ‖x− τ‖2 + ω2

P,h(τ) ≥ d2
P,h(x). The resulting

inequality d2
P,h,k ≥ d2

P,h allows for further comparison with k-means approximation of
the distance-to-compact-set in noisy settings.

Example 13 (Noisy distribution on the circle). For the distribution Qβ = β US(0,1) +
(1− β)UB(0,1). If h > 1− β, since d2

Qβ ,h,k
(0) ≥ d2

Qβ ,h
(0), we have d2

Qβ ,h,k
(0) ≥ 1− 1−β

h .
As a consequence, infk≥0 d2

Qβ ,h,k
(0) ≥ 1 − 1−β

h , whereas infk≥0 d2
τ∗(0) = 0, where τ ∗

denotes an optimal k-points codebook.

The above example shows that we can expect the k-PDTM to approximate well the
distance-to-compact-set in remote areas, contrary to the distance based on k-means,
dτ∗ . To check whether the k-PDTM provides also an efficient covering of the targeted
structure is investigated in the following section.

3 Theoretical results for the k-PDTM
3.1 Geometric inference with the k-PDTM
Let M be a compact subset of Rd, and let fM (ε) denote the ε-covering number of M
(minimum number of balls of radius ε needed to cover M). Here we show that the
k-PDTM approximates the DTM, provided that the covering number of M and the
continuity modulus of the map x 7→ m(Px,h) are not too large. In what follows, Cl1,...,ls
and cl1,...,ls denote quantities depending on l1, . . . , ls only.

Proposition 14.
Let P ∈ PK(Rd) for K > 0 and let M ⊂ B(0,K) be such that P (M) = 1. Let fM (ε)
denote the ε-covering number of M . Then we have

0 ≤ Pd2
P,h,k − d2

P,h ≤ 2f−1
M (k)ζP,h(f−1

M (k)), with f−1
M (k) = inf {ε > 0 | fM (ε) ≤ k} ,

where ζP,h is the continuity modulus of x 7→ m(Px,h), that is

ζP,h(ε) = sup
x,y∈M,‖x−y‖≤ε

sup
Px,h∈Px,h(P ), Py,h∈Py,h(P )

{|m(Px,h)−m(Py,h)|} .

A proof of Proposition 14 is given in Section 6.2. Whenever P is roughly uniform on
its support, the quantities f−1

M (k) and ζP,h mostly depend on the dimension and radius
of M . We illustrate this point with two instances of particular interest for geometric
inference. First, the case where the distribution P has an ambient-dimensional support
is investigated.
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Corollary 15.
Assume that P has a density f satisfying 0 < fmin ≤ f ≤ fmax. Then

0 ≤ Pd2
P,h,k − d2

P,h ≤ Cfmax,K,d,hk−2/d.

The proof of Corollary 15 is given in Section 6.3. Note that no assumptions on the
geometric regularity of M are required for Corollary 15 to hold. In the case where M
has a lower-dimensional structure, more regularity is required, as for instance in the
following corollary.

Corollary 16.
Suppose that P is supported on N ⊂ B(0,K), a compact d′-dimensional C2-submanifold.
Assume that P has a density 0 < fmin ≤ f ≤ fmax with respect to the volume measure
on N . Moreover, suppose that P satisfies, for all x ∈ N and positive r,

P (B(x, r)) ≥ cfminrd
′
∧ 1. (5)

Then, for k ≥ cN,fmin and h ≤ CN,fmin , we have 0 ≤ Pd2
P,h,k−d2

P,h ≤ CN,fmin,fmaxk−2/d′ .

Note that (5), also known as (cfmin, d′)-standard assumption, is a usual assumption
in the set estimation framework (see, e.g., [18]). In the submanifold case, it may be
thought of as a condition preventing the boundary from being arbitrarily narrow. This
assumption is satisfied for instance in the case where ∂N is empty or is a C2 (d′ − 1)-
dimensional submanifold (see, e.g., [3, Corollary 1]). An important feature of Corollary
16 is that this approximation bound does not depend on the ambient dimension. The
proof of Corollary 16 may be found in Section 6.4. Next we assess that our k-PDTM
shares with the DTM the key property of robustness to noise.

Proposition 17.
Let P ∈ PK(Rd) for some K > 0 and Q ∈ P2(Rd). Let d2

Q,h,k denote a k-PDTM for Q.
Then, P

∣∣∣d2
Q,h,k − d2

P,h

∣∣∣ ≤ BP,Q,h,k, where
BP,Q,h,k = 3‖d2

Q,h − d2
P,h‖∞,B(0,K) + Pd2

P,h,k − d2
P,h + 4W1(P,Q) sup

s∈Rd
‖m(Ps,h)‖.

The proof of Proposition 17 can be found in Section 6.5. Note that Lemma 23
provides a bound on ‖m(Ps,h)‖ whenever P is sub-Gaussian. Moreover, [16, Theorem
3.5] ensures that ‖d2

Q,h − d2
P,h‖∞,B(0,K) can be bounded in terms of W2(P,Q), up to a

constant dependent on K. Note at last that bounds on Pd2
P,h,k − d2

P,h may be derived
using Proposition 14.

Proposition 17 can provide guarantees on Pd2
Q,h,k. In turn, provided that M is

regular enough, these bounds can be turned into L∞ bounds between dQ,h,k and dM .
Following [16, Section 4], these L∞ bounds can guarantee that the sublevels sets of the
k-PDTM are homotopy equivalent to M , under suitable assumptions.

Proposition 18.
Let M be a compact set in B(0,K) such that P (M) = 1. Moreover, assume that there
exists d′ such that, for every p ∈M and r ≥ 0,

P (B(p, r)) ≥ C(P )rd
′
∧ 1. (6)

Let Q be a Borel probability measure (thought of as a perturbation of P ), and let ∆2
P

denote Pd2
Q,h,k. Then, we have

‖dQ,h,k − dM‖∞ ≤ max
{
C(P )−

1
d′+2 ∆

2
d′+2
P , 2∆P , W2(P,Q)h− 1

2

}
,

where W2 denotes the Wasserstein distance.
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The proof of Proposition 18 can be found in Section 6.6. According to [16, Corollary
4.8], if P satisfies (6), then

‖dQ,h − dM‖∞ ≤
(

h

C(P )

) 1
d′

+W2(P,Q)h− 1
2 .

Hence, Proposition 18 ensures that the k-PDTM achieves roughly the same performance
as the distance-to-measure provided that d2

Q,h,k is small enough on the support M to
be inferred. As will be shown in the following section, this will be the case if Q is an
empirical measure drawn close to the targeted support.

3.2 Approximation of the k-PDTM from point clouds
In this section, P ∈ PK(Rd) is a distribution supported on a compact set M to
be inferred. We have at our disposal an n-sample Xn = {X1, X2, . . . , Xn} from a
modification Q ∈ P2(Rd) of P . An approximation of the k-PDTM dQ,h,k, is given by the
empirical k-PDTM dQn,h,k, where Qn =

∑n
i=1

1
nδXi is the empirical measure from Xn.

Note that when k = n, the empirical k-PDTM dQn,h,n coincides with the q-witnessed
distance [28], for q = nh. We investigate the quality of approximation of the DTM dP,h
with the empirical k-PDTM dQn,h,k, when Q is defined as the convolution of P with a
sub-Gaussian distribution with variance σ2. Within this context, according to Lemma
24, Q is sub-Gaussian with variance V 2 = (K + σ)2.

Theorem 19.
Let P be supported on M ⊂ B(0,K). Assume that we observe X1, . . . , Xn such that
Xi = Yi + Zi, where the Yi’s and Zi’s are all independent, Yi is sampled from P and Zi
is sub-Gaussian with variance σ2, with σ ≤ K. Let Qn denote the empirical distribution
associated with the Xi’s. Then, for any p > 0, with probability larger than 1− 10n−p, we
have ∣∣P (d2

Qn,h,k − d2
Q,h,k)

∣∣ ≤ C√kdK2((p+ 1) log(n)) 3
2

h
√
n

+ C
Kσ√
h
.

A proof of Theorem 19 is given in Section 6.7. The
√
kd/
√
n term is in line with the

rate of convergence for the k-means method (see, e.g., [8]), as well as with the rate of
convergence for ‖dPn,h− dP,h‖∞ exposed in [17]. The Kσ term is due to the expectation
with respect to P (instead of Q). Theorem 19, combined with Proposition 17, allows us to
choose k in order to minimize |Pd2

Qn,h,k
− d2

P,h|. Indeed, in the framework of Corollaries
15 and 16 where the support has intrinsic dimension d′, such a minimization boils down to
optimizing a quantity of the form C

√
kK2((p+1) log(n))

3
2

h
√
n

+ CP,hk
− 2
d′ . Choosing k ∼ n

d′
d′+4

achieves the desired tradeoff between bias and variance. From the point of view of
geometric inference, this leads to computing the distance to nd′/(d′+4) points rather than
n, which might save some time. Note that when d′ is large, smaller choices of k, though
suboptimal for our bounds, would nonetheless give the right topology for large n. In
some sense, Theorem 19 advocates only an upper bound on k, above which no increase
of precision can be expected. Combining Theorem 19 and Proposition 14 leads to the
following result.

Proposition 20.
With the same setting as Theorem 19, if M is a submanifold with intrinsic dimension
d′ ≥ 1, then:

|Pd2
Qn,h,k − d2

P,h| ≤ C
√
kd
K2((p+ 1) log(n)) 3

2

h
√
n

+ C
Kσ

h
+ CP,hk

− 2
d′ .
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Thus, choosing k ∼ n
d′
d′+4 leads to

|Pd2
Qn,h,k − d2

P,h| ≤ CP,h
√
dn
− 2
d′+4

K2((p+ 1) log(n)) 3
2

h
+ C

Kσ

h
.

The proof of Proposition 20 is to be found in Section 6.8. Noting that Pd2
P,h ≤ CPh

1
d′

in this case (see, e.g., [16, Proposition 4.9]), Proposition 20 can be combined with
Proposition 18 to yield a bound on ‖dQn,h,k − dM‖∞.

To assess optimality of Theorem 19 in terms of sample size dependency, a lower
bound on the best k-points approximation of the DTM that is achievable on the set of
distributions supported in B(0,K) may be derived from [7, Theorem 1] or [31, Proposition
3.1].

Proposition 21.
For t ∈ (Rd)(k) and P a probability measure, denote

d2
P,h,t : x 7→ min

j∈[[1,k]]

[
‖x−m(Ptj ,h)‖2 + v(Ptj ,h)

]
.

For k ≥ 3, n ≥ 3k
2 and h ≤ 1

2k , we have

inf
t̂

sup
P |Supp(P )⊂B(0,K)

EP (d2
P,h,t̂ − d2

P,h,k) ≥ c0
K2k

1
2−

2
d

√
n

, (7)

where c0 is a constant and t̂ denotes an empirically designed vector (t̂1, . . . , t̂k) in (Rd)(k).
Moreover, if n ≥ 14k, then

inf
t̂

sup
P |Supp(P )⊂B(0,K)

EP (d2
Pn,h,t̂

− d2
P,h,k) ≥ c0

K2k
1
2−

2
d

√
n

− 32K2ke−
n

72k2 . (8)

Thus, Proposition 21 confirms that the sample size dependency of Theorem 19 is
optimal in the noise-free case, up to log(n) factors. A proof is given in Section 6.9.

3.3 Algorithm
In this section we expose a Lloyd-type algorithm to compute a local minimizer for the
cost function associated with the empirical k-PDTM. For an n-sample Xn with empirical
distribution Qn, Proposition 9 suggests a procedure to minimize the empirical risk
t 7→ Rn(t) = Qn mini∈[[1,k]] ‖ · −m(Qn ti,h)‖2 + v(Qn ti,h). Indeed, given some codebook
t, replacing t with the means of the weighted Voronoi measures (Q̃n ti,h)i∈[[1,k]] can
only decrease the empirical risk Rn. For a sample Xn, this boils down to compute the
weighted Voronoi cells (C(ti))i∈[[1,k]] (i.e. the support of the measures (Q̃n ti,h)i∈[[1,k]]),
and to replace ti with the mean of the points of Xn in C(ti). We use the notation |C(t)|
for the cardinal number of C(t), m(t) for m(Qn t,h) and v(t) for v(Qn t,h). The procedure
is described in Algorithm 1.

