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ABSTRACT 41 
 42 
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched 43 
actin networks. When activated, the Arp2/3 complex contributes the actin branched junction 44 
and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. 45 
The different activators initiate branched actin networks at the cytosolic surface of different 46 
cellular membranes in order to promote their protrusion, movement or scission in cell 47 
migration and membrane traffic. Here we review the structure, function and regulation of all 48 
the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched 49 
actin network and that controls the stability of its branched junctions. Our goal is to present 50 
recent findings concerning novel inhibitory proteins or the regulation of the actin branched 51 
junction and place these in the context of what was previously known in order to provide a 52 
global overview of how the Arp2/3 complex is regulated in human cells. We focus on the 53 
human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells 54 
to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In 55 
many cases, these deregulations promote cancer progression and have a direct impact on 56 
patient survival. 57 

  58 
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I. INTRODUCTION 82 
 83 

The Arp2/3 complex is a major actin nucleating molecular machine, which is conserved 84 
in eukaryotes. This is the only molecular machine that generates branched actin networks. 85 
The Arp2/3 complex was first discovered as a multiprotein complex containing actin-related 86 
proteins (160) and rediscovered as an actin nucleating machine (270). Ever since, the Arp2/3 87 
complex has been associated with many functions, which we review here as we describe the 88 
regulators of Arp2/3 activity. A flurry of recent papers have reported novel regulators of the 89 
Arp2/3 complex, with, for example, several inhibitory proteins or regulators of the actin 90 
branched junction. The major goal of this review is to integrate these new findings into 91 
established knowledge of Arp2/3 regulation in order to provide a global overview of the 92 
Arp2/3 regulatory system.  93 

The reader can directly focus on his or her molecule of interest, which are classified 94 
according to the type of regulation they provide to the Arp2/3 complex (Fig.1). The 95 
monograph of each regulator is structured to describe, in this order, its molecular structure, its 96 
main cellular function, and then how it is regulated in the normal mammalian cell and 97 
deregulated in the cancer cell. We believe that this review organization can help the 98 
newcomer to enter in this profuse field.  99 

Deregulation of the Arp2/3 regulatory system in cancer has been described over the 100 
years. Examination of all these examples highlights the fact that over activation of the Arp2/3 101 
complex generally promotes cancer progression (Table 1). However, we will also describe 102 
notable exceptions, and attempt to provide an explanation as to why these anomalies still lead 103 
to cancer. The topic of the Arp2/3 complex and cancer has been less frequently covered than 104 
the hijacking of the Arp2/3 complex by pathogens, which has been nicely reviewed recently 105 
(271), and will not be addressed here. This topic also justifies focusing on the human genes 106 
and gene products, and hence to use the consensus human nomenclature to describe their 107 
activities. 108 

 109 

II. THE ARP2/3 COMPLEX 110 
 111 

A. The canonical Arp2/3 complex 112 
 113 

The Arp2/3 complex is a stable multiprotein complex of 7 subunits, with a total mass of 114 
about 250 kDa. Two of these subunits are Actin related proteins, Arp2 and Arp3. The crystal 115 
structure of the complex has revealed an inactive conformation, where Arp2 and Arp3 are 116 
maintained far apart in the architecture provided by the 5 other subunits, named ARPC1 to 5 117 
(Fig.1) (200). The Arp2/3 complex creates branched actin networks (16). In the active 118 
conformation, the Arp2/3 complex contributes a branched junction of two actin filaments, 119 
whose structure was revealed by electron microscopy (208, 257). This active conformation 120 
involves bringing together Arp2 and Arp3 within the complex, so that these two subunits 121 
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adopt the conformation of actin molecules within a filament (Fig.1). This conformation, 122 
however, can also be detected in a population of soluble Arp2/3 complexes, in the absence of 123 
any actin. The population of Arp2/3 complexes displaying the active conformation is greatly 124 
increased by Nucleation Promoting Factors (NPFs), such as N-WASP or WAVE (82, 203). 125 
The conformationally activated Arp2/3 complex can then interact with a pre-existing actin 126 
filament, often referred to as the mother filament, in order to initiate the elongation of a lateral 127 
branch, the daughter actin filament (204). The widely used Arp2/3 inhibitory compound, CK-128 
666, binds Arp2 and Arp3 and blocks their conformational rearrangement that is required for 129 
Arp2/3 activation (13, 95). 130 

The function of the Arp2/3 complex is to induce an explosive actin polymerization in 131 
response to signaling pathways. Because actin filaments are both substrates (mother) and 132 
products (daughter) of the branching reaction, the process has been described as autocatalytic 133 
and indeed generates an exponential increase of actin filaments (2). The resulting branched 134 
actin networks, also referred to as dendritic actin networks, have been demonstrated to 135 
generate a pushing force in vitro (153, 292). In the cell, the various NPFs are anchored at the 136 
surface of different membranes and the force they generate through the generation of 137 
branched actin networks remodel these membranes to perform various cellular functions. For 138 
example, the pushing force of branched actin networks allows the plasma membrane to 139 
protrude in fan-like migration structures called lamellipodia (241) and to promote scission of 140 
clathrin coated pits during endocytosis (42, 61). 141 

 142 

B. Novel complexities in the Arp2/3 complex 143 
 144 

Further complexity has recently been added to this general scheme. In the human 145 
genome, the ARPC1 subunit is encoded by two paralogous genes, ARPC1A and ARPC1B, 146 
and the ARPC5 subunit by ARPC5 and ARPC5L. The complexes containing ARPC1B or 147 
ARPC5L promote actin polymerization more efficiently than the ones containing the 148 
alternative paralogous subunits (1). The Arp2/3 activity is also regulated by phosphorylation 149 
of its subunits (140, 169). The phosphorylation of Arp2 by the serine threonine protein kinase 150 
NIK is required for the Arp2/3 activity (141). We are probably only starting to decipher this 151 
complex Arp2/3 regulation through phosphorylations. 152 

Strikingly, even the most fundamental property of the Arp2/3 complex, i.e. its ability to 153 
generate branched actin networks, has recently been found to admit exceptions. SPIN90, a 154 
protein of the WISH/Dip1 family with a conserved role in endocytosis (14, 126, 185), has 155 
been shown to induce actin polymerization without the need of a pre-existing filament. The 156 
SPIN90-Arp2/3 complex is in the active conformation and allows direct actin elongation from 157 
the rearranged Arp2-Arp3 template (258). Such a process normally does not take place with 158 
regular NPFs, since the NPF needs to dissociate from the rearranged Arp2/3 complex and the 159 
activated Arp2/3 needs to bind to a preexisting mother actin filament, in order to elongate an 160 
actin filament from the rearranged Arp2/3 (224). Linear actin filaments are also likely 161 
nucleated by hybrid complexes containing some, but not all, subunits of the Arp2/3 complex. 162 
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These hybrid complexes contain Arp2 and Arp3, which template actin filaments, but lack 163 
ARPC1, ARPC4 and ARPC5, which mediate many contacts with the mother filament (37). 164 

The hybrid complexes contain vinculin or vinculin and α-actinin, which target these 165 
hybrid Arp2/3 complexes to focal adhesions (37). A previously reported interaction between 166 
vinculin and the Arp2/3 complex probably reflects these hybrid complexes rather than 167 
vinculin transiently interacting with the whole Arp2/3 complex (49). It is likely that these 168 
hybrid complexes contribute to actin polymerization at focal adhesions. However, 169 
understanding the role of hybrid Arp2/3 complexes awaits specific ways to inhibit their 170 
assembly in the cell, given that their constituent subunits are either subunits of the Arp2/3 171 
complex or structural components of focal adhesions. Similarly, studying the molecular 172 
mechanism, by which these hybrid complexes generate linear actin filaments, awaits their 173 
purification, which is likely to be challenging given their low abundance. Moreover, 174 
reconstitution of the activity of hybrid Arp2/3 complexes may require elaborate in vitro 175 
systems, to reproduce the mechanosensitive behavior of vinculin in focal adhesions (38, 78). 176 

 177 

C. The Arp2/3 complex in cancer 178 
 179 

Arp2/3 subunits have been found by immunohistochemistry to be overexpressed in a 180 
variety of cancers, including lung (216), breast (109), gliomas (152), gastric (303) and 181 
colorectal cancers (110, 189). Since the Arp2/3 subunits assemble into a complex, the 182 
presence of one subunit is likely indicative of the whole complex. For example, similar 183 
staining were obtained with Arp2 and Arp3 antibodies in serial sections (189). However, a 184 
free pool of ARPC1B with a role in centrosomal homeostasis has also been reported (177). 185 
Three publications reported simultaneous overexpression of Arp2 and of one of its NPFs, 186 
WAVE2, in the same discrete cells of lung carcinomas (216), of breast carcinomas (109) and 187 
of colorectal carcinomas (110), indicating that, within tumors, which are often heterogeneous, 188 
overexpression of both the Arp2/3 complex and of WAVE2 corresponds to a coordinated 189 
program. Double positive cells were frequent at the invading front of breast and colorectal 190 
carcinomas (109, 110). 191 

In breast cancer cell lines and in mammary tumors obtained in a mouse model, the 192 
invasive carcinoma cells were found to overexpress genes encoding Arp2/3 subunits (261, 193 
262). In physiological 3D migrations of cancer cells, either reconstituted in vitro, or through 194 
intravital imaging in the grafted animal, protrusions along extracellular matrix fibers are more 195 
elongated than the typical fan-shaped lamellipodia observed in 2D cultures, but they 196 
nevertheless require the Arp2/3 complex (80, 261, 262, 286). Arp2/3 overexpression is tightly 197 
associated with cancer progression and tumor cell invasion. In patient biopsies, the 198 
overexpression of the Arp2/3 complex was more pronounced in high grade invasive colorectal 199 
carcinomas and was predictive of liver metastasis (110, 189). Arp2/3 mediated migration of 200 
colorectal carcinoma cells is not only important to seed metastases, but also to ensure their 201 
tumor growth through the co-optation of pre-existing blood vessels (67). Arp2/3 202 
overexpression was associated with poor patient survival in lung (216) and breast cancers 203 
(109). Arp2/3 overexpression in breast cancer is associated with HER2 overexpression, and, 204 
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in breast carcinoma cell lines that overexpress HER2, the therapeutic monoclonal antibody 205 
trastuzumab, which inhibits HER2 signaling, blocks lamellipodia formation and tumor cell 206 
invasion (294).  207 

Other very invasive cancers exhibit Arp2/3 overexpression. Arp2/3 overexpression is a  208 
marker, out of a set of only 5, used to distinguish malignant melanomas from benign nevi 209 
(119). In pancreatic cancer, the two genes encoding the two paralogous ARPC1 subunits are 210 
overexpressed (138). These two genes are localized in the 7q21-q22 region, which is 211 
frequently amplified in this cancer (138). As in other cell models, it was verified in pancreatic 212 
cancer cell lines that RNAi mediated depletion of the Arp2/3 complex decreases migration 213 
and invasion (199). 214 

For a stable multiprotein complex like the Arp2/3 complex, overexpression of one 215 
subunit at the mRNA level may not be sufficient to produce more complex. Levels of 216 
expression of most subunits are not limiting and subunits that are not assembled are thought 217 
to be degraded (51). In breast cancer, however, Arp2 protein, and thus the Arp2/3 complex, is 218 
correlated to the Arp2 mRNA level (110), indicating either that the level of Arp2 is limiting 219 
or that all subunits are up-regulated in a coordinated manner in order to assemble more 220 
Arp2/3 complexes. Levels of mRNA measured by quantitative PCR should systematically be 221 
complemented by immunohistochemistry, since carcinoma cells of the tumor are not always 222 
the cell type that displays the overexpression. For example, the Arp2/3 complex is also 223 
overexpressed in cancer-associated fibroblasts in colorectal cancer (189). Interestingly, 224 
overexpression in stromal cells is also associated with cancer progression toward the invasive 225 
stage of the carcinoma cells, in a cross-talk between stromal and carcinoma cells. 226 

 227 

III. THE NUCLEATION PROMOTING FACTORS 228 
 229 

Arp2/3 activators are called Nucleation Promoting Factors, or NPFs in short. They are 230 
characterized by their C-terminal domain that contains three short peptide motifs, a WH2, a 231 
Connector motif, and an Acidic end, in this order (Fig.2). This characteristic C-terminus is 232 
referred to as the WCA, or sometimes VCA for historical reasons. The CA binds to the 233 
Arp2/3 complex and induces its conformational activation. The WH2 motif binds to one 234 
globular actin molecule and delivers it to the rearranged Arp2/3. Both events are required to 235 
initiate an actin branch (193). In NPFs, there are sometimes more than one WH2 motif. The 236 
N-terminus vary considerably between NPFs. The N-terminus has a regulatory role. It 237 
determines how the WCA, the Arp2/3 activatory region, is masked in an inactive 238 
conformation at resting state, and how, in response to activatory signals, the WCA is going to 239 
be exposed to activate the Arp2/3 complex.  240 

The domains present in the N-terminus define the different families of NPFs (Fig.2), 241 
which activate the Arp2/3 complex at various subcellular functions to perform different 242 
functions. There are 4 families of NPFs in the human genome, WAVE, N-WASP, WASH and 243 
WHAMM families. 244 
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 245 

A. The WAVE family 246 
 247 

The WAVE family of NPFs consists of 3 WAVE proteins, sometimes also referred to as 248 
Scar proteins. WAVE2 is the ubiquitous one, WAVE1 and 3 being more restricted in their 249 
tissue expression (234). All WAVE proteins are embedded into a stable multiprotein complex, 250 
also containing ABI, CYFIP, NAP1 and BRK1 for a total of 5 subunits (58, 76, 107, 230, 251 
231). All of them, except BRK1, are encoded by paralogous genes yielding to a combinatorial 252 
complexity in the assembly of WAVE complexes (51). Moreover, some subunits, like ABI1, 253 
are alternatively spliced. Functional specializations of isoforms have been demonstrated in a 254 
couple of cases (57, 236). The WAVE1 complex has been crystallized (36). The output WCA 255 
domain is masked by its interaction with other subunits of the complex. The small GTPase 256 
Rac, the most established activator of the WAVE complex, interacts with the CYFIP1 subunit 257 
and releases the masked WCA (36, 51). 258 

The WAVE complex localizes at the edge of lamellipodia, where new actin molecules 259 
incorporate into dense branched actin networks beneath the plasma membrane (88, 136, 232). 260 
The WAVE complex localizes to the plasma membrane through its interaction with the 261 
phospholipid PIP3 or with membrane receptors (35, 186). Knock-down and knock-out 262 
experiments have established that the WAVE complex is a critical Rac effector for 263 
lamellipodium formation (171, 229, 230, 289, 290) (Fig.3). In addition to Rac, many 264 
phosphorylations are important to control WAVE complex activity (132). The major function 265 
of the WAVE complex, downstream of the small GTPase Rac, is to control cell migration, 266 
and especially persistent directional migration (132).  267 

Protrusion of the plasma membrane appears coordinated with intracellular traffic. The 268 
clathrin heavy chain has been demonstrated to interact with the WAVE complex and to 269 
promote its activation at the lamellipodium tip in an endocytosis-independent manner (75). 270 
Clathrin-mediated endocytosis is indeed not detected in lamellipodia. In contrast, the exocyst 271 
component Exo70 favors membrane protrusion by promoting the WAVE-Arp2/3 interaction 272 
(150, 307). A shut-down in endocytosis and an activation of exocytosis contribute an excess 273 
of membrane, and thus a release of membrane tension. Such a drop in membrane tension 274 
rapidly induces actin polymerization, formation of a lamellipodium and restoration of 275 
membrane tension (101, 146, 147, 198). 276 

In fibroblasts, the Rac—WAVE—Arp2/3 pathway is critical for haptotaxis, i.e. 277 
migration up a gradient of immobilized fibronectin, in line with the fact that lamellipodia are 278 
adherent membrane protrusions (127, 273). Whether this pathway is also involved in 279 
chemotaxis is controversial (240, 273). In epithelial cells, the Rac—WAVE—Arp2/3 pathway 280 
has also been involved in the formation and maintenance of cell-cell junctions (256, 288). 281 
Branched actin networks are prerequisites for the development of junctional tension through 282 
myosin contractility (255). Neogenin is a transmembrane protein of the junction that directly 283 
recruits the WAVE complex and promotes its activation by Rac at the junction (142). 284 
Through the interplay between lamellipodia and cell-cell junctions, the WAVE complex 285 
regulates collective migration of epithelial cells (181).   286 
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In transformed cells of human origin, lamellipodia are usually less prominent than in 287 
untransformed cells (Fig.4). Nonetheless, many reports indicate an important role of the 288 
WAVE complex in cell migration and tumor cell invasion. In breast invasive cell lines, for 289 
example, WAVE3 is required for lamellipodium formation and cell invasion through 290 
transwell filters (227). These in vitro results were however challenged (228). It is most of the 291 
time unclear where discrepancies come from. The extreme plasticity of tumor cell migration, 292 
where the Rac—WAVE—Arp2/3 contributes only the so-called mesenchymal migration is 293 
probably part of the explanation (6, 210). HER2 overexpression induces WAVE2 and 294 
WAVE3 expression (248, 294). WAVE3 is stabilized within the WAVE complex and 295 
destabilizing the complex with peptides forming interfaces between subunits results in 296 
reduced invasion of carcinoma cell lines in vitro (247, 249). WAVE3 depletion reduced the 297 
ability of breast carcinoma cell lines to generate lung metastasis in experiments, where 298 
genetically modified cell lines were grafted into immunocompromised mice (243, 248).  299 

In cancer, components of the WAVE complex are overexpressed and this 300 
overexpression is associated with poor patient prognosis (Table 1). All 3 WAVE proteins 301 
were found to be overexpressed in carcinomas of various origins, of the breast (62, 109, 135), 302 
of the colon (110, 302), of the liver (111, 291), of the lung (216), of the ovary (299), of the 303 
prostate (63, 64). In all these cases, but one, the overexpression of WAVE proteins is 304 
associated with reduced survival and prognosis markers of poor survival, such as high grade, 305 
lymph node invasion and metastases. The only exception is a study, which reports that 306 
WAVE3 overexpression is associated with better prognosis and better markers in colorectal 307 
carcinomas (302). This is in stark contrast to the overexpression of WAVE3 in breast and 308 
liver carcinomas, which is a predictor of poor outcome (111, 135). 309 

Similarly, for the other WAVE complex subunits, the general trend is an overexpression 310 
associated with decreased survival. This was reported for NAP1 in breast carcinomas (154), 311 
for its hematopoietic homologue HEM1 in leukemia (115), for ABI1 in breast and ovary 312 
carcinomas (259, 298). In lung carcinomas, the overexpression of the small subunit BRK1 is 313 
also associated with markers of poor prognosis, such as lymph node invasion and high grade 314 
(27). The BRK1 gene is located next to the tumor suppressor gene VHL. Large deletions that 315 
affect BRK1 at the same time as the VHL tumor suppressor protect patients from developing 316 
renal cell carcinomas, emphasizing the importance of the WAVE complex for cancer 317 
progression (60).  318 

However, two studies contradict this trend. The first one is the report of loss-of-function 319 
mutations of ABI1 in prostate cancer (283). This observation is supported by the appearance 320 
of prostate neoplasia in conditional ABI1 knock-out mice in the same study. The second study 321 
at odds with the general trend is the report of CYFIP1 downregulation in multiple carcinomas 322 
including breast, lung and colon cancers (221). Using mice engraftments with genetically 323 
modified cell lines, this study shows that CYFIP1 suppresses tumor invasion, rather than 324 
promotes it, as one could expect from the majority of cancer studies. Despite the causal 325 
relationships that these mouse models provide, it must be stressed that the importance of these 326 
two studies have not yet been confirmed with retrospective cohorts of patients.  327 
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There are 36 ways to assemble pentameric WAVE complexes with the 11 genes that 328 
encode subunits. It is likely that all paralogous genes do not encode equivalent subunits in 329 
terms of activity or regulation. It is also likely that functional specializations are only manifest 330 
in some, but not all, tissues. What remains to be established, however, is whether the few 331 
studies at odd with all the others reveal that a few specific compositions of WAVE complexes 332 
inhibit, rather than activate, actin polymerization and cell migration. 333 

 334 

 335 

B. The N-WASP family 336 
 337 

The WASP family is composed of two paralogous proteins in the human genome, the 338 
ubiquitous N-WASP and the hematopoietic WASP. N-WASP is auto-inhibited, since its 339 
WCA domain is masked by its own N-terminal WH1 domain (124). Even though this 340 
autoinhibition can be observed with N-WASP alone, N-WASP is normally complexed to one 341 
of the WIP family proteins and this heterodimeric complex is more tightly autoinhibited than 342 
N-WASP in isolation (51, 96, 97). The WIP family contains WICH and CR16 in addition to 343 
WIP. The small GTPase Cdc42 is the best characterized activator of N-WASP in vitro (51). 344 
To activate the N-WASP/WIP complex, however, the Cdc42 signal must be transduced 345 
through proteins of the (TOCA1, FBP17, CIP4) family, which contain a F-BAR domain (96) 346 
and a binding site for active Cdc42. N-WASP binds to both Cdc42 and these F-BAR 347 
containing proteins. 348 