Algorithm 1: Local minimum algorithm
Input :Xn an n-sample from Q, h and k ;
# Initialization
Sample t1, t2,. . . tk from Xn without replacement. ;
while the ti s vary make the f o l l ow i ng two s t ep s :

# Decomposition into weighted Voronoi cells.
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for j in 1 . . n :
Add Xj to the C(ti) (for i as small as possible) satisfying
‖Xj −m(ti)‖2 + v(ti) ≤ ‖Xj −m(tl)‖2 + v(tl)∀l 6= i ;

# Computation of the new centers.
for i in 1 . . k :
ti = 1

|C(ti)|
∑
X∈C(ti)X ;

Output : (t1, t2, . . . , tk)

Proposition 22.
Algorithm 1 converges to a local minimum of

Rn : t 7→ Qn min
i∈[[1,k]]

‖ · −m(Qn ti,h)‖2 + v(Qn ti,h).

This result is a direct consequence of Proposition 9. Therefore, Algorithm 1 provides
an approximation of the k-PDTM. Since the algorithm does not converge to the optimal
centers, we suggest running the algorithm several times and storing the best solution in
terms of the empirical cost Rn, as for k-means.

As mentioned above, Algorithm 9 may be thought of as a special instance of Lloyd’s
algorithm [32]. This algorithm consists in repeatedly decomposing the space Rd into
cells associated to the ti’s, and then replacing the ti’s by the means of P restricted to
the cells. This kind of algorithm provably outputs local minimizers of risks of the form
Rd : τ 7→ P mini∈[[1,k]] d(·, τi), for any Bregman divergence d (see, e.g., [6]). We recall
that a Bregman divergence is defined by d(x, y) = φ(x) − φ(y) − 〈∇φ(y), x − y〉, for
some convex function φ. Actually, Lloyd’s algorithm only works for Bregman divergences
[5], since they are the only functionals d such that c 7→ Pd(·, c) attains its minimum at
c = P ·, the expectation of P . This suggests that our criterion R may be expressed in
terms of some Bregman divergence.

For P ∈ P2(Rd), according to [16, Proposition 3.6], the function ψP,h : x 7→ ‖x‖2 −
d2
P,h(x) is convex, and its set of subgradients at x is given by ∆x,h = {2m(Px,h) | Px,h ∈
Px,h(P )}. A simple computation based on (1) shows that the Bregman divergence
associated with ψP,h is defined for every x, t ∈ Rd by

dψP,h(x, t) = ‖x−m(Pt,h)‖2 + v(Pt,h)− d2
P,h(x). (9)

Since d2
P,h(x) does not depend on t, our criterion R has the same minimizers as Rd for

the Bregman divergence d = dψP,h . Thus, Proposition 9 is a consequence of the fact that
ψP,h is a Bregman divergence.

4 Numerical illustrations
4.1 Topological inference from noisy pointclouds
Let M be a compact subset of Rd. Geometric and topological information about M
can be recovered from some r-sublevel sets of the function distance to M , dM (see, e.g.,
[16, Proposition 4.3]). To tackle the tough question of the selection of r, or simply to
track multiscale information, the concept of persistent homology has been introduced
in [23]. It consists in describing the evolution of the homology (number of connected
components, holes, etc.) of the sublevel sets of dM . Persistent homology can be encoded
via persistence diagrams. A persistence diagram is a multiset of points (b, d). Each point
(b, d) is associated to one topological feature (a connected component, a hole, a void,
etc.) that appears when r = b (its birth time) and disappears when r = d (its death
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time). As well, if ‖d̂− dM‖∞ is small enough, then the persistence diagrams associated
with d̂ and dM will be provably close [19], that is the lifetimes d− b of the topological
features will be similar. To assess the relevancy of our approach in a noisy topological
inference setting, we will compute the persistence diagrams associated with the empirical
k-PDTM, and compare it with the outputs of other methods.

Following [28], we choose for M the infinity symbol embedded in R2. The persistence
diagram associated to dM is depicted in Figure 2 (right). This diagram contains one red
point (0,∞), that corresponds to the connected component (0-dimensional topological
feature), and two green points that correspond to the two holes (1-dimensional topological
features). We generated a sample of 200 points, uniformly on the infinity symbol, with
an additional additive Gaussian noise, with standard deviation σ = 0.02. This sample
is corrupted by 80 outliers – 40 points generated according to the uniform distribution
on the rectangle [−2, 5]× [−2, 2] and 40 points on the rectangle [−4, 7]× [−4, 4]. This
results in a corrupted sample Xn of 280 points.

We compared three methods to recover relevant features of M from Xn. Each
method boils down to build an approximation f of dM . These functions are of the
type f : x 7→

√
mini∈I ‖x− τi‖2 + ω2

i , for some finite set I, centers τi ∈ Rd and weights
ωi ≥ 0. The first function we consider is derived from the k-means algorithm [34] (|I| = k,
centers τi are given by the optima of the k-means criterion and ωi = 0), the second is
the q-witnessed distance [28] (|I| = n = 280, it coincides with the k-PDTM for k = n,
with mass parameter h = q/n) and the third one is the k-PDTM (|I| = k, with mass
parameter h = q/n).

These methods depend on two parameters q and k. Providing a method to calibrate
q and k in general is beyond the scope of the paper. Here, we choose q = 10 and k = 50.
Roughly, q is chosen small enough so that the distance to the q-th nearest neighbor
remains small compared to the curvature ofM but large enough to deal with noise, and k
is chosen large enough so that a uniform grid with k points has grid size small compared
to the curvature of M . More details on this heuristic can be found in the Appendix.

k-means q-witnessed distance k-PDTM

Figure 1: Comparison of the basic methods

We implemented the three methods with the R software. We used the R function
kmeans for the first method, and the FNN R library to compute the nearest neighbors for
the two other methods. In Figure 1 we plotted the points of Xn. Points are represented
with the same color when they lie in the same weighted Voronoi cell (for the centers τi
and weights ω2

i ). Centers τi are represented by triangles and colored in function of the

13



weights ω2
i (black centers correspond to ω2

i = 0). The second row of Figure 1 depicts the
corresponding persistence diagrams, for the three methods. They were obtained using the
function weighted_alpha_complex_3d_persistence in the Gudhi C++ library, based
on alpha-shapes [22]. We observe on Figure 1 that the three main features of the symbol
infinity (one connected component, two holes) are recovered for the k-PDTM and the
q-witnessed distance, but not for k-means. As exposed in Lemma 4, this is due to the
"void-filling" drawback of k-means.

4.2 Outliers detection
Another possible interest of the proposed method is outlier detection, based on the
following principle: if an observation Xi is such that dM (Xi) is large, then it can be
considered as an outlier. Replacing dM with an approximation gives the intuition of our
denoising scheme.

Such a procedure need as an input a level α, that is the proportion of points that
will be considered as signal points. Note that there exist heuristics to empirically design
such an α (see, e.g., [13]). A level α being given, a straightforward approach consists in
removing the n(1− α) points that corresponds to the largest values of d̂, for an estimate
d̂ of dM . In the following, we refer to this method as truncation, resulting in truncated
k-means, truncated q-witnessed and truncated k-PDTM.

However, it is possible to combine compression and denoising, by looking simultane-
ously for a subset of nα points (trimming set) and a set of k points that approximates
the best the trimming set. For a non-negative function d, this corresponds to the
minimization of the criterion τ 7→ infPα∈Pα(P ) Pα mini∈[[1,k]] d(., τi). Whenever d is a
Bregman divergence, minimizers of such a criterion may be obtained via a Lloyd-type
algorithm (see, e.g., [13]). Fortunately, since the k-means distance and the k-PDTM may
be expressed via Bregman divergences, namely the squared Euclidean norm and (9), the
procedure exposed in [13] applies. The outputs of the aforementioned procedure will
be called trimmed k-means ([20]) and trimmed k-PDTM. We experiment each of these
methods for the dataset of the previous section (200 signal points around the infinity
symbol, 80 ambient noise points). We choose α = 200, q = 10 and k = 50. Figure 2
depicts, for the trimmed versions of the algorithms, the resulting partition signal/outliers
along with the k centers and weights (shade of triangles) in the first row. The second row
exposes the corresponding persistence diagrams. Similar illustrations for the truncated
algorithms may be found in the Appendix.

As depicted by Figure 2, the trimmed k-PDTM globally succeeds in identifying noise
points and providing a relevant geometric approximation of the signal, whereas trimmed
k-means still adds one spurious 1-dimensional topological feature. To be more precise on
the topological performances of the aforementioned methods, we repeated the experiment
100 times. At each time, we computed the lifetimes of the topological features and
sorted them in decreasing order. Figure 3 below exposes the means of these lifetimes.
We see that k-meanbased methods add spurious holes (corresponding to the three last
1-dimensional features), and add many spurious connected components. Note that the
first 0-dimensional feature, corresponding to the infinite connected component, has been
removed in Figure 3. On the whole, our method compares well with q-witnessed-based
methods.

The diagram on the right of Figure 3 depicts the mean amount of False positive
over the 100 repetitions, that is the number of signal points that are labeled as outliers
by the algorithm. We also include comparison with other trimming approaches for
outlier detection, such as tclust [26] (tclust function in trimcluster R library) and
the truncated version of k-median [15] (kGmedian function of the Gmedian R library).
Again, our method compares well with q-witnessed-based denoising, contrary to the other
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Trimmed k-means Trimmed k-PDTM True compact set

Figure 2: Comparison of the trimmed versions of the methods

Holes Connected components False positive number

Figure 3: Features lifetimes and False positive number

Euclidean-based methods.

5 Proofs for Section 2
5.1 Proof of Proposition 6
It suffices to prove that Ph(P ) is a compact set (for the weak convergence metric) and
that R is continuous (i.e. that Ph 7→ m(Ph) and Ph 7→M(Ph) are continuous on Ph(P )).

The set hPh(P ) is tight. Prokhorov’s Theorem entails that, for any sequence
(µn/h)n∈N in Ph(P ), up to a subsequence, there exists µ a Borel positive measure
on Rd such that µn converges weakly to µ. The dominated convergence Lemma ap-
plied to the functions 1Rd and 1O, for an open set O, ensures that µ(Rd) = h and
µ(O) ≤ P (O), proving that µ ∈ hPh(P ). Then, [4, p.438] yields that µ and P are regular
measures. Thus, µ is a submeasure of P of mass h, and Ph(P ) is compact.

We will now prove that the maps Ph 7→ m(Ph) and Ph 7→ M(Ph) are continuous
on Ph(P ). For M > 0 and u ∈ Rd, denote by u ∧M the vector (u1 ∧M, . . . , ud ∧M),
where ui ∧M denotes min(ui,M). Consider (Ph,n)n∈N a sequence in Ph(P ) converging
to some distribution Ph. Then there exists Mε > 0 such that for every P ′h ∈ Ph(P ),
‖P ′h(· ∧Mε)− P ′h·‖ ≤ P (‖ · ‖1‖·‖∞>Mε

)/h ≤ ε. On the other hand, since · 7→ · ∧Mε is
bounded and continuous, ‖Ph,n(· ∧Mε)− Ph(· ∧Mε)‖ converges to 0. This proves the
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continuity of Ph 7→ m(Ph). We also have that Ph,n‖ · ‖2 ∧M → Ph‖ · ‖2 ∧M . Since
for every P ′h ∈ Ph(P ),

∣∣P ′h(‖ · ‖2 ∧M − ‖ · ‖2)
∣∣ ≤ (P‖ · ‖21‖·‖2>M )/h and P has a finite

second order moment, we deduce as well that M(Ph,n)→M(Ph).

5.2 Proof of Proposition 9
For short, we use the notation mi = m(P̃i,h), vi = v(P̃i,h) and Q(du)f(u) for the
expectation of f with respect to the Borel measure Q. Then, a biavariance decomposition
yields

R(P1, . . . , Pk) = P (du) min
i∈[[1,k]]

Pi(dz)‖u− z‖2 =
k∑
i=1

P̃i,h(du)Pi(dz)‖u− z‖2

=
k∑
i=1

P̃i,h(Rd)Pi(dz)
(
‖z −mi‖2 + vi

)
≥

k∑
i=1

P̃i,h(Rd)Pmi,h(dz)
(
‖z −mi‖2 + vi

)
=

k∑
i=1

P̃i,h(du)Pmi,h(dz)‖z − u‖2,

where Pmi,h ∈ Pmi,h(P ), and equality holds if and only if Pi ∈ Pmi,h(P ). Thus, denoting
by
(
P̃mi,h

)
i∈[[1,k]] the set of weighted Voronoi measures associated to the measures

(Pmi,h)i∈[[1,k]], we have

R(P1, . . . , Pk) ≥
k∑
i=1

P̃mi,h(du)Pmi,h(dz)‖z − u‖2

=
k∑
i=1

P̃mi,h(du)
(
‖m(Pmi,h)− u‖2 + v(Pmi,h)

)
= R(Pm1,h, . . . , Pmk,h).