The major functions of N-WASP are at the plasma membrane, like the WAVE complex. 349 
However, in untransformed cells, the contribution of N-WASP to membrane protrusions 350 
appears limited, despite clear Cdc42 activation at the leading edge (182). The N-WASP 351 
knock-out fibroblasts generate normal lamellipodia and filopodia (155, 225). When N-WASP 352 
was directly compared to WAVE2, both proteins were found enriched at the leading edge 353 
protrusions, but RNAi mediated depletion of WAVE2 yielded a more severe migration defect 354 
than N-WASP depletion (122). In fact, the role of N-WASP might be restricted to early 355 
adhesions to the extracellular matrix, as it is best revealed in cell spreading assays. N-WASP 356 
is important for adhesion to fibronectin and to the development of vinculin positive focal 357 
adhesions (173). Upon cell spreading, N-WASP enters in a complex with the Focal Adhesion 358 
Kinase, FAK (300). FAK also directly binds to the Arp2/3 complex through its FERM 359 
domain (217). In vitro, the FERM domain of FAK potentiates the actin polymerization 360 
induced by the Arp2/3 complex and the WCA domain of N-WASP. N-WASP stability 361 
requires both the formation of its native complex with WIP and β1 integrin (128). Indeed, 362 
upon β1 integrin depletion, N-WASP is destabilized and its proteasomal degradation can be 363 
rescued by WIP overexpression. However, after an early involvement of the Cdc42—N-364 
WASP pathway, lamellipodia seem rather to depend on the Rac—WAVE pathway. 365 

The most conserved role of N-WASP at the plasma membrane is during endocytosis 366 
(246, 268). N-WASP, but not WAVE, is specifically detected at the clathrin coated pit (15, 367 
167). N-WASP recruitment at this location relies on BAR domain containing proteins, which 368 
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induce and/or sense membrane curvature (108, 253). BAR domain containing proteins couple 369 
direct membrane remodeling with Arp2/3-mediated actin polymerization (233, 277). The 370 
force generated by branched actin networks appears to elongate the pit into a pronounced 371 
invagination and to compress the collar of the invagination (42, 61). This sequence of events 372 
promotes membrane scission, which eventually involves the GTPase dynamin. Actin 373 
polymerization and dynamin-mediated scission are intimately coupled (61, 245). 374 
Nevertheless, the role of actin polymerization in endocytosis is important, but dispensable in 375 
standard conditions (15). Actin polymerization becomes critical, when high membrane 376 
tension must be counteracted (18, 121). 377 

In transformed cells, in contrast, N-WASP becomes important to generate protrusions. 378 
In addition to lamellipodia, transformed cells generate invadopodia that degrade the 379 
extracellular matrix by localized delivery of the MT1-MMP metalloprotease (192). 380 
Invadopodia are easily recognizable ventral protrusions on 2D substrates that coexist with 381 
peripheral lamellipodia (Fig.4). They cannot be distinguished, however, from leading edge 382 
protrusions in 3D substrates. N-WASP is present and activated in invadopodia (156). 383 
Invadopodia depend on the N-WASP/WIP complex (72, 73, 176, 287). In grafted animals, 384 
breast invasive cells required N-WASP to invade, intravasate into blood circulation and to 385 
generate lung metastasis (81). Two N-WASP activators, Cdc42 and the F-BAR containing 386 
protein CIP4, are present in invadopodia and are required for tumor cell invasion (12, 191, 387 
206). This is in contrast with clathrin coated pits, which depend on F-BAR containing 388 
proteins, but not on Cdc42, and with lamellipodia, which depend on Cdc42, but not on the F-389 
BAR containing proteins. Specific upstream signaling is thus responsible for N-WASP 390 
recruitment and activation in different subcellular structures. In vitro, in 3D collagen gels, 391 
RNAi mediated depletion of the WAVE complex induces N-WASP dependent cell invasion 392 
(242), indicating a modified interplay between the two major NPFs of the plasma membrane 393 
in cancer cells compared to normal cells.  394 

In patients, N-WASP is not systematically overexpressed during cancer progression. In 395 
fact, N-WASP is overexpressed in pancreatic ductal adenocarcinomas (87), in lung cancer 396 
(68) and in hepatocellular carcinomas (114). But N-WASP displays overall normal levels in 397 
esophageal squamous cell carcinomas (263) and even down-regulation in breast carcinomas 398 
(165). In pancreatic ductal adenocarcinomas and in hepatocellular carcinomas, high N-WASP 399 
levels are associated with risk factors and decrease overall survival. In esophageal squamous 400 
cell carcinomas, despite the overall normal levels, high N-WASP, within its natural 401 
fluctuations of expression, is also associated with high grade carcinomas and lymph node 402 
invasion. Overall, as expected from its important role in invadopodia formation, N-WASP 403 
promotes cancer progression, but breast cancer appears as an exception. In breast cancer, N-404 
WASP is down regulated, instead of up regulated, and this down-regulation is associated with 405 
poor prognosis (165). Consistent with the exception of breast cancer, the N-WASP activator 406 
CIP4 is overexpressed in mammary carcinomas and associated with poor prognosis, but this 407 
effect is independent from N-WASP (206). In gliomas, the N-WASP partner WIP promotes 408 
cancer progression by stabilizing the YAP/TAZ transcription factors (74). 409 

 410 
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C. The WASH family 411 
 412 

The WASH family in the human genome displays a variable number of genes, from 15 413 
to 20 depending on individuals (149). This is due to the fact that the WASH gene is located in 414 
a subtelomeric region, which is prone to recombination. The genes were so recently 415 
duplicated, however, that, in practice, one can deplete all WASH proteins with single siRNA 416 
sequences, like any other gene product. In mice and rats, there is a single WASH gene. The 417 
WASH protein is embedded into a stable multiprotein complex (54, 83). This stable 418 
multiprotein complex is distantly related to the WAVE complex, with a one-to-one 419 
correspondence of the 5 subunits (113). Most subunits are encoded by single genes, and so the 420 
WASH complex is less diverse than the WAVE complex (52). Strikingly, however, the 421 
WASH complex recruits a pre-existing complex, which also exists on its own in the cytosol, 422 
the so-called capping protein (CP) (54). CP is in fact a heterodimer, which blocks the 423 
elongation of actin filaments. CP interaction has been shown to be important for WASH 424 
function in the amoeba Dictyostelium discoideum (190), but this is not yet understood why 425 
these two activities of actin nucleation and actin capping have to be coordinated in the same 426 
multiprotein complex. 427 

The WASH complex activates the Arp2/3 complex at the surface of endosomes (54, 428 
83). It is recruited to endosomes through its subunit FAM21, which contains multiple binding 429 
sites for the retromer (90, 93, 112). Importantly, the WASH complex and the retromer do not 430 
cover the whole surface area of endosomes, but rather define a microdomain, whose area is 431 
controlled by actin polymerization itself (53). The polymerization of branched actin is thought 432 
to promote membrane scission of transport intermediates that contain sorted receptors, in a 433 
manner similar to N-WASP during clathrin mediated endocytosis (77). The retromer performs 434 
sorting of endosomal cargoes that are either destined to follow the retrograde route to the 435 
trans-Golgi network or which are recycled to the plasma membrane (215). The WASH 436 
complex is activated through interaction with the phospholipid PI4P (56) and through 437 
ubiquitination of WASH using a K63 linkage, a modification which does not target 438 
conjugated proteins to the proteasome (89). 439 

In transformed cells, WASH promotes tumor cell invasion function through the sorting 440 
of endosomal cargoes it provides. The WASH dependent recycling of α5β1 integrins to the 441 
plasma membrane drives invasion of ovarian carcinoma cells in fibronectin containing 3D 442 
matrix (296). In breast carcinoma cells, the WASH complex interacts with the exocyst and 443 
contributes to the focal delivery of the metalloprotease MT1-MMP to invadopodia (178). This 444 
event requires transient tubular connexions between late endosomes and the plasma 445 
membrane. In cancer patient biopsies, there has been little examination of the WASH 446 
complex so far. The WASH complex subunit Strumpellin is overexpressed in high grade 447 
prostatic carcinomas, due to genetic amplification (194). 448 

 449 

D. The WHAMM family 450 
 451 
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WHAMM and JMY are two homologous proteins, which share a common modular 452 
organization (131, 254). They are composed of an amino-terminal domain, a long central α-453 
helical domain and the carboxy-terminal WCA that activates the Arp2/3 complex (120). JMY 454 
has the particularity to have 3 WH2 motifs, which bind actin. These 3 motifs were shown to 455 
be sufficient to nucleate actin in vitro in a WH2-only mechanism (305). WHAMM seems to 456 
be more expressed in epithelial tissues, such as colon, kidney and lung (29), whereas JMY is 457 
enriched in the brain, testis and lymphoid organs (3, 66). 458 

They are both localized at the Golgi, cis-Golgi for WHAMM (29), trans-Golgi for JMY 459 
(212), and they are both involved in anterograde transport, from ER to cis-Golgi and then 460 
from cis- to trans-Golgi cisternae. The role of WHAMM in trafficking involves binding of the 461 
N-terminal domain to Rab1 (209) and binding of the central α-helical domain to microtubules 462 
(219). Regulations by Rab1 and microtubules allow WHAMM to control the formation of 463 
membrane tubules, which are thought to mediate intracellular transport of anterograde cargoes 464 
(29, 209, 219). 465 

In addition, WHAMM and JMY were both recently involved in autophagy (43, 120). 466 
Their N-terminal domain dictate their localization to the ER, from which autophagosomal 467 
membranes originate. During autophagosome biogenesis, actin polymerization in a so-called 468 
'comet tail' is required to elongate membrane tubules from the ER, independently of 469 
microtubules (120). Branched actin networks also shape the autophagosome from the inside 470 
(168) and are likely involved in autophagosome closure as well. Indeed, topologically, 471 
autophagosome closure is a membrane scission event (130), and NPFs promote membrane 472 
scission, as described above for N-WASP and WASH. Connexions between Arp2/3 and 473 
autophagy appear numerous. WASH inactivation leads to massive autophagy through 474 
elucidated molecular pathways implicating the major regulators Beclin1, RNF2 and 475 
AMBRA1 (281, 282). However, the meaning of why WASH should suppress autophagy is 476 
not yet clear.  477 

 478 

E. An emerging function of NPFs in gene transcription 479 
 480 

JMY was originally identified as a cofactor for the p300/CBP transcription coactivator 481 
(220). JMY translocates to the nucleus, when actin concentration decreases in the cytoplasm 482 
and that actin does no longer bind to its cluster of WH2 motifs (304). In the nucleus, the 483 
JMY-p300 co-activator complex engages with transcription factors, such as p53 or HIF1α to 484 
induce the transcription of target genes involved in apoptosis or in cell motility (44, 45). The 485 
Arp2/3 complex and the other NPFs were also described moonlighting in the nucleus to 486 
regulate transcription. 487 

N-WASP has a marked effect on gene transcription (279). Actin, the Arp2/3 complex 488 
and N-WASP coimmunoprecipitate with the RNA polymerase II, which transcribes most 489 
protein encoding genes (279, 295). Nuclar Arp2/3 generates branched actin networks like its 490 
cytoplasmic counterpart (295). N-WASP might exert this transcription role through its 491 
interaction with the nuclear PSF/NonO complex (279). The tyrosine phosphorylation of N-492 
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WASP by Src family kinases (235) and FAK (278) favors its cytoplasmic localization at the 493 
expense of its nuclear localization and can thus downregulate its transcriptional role. The 494 
extent of the requirement of N-WASP for general gene transcription is, however, questioned 495 
by the apparent mild phenotype associated with N-WASP knock-out (155, 225). 496 

FAM21, a subunit of the WASH complex, has also been recently implicated in gene 497 
transcription (50). FAM21 shuttles back and forth in the nucleus. FAM21 regulate NF-κB 498 
transcription by binding to the p65 subunit of NF-κB and to the inhibitor of NF-κB kinases, 499 
IKKα, β and γ. This function of FAM21, however, appears relatively independent of the 500 
WASH NPF.   501 

The generation of nuclear branched actin can also derepress gene transcription through 502 
chromatin remodeling. Toca-1, one of the BAR containing activators of N-WASP, is critical 503 
to reactivate the pluripotency gene, Oct4, in nuclear reprograming experiments, where 504 
somatic nuclei are injected into Xenopus oocytes (174). The Rac—WAVE pathway is 505 
similarly required (175). In T lymphocytes, the hematopoietic WASP controls the 506 
lymphocytic Th1 differentiation program, because Th1 differentiation genes are occluded 507 
through methylation of histone H3 in patients affected by Wiskott-Aldrich syndrome, where 508 
WASP is defective (244). All together, these various experiments established that nuclear 509 
Arp2/3 and NPFs may control gene transcription through both chromatin remodeling and 510 
recruitment of the RNA polymerase II. 511 

 512 

 513 

IV. ARP2/3 INHIBITORY PROTEINS 514 
 515 

Three Arp2/3 inhibitory proteins have recently been reported. The general assumption is 516 
that an inhibitor should be diffuse in the cytosol, in order to maintain globally silent a 517 
signaling pathway that is locally activated. The surprise is that these Arp2/3 inhibitory 518 
proteins are specifically localized at the surface of specific membranes, just like the 519 
activators. There is mounting evidence that they counteract specific NPFs. 520 

 521 

A. Arpin 522 
 523 

In a bioinformatics screen for potential Arp2/3 regulators, our group identified an 524 
uncharacterized protein, which contained a typical C-terminal acidic A motif, but lacked the 525 
required WH2 motif for Arp2/3 activation. In vitro this protein binds to the Arp2/3 complex, 526 
but cannot activate it. It thus acts as a competitive inhibitor of NPFs (47) and was called 527 
Arpin as a mnemonic for Arp2/3 inhibition. There is a single Arpin gene in the human 528 
genome. In vitro Arpin constitutively exposes its C-terminal acidic tail, which inhibits the 529 
Arp2/3 complex (65). When bound to Arpin, the Arp2/3 complex is in the inactive 530 
conformation, where Arp2 and Arp3 are far apart (226). 531 
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In the cell, Arpin localizes at the lamellipodial edge, i.e. where branched actin is 532 
nucleated by the WAVE complex. Arpin's ability to interact with the Arp2/3 complex depends 533 
on Rac activity, which induces lamellipodia (47). Indeed, by single molecule imaging, Arp2/3 534 
complexes from the lamellipodial edge were not all activated and incorporated into the 535 
branched actin network that undergoes retrograde flow. Some Arp2/3 complexes were seen to 536 
move laterally in the plane of the plasma membrane (172) (Fig.3). The Arp2/3 complexes are 537 
likely maintained inactive by Arpin at this location. Arpin is an inhibitor of cell migration 538 
(84). Without Arpin, lamellipodia protrude for longer, and, as a consequence, sustain active 539 
directional migration.  540 

Consistent with an inhibitory role on cell migration, Arpin was found to be down-541 
regulated during breast cancer progression. In two independent retrospective cohorts of breast 542 
cancer patients, Arpin down-regulation, documented at both mRNA and protein levels, was 543 
associated with lymph node invasion and decreased survival (151, 154). The most powerful 544 
prognosis factor, however, is obtained when patients having tumors displaying Arpin down-545 
regulation are combined with patients having tumors displaying up-regulation of the WAVE 546 
complex (154). Patient analyses thus confirm the specific antagonism between Arpin and the 547 
WAVE complex deduced from the analyses of cell migration in vitro. 548 

 549 

B. Gadkin 550 
 551 

Gadkin, also known as γ-BAR, is another protein that interacts with the Arp2/3 complex 552 
through an acidic motif (163). The AP1AR gene, which encodes Gadkin, has no paralog in 553 
the human genome. Gadkin localizes at steady state at the surface of endosomes (213). 554 
Gadkin regulates the trans Golgi network—endosomal traffic by entering in a complex with 555 
the kinesin KIF5 and the clathrin adaptor AP-1 (213). Its function and localization are thus 556 
most similar to the ones of the WASH complex among the different NPFs. In Gadkin knock-557 
out cells, the Arp2/3 complex associated with endosomes appear to polymerize more F-actin 558 
(211). It is thus logical to assume that Gadkin maintains the Arp2/3 complex in an inhibited 559 
conformation, like Arpin. However, in in vitro assays of Arp2/3 activity, purified Gadkin does 560 
not inhibit actin nucleation (163), suggesting that Gadkin's activity is not yet properly 561 
reconstituted in such in vitro assays. It is tempting to speculate that Gadkin might antagonize 562 
the WASH complex at the surface of endosomes, but this hypothesis awaits the demonstration 563 
that they both regulate the endosomal sorting of the same receptors.  564 

Gadkin has been shown to be overexpressed in breast cancer, but this overexpression is 565 
not associated with patient prognosis (154). 566 

 567 

C. PICK1 568 
 569 

PICK1 is a protein containing a PDZ and a BAR domain. PICK1 is encoded by a single 570 
gene, which is ubiquitously expressed with an enrichment in the brain (144). The PDZ 571 
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domain of PICK1 connects it to numerous membrane receptors and transporters, the most 572 
studied of which is the AMPA receptor of the glutamate neurotransmitter. The BAR domain 573 
dimerizes and induces or senses curved membranes through its banana-shaped membrane 574 
binding interface (161, 233). The C-terminal part of the molecule contains an acidic motif that 575 
binds and inhibits the Arp2/3 complex (202). This inhibitory activity was reported to be 576 
regulated by the GTPase Arf1 (201). 577 

PICK1 regulates AMPA receptor trafficking, and in particular its clathrin-dependent 578 
endocytosis (9, 202). The role of PICK1 is thus most consistent with an antagonism with N-579 
WASP at the clathrin coated pits. However, the situation is more complex than previously 580 
thought, since the BAR domain of PICK1 recognize mostly vesicles derived from the trans 581 
Golgi network and inhibition of the Arp2/3 complex in vitro was not reproduced in a recent 582 
study (161). PICK1 regulates long-term depression and long-term potentiation of synapses 583 
(125, 201, 250). These effects are mediated by expansion or contraction of post-synaptic 584 
structures called dendritic spines. Dendritic spines are actin-rich membrane structures, 585 
perhaps equivalent to a mini-lamellipodium except that filaments emanating from a central 586 
branched actin network are laterally elongated, thus allowing the expansion of the spine (33). 587 
Like in the lamellipodium, the central branched actin network is nucleated by the Rac—588 
WAVE—Arp2/3 pathway (34). PICK1 controls the activity-regulated size of dendritic spines 589 
(8). Consistent with an inhibitory role, PICK1 depletion expand spines, whereas its 590 
overexpression induce spine shrinkage (180). In glial cells, PICK1 might antagonize WAVE 591 
rather than N-WASP, because PICK1 depletion increases branching complexity of astrocytes, 592 
whereas WAVE2 depletion decreases it, unlike N-WASP depletion (179). 593 

In cancer as well, the role of PICK1 is complex. In gliomas, PICK1 expression is down-594 
regulated in aggressive astrocytic tumors (41). In contrast, in the breast, PICK1 was reported 595 
to be overexpressed in tumors of poor prognosis (297). PICK1 overexpression in breast 596 
cancer was, however, not observed in a second independent cohort (154). 597 

 598 

V. BRANCH REGULATORS 599 
 600 

A. Cortactin 601 
 602 

The cortactin family is composed of two members, the ubiquitous cortactin protein and 603 
HS1, which is hematopoietic-specific and thus less studied. Cortactin interacts with actin 604 
filaments through its specific cortactin repeats and with the Arp2/3 complex through an acidic 605 
motif, which has the particularity to be located in the N-terminus of the protein (Fig.5). 606 
Cortactin was previously proposed to be a NPF, because it does activate the Arp2/3 complex 607 
in vitro at high concentration. However, cortactin strongly synergizes with NPFs, because it 608 
acts after WCA induced branching nucleation by inhibiting debranching (265, 266). Cortactin 609 
thus competes for Arp2/3 binding with the NPF and by doing so favors NPF detachment 610 
(223). NPF detachment is a prerequisite for the elongation of a daughter filament from an 611 



 17

Arp2/3 complex that has landed onto a mother filament (59, 94, 224). Cortactin then remains 612 
bound to the Arp2/3 at the actin branch and prevents it from debranching (25) (Fig.6). 613 

In cells, cortactin is a good marker of branched actin networks, because it labels them 614 
all along their length and independently of their subcellular location (116, 267). In contrast, 615 
NPFs are specific for each organelle and are only localized at the interface between the 616 
organelle and the branched actin structure. By FRAP, cortactin was seen to undergo 617 
continuous exchange along the length of lamellipodial actin network (136). Further in vivo 618 
evidence that cortactin associates with Arp2/3 at the branch include double immunogold 619 
labeling of lamellipodial actin networks by electron microscopy (25). Elongation of actin 620 
filaments induces the retrograde movement of Arp2/3 complexes that have landed on a 621 
mother filament. This movement extracts the NPF from the membrane displaying it. 622 
Inactivating the Arp2/3 complex or blocking actin dynamics indeed freezes the turnover of 623 
NPFs and induces a striking accumulation of WAVE, WASP or WASH at the surface of their 624 
respective membrane (53, 172, 269). It remains to be tested, however, if cortactin 625 
overexpression prevents NPF extraction that ensures the turnover measured by FRAP. 626 

Cortactin has been discovered as a tyrosine-phosphorylated protein in cells transformed 627 
by the Src oncogene (274, 275). It has since been demonstrated to be a substrate of numerous 628 
tyrosine kinases, of both receptor and non-receptor types (19, 46, 71, 102, 118). Cortactin is 629 
also phosphorylated on serine residues by MAP kinases (28) and PAK1, the well-known 630 
effector of Rac and Cdc42 pathway (86, 92). It is not known if these modifications 631 
specifically regulate the branch regulatory function of cortactin, but it does signal to 632 
cytoskeleton regulatory proteins. Tyrosine phosphorylation controls cortactin association with 633 
cofilin and its activation (162, 188). Cortactin phosphorylation also regulates its ability to 634 
bind and activate N-WASP, through its C-terminal SH3 domain (166). Cortactin is subjected 635 
to other types of post-translational modifications, such as acetylation, which prevents its 636 
binding to actin filaments and decreases cell migration (301). 637 