5.3 Proof of Lemma 11
Let g(x, Ph) = M(Ph) − ‖τ‖2 + 2 〈x, τ −m(Ph)〉. Then (4) entails that ω2

P,h(τ) =
supx∈Rd infPh∈Ph(P ) g(x, Ph). According to Section 5.1, Ph(P ) is a compact set, and
Ph 7→ m(Ph) as well as Ph 7→ M(Ph) are continuous. So, for every x ∈ Rd, g(x, ·) is
continuous, and linear. On the other hand, for every Ph in Ph(P ), g(·, Ph) is linear and
continuous. Sion’s theorem [30] yields that

ω2
P,h(τ) = min

Ph∈Ph(P )
sup
x∈Rd

M(Ph)− ‖τ‖2 + 2 〈x, τ −m(Ph)〉 . (10)

Therefore, ω2
P,h(τ) <∞ is equivalent to τ ∈ M̃h(P ). Now let τ be in M̃h(P ). According

to (10), we have

ω2
P,h(τ) = inf

Ph∈Ph(P ),m(Ph)=τ
M(Ph)− ‖τ‖2 = inf

Ph∈Ph(P ),m(Ph)=τ
v(Ph).

Since Ph 7→ v(Ph) is continuous on Ph(P ) and Ph(P ) ∩ m−1({τ}) is compact, there
exists Ph such that m(Ph) = τ and ω2

P,h(τ) = v(Ph).

16



5.4 Proof of Theorem 12
Let R̃ denote τ 7→ P minj∈[[1,k]] ‖·−τj‖2 +ω2

P,h(τj), for τ ∈ (Rd)(k). According to Lemma
11, τ ∗ is a minimizer of R̃ if and only if τ∗i = m(P ∗i ) and ω2

P,h(τ∗i ) = v(P ∗i ) for (P ∗1 , . . . , P ∗k )
minimizing R. According to Proposition 9, for such a τ ∗, with the notation mi = m(P̃ ∗i,h),
we have P ∗i ∈ Pmi,h(P ). Hence, τ∗i = m(Pmi,h) and ω2

P,h(τ∗i ) = v(Pmi,h), for some
Pmi,h ∈ Pmi,h(P ), and t∗ = (m1, . . . ,mk) is an R-minimizer. Conversely, Proposition
9 ensures that if t∗ is an R-minimizer, then τ ∗ = (τ∗i )i∈[[1,k]], with τ∗i = m(Pt∗

i
,h), is a

R̃-minimizer.

6 Proofs for Section 3
6.1 Intermediate results
The proofs of the Section 3 results will make intensive use of the following Lemmas,
whose proofs are postponed to the Appendix. We first mention some known results
about sub-Gaussian distributions.

Lemma 23.
Let Q ∈ P(V )(Rd), a sub-Gaussian measure with variance V 2 > 0, and Qh ∈ Ph(Q).
Then we have

Qh‖ · ‖2 ≤
3V 2

h
.

The proof of Lemma 23 is given in Section A.2 of the Appendix. Next, Lemma 24
below ensures that the distributions involved in Theorem 19 are sub-Gaussian.

Lemma 24.
If Y is a random variable sampled from a distribution P in PK(Rd) and Z is independent
from Y and sampled from a distribution Q′ in P(σ)(Rd) for some σ > 0. Then, the
distribution Q of the random variable X = Y + Z is sub-Gaussian with variance V 2 =
(K + σ)2, that is in P(K+σ)(Rd).

Moreover,
W1(P,Q) ≤ 3σ and W2(P,Q) ≤

√
3σ.

A proof of Lemma 24 can be found in Section A.3, Appendix. In what follows, we let
γ and γ̂ denote the functions

γ(t, x) = mini∈[[1,k]]−2〈x,m(Qti,h)〉+ ‖m(Qti,h)‖2 + v(Qti,h),
γ̂(t, x) = mini∈[[1,k]]−2〈x,m(Qn ti,h)〉+ ‖m(Qn ti,h)‖2 + v(Qn ti,h), (11)

for (t, x) ∈ (Rd)(k) × Rd with t = (t1, t2, . . . , tk). We will use two deviation bounds,
stated below.

Lemma 25.
If Q is sub-Gaussian with variance V 2, then, for every p > 0, with probability larger than
1− n−p, we have

sup
t∈(Rd)(k)

|(Q−Qn)γ(t, ·)| ≤ CV
2
√
kd(1 + p) 3

2 log(n) 3
2

h
√
n

,

for some absolute positive constant C.

The proof of Lemma 25 is deferred to Section B.5 of the Appendix.
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Lemma 26.
Assume that Q is sub-Gaussian with variance V 2, then, for every p > 0, with probability
larger than 1− 9n−p, we have

sup
t∈Rd

‖m(Qt,h)−m(Qn t,h)‖ ≤ CV
√
d(p+ 1) log(n)
h
√
n

,

sup
t∈(Rd)(k)

|Qn(γ − γ̂)(t, ·)| ≤ CV 2
√
d(p+ 1) 3

2 log(n) 3
2

h
√
n

.

As well, the proof of Lemma 26 is deferred to Section B.4 in the Appendix.

6.2 Proof of Proposition 14
The first inequality comes from (4). We now focus on the second bound. By defini-
tion of dP,h,k, for all t = (t1, t2, . . . , tk) ∈ (Rd)(k) we have Pd2

P,h,k ≤ P mini∈[[1,k]] ‖ ·
−m(Pti,h)‖2 + v(Pti,h). Thus,

P (d2
P,h,k − d2

P,h) ≤ P
(

min
i∈[[1,k]]

‖ · −m(Pti,h)‖2 + v(Pti,h)− d2
P,h

)
= P

(
min
i∈[[1,k]]

(d2
P,h(ti)− ‖ti‖2)− (d2

P,h − ‖ · ‖2) + 〈· − ti,−2m(Pti,h)〉
)
,

according to (1). Now [16, Corollary 3.7] ensures that, for x, y in Rd,

‖y‖2 − d2
P,h(y)− (‖x‖2 − d2

P,h(x)) ≥ 2 〈m(Px,h), y − x〉 . (12)

We deduce that

P (d2
P,h,k − d2

P,h) ≤ P min
i∈[[1,k]]

2〈· − ti,m(P·,h)−m(Pti,h)〉

≤ 2P min
i∈[[1,k]]

‖ · −ti‖‖m(P·,h)−m(Pti,h)‖.

Now choose t1, . . . , tk such that M ⊂
⋃
i∈[[1,k]] B(ti, f−1

M (k)). The result follows.

6.3 Proof of Corollary 15
The proof of Corollary 15 is based on the following bounds, in the case where P is
absolutely continuous with respect to the Lebesgue measure, with density f satisfying
0 < fmin ≤ f ≤ fmax.

f−1
M (k) ≤ 2K

√
dk−1/d, (13)

ζP,h(f−1
M (k)) ≤ Cfmax,K,d,hk−1/d. (14)

First, note that since M ⊂ B(0,K), for any ε > 0, fM (ε) ≤ fB(0,K)(ε) ≤
(

2K
√
d

ε

)d
,

hence (13). To prove the second inequality, we have to give a bound on the modulus of
continuity ζP,h. Let x, y be in M , and denote by δ = ‖x − y‖. Since P has a density,
P∂B(x, δP,h(x)) = P∂B(y, δP,h(y)) = 0. We deduce that Px,h = 1

hP|B(x,δP,h(x)) and
Py,h = 1

hP|B(y,δP,h(y)). Without loss of generality, assume that δP,h(x) ≥ δP,h(y). Then
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B(y, δP,h(y)) ⊂ B(x, δP,h(x) + δ). We may bound ‖m(Px,h)−m(Py,h)‖ by

1
h

∥∥P · (1B(x,δP,h(x)) − 1B(y,δP,h(y))
)∥∥ ≤ K

h
P
∣∣1B(x,δP,h(x)) − 1B(y,δP,h(y))

∣∣
= 2K

h
P (B(y, δP,h(y))\ (B(x, δP,h(x)) ∩ B(y, δP,h(y))))

≤ 2K
h
P (B(x, δP,h(x) + δ) ∩ B(x, δP,h(x))c)

= 2K
h
ωd
[
(δP,h(x) + δ)d − δP,h(x)d

]
≤ 2K

d+1ωd
h

[(
1 + δ

δP,h(x)

)d
− 1
]
,

where ωd denotes the Lebesgue volume of the ball B(0, 1) in Rd. Since (1 + v)d ≤

1 + d(1 + v)d−1v, for v ≥ 0, and δP,h(x) ≥
(

h
fmaxωd

)1/d
, we have ζP,h(δ) ≤ Cfmax,K,d,hδ,

hence (14). The result of Corollary 15 follows.

6.4 Proof of Corollary 16
Since N is a C2-submanifold, its reach ρ (as defined in [25, Definition 4.1]) is positive.
Without loss of generality we assume that N is connected. Since P has a density with
respect to the volume measure on N , we have P (N◦) = 1. Thus we take M = N◦, that
is the set of interior points. Since P satisfies a (cfmin, d′)-standard assumption, we have
fM (ε) ≤ 2d′/(cfminr−d

′), according to [18, Lemma 10]. Hence f−1
M (k) ≤ Cfmin,Nk−1/d′ .

It remains to bound the continuity modulus of x 7→ m(Px,h). For any x in M , since
P (∂N) = 0 and P has a density with respect to the volume measure on N , we have
Px,h = P|B(x,δP,h(x)). Besides, since for all r > 0, P (B(x, r)) ≥ cfminr

d′ , we may write
δP,h(x) ≤ cN,fminh

1/d′ ≤ ρ/12, for h small enough. Now let x and y be in M so that
‖x− y‖ = δ ≤ ρ/12, and without loss of generality assume that δP,h(x) ≥ δP,h(y). Then,
proceeding as in the proof of (14), it comes

‖m(Px,h)−m(Py,h)‖ ≤ 2K
h
P (B(x, δP,h(x) + δ) ∩ B(x, δP,h(x))c) .

Since δP,h(x) + δ ≤ ρ/6, for any u in B(x, δP,h(x) + δ) ∩M we may write u = expx(rv),
where v ∈ TxM with ‖v‖ = 1 and r = dN (u, x) is the geodesic distance between u
and x (see, e.g., [25, Theorem 4.18] or [2, Proposition 25]). Note that, according to [2,
Proposition 26], for any u1 and u2 such that ‖u1 − u2‖ ≤ ρ/4,

‖u1 − u2‖ ≤ dN (u1, u2) ≤ 2‖u1 − u2‖. (15)

Now let p1, . . . , pm be a δ-covering of the sphere S(x, δP,h(x)) = B(x, δP,h(x))\B(x, δP,h(x)).
According to (15), we may choose m ≤ cd′δP,h(x)d′−1δ−(d′−1).

Now, for any u such that u ∈ M and δP,h(x) ≤ ‖x− u‖ ≤ δP,h(x) + δ, there exists
t ∈ S(x, δP,h(x)) such that ‖t− u‖ ≤ 2δ. Hence

P (B(x, δP,h(x) + δ) ∩ B(x, δP,h(x))c) ≤
m∑
j=1

P (B(pj , 2δ)) .

For any j, since 2δ ≤ ρ/6, in local polar coordinates around pj we may write,

P (B(pj , 2δ)) ≤
∫
{r,v| exppj (rv)∈M,r≤4δ}

f(r, v)J(r, v)drdv ≤ fmax
∫
{r,v|r≤4δ}

J(r, v)drdv,
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using (15), where J(r, v) denotes the Jacobian of the volume form. According to [2,
Proposition 27], we have J(r, v) ≤ Cd′rd

′ , hence P (B(pj , 2δ)) ≤ Cd′fmaxδd
′ . Thus,

‖m(Px,h)−m(Py,h)‖ ≤ 2K
h
mCd′fmaxδ

d′ ≤ CN,fmax,fminδ.

Choosing k large enough so that f−1
M (k) ≤ Cfmin,Nk−1/d′ ≤ ρ/12 gives the result.

6.5 Proof of Proposition 17
For all x ∈ Supp(P ),

d2
Q,h,k(x)− d2

P,h(x) = d2
Q,h,k(x)− d2

Q,h(x) + d2
Q,h(x)− d2

P,h(x)
≥ −‖d2

P,h − d2
Q,h‖∞,Supp(P ).

Thus,
(

d2
Q,h,k − d2

P,h

)
−
≤ ‖d2

P,h−d2
Q,h‖∞,Supp(P ) on Supp(P ), where f− : x 7→ f(x)1f(x)≤0

denotes the negative part of any function f on Rd. Then,

P
∣∣d2
Q,h,k − d2

P,h

∣∣ = P (d2
Q,h,k − d2

P,h) + 2
(
d2
Q,h,k − d2

P,h

)
−

≤ P∆ + P (d2
P,h,k − d2

P,h) + 2‖d2
P,h − d2

Q,h‖∞,Supp(P ),

with ∆ = d2
Q,h,k − d2

P,h,k. To bound P∆ from above, let s ∈
(
B(0,K)

)(k) be a k-points
minimizer of R for P , such that when P̃si,h(Rd) 6= 0, si = m(P̃si,h). Such an s exists
according to Proposition 9 and Lemma 11. Set fQ,t(x) = −2〈x,m(Qt,h)〉+M(Qt,h) for
t ∈ Rd, and let t be a k-points minimizer of R for Q.