Cortactin was found to promote lamellipodial persistence and cell motility in 638 
transformed cells (21, 123). However, this is likely not a direct effect of its branch stabilizing 639 
activity, but rather a signaling role of cortactin, since cortactin knock-out fibroblasts have no 640 
visible defects in lamellipodial ultrastructure and only modest alterations of migration 641 
parameters (137). Strikingly, the defects of cortactin depleted cells can be rescued by 642 
adhesion to the matrix deposited by control cells, suggesting that cortactin have defects in 643 
depositing extracellular matrix (239). Invadopodia, the major protrusions of cancer invasive 644 
cells, depend on cortactin, in addition to their specific NPF, N-WASP. Cortactin is a structural 645 
component of the branched actin networks that induce invadopodial protrusions and its 646 
activation by phosphorylation is critical for this process (10, 11, 40, 55). Intracellular traffic 647 
controls the focal secretion of the metalloproteases of the invadopodia and cortactin favors 648 
secretion, in addition to its role in creating the protrusion (10, 40, 99, 129). Exosome 649 
secretion, which is important for communication between cancer cells and between cancer 650 
cells and cancer-associated cells from their microenvironnement, critically depends on 651 
cortactin (222). 652 
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Cortactin is overexpressed in many cancers (Table 2). The CTTN gene encoding 653 
cortactin is located on the 11q13 genomic region, which is frequently amplified during cancer 654 
progression, especially in head and neck squamous cell carcinoma (HNSCC) and in breast 655 
cancer (214). In HSNCC, cortactin overexpression, due to CTTN amplification, is associated 656 
with cancer progression, invasion of lymph nodes, and recurrence (98, 205, 207). In HNSCC 657 
cell lines, cortactin overexpression promotes cell growth in vitro and tumor growth in 658 
xenografts (39, 252). Cortactin overexpression favors cell growth independent of growth 659 
factors, of anchorage and mediates resistance to contact inhibition, which are three major 660 
hallmarks of transformation. In patients, cortactin overexpression is associated with high 661 
grade tumors, metastases and poor survival in squamous cell carcinomas from the larynx, 662 
from the esophagus and from the oral cavity (7, 79, 157, 237, 285). In breast cancers, 663 
cortactin is also overexpressed, but this overexpression was consistently found not to be 664 
associated with patient prognosis (48, 104, 218). Nevertheless, in xenografts, cortactin 665 
expression enhances the ability of a breast carcinoma cell line to metastasize to the bones 666 
(143). These results are not as paradoxical as it might seem: Cortactin can be involved in the 667 
transformation process and in cancer progression, and not be associated with a poor 668 
prognosis, if the overexpression occurs most frequently in breast cancer subtypes, which are 669 
not as aggressive, as the one associated with the poorest patient survival. Cortactin 670 
overexpression has been associated with high grade tumors, but not yet with poor survival, in 671 
ovarian carcinomas (148), in non small cell carcinomas of the lung (184), in gliomas (260). 672 
Cortactin has been associated with both high grade tumors and poor survival in colorectal 673 
cancer (22, 183), in gastric cancer (264), in prostate cancer (100), in melanoma (284) and in 674 
hepatocellular carcinoma (103). 675 

 676 

B. Coronin 677 
 678 

There are 7 coronins in human, which are characterized by a so-called β-propeller 679 
structure made of WD40 repeats (31). Here we will discuss only the type I coronins, among 680 
which Coro1B and Coro1C are ubiquitous and Coro1A hematopoietic-specific. At the C-681 
terminus, a coiled-coil domain mediates homo and hetero-trimerization of coronins (117). 682 
Coronins are binding to both the Arp2/3 complex and actin filaments. In all type I coronins, a 683 
binding site for actin filaments is in the β-propeller, but Coro1C possesses a second filament 684 
binding site in a unique region (31, 32). The site binding to the Arp2/3 complex is in the N-685 
terminus of coronins. Arp2/3 binding is regulated by the phosphorylation of two serines in the 686 
N-terminus and C-terminus. Phosphomimetic mutations of these sites strongly decrease 687 
Arp2/3 binding (23, 280). 688 

In vitro, coronin enhances Arp2/3 debranching and both binding sites are required for 689 
this effect (24, 25). An antagonism between cortactin and coronin has thus been proposed to 690 
control the debranching rate of branched actin networks (25). Coronin does not stain the 691 
branched actin structures to their top where new branches are formed, indicating that coronin 692 
acts at a later stage than cortactin (25). However, one has to understand why in vivo coronin 693 
is a good marker of branched actin networks at lamellipodia, as well as at the surface of 694 
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endosomes (26, 197). If the only role of coronin was to debranch, coronin should not stay in 695 
the branched actin network. Recent data explain the conundrum that coronin remains 696 
associated with the branched actin structure that it remodels: Coronin would not have the 697 
same effect on the Arp2/3 complexes depending on their precise composition in paralogous 698 
subunits (1). The Arp2/3 complexes containing ARPC1A and/or ARPC5 would indeed be 699 
debranched by coronin, whereas the most efficient Arp2/3 complexes containing ARPC1B 700 
and/or ARPC5L would be immune to coronin-induced debranching (Fig.6). Coronin could 701 
thus mediate partial debranching of the branched actin networks and at the same time be a 702 
good marker of the branched actin structures.  703 

The serine 2 of Coronin 1B has been shown to be phosphorylated by PKCs in response 704 
to factors that induce actin polymerization and cell motility, such as platelet-derived growth 705 
factor (PDGF) or phorbol myristate acetate (PMA) (23, 272). These observations are 706 
consistent with a shut-down of Arp2/3 debranching, when branched actin networks are 707 
triggered. Depletion of coronin, however, alters lamellipodial dynamics and impairs cell 708 
migration as a consequence (26). These effects might only be partially due to Arp2/3 709 
debranching. Indeed, coronin recruits to branched actin networks the phosphatase slingshot 710 
that activates cofilin by dephosphorylation (26). Coronin, together with cofilin, promotes the 711 
disassembly of branched actin structures, when the actin filaments age (20, 69, 134). Through 712 
its activities of Arp2/3 debranching and actin disassembly, coronin appears to down-regulate, 713 
rather than promote, branched actin networks.  714 

Coronin 1C is overexpressed in gliomas (251), in hepatocellular carcinomas (276), 715 
gastric cancers (238), lymphomas (159). When it has been examined, coronin overexpression 716 
is associated with high grade tumors and poor survival for patients. It might seem at odds that 717 
a type I coronin, which globally down-regulates branched actin networks, might be 718 
overexpressed in cancers, while the Arp2/3 complex is also overexpressed. However, coronin 719 
activities in favoring debranching and actin depolymerization might be important to replenish 720 
available pools of actin molecules and Arp2/3 complexes for continuous actin polymerization 721 
and sustained cell movements (26, 272).  722 

 723 

C. GMF 724 
 725 

There are two Glia-Maturation Factors (GMF) proteins encoded in humans, GMFβ 726 
encoded by the GMFB gene and GMFγ encoded by GMFG. GMFB is expressed ubiquitously 727 
with an enrichment in the brain (91), whereas GMFG is mostly expressed in hematopoietic 728 
cells and endothelial cells (105). These two homologous proteins belong to the same 729 
superfamily as cofilin, but define a subfamily of their own (85, 196). GMFs are cofilins, 730 
which have evolved to bind to Arp2, instead of actin. GMF uses this Arp2 binding site to 731 
insert intself in between Arp2 and the actin molecule and thus severs the branch in a way 732 
similar to cofilin severing actin filaments (70, 158, 293). GMF preferentially recognizes Arp2, 733 
when it is bound to ADP (17). ATP hydrolysis by Arp2 is not required for branched actin 734 
nucleation, since it occurs after branched actin nucleation (106, 139, 164). As a consequence 735 
ATP hydrolysis by Arp2 acts as a timer, indicating that the actin branch has aged, the same 736 
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way ATP hydrolysis by the actin molecules in a filament indicates the older portion of the 737 
filament. Cofilin also severs ADP-actin filaments more efficiently than younger ATP-actin 738 
filaments (30, 170, 187). GMF binding to Arp2 is regulated by phosphorylation of its serine at 739 
position 2 (105), just like cofilin (5).  740 

It is not yet established whether coronin and GMF provide two independent means of 741 
debranching branched actin networks for increased robustness or whether they collaborate to 742 
perform efficient debranching together. GMF and coronin may play sequential roles in the 743 
molecular reaction of Arp2/3 debranching. Indeed, once GMF has severed the connexion 744 
between the Arp2/3 complex and the daughter filament, the Arp2/3 complex is still interacting 745 
with the mother actin filament and coronin has been shown to detach such landed Arp2/3 746 
complexes from filaments (25).  747 

In the cell, GMF depletion alters lamellipodial dynamics by decreasing disassembly of 748 
branched actin networks (91, 195). The consequence on cell migration is not dramatic, but 749 
can be seen in instances, where migration is finely regulated. Depletion of GMFγ from 750 
neutrophils impairs their chemotaxis towards inflammatory cytokines (4), whereas depletion 751 
of GMFβ from fibroblasts impairs their haptotaxis towards immobilized extracellular matrix 752 
(91).  753 

GMFβ is overexpressed in gliomas, because it is expressed by tumor cells and 754 
endothelial cells of new capillaries feeding the tumor (133). Endothelial cells within the 755 
glioma thus express GMFβ, instead of GMFγ for normal vessels. GMFβ overexpression in 756 
glioma-associated endothelial cells has been reported to be a better prognosis factor than 757 
GMFβ overexpression in tumor cells (133). Both GMFβ and GMFγ are overexpressed in 758 
ovarian cancers (145, 306). As we have seen for coronin, the overexpression of a branch 759 
destabilizer might promote the turnover of branched actin networks. 760 

 761 

VI. CONCLUSION 762 
 763 

In about 20 years, the Arp2/3 complex has been implicated in a variety of processes. It 764 
is now clear that the branched actin networks and the pushing force that they generate are 765 
major means that cells use to remodel their plasma membrane in cell migration as well as 766 
their internal membranes in membrane traffic. In many instances, the in vivo role of Arp2/3 767 
regulators has been reconstituted in vitro and these endeavors gave rise to in depth 768 
understanding of molecular and cellular functions of Arp2/3 regulation. To go back and forth 769 
from the molecular level in appropriate reconstitutions to the cellular level, where molecular 770 
dynamics can also be addressed using techniques such as FRAP, has allowed to identify and 771 
rule out artifactual molecular behaviors sometimes observed in vitro in conditions far from 772 
the cell physiology. 773 

Here we have attempted to organize the various Arp2/3 regulators in systems. The NPFs 774 
divide the labor of generating the diverse branched actin structures of the cell. The 775 
combinatorial complexity in assembling NPF complexes imposes to study the repertoire of 776 
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paralogous subunits expressed in each cell system. Similar complexity emerged at the level of 777 
the different Arp2/3 complexes, which might themselves be differentially regulated by the 778 
different NPF complexes. Similarly, the identification of different Arp2/3 inhibitors revealed 779 
that Arp2/3 inhibition is not global, as a means to maintain the system silent in the cytosol, 780 
but the inhibitory proteins rather balance Arp2/3 activation at the surface of different cell 781 
membranes. Similarly, regulators of the Arp2/3 branched junction fine-tune the ultrastructure 782 
of branched actin networks and their role appear mostly in highly regulated physiological 783 
processes. We begin to unravel the exquisite regulations of the Arp2/3 complex in these 784 
various situations. 785 

Deregulation of the Arp2/3 regulatory system in cancer offers an opportunity to 786 
understand its logic. If one sets aside a couple of reports at odds with the majority of 787 
publications, one can see that the Arp2/3, the WAVE and the N-WASP complexes are overall 788 
overexpressed in many cancers. These overexpressions are usually associated with poor 789 
prognosis for patients. The other NPFs more specifically involved in intracellular trafficking 790 
like WASH, WHAMM or JMY, are not, or not yet, involved in cancer progression. Down-791 
regulation of Arpin is consistent with its inhibitory role. The situation is not yet clear for 792 
Gadkin and PICK1. As for the branch regulators, the stabilizer cortactin and destabilizers, 793 
coronin and GMF, are all clearly overexpressed with an overall association with high grade of 794 
tumors and poor prognosis for the patients. These simple observations emphasize the notion 795 
that branched actin networks have to turnover fast to perform their function. The deregulation 796 
of the Arp2/3 regulatory system in cancer suggests that small molecule inhibitors of branched 797 
actin dynamics might provide a therapeutic benefit to control cancer progression. 798 
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 802 

Figure legends 803 

 804 

Figure 1: Conformations of the Arp2/3 complex and regulators of the equilibria between 805 
them. On the left, the fully inactive Arp2/3 complex displays a conformation, where Arp2 and 806 
Arp3 are far apart. On the right, the fully activated Arp2/3 complex has nucleated an actin 807 
filament from the side of a pre-existing filament. The middle conformation corresponds to a 808 
rearranged Arp2/3 complex, where Arp2 and Arp3 have been brought into proximity and 809 
mimics the end of an actin filament. This conformation allows side binding to an actin 810 
filament. Regulatory factors are represented above and below the equilibrium arrows. CK-666 811 
and CK-869 are two small molecule inhibitors of Arp2/3 activation (95), which are widely 812 
used in cell biology experiments. 813 

 814 

Figure 2: Modular organization of Arp2/3 activatory and inhibitory proteins. Their division 815 
of labor at different subcellular localizations is indicated. All activators contain a C-terminal 816 
WCA domain, which binds and activates the Arp2/3 complex, whereas all inhibitors contain 817 
an acidic motif (A), which binds to the Arp2/3 complex and competes with WCA-containing 818 
activators. When the activators were described to form a stable complex, partner subunits are 819 
depicted. An inhibitory protein that would antagonize WHAMM activatory proteins remains 820 
to be identified. SHD: Scar/WAVE homology domain; B: Basic domain; P : Proline-rich 821 
region; WH1:  WASP homology 1; CRIB: CDC42 and Rac1 Interactive Binding region; AI: 822 
Auto-Inhibition domain; WAHD1: WASH homology Domain 1; WMD: WHAMM 823 
Membrane-interacting Domain; CC : Coiled coiled; PDZ : PSD95–Dlg1–ZO1 domain; BAR: 824 
Bin–Amphiphysin–Rvs domain. 825 

 826 

Figure 3: WAVE and Arpin control the duration of branched actin polymerization at the 827 
cortex. Polymerization is triggered by Rac activation, i.e. its exchange of the bound GDP 828 
nucleotide for a GTP nucleotide. GTP-bound Rac then directly recruits the WAVE complex at 829 
the plasma membrane. Activated WAVE binds and activates several Arp2/3 complexes, 830 
which are represented with different blue intensities. Each activated Arp2/3 complex 831 
nucleates an actin branch that undergoes a retrograde movement due to actin filament 832 
elongation (white arrows). This scheme represents molecular processes in the referential of 833 
the cell membrane and not of the substratum: either the membrane is fixed and the branched 834 
actin undergoes a retrograde flow, or the branched actin structure is fixed, due to a coupling 835 
with cell adhesion structures, and the plasma membrane protrudes. Rac controls the 836 
recruitment of Arpin with a delay, after the recruitment of the WAVE complex. Arpin 837 
molecules locally bind Arp2/3 complexes and block their activation of Arp2/3 complexes. 838 
The Arp2/3 complexes, which move laterally in the plane of the plasma membrane (white 839 
arrows), are probably the ones bound to Arpin molecules. 840 
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Figure 4: Deregulation of the Arp2/3 regulatory system in cell transformation. In normal 842 
cells, N-WASP, WASH, WHAMM and WAVE nucleate branched actin network at the 843 
clathrin-coated pit, at the surface of endosomes, of the ER/Golgi and at the lamellipodial 844 
edge, respectively. The Arp2/3 inhibitory proteins, Arpin, Gadkin and PICK1, locally 845 
antagonize WAVE, WASH and N-WASP at their respective locations. During cell 846 
transformation, N-WASP is overexpressed and forms invadopodia. In invadopodia, WASH 847 
promotes focalized delivery of metalloproteases that degrade the extracellular matrix. In 848 
cancer cells, WAVE is overexpressed and Arpin down-regulated, despite frequent abnormal 849 
lamellipodia. Font size indicate the level of expression. 850 

 851 

Figure 5: Modular organization of proteins that regulate Arp2/3 branches. Cortactin stabilizes 852 
the Arp2/3 branches, whereas GMF and coronin destabilize them. R: cortactin Repeats; P = 853 
Proline-rich region; SH3: Src Homology 3 domain; CC = Coiled Coil ; ADF-H = ADF/cofilin 854 
Homology domain. 855 

 856 

Figure 6: Regulation of the actin junctions branched by the Arp2/3 complex. Cortactin binds 857 
the Arp2/3 complex at the branch and blocks actin debranching. GMF recognizes the Arp2/3 858 
complex in the context of the branch and severs the branch. Coronin destabilizes the actin 859 
branches formed by ArpC1A/ArpC5 containing Arp2/3 complexes. In contrast, the actin 860 
branches formed by ArpC1B/ArpC5L containing Arp2/3 complexes resist coronin's effect, 861 
thus explaining why coronin is a good marker of branched actin networks, like cortactin. 862 

 863 

 864 

 865 

 866 

GRANTS 867 

This work was supported by grants from the Agence Nationale pour la Recherche (ANR 868 
ANR-15-CE13-0016-01) from the Fondation ARC pour la Recherche sur le Cancer 869 
(PGA120140200831) and from Institut National du Cancer (INCA_6521). The authors have 870 
no conflict of interest to declare. 871 

 872 

 873 

 874 

DISCLOSURES 875 

The authors have no conflict of interest to declare. 876 

  877 



 24

REFERENCES 878 

 879 

1. Abella JVG, Galloni C, Pernier J, Barry DJ, Kjær S, Carlier M-F, Way M. Isoform 880 
diversity in the Arp2/3 complex determines actin filament dynamics. Nat Cell Biol 881 
18: 76–86, 2016. 882 

2. Achard V, Martiel J-L, Michelot A, Guérin C, Reymann A-C, Blanchoin L, 883 
Boujemaa-Paterski R. A “primer-”based mechanism underlies branched actin 884 
filament network formation and motility. Curr Biol 20: 423–428, 2010. 885 

3. Adighibe O, Turley H, Leek R, Harris A, Coutts AS, La Thangue N, Gatter K, 886 
Pezzella F. JMY protein, a regulator of P53 and cytoplasmic actin filaments, is 887 
expressed in normal and neoplastic tissues. Virchows Arch 465: 715–722, 2014. 888 

4. Aerbajinai W, Liu L, Chin K, Zhu J, Parent CA, Rodgers GP. Glia maturation factor-889 
γ mediates neutrophil chemotaxis. J Leukoc Biol 90: 529–538, 2011. 890 

5. Agnew BJ, Minamide LS, Bamburg JR. Reactivation of phosphorylated actin 891 
depolymerizing factor and identification of the regulatory site. J Biol Chem 270: 892 
17582–17587, 1995. 893 

6. Alexandrova AY. Plasticity of tumor cell migration: acquisition of new properties or 894 
return to the past? Biochemistry (Mosc.) 79: 947–963, 2014. 895 

7. Ambrosio EP, Rosa FE, Domingues MAC, Villacis RAR, Coudry R de A, Tagliarini 896 
JV, Soares FA, Kowalski LP, Rogatto SR. Cortactin is associated with perineural 897 
invasion in the deep invasive front area of laryngeal carcinomas. Hum Pathol 42: 898 
1221–1229, 2011. 899 

8. Anggono V, Clem RL, Huganir RL. PICK1 loss of function occludes homeostatic 900 
synaptic scaling. J Neurosci 31: 2188–2196, 2011. 901 

9. Anggono V, Koç-Schmitz Y, Widagdo J, Kormann J, Quan A, Chen C-M, Robinson 902 
PJ, Choi S-Y, Linden DJ, Plomann M, Huganir RL. PICK1 interacts with PACSIN to 903 
regulate AMPA receptor internalization and cerebellar long-term depression. Proc 904 
Natl Acad Sci U S A 110: 13976–13981, 2013. 905 

10. Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC. Dynamic 906 
interactions of cortactin and membrane type 1 matrix metalloproteinase at 907 
invadopodia: defining the stages of invadopodia formation and function. Cancer Res 908 
66: 3034–3043, 2006. 909 

11. Ayala I, Baldassarre M, Giacchetti G, Caldieri G, Tete S, Luini A, Buccione R. 910 
Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis 911 
and extracellular matrix degradation. J Cell Sci 121: 369–378, 2008. 912 

12. Ayala I, Giacchetti G, Caldieri G, Attanasio F, Mariggiò S, Tetè S, Polishchuk R, 913 
Castronovo V, Buccione R. Faciogenital dysplasia protein Fgd1 regulates 914 
invadopodia biogenesis and extracellular matrix degradation and is up-regulated in 915 
prostate and breast cancer. Cancer Res 69: 747–752, 2009. 916 