P∆ = P

(
min
i∈[[1,k]]

fQ,ti − min
i∈[[1,k]]

fP,si

)
≤ (P −Q) min

i∈[[1,k]]
fQ,ti + (Q− P ) min

i∈[[1,k]]
fQ,si + P

(
min
i∈[[1,k]]

fQ,si − min
i∈[[1,k]]

fP,si

)
.

For a transport plan π between P and Q, (P −Q) mini∈[[1,k]] fQ,ti is bounded by

E(X,Y )∼π

[
min
i∈[[1,k]]

−2〈X,m(Qti,h)〉+M(Qti,h)− min
i∈[[1,k]]

−2〈Y,m(Qti,h)〉+M(Qti,h)
]

≤ 2E(X,Y )∼π

[
sup
t∈Rd
〈Y −X,m(Qt,h)〉

]
.

Thus, (P − Q) mini∈[[1,k]] fQ,ti ≤ 2W1(P,Q) supt∈Rd ‖m(Qt,h)‖, choosing for π the op-
timal transport plan for the W1 distance between P and Q in (3). Also note that
P (mini∈[[1,k]] fQ,si −mini∈[[1,k]] fP,si) is bounded from above by

k∑
i=1

P̃si,h (−2〈·,m(Qsi,h)〉+M(Qsi,h))− (−2〈·,m(Psi,h)〉+M(Psi,h)))

=
k∑
i=1

P̃si,h2〈· − si,m(Psi,h)−m(Qsi,h)〉+ d2
Q,h(si)− d2

P,h(si)

≤ ‖d2
P,h − d2

Q,h‖∞,B(0,K) + 2
k∑
i=1

P̃si,h(Rd)〈m(P̃si,h)− si,m(Psi,h)−m(Qsi,h)〉.

Since si = m(P̃si,h), the result follows.
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6.6 Proof of Proposition 18
Let ∆∞,K denote supx∈M dQ,h,k(x), and let x ∈ M achieving the maximum distance.
Since dQ,h,k is 1-Lipschitz, we deduce that B

(
x,

∆∞,K
2

)
⊂
{
y | dQ,k,h(y) ≥ ∆∞,K

2

}
.

Since P
(

B
(
x,

∆∞,K
2

))
≥ C(P )

(
∆∞,K

2

)d′
∧ 1, Markov inequality yields that

∆2
P ≥ C(P )

(
∆∞,K

2

)d′+2
∧

∆2
∞,K

4 .

Thus we have supx∈M (dQ,h,k − dM ) (x) = ∆∞,K ≤ C(P )−
1

d′+2 ∆
2

d′+2
P ∨ 2∆P . Now, for

x ∈ Rd, we let p ∈M such that ‖x− p‖ = dM (x). Denote by r = ‖x− p‖, and let tj be
such that dQ,h,k(p) =

√
‖p−m(Qtj ,h)‖2 + v(Qtj ,h). Then

dQ,h,k(x) ≤
√
‖x−m(Qtj ,h)‖2 + v(Qtj ,h)

≤
√

d2
Q,h,k(p) + r2 + 2r‖p−m(Qtj ,h)‖

≤
√

d2
Q,h,k(p) + r2 + 2rdQ,h,k(p)

= dM (x) + (dQ,h,k(p)− dM (p)).

Hence, supx∈Rd (dQ,h,k − dM ) (x) = supx∈M (dQ,h,k − dM ) (x) = ∆∞,K . On the other
hand, we have dQ,h,k ≥ dQ,h, along with ‖dQ,h − dP,h‖∞ ≤ h−

1
2W2(P,Q) (see, e.g., [16,

Theorem 3.5]) as well as dP,h ≥ dM . Hence dQ,h,k ≥ dM − h−
1
2W2(P,Q).

6.7 Proof of Theorem 19
We recall that γ and γ̂ are defined in (11). According to Lemma 24, Q ∈ P(V )(Rd) with
V = σ +K. Let

s = arg min
{
Qγ(t, ·) | t = (t1, t2, . . . tk) ∈ (Rd)(k)} ,

ŝ = arg min
{
Qnγ̂(t, ·) | t = (t1, t2, . . . tk) ∈ (Rd)(k)} ,

s̃ = arg min
{
Qnγ(t, ·) | t = (t1, t2, . . . tk) ∈ (Rd)(k)} .

With these notations, for all x ∈ Rd, d2
Q,h,k(x) = ‖x‖2 + γ(s, x) and d2

Qn,h,k
(x) =

‖x‖2 + γ̂(ŝ, x). We intend to bound l(s, ŝ) = Q(d2
Qn,h,k

− d2
Q,h,k) = Q(γ(ŝ, ·)−Qγ(s, ·)).

l(s, ŝ) = Qγ(ŝ, ·)−Qnγ(ŝ, ·) +Qnγ(ŝ, ·)−Qnγ(s̃, ·) +Qnγ(s̃, ·)−Qγ(s, ·)
≤ sup

t∈(Rd)(k)
(Q−Qn)γ(t, ·) +Qn(γ − γ̂)(ŝ, ·)

+Qn(γ̂(ŝ, ·)− γ̂(s̃, ·)) +Qn(γ̂ − γ)(s̃, ·) + sup
t∈(Rd)(k)

(Qn −Q)γ(t, ·),

where we used Qnγ(s̃, ·) ≤ Qnγ(s, ·). Now, since Qn(γ̂(ŝ, ·)− γ̂(s̃, ·)) ≤ 0, we get

l(s, ŝ) ≤ supt∈(Rd)(k)(Q−Qn)γ(t, ·) + supt∈(Rd)(k)(Qn −Q)γ(t, ·)
+ supt∈(Rd)(k) Qn(γ − γ̂)(t, ·) + supt∈Rd (k) Qn(γ̂ − γ)(t, ·).

Combining Lemma 25 and Lemma 26 entails, with probability larger than 1− 10n−p,

l(s, ŝ) ≤ CV 2
√
kd

(p+ 1) 3
2 log(n) 3

2

h
√
n

.

21



It remains to bound |Pd2
Qn,h,k

−Qd2
Qn,h,k

| as well as |Pd2
Q,h,k −Qd2

Q,h,k|. To this aim
we recall that X = Y + Z, Z being sub-Gaussian with variance σ2. Thus, denoting by
sj(x) = arg minj∈[[1,k]] ‖x−m(Qsj ,h)‖2 + v(Qsj ,h),

Pd2
Q,h,k −Qd2

Q,h,k ≤ E(Y,Z)[‖Y −m(Qsj(Y+Z),h)‖2 + v(Qsj(Y+Z),h)
−
(
‖Y + Z −m(Qsj(Y+Z),h)‖2 + v(Qsj(Y+Z),h)

)
]

≤ EZ‖Z‖2 + 2E(Y,Z) max
j∈[[1,k]]

∣∣〈Z,m(Qsj ,h)− Y
〉∣∣

≤ 3σ2 + 2
√

3σ
(

max
j∈[[1,k]]

‖m(Qsj ,h)‖+K

)
≤ CσK√

h
,

using Cauchy-Schwarz inequality, Lemma 23 and σ ≤ K. The converse bound on
Qd2

Q,h,k − Pd2
Q,h,k may be proved the same way. Similarly, we may write

Pd2
Qn,h,k −Qd2

Qn,h,k ≤ 3σ2 + 2
√

3σ
(

max
j∈[[1,k]]

‖m(Qn sj ,h)‖+K

)
≤ 3σ2 + 2

√
3σ
(

max
j∈[[1,k]]

‖m(Qsj ,h)‖+ sup
t∈Rd

‖m(Qt,h)−m(Qn t,h)‖+K

)
≤ 3σ2 + 2

√
3σ
(

max
j∈[[1,k]]

‖m(Qsj ,h)‖+ C(K + σ)
√
d

(p+ 1) log(n)
h
√
n

+K

)
≤ CσK√

h
+ CσK

√
d(p+ 1) log(n)
h
√
n

,

according to Lemma 23 and Lemma 26. The bound on Qd2
Qn,h,k

−Pd2
Qn,h,k

derives from
the same argument. Collecting all pieces, we get, using σ ≤ K,

∣∣P (d2
Qn,h,k − d

2
Q,h,k)

∣∣ ≤ ∣∣Q(d2
Qn,h,k − d

2
Q,h,k)

∣∣+ CσK
√
d(p+ 1) log(n)
h
√
n

+ CσK√
h

≤ CσK
√
d(p+ 1) log(n)
h
√
n

+ CkK2
√
dk((p+ 1) log(n)) 3

2

h
√
n

+ CσK√
h
.

6.8 Proof of Proposition 20
Combining bounds obtained in Theorem 19 and Proposition 17 yields

|Pd2
Qn,h,k − d2

P,h| ≤ C
√
kd
K2((p+ 1) log(n)) 3

2

h
√
n

+ C
Kσ√
h

+ 3‖d2
Q,h − d2

P,h‖∞,B(0,K) + Pd2
P,h,k − d2

P,h + 4W1(P,Q) sup
s∈Rd

‖m(Ps,h)‖.

Using Corollary 16 and Lemma 23 entails

|Pd2
Qn,h,k − d2

P,h| ≤ C
√
kd
K2((p+ 1) log(n)) 3

2

h
√
n

+ C
Kσ√
h

+ 3‖d2
Q,h − d2

P,h‖∞,B(0,K) + CP k
− 2
d′ .
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At last, using (2), Lemmas 23 and 24 leads to

‖d2
Q,h − d2

P,h‖∞,B(0,K) ≤ ‖dQ,h − dP,h‖∞,B(0,K)
(
‖dQ,h‖∞,B(0,K) + ‖dP,h‖∞,B(0,K)

)
≤ W2(P,Q)√

h

(
sup

x∈B(0,K)

√
‖x−m(Qx,h)‖2 + v(Qx,h) + 2K

)

≤
√

3σ√
h

(√
K2 + 2K

√
3σ +K√

h
+ 3(σ +K)2

h
+ 2K

)

≤
√

3σ
(
3K +

√
3(K + σ)

)
h

.

6.9 Proof of Proposition 21
As in the proof of [7, Theorem 1], for the sake of simplicity we assume that k is divisible
by 3, set m = (2k)/3, and let z1, . . . , zm be a 6∆-net in B(0,K), with ∆ = K/(6m 1

d ),
so that such a net exists. We let as well w1, . . . , wm be in Rd such that ‖wi‖ = ∆ and
zi + wi ∈ B(0,K). For σ ∈ {−1,+1}m such that

∑m
i=1 σi = 0 we denote by Pσ the

distribution that satisfies, for i ∈ [[1,m]],

Pσ({zi}) = Pσ({zi + wi}) = (1 + σiδ)
2m ,

with δ ≤ 1
3 . For τ ∈ {−1, 1}m2 , σ(τ) is defined by σ(τ)j = τj and σ(τ)m

2 +j = −τj ,
for j ∈ [[1,m/2]]. We define now a p-points quantizer F as a map from R

d such that
|F (Rd)| = p, and define Fσ as the k-points quantizer satisfying

Fσ(zi) = zi, Fσ(zi + wi) = zi + wi if σi = +1
Fσ(zi) = Fσ(zi + wi) = zi if σi = −1.

At last, for a quantizer F with images q1, . . . , qp and sets of preimages V1, . . . , Vp, we
denote by R(F, Pσ) the quantity

R(F, Pσ) =
p∑
i=1

Pσ

[
‖· −m(Pqi,h)‖2 + v(Pqi,h)

]
1Vi ,

where for i ∈ [[1, p]], Pqi,h ∈ Pqi,h(Pσ). With a slight abuse we call nearest-neighbor
quantizer a quantizer whose sets of preimages are the set of Voronoi cells associated with
(m(Pqi,h), v(Pqi,h)), with ties arbitrarily broken.

The proof of Proposition 21 follows from the same arguments as [31, Proposition 3.1].
We first use the following Lemma.

Lemma 27.
Assume that δ ≤ 1

3 and h ≤ 1
3m . Let σ and σ′ be such that

∑m
i=1 σi =

∑m
i=1 σ

′
i = 0, and

let ρ(σ, σ′) denote the distance
∑m
i=1 |σi − σ′i|. Then

R(Fσ, P ′σ) = R(Fσ, Pσ) + δ∆2

2m ρ(σ, σ′).