 25

13. Baggett AW, Cournia Z, Han MS, Patargias G, Glass AC, Liu S-Y, Nolen BJ. 917 
Structural characterization and computer-aided optimization of a small-molecule 918 
inhibitor of the Arp2/3 complex, a key regulator of the actin cytoskeleton. 919 
ChemMedChem 7: 1286–1294, 2012. 920 

14. Basu R, Chang F. Characterization of dip1p reveals a switch in Arp2/3-dependent 921 
actin assembly for fission yeast endocytosis. Curr Biol 21: 905–916, 2011. 922 

15. Benesch S, Polo S, Lai FPL, Anderson KI, Stradal TEB, Wehland J, Rottner K. N-923 
WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated 924 
pits. J Cell Sci 118: 3103–3115, 2005. 925 

16. Blanchoin L, Amann KJ, Higgs HN, Marchand JB, Kaiser DA, Pollard TD. Direct 926 
observation of dendritic actin filament networks nucleated by Arp2/3 complex and 927 
WASP/Scar proteins. Nature 404: 1007–1011, 2000. 928 

17. Boczkowska M, Rebowski G, Dominguez R. Glia Maturation Factor (GMF) Interacts 929 
with Arp2/3 Complex in a Nucleotide State-dependent Manner. J Biol Chem 288: 930 
25683–25688, 2013. 931 

18. Boulant S, Kural C, Zeeh J-C, Ubelmann F, Kirchhausen T. Actin dynamics 932 
counteract membrane tension during clathrin-mediated endocytosis. Nat Cell Biol 13: 933 
1124–1131, 2011. 934 

19. Boyle SN, Michaud GA, Schweitzer B, Predki PF, Koleske AJ. A critical role for 935 
cortactin phosphorylation by Abl-family kinases in PDGF-induced dorsal-wave 936 
formation. Curr Biol 17: 445–451, 2007. 937 

20. Brieher WM, Kueh HY, Ballif BA, Mitchison TJ. Rapid actin monomer-insensitive 938 
depolymerization of Listeria actin comet tails by cofilin, coronin, and Aip1. J Cell 939 
Biol 175: 315–324, 2006. 940 

21. Bryce NS, Clark ES, Leysath JL, Currie JD, Webb DJ, Weaver AM. Cortactin 941 
promotes cell motility by enhancing lamellipodial persistence. Curr Biol 15: 1276–942 
1285, 2005. 943 

22. Cai J-H, Zhao R, Zhu J-W, Jin X-L, Wan F-J, Liu K, Ji X-P, Zhu Y-B, Zhu Z-G. 944 
Expression of cortactin correlates with a poor prognosis in patients with stages II-III 945 
colorectal adenocarcinoma. J Gastrointest Surg 14: 1248–1257, 2010. 946 

23. Cai L, Holoweckyj N, Schaller MD, Bear JE. Phosphorylation of coronin 1B by 947 
protein kinase C regulates interaction with Arp2/3 and cell motility. J Biol Chem 280: 948 
31913–31923, 2005. 949 

24. Cai L, Makhov AM, Bear JE. F-actin binding is essential for coronin 1B function in 950 
vivo. J Cell Sci 120: 1779–1790, 2007. 951 

25. Cai L, Makhov AM, Schafer DA, Bear JE. Coronin 1B Antagonizes Cortactin and 952 
Remodels Arp2/3-Containing Actin Branches in Lamellipodia. Cell 134: 828–842, 953 
2008. 954 

26. Cai L, Marshall TW, Uetrecht AC, Schafer DA, Bear JE. Coronin 1B coordinates 955 



 26

Arp2/3 complex and cofilin activities at the leading edge. Cell 128: 915–929, 2007. 956 

27. Cai X, Xiao T, James SY, Da J, Lin D, Liu Y, Zheng Y, Zou S, Di X, Guo S, Han N, 957 
Lu Y-J, Cheng S, Gao Y, Zhang K. Metastatic potential of lung squamous cell 958 
carcinoma associated with HSPC300 through its interaction with WAVE2. Lung 959 
Cancer 65: 299–305, 2009. 960 

28. Campbell DH, Sutherland RL, Daly RJ. Signaling pathways and structural domains 961 
required for phosphorylation of EMS1/cortactin. Cancer Res 59: 5376–5385, 1999. 962 

29. Campellone KG, Webb NJ, Znameroski EA, Welch MD. WHAMM is an Arp2/3 963 
complex activator that binds microtubules and functions in ER to Golgi transport. 964 
Cell 134: 148–161, 2008. 965 

30. Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, 966 
Pantaloni D. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament 967 
turnover: implication in actin-based motility. J Cell Biol 136: 1307–1322, 1997. 968 

31. Chan KT, Creed SJ, Bear JE. Unraveling the enigma: progress towards understanding 969 
the coronin family of actin regulators. Trends Cell Biol 21: 481–488, 2011. 970 

32. Chan KT, Roadcap DW, Holoweckyj N, Bear JE. Coronin 1C harbours a second 971 
actin-binding site that confers co-operative binding to F-actin. Biochem J 444: 89–96, 972 
2012. 973 

33. Chazeau A, Giannone G. Organization and dynamics of the actin cytoskeleton during 974 
dendritic spine morphological remodeling. Cell Mol Life Sci 73: 3053–3073, 2016. 975 

34. Chazeau A, Mehidi A, Nair D, Gautier JJ, Leduc C, Chamma I, Kage F, Kechkar A, 976 
Thoumine O, Rottner K, Choquet D, Gautreau A, Sibarita J-B, Giannone G. 977 
Nanoscale segregation of actin nucleation and elongation factors determines dendritic 978 
spine protrusion. EMBO J 33: 2745–2764, 2014. 979 

35. Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, Henry L, Grishin NV, 980 
Bogdan S, Rosen MK. The WAVE regulatory complex links diverse receptors to the 981 
actin cytoskeleton. Cell 156: 195–207, 2014. 982 

36. Chen Z, Borek D, Padrick SB, Gomez TS, Metlagel Z, Ismail AM, Umetani J, 983 
Billadeau DD, Otwinowski Z, Rosen MK. Structure and control of the actin 984 
regulatory WAVE complex. Nature 468: 533–538, 2010. 985 

37. Chorev DS, Moscovitz O, Geiger B, Sharon M. Regulation of focal adhesion 986 
formation by a vinculin-Arp2/3 hybrid complex. Nat Commun 5: 1–11, 2014. 987 

38. Ciobanasu C, Faivre B, Le Clainche C. Actomyosin-dependent formation of the 988 
mechanosensitive talin-vinculin complex reinforces actin anchoring. Nat Commun 5: 989 
3095, 2014. 990 

39. Clark ES, Brown B, Whigham AS, Kochaishvili A, Yarbrough WG, Weaver AM. 991 
Aggressiveness of HNSCC tumors depends on expression levels of cortactin, a gene 992 
in the 11q13 amplicon. Oncogene 28: 431–444, 2008. 993 



 27

40. Clark ES, Whigham AS, Yarbrough WG, Weaver AM. Cortactin is an essential 994 
regulator of matrix metalloproteinase secretion and extracellular matrix degradation 995 
in invadopodia. Cancer Res 67: 4227–4235, 2007. 996 

41. Cockbill LMR, Murk K, Love S, Hanley JG. Protein interacting with C kinase 1 997 
suppresses invasion and anchorage-independent growth of astrocytic tumor cells. Mol 998 
Biol Cell 26: 4552–4561, 2015. 999 

42. Collins A, Warrington A, Taylor KA, Svitkina T. Structural organization of the actin 1000 
cytoskeleton at sites of clathrin-mediated endocytosis. Curr Biol 21: 1167–1175, 1001 
2011. 1002 

43. Coutts AS, La Thangue NB. Actin nucleation by WH2 domains at the 1003 
autophagosome. Nat Commun 6: 7888, 2015. 1004 

44. Coutts AS, Pires IM, Weston L, Buffa FM, Milani M, Li J-L, Harris AL, Hammond 1005 
EM, La Thangue NB. Hypoxia-driven cell motility reflects the interplay between 1006 
JMY and HIF-1α. Oncogene 30: 4835–4842, 2011. 1007 

45. Coutts AS, Weston L, La Thangue NB. A transcription co-factor integrates cell 1008 
adhesion and motility with the p53 response. Proc Natl Acad Sci U S A 106: 19872–1009 
19877, 2009. 1010 

46. Crostella L, Lidder S, Williams R, Skouteris GG. Hepatocyte Growth Factor/scatter 1011 
factor-induces phosphorylation of cortactin in A431 cells in a Src kinase-independent 1012 
manner. Oncogene 20: 3735–3745, 2001. 1013 

47. Dang I, Gorelik R, Sousa-Blin C, Derivery E, Guérin C, Linkner J, Nemethova M, 1014 
Dumortier JG, Giger FA, Chipysheva TA, Ermilova VD, Vacher S, Campanacci V, 1015 
Herrada I, Planson A-G, Fetics S, Henriot V, David V, Oguievetskaia K, Lakisic G, 1016 
Pierre F, Steffen A, Boyreau A, Peyriéras N, Rottner K, Zinn-Justin S, Cherfils J, 1017 
Bièche I, Alexandrova AY, David NB, Small JV, Faix J, Blanchoin L, Gautreau A. 1018 
Inhibitory signalling to the Arp2/3 complex steers cell migration. Nature 503: 281–1019 
284, 2013. 1020 

48. Dedes KJ, Lopez-Garcia M-A, Geyer FC, Lambros MBK, Savage K, Vatcheva R, 1021 
Wilkerson P, Wetterskog D, Lacroix-Triki M, Natrajan R, Reis-Filho JS. Cortactin 1022 
gene amplification and expression in breast cancer: a chromogenic in situ 1023 
hybridisation and immunohistochemical study. Breast Cancer Res Treat 124: 653–1024 
666, 2010. 1025 

49. DeMali KA, Barlow CA, Burridge K. Recruitment of the Arp2/3 complex to 1026 
vinculin: coupling membrane protrusion to matrix adhesion. J Cell Biol 159: 881–1027 
891, 2002. 1028 

50. Deng Z-H, Gomez TS, Osborne DG, Phillips-Krawczak CA, Zhang J-S, Billadeau 1029 
DD. Nuclear FAM21 participates in NF-κB-dependent gene regulation in pancreatic 1030 
cancer cells. J Cell Sci 128: 373–384, 2015. 1031 

51. Derivery E, Gautreau A. Generation of branched actin networks: assembly and 1032 
regulation of the N-WASP and WAVE molecular machines. Bioessays 32: 119–131, 1033 
2010. 1034 



 28

52. Derivery E, Gautreau A. Evolutionary conservation of the WASH complex, an actin 1035 
polymerization machine involved in endosomal fission. Commun Integr Biol 3: 227–1036 
230, 2010. 1037 

53. Derivery E, Helfer E, Henriot V, Gautreau A. Actin polymerization controls the 1038 
organization of WASH domains at the surface of endosomes. PLoS ONE 7: e39774, 1039 
2012. 1040 