Moreover, for every k-points nearest neighbor quantizer F there exists σ and τ such that

∀Pσ(τ ′) R(F, Pσ(τ ′)) ≥ R(Fσ, Pσ(τ ′)) ≥
1
2R(Fσ(τ), Pσ(τ ′)).
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The proof of Lemma 27 is a slight modification of that of [31, Proposition 4.2].
For the sake of completeness it is given in Section C.1 of the Appendix. Let t̂
be an empirically designed vector in (Rd)(k), and recall that Pd2

P,h,t is defined as
P
∑k
j=1

[
‖· −m(Pti,h)‖2 + v(Pti,h)

]
1Vi . According to Lemma 27, we may write

inf
t̂

sup
P |Supp(P )⊂B(0,K)

EP (d2
P,h,t̂ − d2

P,h,k) ≥ inf
t̂

sup
Pσ(τ′)

ER(t̂)−R(Fσ(τ ′), Pσ(τ ′))

≥ 1
2 inf

τ̂
sup
Pσ(τ′)

ER(Fσ(τ̂), Pσ(τ ′))−R(Fσ(τ ′), Pσ(τ ′))

≥ δ∆2

2m inf
τ̂

sup
Pσ(τ′)

Eρ(τ̂ , τ ′), (16)

where τ̂ denotes an empirically designed element of {−1,+1}m2 . Let µ denote the measure∑m
i=1(δzi + δzi+wi). For any distribution P and Q having densities with respect to µ we

denote by H2(P,Q) their Hellinger distance.

Lemma 28.
Let τ and τ ′ in {−1, 1}m2 such that ρ(τ, τ ′) = 2. Then

H2(P⊗nσ(τ), P
⊗n
σ(τ ′)) ≤

4nδ2

m
:= α.

The proof of Lemma 28 is a slight modification of the proof of [31, Lemma 4.5], and
is given in Section C.2 in the Appendix. A direct application of Assouad’s Lemma (see,
e.g., [40, Theorem 2.12]) entails that, for α ≤ 2,

inf
τ̂

sup
τ∈{−1,1}

m
2

Eρ(τ̂ , τ) ≥ m

4

(
1−

√
α(1− α/4)

)
.

For δ =
√
m

2
√
n
, (16) yields inf t̂ supP |Supp(P )⊂B(0,K)EP (d2

P,h,t̂− d2
P,h,k) ≥ c0K

2k
1
2−

2
d√

n
. This

proves (7).
Now denote by A the event

⋃m
i=1{Pn({zi}) ≤ h}∪{Pn({zi +wi}) ≤ h}. If δ ≤ 1

9 and
h ≤ 1

2k , using
(1−δ)

2m − h ≥ 1
6k and a union of bounded difference inequalities (see, e.g.,

[11, Theorem 6.2]) leads to Pσ(A) ≤ 2me−
n

72k2 , where Pσ denotes probability when the
distribution of X1, . . . , Xn is Pσ. Now, for t ∈ Rd, for any σ, we may choose Pt,h = δz,
for some z ∈ {zi, zi + wi}i∈[[1,m]], so that m(Pt,h) = z and v(Pt,h) = 0.

Next, on the event Ac, we may choose for any σ and t ∈ Rd Pn t,h = Pt,h. Thus
d2
Pn,h,t1Ac = d2

P,h,t1Ac , where, for any t ∈ (Rd)(k), d2
P,h,t is the function minj∈[[1,k]] ‖ ·

−m(Ptj ,h)‖2 + v(Ptj ,h). Therefore, since for every σ, Supp(Pσ) ⊂ B(0,K), we may write

inf
t̂

sup
σ
EσP (d2

Pn,h,t̂
− d2

P,h,k) ≥ inf
t̂

sup
σ
EσP (d2

Pn,h,t̂
− d2

P,h,k)1Ac − 16K2me−
n

72k2

≥ inf
t̂

sup
σ
EσP (d2

P,h,t̂ − d2
P,h,k)1Ac − 16K2me−

n
72k2

≥ inf
t̂

sup
σ
EσP (d2

P,h,t̂ − d2
P,h,k)− 32K2me−

n
72k2 .

Since n ≥ 14k, δ =
√
m

2
√
n
≤ 1

9 and (16) leads to the result again.
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Appendix
For ease of understanding, the statements of the results are recalled before the proofs.

A Proofs of Lemmas 4, 23 and 24
A.1 Proof of Lemma 4
Let P = US(0,1), the uniform distribution on the circle, Qβ = β US(0,1) + (1− β)UB(0,1)
and τ ∗ be a minimizer of the k-means criterion Qβ minj∈[[1,k]] ‖ · −τj‖2 (an optimal
k-points codebook for Qβ).

Lemma (4).
Let dτ∗ denote the distance to τ ∗ function. Then, for k large enough,

sup
x∈S(0,1)

|dτ∗(x)− dS(0,1)(x)| ≤ C
(

1
k2 + (1− β)

) 1
3

.

for some constant C > 0. On the other hand, for every ρ > 0, there exists kρ,β such that,
for all k ≥ kρ,β, τ ∗ has at least one codepoint in B(0, ρ).

Proof of Lemma 4. Let τ ∗ denote an optimal k-points codebook for Qβ and τ ∗P an
optimal k-points codebook for P . We intend to bound supx∈S(0,1) |dS(0,1)(x)−dτ∗(x)| =
supx∈S(0,1) dτ∗(x) = ∆∞,S(0,1). Let ∆2

P = Pd2
τ∗ . We get that

∆2
P ≤ 2(Qβd2

τ∗ +W 2
2 (P,Qβ))

≤ 2(Qβd2
τ∗
P

+ (1− β))

≤ 4Pd2
τ∗
P

+ 6(1− β).

Comparing with a uniform grid on S(0, 1), it is immediate that Pd2
τ∗
P
≤ C

k2 . Thus

∆2
P ≤ C

(
1
k2 + (1− β)

)
.

Let x ∈ S(0, 1) achieving the maximum distance dτ∗(x) = supy∈S(0,1) dτ∗(y). Since dτ∗

is 1-Lipschitz, we deduce that

B
(
x,

∆∞,S(0,1)

2

)
⊂
{
y | dτ∗(y) ≥

∆∞,S(0,1)

2

}
.

Since P
(

B
(
x,

∆∞,S(0,1)
2

))
≥ C

(
∆∞,S(0,1)

2

)
∧ 1, Markov inequality yields that

∆2
P ≥ C

(∆∞,S(0,1)

2

)3

∧
(∆∞,S(0,1)

2

)2

.

Thus we have

sup
x∈S(0,1)

∣∣dτ∗(x)− dS(0,1)(x)
∣∣ = ∆∞,S(0,1) ≤ C∆

2
3
P ∨∆P .

Therefore, for k large enough,

∆∞,S(0,1) ≤ C
(

1
k2 + (1− β)

) 1
3

.
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Now, assume that for all j ∈ [[1, k]], τ∗j /∈ B(0, ρ). Then

Qβ min
j∈[[1,k]]

‖ · −τ∗j ‖2 ≥ (1− β)
(ρ

2

)4
.

Let τ be a k-points codebook and a
√

2√
k
-covering of B(0, 1) (a uniform grid for instance).

We have

(1− β)
(ρ

2

)4
≤ Qβ min

j∈[[1,k]]
‖ · −τ∗j ‖2 ≤ Qβ min

j∈[[1,k]]
‖ · −τj‖2 ≤

2
k
,

hence the contradiction for k large enough.

A.2 Proof of Lemma 23
Lemma 23 follows from basic properties of sub-Gaussian distributions, that are recalled
below. We recall that a sub-Gaussian measure Q with variance V 2 > 0 is such that
Q(B(0, t)c) ≤ exp(− t2

2V 2 ) for all t > V and that the set of sub-Gaussian measures is
denoted by P(V )(Rd).
Lemma 29.
Let Q ∈ P(V )(Rd), a sub-Gaussian measure with variance V 2 > 0. Then, the following
bounds are satisfied:

Q‖ · ‖ ≤ 3V, Q‖ · ‖2 ≤ 3V 2.

As a consequence, for all n ∈ N∗, with R =
√

4V 2(1 + p) log(n) we have:

Q1‖·‖≥R ≤ n−2p−2, Q(‖ · ‖1‖·‖≥R) ≤
√

3V n−(1+p), Q(‖ · ‖21‖·‖≥R) ≤ 3V 2n−(1+p),

as well as

P

(
sup

i∈[[1,n]]
‖Xi‖ ≥ R

)
≤ n−2p−1,

where Xn = {X1, X2, . . . , Xn} is an n-sample from Q.
At last, for Qh ∈ Ph(Q) (that is such that hQh is a submeasure of Q with Q-mass

h), we have

Qh‖ · ‖2 ≤
3V 2

h
, ‖Qh · ‖ ≤

√
3V√
h
.

Proof of Lemma 29. For the first inequality, note that

Q‖ · ‖ =
∫
u∈Rd

∫ +∞

t=0
1t≤‖u‖dtQ(du)

=
∫ V

t=0
Q(‖ · ‖ ≥ t)dt+

∫ +∞

t=V
Q(‖ · ‖ ≥ t)dt

≤ V +
∫ +∞

t=V
e−

t2
2V 2 dt.

Moreover, for X distributed according to the standard normal distribution N (0, 1), we
have ∫ +∞

t=V
exp

(
− t2

2V 2

)
dt =

√
2πV P (X ≥ 1)

≤
√

2πV E[exp(λX)]
exp(λ)

=
√

2πV exp
(
−λ+ λ2

2

)
.
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The choice λ = 1 yields that

Q‖ · ‖ ≤
(

1 +
√

2π exp
(
−1

2

))
V.

For the second inequality, note that

Q‖ · ‖2 = Q‖ · ‖21‖·‖≤V +Q‖ · ‖21‖·‖>V
≤ V 2 +Q‖ · ‖21‖·‖>V .

Then, we get

Q‖ · ‖21‖·‖>V =
∫
u∈Rd

1‖u‖>V

∫ +∞

t=0
2t1t≤‖u‖dtQ(du)

=
∫ V

t=0
2tQ(‖ · ‖ > V )dt+

∫ +∞

t=V
2tQ(‖ · ‖ ≥ t)dt

≤
∫ V

t=0
2te− 1

2 dt+
∫ +∞

t=V
2te−

t2
2V 2 dt

= 3V 2e−
1
2 .

Thus, we have
Q‖ · ‖21‖·‖>V ≤ 2V 2, (17)

and,
Q‖ · ‖2 ≤ 3V 2.

The bound on supi∈[[1,n]] ‖Xi‖ derives from

P

(
sup

i∈[[1,n]]
‖Xi‖ ≥ R

)
≤ nP(‖X1‖ ≥ R) ≤ n−2p−1.

Let Qh ∈ Ph(Q). We may write

Q‖ · ‖2 ≤ 1
h
Q‖ · ‖2

≤ 1
h

[
Q‖ · ‖21‖·‖≤V +Q‖ · ‖21‖·‖>V

]
≤ V 2

h
+
Q‖ · ‖21‖·‖>V

h

≤ 3V
2

h
.

The last inequality follows from (17).

A.3 Proof of Lemma 24
Lemma (24).
If Y is a random variable sampled from a distribution P in PK(Rd) and Z is independent
from Y and sampled from a distribution Q′ in P(σ)(Rd) for some σ > 0. Then, the
distribution Q of the random variable X = Y + Z is sub-Gaussian with variance V 2 =
(K + σ)2, that is in P(K+σ)(Rd).

Moreover,
W1(P,Q) ≤ 3σ and W2(P,Q) ≤

√
3σ.
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Proof of Lemma 24. For all z ≥ σ it holds

P(‖Y + Z‖ ≥ K + z) ≤ P(‖Z‖ ≥ z)

≤ exp− z2

2σ2

≤ exp− (z +K)2

2(σ +K)2 .

The L1-Wasserstein distance between P and Q satisfies

W1(P,Q) = E [‖(Y + Z)− Y ‖] = Q′‖ · ‖,

that is bounded from above by 3σ according to Lemma 29. The L2-Wasserstein distance
between P and Q satisfies

W2(P,Q) =
√
E [‖(Y + Z)− Y ‖2] =

√
Q′‖ · ‖2,

which is bounded from above by
√

3σ according to Lemma 29.
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B Deviation inequalities for the proof of Theorem 19
This section is devoted to the proofs of Lemmas 25 and 26. We first expose the main
technical tools from empirical processes theory that will be needed.

B.1 Preliminary results and tools to bound suprema of empirical
processes

In this section, F is a countable family of functions f : Rd → R. We recall results that
allow to derive upper bounds for the maximal deviation supf∈F |Pf − Pnf |. Most of
these results can be found in [11, 10]. Their actual form is to be found in [12, Section 3.A].

We first recall the so-called bounded difference inequality [11, Theorem 6.2].

Theorem 30.
Assume that the elements of F take values in [−R,R]. Then for every δ > 0, with
probability at least 1− δ,

sup
f∈F
|Pf − Pnf | ≤ E

[
sup
f∈F
|Pf − Pnf |

]
+

√
2R2

n
log
(

1
δ

)
.

When the elements of F are non-negative, the right-hand term can be replaced with√
R2

2n log
( 1
δ

)
.

Next, we will need tools to derive bounds on the expectation of suprema of empirical
processes. We begin by recalling the Vapnik-Chervonenkis inequality [10, Theorem 3.4]),
for the particular case of indicator functions.

Theorem 31.
For all countable family F of indicator functions of some collection A, it holds

E

[
sup
f∈F
|Pf − Pnf |

]
≤ 2
√

2V C(A) log(n+ 1)
n

and, for some universal constant C,

E

[
sup
f∈F
|Pf − Pnf |

]
≤ C

√
V C(A)
n

,

where V C(A) denotes the Vapnik-Chervonenkis dimension of the collection A (see, e.g.,
[11, Example 3.10]).

At last, we will need a more general result to bound the expectation of the maximal
deviation between P and Pn, over an arbitrary family of functions F .

Theorem 32.
Assume that F contains the null function and that |f | ≤ R, for all f ∈ F . Then

E

[
sup
f∈F
|Pf − Pnf |

]
≤ 24 R√

n
E

[∫ 1
2

0

√
log
(
N ′‖.‖

(
u

2 ,
(F ∪ −F)(Xn

1 )
R
√
n

))
du
]
,

where (F ∪ −F)(Xn
1 ) denotes the set {(f(X1), f(X2), . . . , f(Xn)) | f ∈ F or − f ∈ F},

and, for S ⊂ Rd, δ ≥ 0, N ′‖·‖(δ, S) denotes the δ-covering number of S with respect to
the norm ‖.‖.
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Theorem 32 is a particular instance of the so-called Dudley’s entropy integral [11,
Corollary 13.2]. In what follows, ‖.‖ will denote the Euclidean norm on Rn. Combining
Theorem 30 and Theorem 32 results in deviation bounds, provided that the covering
number of the targeted class of functions is controlled. This is the aim of the following
section.

B.2 Tools for covering numbers
We first recall some basic combinatorial properties of covering numbers. If F1 and F2
are two sets of measurable functions, we let F1 + F2 = {f1 + f2 | f1 ∈ F1, f2 ∈ F2} and
F1 ×F2 = {f1f2 | f1 ∈ F1, f2 ∈ F2}.

Lemma 33.
For δ ≥ 0,

N ′‖.‖(2δ,F1 + F2(xn1 )) ≤ N ′‖.‖(δ,F1(xn1 ))N ′‖.‖(δ,F2(xn1 )). (18)

In addition, if the elements of F1 and F2 are all bounded by 1, then we have

N ′‖.‖(2δ,F1 ×F2(xn1 )) ≤ N ′‖.‖(δ,F1(xn1 ))N ′‖.‖(δ,F2(xn1 )). (19)

For a class of measurable functions F , we denote by −F = {−f | f ∈ F}, and F(k) ={
minl∈[[1,k]] fl | fl ∈ F

}
. We have

N ′‖.‖(δ,F ∪ −F(xn1 )) ≤ 2N ′‖.‖(δ,F(xn1 )), (20)

as well as
N ′‖.‖(δ,F(k)(xn1 )) ≤

(
N ′‖.‖(δ,F(xn1 ))

)k
. (21)

Proof of Lemma 33. For the three first inequalities, if
⋃
i∈[[1,N ′]] B‖.‖(cj , δ) covers F1(xn1 )

and
⋃
i∈[[1,M ′]] B‖.‖(c′j , δ) covers F2(xn1 ), then it suffices to take balls centered at elements

ci + c′j , cic′j or respectively ci and −ci to cover F1 + F2, F1 × F2 and respectively
F1 ∪ −F1.

For the fourth inequality, choose c1, c2, . . . cN
′ in Rn that satisfy the inclusion⋃

j∈[[1,N ′]] B‖.‖(cj , δ) ⊃ F(xn1 ). For f1, f2, . . . , fk ∈ F , we let c(1), c(2), . . . c(k) in Rn

be such that fj(xn1 ) ∈ B‖.‖(c(j), δ) for all j ∈ [[1, k]]. Then, for all i ∈ [[1, n]], we have(
min
l∈[[1,k]]

fl(xi)− min
l∈[[1,k]]

c(l)(xi)
)2
≤ max
l∈[[1,k]]

(
fl(xi)− c(l)(xi)

)2
.

Also note that the number of elements of the type minl∈[[1,k]] c
(l)(xn1 ) is at most

(
N ′

k

)
≤ N ′k.

Equation (21) follows.

It is possible to relate the notion of covering number of a set F(xn1 ) to the notion of
shattering dimension of the family F .

Definition 34.
Given some δ > 0, a subset S of Rd is δ-shattered by F if there exists some function h
on S such that

∀S′ ⊂ S, ∃f ∈ F , s.t. ∀x ∈ S′, f(x) ≤ h(x) and ∀x ∈ S\S′, f(x) ≥ h(x) + δ.

As for the Vapnik-Chervonenkis dimension, the shattering dimension of F is defined as
the maximal cardinality of a set S that is δ-shattered by F , and is denoted by V (F , cδ).
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It is immediate that, for any δ ≥ 0, V (F , δ) ≤ V C(F). The following result allows to
bound the δ-covering number of a set F (xn1 ) in terms of the cδ-shattering dimension of
F , V (F , cδ).

Theorem 35.
[35, Theorem 1] Let F be a class of functions bounded by 1. There exist absolute constants
K and c such that, for all xn1 ∈

(
R
d
)n and δ ∈ (0, 1),

N ′‖.‖

(
δ,

1√
n
F(xn1 )

)
≤
(

2
δ

)KV (F,cδ)
.

Thus, controlling shattering dimensions is enough to bound covering numbers. At
last, we expose two lemmas that will be useful to control the shattering dimensions
involved in the proofs of Lemmas 25 and 26.

Lemma 36.
Let F =

{
1B(x,r) | x ∈ Rd, r > 0

}
for some R > 0. Then, for all δ ∈ (0, 1),

V (F , δ) ≤ d+ 1.

Proof of Lemma 36. According to [21], V C(F) ≤ d + 1. Thus, for any δ ∈ (0, 1),
V (F , δ) ≤ V C(F) ≤ d+ 1.

Lemma 37.
For R > 0, let F =

{
x 7→ 1

R1B(0,R)(x)〈x, v〉 | v ∈ S(0, 1)
}
. Then, for all δ ∈ (0, 1),

V (F , δ) ≤ d+ 2.

Proof of Lemma 37. Let S = {x1, x2, . . . , xV } denote a subset of B(0, R) that is δ-
shattered by F , and let h denote the function defined in Definition 34. Then for all
S′ ⊂ S, there is some v ∈ S(0, 1) such that 〈(x,−h(x)), (v, 1)〉 ≤ 0 if x ∈ S′ and
〈(x,−h(x)), (v, 1)〉 ≥ δ if x ∈ S\S′. In particular, all subsets (S′,−h(S′)) rewrite as the
intersection of (S,−h(S)) with a half space in Rd+1. According to [21], this is possible
only if |S| ≤ d+ 2. Hence, V (F , δ) ≤ d+ 2.

B.3 Application to truncated moments
As a direct consequence of the bounded inequality theorem together with the Vapnik-
Chervonenkis inequality, it is possible to derive bounds for empirical processes of indicators
of balls.

Corollary 38.
Let P ∈ P(Rd). Then, there exists an absolute constant C > 0 such that, for all p > 0,
with probability larger than 1− 2n−p,

sup
x∈Rd,r>0

|P (B(x, r))− Pn(B(x, r))| ≤ C
√
d+ 1
n

+
√
p logn

2n ,

sup
x∈Rd,r>0

|P (B(x, r))− Pn(B(x, r))| ≤ C
√
d+ 1
n

+
√
p logn

2n .

In particular,

sup
x∈Rd,r>0

|P (∂B(x, r))− Pn(∂B(x, r))| ≤ 2C
√
d+ 1
n

+ 2
√
p logn

2n .

31



Proof of Corollary 38. Corollary 38 follows from Theorem 30 with δ = n−p, combined
with Theorem 32, Theorem 35 and Lemma 36 for the expectation part.

Next, we can bound the deviations of truncated moments of order 1, for the particular
case of sub-Gaussian distributions.

Corollary 39.
If P ∈ P(V )(Rd) is a sub-Gaussian measure for some V > 0, then for all p > 0, with
probability larger than 1− 3n−p, it holds

sup
x∈Rd,r>0

‖(Pn − P ) · 1B(x,r)‖ ≤ CV
√
d+ 2(1 + p) log(n)√

n
,

and
sup

x∈Rd,r>0
‖(Pn − P ) · 1B(x,r)‖ ≤ CV

√
d+ 2(1 + p) log(n)√

n
.

In particular,

sup
x∈Rd,r>0

‖(Pn − P ) · 1∂B(x,r)‖ ≤ 2CV
√
d+ 2(1 + p) log(n)√

n
.

Proof of Corollary 39. Let λ = p log(n), and R =
√

4V 2(log(n) + λ). We may write

sup
x,r
‖(Pn − P ) · 1B(x,r)‖ = sup

x,r

∥∥∥∥∥ 1
n

n∑
i=1

Xi1B(x,r)(Xi)− P · 1B(x,r)

∥∥∥∥∥
≤ sup

x,r

∥∥∥∥∥ 1
n

n∑
i=1

Xi1B(x,r)(Xi)1‖Xi‖≤R − P · 1B(x,r)1‖·‖≤R

∥∥∥∥∥
+ P‖ · ‖1‖·‖>R + 1

n

n∑
i=1
‖Xi‖1‖Xi‖>R.

From Lemma 29, we get
P (‖ · ‖1‖·‖>R) ≤ 2V n−(p+1).

Thus, with probability larger than 1− n−2p−1, it holds

1
n

n∑
i=1
‖Xi‖1‖Xi‖>R = 0.

Next, using Cauchy-Schwarz inequality, we may write

sup
x∈Rd,r>0

∥∥(Pn − P ) · 1B(x,r)1B(0,R)
∥∥ = sup

x∈Rd,r>0,v∈S(0,1)
|(Pn − P )fx,r,v|,

where fx,r,v(u) = 〈v, u1B(x,r)(u)1B(0,R)(u)〉 for all u ∈ Rd.
Choosing δ = n−p in Theorem 30 yields that, with probability larger than 1− n−p,

sup
x∈Rd,r>0,v∈S(0,1)

|Pn − P |fx,r,v ≤ E

[
sup

x∈Rd,r>0,v∈S(0,1)
|Pn − P |fx,r,v

]
+
√

2R2p log(n)
n

.

It remains to derive an upper bound for E
[
supx∈Rd,r>0,v∈S(0,1) |Pn − P |fx,r,v

]
. Accord-

ing to Theorem 32, we have

E

[
sup

x∈Rd,r>0,v∈S(0,1)
|Pn − P |fx,r,v

]
≤ 24 R√

n
E

[∫ 1
2

0

√
log
(
N ′‖.‖

(
u

2 ,
1

R
√
n
F(Xn

1 )
))

du
]
,
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where 1
RF(Xn

1 ) denotes F1 × F2(Xn
1 ), for F1 the set of indicators of balls and F2 the

set of functions x 7→ 1
R1B(0,R)〈x, v〉, for any v ∈ S(0, 1). According to Lemma 33, (19),

for all δ > 0,

N ′‖.‖

(
u

2 ,
1√
n
F1 ×F2(xn1 )

)
= N ′‖.‖

(u
2
√
n,F1 ×F2(xn1 )

)
≤ N ′‖.‖

(
u
√
n

4 ,F1(xn1 )
)
N ′‖.‖

(
u
√
n

4 ,F2(xn1 )
)

≤ N ′‖.‖
(
u

4 ,
1√
n
F1(xn1 )

)
N ′‖.‖

(
u

4 ,
1√
n
F2(xn1 )

)
.

According to Lemma 36, V (F1, δ) ≤ d+ 1. Thus, Theorem 35 entails

N ′‖.‖

(
u

4 ,
1√
n
F1(xn1 )

)
≤
(

8
u

)K(d+1)
.

From Lemma 37, V (F2, δ) ≤ d+ 2, thus

N ′‖.‖

(
u

4 ,
1√
n
F2(xn1 )

)
≤
(

8
u

)K(d+2)
.

As a consequence,

N ′‖.‖

(
u

2 ,
1

R
√
n
F(xn1 )

)
≤
(

8
u

)K(2d+3)
.

Gathering the above inequalities yields that, with probability larger than 1− 2n−p,

sup
x∈Rd,r>0,v∈S(0,1)

|Pn − P |fx,r,v ≤ CR
√

2d+ 3√
n

+ 2V n−(p+1) +
√

2R2p log(n)
n

≤ CV
√
d+ 2(1 + p) log(n)√

n
,

for some absolute positive constant C.

At last, we derive an upper-bound for the deviation of moments of order 2 restricted
to balls as follows.

Corollary 40.
Let Q ∈ P(V )(Rd) be a sub-Gaussian measure on Rd with variance V 2. Then, with
probability larger than 1− 3n−p,

sup
x∈Rd,r>0

|Q‖ · ‖21B(x,r) −Qn‖ · ‖21B(x,r)| ≤ CV 2√d+ 1((1 + p) log(n))
3
2

√
n

,

sup
x∈Rd,r>0

|Q‖ · ‖21B(x,r) −Qn‖ · ‖
2
1B(x,r)| ≤ CV

2√d+ 1((1 + p) log(n))
3
2

√
n

.

In particular,

sup
x∈Rd,r>0

|Q‖ · ‖21∂B(x,r) −Qn‖ · ‖21∂B(x,r)| ≤ 2CV 2√d+ 1((1 + p) log(n))
3
2

√
n

.
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Proof of Corollary 40. Let λ = p log(n) and R =
√

4V 2(log(n) + λ). We may write

sup
x,r
|(Qn −Q)‖ · ‖21B(x,r)|

= sup
x,r

∣∣∣∣∣ 1n
n∑
i=1
‖Xi‖21B(x,r)(Xi)−Q(‖ · ‖21B(x,r))

∣∣∣∣∣
≤ sup

x,r

∣∣∣∣∣ 1n
n∑
i=1
‖Xi‖21B(x,r)(Xi)1‖Xi‖≤R −Q(‖ · ‖21B(x,r)1‖·‖≤R)

∣∣∣∣∣
+Q(‖ · ‖21‖·‖>R) + 1

n

n∑
i=1
‖Xi‖21‖Xi‖>R.

Using Lemma 29, we get

Q(‖ · ‖21‖·‖>R) ≤ 3V 2n−(p+1),

and, with probability larger than 1− n−1−2p,

1
n

n∑
i=1
‖Xi‖21‖Xi‖>R = 0.

Thus, choosing δ = n−p in Theorem 30 yields that, with probability larger than 1− n−p,

sup
x,r

∣∣∣∣∣ 1n
n∑
i=1
‖Xi‖21B(x,r)(Xi)1B(0,R)(Xi)−Q(‖ · ‖21B(x,r)1B(0,R))

∣∣∣∣∣ ≤
E

[
sup
x,r

∣∣∣∣∣ 1n
n∑
i=1
‖Xi‖21B(x,r)(Xi)1B(0,R)(Xi)−Q(‖ · ‖21B(x,r)1B(0,R))

∣∣∣∣∣
]

+
√
R4p log(n)

2n .

Applying Theorem 32 gives

E

[
sup
x,r

∣∣∣∣∣ 1n
n∑
i=1
‖Xi‖21B(x,r)(Xi)1B(0,R)(Xi)−Q(‖ · ‖21B(x,r)1B(0,R))

∣∣∣∣∣
]

≤ 24 R
2
√
n
E

[∫ 1
2

0

√
log
(
N ′‖.‖

(
u

2 ,
1

R2√n
(F ∪ −F)(Xn

1 )
))

du
]
,

where 1
R2 (F ∪−F)(Xn

1 ) = (F1 ∪−F1)×F2(Xn
1 ), and F1 is the set of indicators of balls

and F2 is the single function
{
x 7→ ‖x‖2

R2 1B(0,R)(x)

}
. According to Lemma 33, (19), for

all δ > 0,

N ′‖.‖

(
2δ, 1

R2√n
(F1 ∪ −F1)×F2(xn1 )

)
≤ N ′‖.‖

(
δ,

1√
n

(F1 ∪ −F1)(xn1 )
)
N ′‖.‖

(
δ,

1√
n
F2(xn1 )

)
.

Using Lemma 33, (20), we get

N ′‖.‖

(
δ,

1√
n

(F1 ∪ −F1)(xn1 )
)
≤ 2N ′‖.‖

(
δ,

1√
n
F1(xn1 )

)
.

Recall that Lemma 36 entails V (F1, δ) ≤ d+ 1. Thus, combining the above inequalities
with Theorem 35 gives

N ′‖.‖

(
δ,

1√
n

(F ∪ −F)(xn1 )
)
≤ 2

(
2
δ

)K(d+1)
,
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for some positive constant K. At last, gathering the above results yields that, with
probability larger that 1− 2n−p,

sup
x∈Rd,r>0

|Q‖ · ‖21B(x,r) −Qn‖ · ‖21B(x,r)|

≤
√
d+ 1 R

2
√
n
C +R2

√
p log(n)

2n + 3V 2n−p−1

≤ CV 2√d+ 1((1 + p) log(n))
3
2

√
n

,

for some absolute positive constant C.

B.4 Proof of Lemma 26
Lemma (26).
Assume that Q is sub-Gaussian with variance V 2, then, for every p > 0, with probability
larger than 1− 9n−p, we have

sup
t∈Rd

‖m(Qt,h)−m(Qn t,h)‖ ≤ CV
√
d(p+ 1) log(n)
h
√
n

,

sup
t∈(Rd)(k)

|Qn(γ − γ̂)(t, ·)| ≤ CV 2
√
d(p+ 1) 3

2 log(n) 3
2

h
√
n

.

The proof of Lemma 26 is based on the following deviation bounds.

Lemma 41.
Suppose that Q ∈ P(V )(Rd) for some V > 0. Then, for every p > 0, with probability
larger than 1− 4n−p, we have,

sup
x,r
|(Qn −Q)|1B(x,r) ≤ C

√
d+ 1

√
p log(n)√
n

sup
x,r
‖(Qn −Q) · 1B(x,r)‖ ≤ CV

√
d+ 2(p+ 1) log(n)√

n

sup
x,r

∣∣(Qn −Q)‖ · ‖21B(x,r)
∣∣ ≤ CV 2√d+ 1((p+ 1) log(n))

3
2

√
n

where C > 0 denotes a universal constant, x ∈ Rd, v ∈ S(0, 1), r > 0 and c ∈ R.

Proof of Lemma 41. This is a direct consequence of the proofs of Corollary 39, 40 and
38.

We are now in position to prove Lemma 26.

Proof of Lemma 26. Let t ∈ Rd, and denote by r = δQ,h(t), rn = δQn,h(t), and R =
2V
√

(p+ 1) log(n). We may write, for Qt,h = 1
hQ1B(t,r) + α

hQ1∂B(t,r) and Qn t,h =
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1
hQn1B(t,rn) + αn

h Q1∂B(t,rn) for non-negative α and αn,

‖m(Qt,h)−m(Qn t,h)‖ ≤ 1
h

(‖Q · 1B(t,r) + αQ · 1∂B(t,r) −Q · 1B(t,rn) − αnQ · 1∂B(t,rn)‖

+ ‖Q · 1B(t,rn) −Qn · 1B(t,rn)‖+ αn‖Q · 1∂B(t,rn) −Qn · 1∂B(t,rn)‖)

≤ 1
h

(Q‖ · ‖|1B(t,r) + α1∂B(t,r) − 1B(t,rn) − αn1∂B(t,rn)|+ ‖(Q−Qn) · 1B(t,rn)‖

+ ‖(Q−Qn) · 1∂B(t,rn)‖)

≤ 1
h

(RQ|1B(t,r) + α1∂B(t,r) − 1B(t,rn) − αn1∂B(t,rn)|+ ‖(Q−Qn) · 1B(t,rn)‖

+ ‖(Q−Qn) · 1∂B(t,rn)‖+Q‖ · ‖1‖·‖>R).

Moreover, considering the case r > rn, we have

Q|1B(t,r) + α1∂B(t,r) − 1B(t,rn) − αn1∂B(t,rn)|
= Q(B(t, r)) + αQ(∂B(t, r))−Q(B(t, rn))− αnQ(∂B(t, rn))
= h−Q(B(t, rn))− αnQ(∂B(t, rn))
≤ |(Qn −Q)1B(t,rn) + αn1∂B(t,rn)|
≤ |Qn −Q|1B(t,rn) + |Qn −Q|1∂B(t,rn).

The same inequality holds when r ≤ rn. On the event described in Lemma 41, using
Lemma 29, we have that

‖(Q−Qn) · 1B(t,rn)‖ ≤ CV
√
d

(p+ 1) log(n)√
n

,

‖(Q−Qn) · 1∂B(t,rn)‖ ≤ CV
√
d

(p+ 1) log(n)√
n

,

|Qn(B(t, rn))−Q(B(t, rn))| ≤ C
√
d

√
(p+ 1) log(n)√

n
,

|Qn(∂B(t, rn))−Q(∂B(t, rn))| ≤ C
√
d

√
(p+ 1) log(n)√

n
,

Q‖ · ‖1‖·‖>R ≤ 2V n−(p+1).

Thus, we get

sup
t∈Rd

‖m(Qt,h)−m(Qn t,h)‖ ≤ CV
√
d(p+ 1) log(n)
h
√
n

, (22)

that is the first equation of Lemma 26. For t ∈ (Rd)k, we get that

|γ(t, x)− γ̂(t, x)| ≤ max
j∈[[1,k]]

| − 2〈x,m(Qtj ,h)−m(Qn tj ,h)〉+
(
M(Qtj ,h)−M(Qn tj ,h)

)
|

≤ 2‖x‖ max
j∈[[1,k]]

‖m(Qtj ,h)−m(Qn tj ,h)‖+ max
j∈[[1,k]]

∣∣M(Qtj ,h)−M(Qn tj ,h
∣∣ .

As well, supt∈Rd |M(Qt,h)−M(Qn t,h)| is bounded from above by

1
h

(R2|Qn −Q|1B(t,rn) +R2|Qn −Q|1∂B(t,rn) + ‖(Q−Qn) · 1B(t,rn)‖

+ ‖(Q−Qn) · 1∂B(t,rn)‖+Q‖ · ‖21‖·‖>R).
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Using Lemma 41 and 29 again yields∣∣(Q−Qn)‖ · ‖21B(t,rn)
∣∣ ≤ CV 2

√
d

(p+ 1) 3
2 log(n) 3

2
√
n∣∣(Q−Qn)‖ · ‖21∂B(t,rn)

∣∣ ≤ CV 2
√
d

(p+ 1) 3
2 log(n) 3

2
√
n

|(Q−Qn)1B(t,rn)| ≤ C
√
d

√
(p+ 1) log(n)√

n

|(Q−Qn)1∂B(t,rn)| ≤ C
√
d

√
(p+ 1) log(n)√

n

Q‖ · ‖21‖·‖>R ≤ 3V 2n−(p+1).

Collecting all pieces leads to

|γ(t, x)− γ̂(t, x)| ≤ C‖x‖V
√
d(p+ 1) log(n)

h
√
n

+ CV 2
√
d(p+ 1) 3

2 log(n) 3
2

h
√
n

. (23)

At last, according to Lemma 29

P
{

max
i
‖Xi‖ ≥ R

}
≤ n−2p−1.

We deduce that

Qn |γ(t, ·)− γ̂(t, ·)| ≤ CV 2
√
d(p+ 1) 3

2 log(n) 3
2

h
√
n

,

with probability larger that 1− 9n−p.

B.5 Proof of Lemma 25
Lemma (25).
If Q is sub-Gaussian with variance V 2, then, for every p > 0, with probability larger than
1− 2n−p, we have

sup
t∈(Rd)(k)

|(Q−Qn)γ(t, ·)| ≤ CV
2
√
kd(1 + p) 3

2 log(n) 3
2

h
√
n

,

for some absolute positive constant C.

Proof of Lemma 25. With the notation lti(x) = −2〈x,m(Qti,h)〉+‖m(Qti,h)‖2+v(Qti,h),
we get that:

sup
t∈(Rd)(k)

|(Q−Qn)γ(t, ·)| = sup
t∈(Rd)(k)

∣∣∣∣(Q−Qn) min
i∈[[1,k]]

lti

∣∣∣∣ .
First we note that since Q is sub-Gaussian with variance V 2, it follows from Lemma 29
that, for every c ∈ Rd,

‖m(Qc,h)‖2 + v(Qc,h) = Qc,h‖ · ‖2 ≤
3V 2

h
. (24)

Set R = 2V
√

log(n) + λ and λ = p log(n). Then, according to Lemma 29, with probabil-
ity larger than 1− n−2p−1,

max
i∈[[1,n]]

‖Xi‖ ≤ R. (25)
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We may then write

sup
t∈(Rd)(k)

|(Q−Qn)γ(t, ·)| = sup
t∈(Rd)(k)

∣∣∣∣∣ 1n
n∑
i=1

γ(t, Xi)−Qγ(t, ·)

∣∣∣∣∣
≤ sup

t∈(Rd)(k)

∣∣∣∣∣ 1n
n∑
i=1

γ(t, Xi)1‖Xi‖≤R −Qγ(t, ·)1‖·‖≤R

∣∣∣∣∣
+ sup

t∈(Rd)(k)
Q|γ(t, ·)1‖·‖>R|+ sup

t∈(Rd)(k)

∣∣∣∣∣ 1n
n∑
i=1

γ(t, Xi)1‖Xi‖>R

∣∣∣∣∣ .
According to (25), the last part is 0 with probability larger than 1− n−2p−1. Moreover,
according to Lemma 29,

Q|γ(t, ·)|1‖·‖>R ≤ Q1‖·‖>R sup
i∈[[1,k]]

2|〈·,m(Qti,h)〉|+ ‖m(Qti,h)‖2 + v(Qti,h)

≤ 2
√

3 V√
h
Q‖ · ‖1‖·‖>R + 3V 2

h
Q1‖·‖>R

≤ 3V 2

h
n−1−p

(
2
√
h+ n−1−p

)
≤ 9V 2

h
n−1−p.

It remains to bound
sup

t∈(Rd)(k)

∣∣(Q−Qn)γ(t, ·)1‖·‖≤R
∣∣ .

Since Lemma 29 ensures that, for every t and u, |γ(t, u)1‖u‖≤R| ≤
(
R+ V

√
3√
h

)2
:= Z,

then Theorem 30 entails

P

(
sup

t∈(Rd)(k)

∣∣(Q−Qn)γ(t, ·)1‖·‖≤R
∣∣ ≥ E sup
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∣∣+ Z

√
2λ
n

)
≤ e−λ = n−p.

Then, Theorem 32 yields
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Z
√
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1

Z
√
n
1‖·‖≤R mini∈[[1,k]] lti

}
. According to (20), (21) and (18), it holds

that
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where G1 =
{
x 7→ −2〈x,m(Qt,h)〉1‖x‖≤R

Z
√
n

| t ∈ Rd
}
and G2 denotes the set G2 =

{
x 7→ (‖m(Qt,h)‖2+v(Qt,h))1‖x‖≤R

Z
√
n

| t ∈ Rd
}
.

According to Theorem 35 and Lemma 37, we have

N ′‖.‖ (δ,G1(Xn
1 )) ≤

(
2
δ

)V ′(d+2)
,

for some absolute positive constant V ′. Also, N ′‖.‖(δ,G2(Xn
1 )) ≤ N ′‖.‖(δ,G3(Xn

1 )) ≤ 2
δ

with G3 =
{
x 7→ t1‖x‖≤R√

n
| t ∈ [0, 1]

}
. As a consequence, with probability larger than

1− 2n−p, it holds

sup
t∈(Rd)(k)

|(Q−Qn)γ(t, ·)| ≤ CZ
√
k
√
d+ 2√
n

+ 9V 2

h
n−1−p + Z

√
2p log(n)

n
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2
√
kd(1 + p) 3

2 log(n) 3
2

h
√
n

,

for some positive absolute constant C.
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C Proofs of intermediate Lemmas for Proposition 21
This section is devoted to the proofs of Lemmas 27 and 28 that are needed to prove
Proposition 21.

We recall that m = 2k/3, z1, . . . , zm is a 6∆-net in B(0,K), with ∆ = K/(6m 1
d ), so

that such a net exists ; w1, . . . , wm in Rd are such that ‖wi‖ = ∆ and zi +wi ∈ B(0,K).
For σ ∈ {−1,+1}m such that

∑m
i=1 σi = 0, Pσ denotes the distribution that satisfies, for

i ∈ [[1,m]],

Pσ({zi}) = Pσ({zi + wi}) = (1 + σiδ)
2m ,

with δ ≤ 1
3 . For τ ∈ {−1, 1}m2 , σ(τ) is defined by σ(τ)j = τj and σ(τ)m

2 +j = −τj , for
j ∈ [[1,m/2]]. A p-points quantizer F is a map from R

d to Rd such that |F (Rd)| = p,
and Fσ is the k-points quantizer satisfying

Fσ(zi) = zi, Fσ(zi + wi) = zi + wi if σi = +1
Fσ(zi) = Fσ(zi + wi) = zi if σi = −1.

At last, for a quantizer F with images q1, . . . , qp and sets of preimages V1, . . . , Vp, R(F, Pσ)
denotes the quantity

R(F, Pσ) =
p∑
i=1

Pσ

[
‖· −m(Pqi,h)‖2 + v(Pqi,h)

]
1Vi ,

where for i ∈ [[1, p]], Pqi,h ∈ Pqi,h(Pσ).

C.1 Proof of Lemma 27
Lemma (27).
Assume that δ ≤ 1

3 and h ≤ 1
3m . Let σ and σ′ be such that

∑m
i=1 σi =

∑m
i=1 σ

′
i = 0, and

let ρ(σ, σ′) denote the distance
∑m
i=1 |σi − σ′i|. Then

R(Fσ, P ′σ) = R(Fσ, Pσ) + δ∆2

2m ρ(σ, σ′).

Moreover, for every k-points nearest-neighbor quantizer F there exists σ and τ such that

∀Pσ(τ ′) R(F, Pσ(τ ′)) ≥ R(Fσ, Pσ(τ ′)) ≥
1
2R(Fσ(τ), Pσ(τ ′)).

Proof of Lemma 27. First recall that if δ ≤ 1
3 and h ≤ 1

3m , then, for any σ and t ∈ Rd,
we may choose Pt,h = δz, for some z ∈ {zi, zi + wi}i∈[[1,m]], so that m(Pt,h) = z and
v(Pt,h) = 0. Thus, we may restrict our attention to nearest-neighbor quantizers F whose
preimages are (non-weighted) Voronoi cells, with ties arbitrarily broken. In particular,
we have that

R(Fσ, P ′σ) = R(Fσ, Pσ) + δ∆2

2m ρ(σ, σ′).

Let F be such a nearest-neighbor quantizer with k codepoints, and for short denote by
R(F ) the quantity R(F, Pσ(τ ′)). The following construction provides Fσ (not depending
on σ(τ ′)) such that R(Fσ) ≤ R(F ). Let Vi denote the union of the Voronoi cells associated
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with zi and zi + ωi, in the Voronoi diagram generated by the sequences z and ω. We
adopt the following notation.

ni(F ) = |F (B(0,K)) ∩ Vi|,
nouti (F ) = |F (Vi) ∩ V ci |,
Ij(F ) = {i | ni(F ) = j},
ij(F ) = |Ij(F )|,
i≥j(F ) =

∑
i≥j
ij(F ).

The first step is to add codepoints to empty cells. From the k-quantizer F , a quantizer
F1 is built as follows.

• If ni(F ) ≥ 1, then we take F1|Vi ≡ F|Vi .

• If ni(F ) = 0, then we set F1(Vi) = zi.

Notice that F1 is a (k+ i0(F ))-quantizer. Let us denote k1 = k+ i0 and p± = 1±δ
2m . Then

R(F1) can be bounded as follows.
Let i be an integer between 1 and m. We denote by Ri(F ) the contribution of Vi to

the risk R(F ). If i ∈ I≥1, then Ri(F ) = Ri(F1). Otherwise, if i ∈ I0(F ),

Ri(F1) = p±∆2.

Furthermore, if i ∈ I0, then nouti (F ) ≥ 1. Without loss of generality assume that
F (zi) /∈ Vi. Then ‖m(PF (zi),h)−zi‖ ≥ 6∆−∆

2 . Since F is a nearest-neighbor quantizer and
z1, . . . , zm is a 6∆-net, we also have F (zi +wi) /∈ Vi. Thus ‖m(PF (zi+wi),h)− zi +wi‖ ≥
6δ−2∆

2 . Hence

Ri(F ) ≥ p±8∆2.

It follows that
R(F1) ≤ R(F )− 7i0(F )p−∆2.

At last, we build the k-points quantizer Fσ according to the following rule: we choose
i0(F ) cells with ni(F ) = 2 and withdraw one point in every cell. Since i2(F ) = i0(F )+ k

3 ,
i2(F ) ≥ i0(F ), thus such a procedure is valid. Elementary calculation show that

R(Fσ) ≤ R(F ) + i0(F )(p+ − 7p−)∆2 ≤ R(F ),

since p+ ≤ 2p−.
Now let τ be in {−1, 1}m2 such that ρ(σ(τ), σ) = minτ ′ ρ(σ(τ ′), σ). Recalling that

R(Fσ) = R(Fσ, Pσ(τ ′)), it follows that

R(Fσ(τ), Pσ(τ ′)) = R(Fσ(τ ′), Pσ(τ ′)) + (p+ − p−)∆2

2 ρ(σ(τ), σ(τ ′))

≤ 2R(Fσ(τ ′), Pσ(τ ′)) + (p+ − p−)∆2

2 (ρ(σ(τ), σ) + ρ(σ, σ(τ ′)))

≤ 2R(Fσ, Pσ) + 2(p+ − p−)∆2

2 ρ(σ(τ ′), σ)

≤ 2R(Fσ, Pσ(τ ′)).
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C.2 Proof of Lemma 28
Lemma (28).
Let τ and τ ′ in {−1, 1}m2 such that ρ(τ, τ ′) = 2. Then

H2
(
P⊗nσ(τ), P

⊗n
σ(τ ′)

)
≤ 4nδ2

m
:= α.

Proof of Lemma 28. Let us introduce, for distributions P and Q with densities f and g
with respect to the distribution µ =

∑m
i=1(δzi + δzi+wi), the affinity

α(P,Q) =
∫ √

fgdµ,

so that H2(P,Q) = 2(1− α(P,Q)). Elementary calculation shows that, if ρ(σ, σ′) = 4,
then

α(Pσ, Pσ′) = 1 + 2
m

(√
1− δ2 − 1

)
≥ 1− 2δ2

m
.

Hence we deduce

H2(P⊗nσ , P⊗nσ′ ) = 2(1− α(P⊗nσ , P⊗nσ′ ))
= 2(1− αn(Pσ, Pσ′))

≤ 4nδ2

m
.

Finally, we notice that ρ(τ, τ ′) = 2 implies ρ(σ(τ), σ(τ ′)) = 4, for τ , τ ′ in {−1,+1}m2 .
This gives the result.
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D Additional figures
In this section, we give some more details about the numerical illustrations of Section 4.

D.1 Robust topological inference

Selection of the parameter k Selection of the signal points number

Figure 4: Parameters selection

In the experiments, we have calibrated the mass parameter h (or equivalently the
number of nearest-neighbors q) manually. We chose the largest q such the distance to the
q-th nearest neighbor remains small with respect to the regularity of M , seized by the
reach of M [25, Definition 4.1]. This heuristic resulted in choosing q = 10. According to
the remark following Theorem 19, there is no need to take k as large as the sample size n
for the k-PDTM to be a good approximation of dM . This is confirmed by Figure 4 (left),
where we plotted an approximation P̃d2

Xn,h,k
of the risk Pd2

Xn,h,k
as a function of k, for

different values of q. Here, P̃ is the uniform distribution on a set of points regularly
generated on M and dXn,h,k the k-PDTM associated to the uniform distribution on Xn.
The curve strongly decreases and then stabilizes. We selected k = 50, the parameter k
at the beginning of the stabilization phase.

D.2 Outlier detection
In this section, we give more details on the truncated versions of k-means, the q-witnessed
distance and the k-PDTM. The proportion of signal points α can be calibrated from the
data. In Figure 4 (right), we displayed the mean of the empirical k-PDTM for the points
in its sublevel set that contains αn points, as a function of the level αn. We observe two
jumps in the slope, one at αn = 200 and the other one at αn = 240. This makes sense
since we generated 200 signal points, 40 outliers on a small rectangle and 40 others on a
large rectangle.

We experimented the compression and denoising scheme with αn = 200 for the three
methods. Results are depicted by Figure 5. The points removed by the procedure are
colored in pink. Note that for k-means, some points far from M are considered as signal
points. On the contrary, we remove outliers and recover the features of M from the
truncated versions of the k-PDTM and of the q-witnessed distance.

Note that similar graphics as Figure 4 (right) can be obtained for the trimmed
k-PDTM procedure, so that it is possible to select the number of outliers from data in
this case as well.
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Truncated k-means Truncated q-witnessed
distance Truncated k-PDTM

Figure 5: Comparison of the methods after thresholding
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