54. Derivery E, Sousa C, Gautier JJ, Lombard B, Loew D, Gautreau A. The Arp2/3 1041 
activator WASH controls the fission of endosomes through a large multiprotein 1042 
complex. Dev Cell 17: 712–723, 2009. 1043 

55. DesMarais V, Yamaguchi H, Oser M, Soon L, Mouneimne G, Sarmiento C, Eddy R, 1044 
Condeelis J. N-WASP and cortactin are involved in invadopodium-dependent 1045 
chemotaxis to EGF in breast tumor cells. Cell Motil Cytoskeleton 66: 303–316, 2009. 1046 

56. Dong R, Saheki Y, Swarup S, Lucast L, Harper JW, De Camilli P. Endosome-ER 1047 
Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent 1048 
Regulation of PI4P. Cell 166: 408–423, 2016. 1049 

57. Dubielecka PM, Cui P, Xiong X, Hossain S, Heck S, Angelov L, Kotula L. 1050 
Differential Regulation of Macropinocytosis by Abi1/Hssh3bp1 Isoforms. PLoS ONE 1051 
5: e10430, 2010. 1052 

58. Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW. Mechanism of 1053 
regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418: 790–1054 
793, 2002. 1055 

59. Egile C, Rouiller I, Xu X-P, Volkmann N, Li R, Hanein D. Mechanism of filament 1056 
nucleation and branch stability revealed by the structure of the Arp2/3 complex at 1057 
actin branch junctions. PLoS Biol 3: e383, 2005. 1058 

60. Escobar B, de Cárcer G, Fernández-Miranda G, Cascón A, Bravo-Cordero JJ, 1059 
Montoya MC, Robledo M, Cañamero M, Malumbres M. Brick1 is an essential 1060 
regulator of actin cytoskeleton required for embryonic development and cell 1061 
transformation. Cancer Res 70: 9349–9359, 2010. 1062 

61. Ferguson S, Raimondi A, Paradise S, Shen H, Mesaki K, Ferguson A, Destaing O, 1063 
Ko G, Takasaki J, Cremona O, Toole EO, Pietro De Camilli. Coordinated Actions of 1064 
Actin and BAR Proteins Upstream of Dynamin at Endocytic Clathrin-Coated Pits. 1065 
Dev Cell 17: 811–822, 2009. 1066 

62. Fernando HS, Davies SR, Chhabra A, Watkins G, Douglas-Jones A, Kynaston H, 1067 
Mansel RE, Jiang WG. Expression of the WASP verprolin-homologues (WAVE 1068 
members) in human breast cancer. Oncology 73: 376–383, 2007. 1069 

63. Fernando HS, Sanders AJ, Kynaston HG, Jiang WG. WAVE1 is associated with 1070 
invasiveness and growth of prostate cancer cells. J Urol 180: 1515–1521, 2008. 1071 

64. Fernando HS, Sanders AJ, Kynaston HG, Jiang WG. WAVE3 is associated with 1072 
invasiveness in prostate cancer cells. Urol Oncol 28: 320–327, 2010. 1073 



 29

65. Fetics S, Thureau A, Campanacci V, Aumont-Nicaise M, Dang I, Gautreau A, Pérez 1074 
J, Cherfils J. Hybrid Structural Analysis of the Arp2/3 Regulator Arpin Identifies Its 1075 
Acidic Tail as a Primary Binding Epitope. Structure 24: 252–260, 2016. 1076 

66. Firat-Karalar EN, Firat-Karalar EN, Hsiue PP, Hsiue PP, Welch MD, Welch MD. 1077 
The actin nucleation factor JMY is a negative regulator of neuritogenesis. Mol Biol 1078 
Cell 22: 4563–4574, 2011. 1079 

67. Frentzas S, Simoneau E, Bridgeman VL, Vermeulen PB, Foo S, Kostaras E, Nathan 1080 
MR, Wotherspoon A, Gao Z-H, Shi Y, Van den Eynden G, Daley F, Peckitt C, Tan 1081 
X, Salman A, Lazaris A, Gazinska P, Berg TJ, Eltahir Z, Ritsma L, van Rheenen J, 1082 
Khashper A, Brown G, Nyström H, Sund M, Van Laere S, Loyer E, Dirix L, 1083 
Cunningham D, Metrakos P, Reynolds AR. Vessel co-option mediates resistance to 1084 
anti-angiogenic therapy in liver metastases. Nat Med 22: 1294–1302, 2016. 1085 

68. Frugtniet BA, Martin TA, Zhang L, Jiang WG. Neural Wiskott-Aldrich syndrome 1086 
protein (nWASP) is implicated in human lung cancer invasion. BMC Cancer 17: 224, 1087 
2017. 1088 

69. Gandhi M, Achard V, Blanchoin L, Goode BL. Coronin switches roles in actin 1089 
disassembly depending on the nucleotide state of actin. Mol Cell 34: 364–374, 2009. 1090 

70. Gandhi M, Smith BA, Bovellan M, Paavilainen V, Daugherty-Clarke K, Gelles J, 1091 
Lappalainen P, Goode BL. GMF is a cofilin homolog that binds Arp2/3 complex to 1092 
stimulate filament debranching and inhibit actin nucleation. Curr Biol 20: 861–867, 1093 
2010. 1094 

71. Garcia-Castillo J, Pedersen K, Angelini PD, Bech-Serra JJ, Colome N, Cunningham 1095 
MP, Parra-Palau JL, Canals F, Baselga J, Arribas J. HER2 Carboxyl-terminal 1096 
Fragments Regulate Cell Migration and Cortactin Phosphorylation. J Biol Chem 284: 1097 
25302–25313, 2009. 1098 

72. García E, Machesky LM, Jones GE, Antón IM. WIP is necessary for matrix invasion 1099 
by breast cancer cells. Eur J Cell Biol 93: 413–423, 2014. 1100 

73. García E, Ragazzini C, Yu X, Cuesta-García E, Bernardino de la Serna J, Zech T, 1101 
Sarrió D, Machesky LM, Antón IM. WIP and WICH/WIRE co-ordinately control 1102 
invadopodium formation and maturation in human breast cancer cell invasion. Sci rep 1103 
6: 23590, 2016. 1104 

74. Gargini R, Escoll M, García E, García-Escudero R, Wandosell F, Anton IM. WIP 1105 
Drives Tumor Progression through YAP/TAZ-Dependent Autonomous Cell Growth. 1106 
Cell Rep 17: 1962–1977, 2016. 1107 

75. Gautier JJ, Lomakina ME, Bouslama-Oueghlani L, Derivery E, Beilinson H, Faigle 1108 
W, Loew D, Louvard D, Echard A, Alexandrova AY, Baum B, Gautreau A. Clathrin 1109 
is required for Scar/Wave-mediated lamellipodium formation. J Cell Sci 124: 3414–1110 
3427, 2011. 1111 

76. Gautreau A, Ho H-YH, Li J, Steen H, Gygi SP, Kirschner MW. Purification and 1112 
architecture of the ubiquitous Wave complex. Proc Natl Acad Sci U S A 101: 4379–1113 
4383, 2004. 1114 



 30

77. Gautreau A, Oguievetskaia K, Ungermann C. Function and regulation of the 1115 
endosomal fusion and fission machineries. Cold Spring Harb Perspect Biol 6, 2014. 1116 

78. Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. 1117 
Sci rep 10: 21–33, 2009. 1118 

79. Gibcus JH, Mastik MF, Menkema L, de Bock GH, Kluin PM, Schuuring E, van der 1119 
Wal JE. Cortactin expression predicts poor survival in laryngeal carcinoma. Br J 1120 
Cancer 98: 950–955, 2008. 1121 

80. Giri A, Bajpai S, Trenton N, Jayatilaka H, Longmore GD, Wirtz D. The Arp2/3 1122 
complex mediates multigeneration dendritic protrusions for efficient 3-dimensional 1123 
cancer cell migration. FASEB J 27: 4089–4099, 2013. 1124 

81. Gligorijevic B, Wyckoff J, Yamaguchi H, Wang Y, Roussos ET, Condeelis J. N-1125 
WASP-mediated invadopodium formation is involved in intravasation and lung 1126 
metastasis of mammary tumors. J Cell Sci 125: 724–734, 2012. 1127 

82. Goley ED, Rodenbusch SE, Martin AC, Welch MD. Critical conformational changes 1128 
in the Arp2/3 complex are induced by nucleotide and nucleation promoting factor. 1129 
Mol Cell 16: 269–279, 2004. 1130 

83. Gomez TS, Billadeau DD. A FAM21-containing WASH complex regulates retromer-1131 
dependent sorting. Dev Cell 17: 699–711, 2009. 1132 

84. Gorelik R, Gautreau A. The Arp2/3 inhibitory protein arpin induces cell turning by 1133 
pausing cell migration. Cytoskeleton (Hoboken) 72: 362–371, 2015. 1134 

85. Goroncy AK, Koshiba S, Tochio N, Tomizawa T, Sato M, Inoue M, Watanabe S, 1135 
Hayashizaki Y, Tanaka A, Kigawa T, Yokoyama S. NMR solution structures of actin 1136 
depolymerizing factor homology domains. Protein Sci 18: 2384–2392, 2009. 1137 

86. Grassart A, Meas-Yedid V, Dufour A, Olivo-Marin J-C, Dautry-Varsat A, Sauvonnet 1138 
N. Pak1 Phosphorylation Enhances Cortactin-N-WASP Interaction in Clathrin-1139 
Caveolin-Independent Endocytosis. Traffic 11: 1079–1091, 2010. 1140 

87. Guo J-C, Li J, Zhao Y-P, Zhou L, Cui Q-C, Zhou W-X, Zhang T-P, You L, Shu H. 1141 
N-WASP in Pancreatic Ductal Adenocarcinoma: Associations with Perineural 1142 
Invasion and Poor Prognosis. World J Surg 38: 2126–2131, 2014. 1143 

88. Hahne P, Sechi A, Benesch S, Small JV. Scar/WAVE is localised at the tips of 1144 
protruding lamellipodia in living cells. FEBS Lett 492: 215–220, 2001. 1145 

89. Hao Y-H, Doyle JM, Ramanathan S, Gomez TS, Jia D, Xu M, Chen ZJ, Billadeau 1146 
DD, Rosen MK, Potts PR. Regulation of WASH-dependent actin polymerization and 1147 
protein trafficking by ubiquitination. Cell 152: 1051–1064, 2013. 1148 

90. Harbour ME, Breusegem SY, Seaman MNJ. Recruitment of the endosomal WASH 1149 
complex is mediated by the extended “tail” of Fam21 binding to the retromer protein 1150 
Vps35. Biochem J 442: 209–220, 2012. 1151 

91. Haynes EM, Asokan SB, King SJ, Johnson HE, Haugh JM, Bear JE. GMF  controls 1152 



 31

branched actin content and lamellipodial retraction in fibroblasts. J Cell Biol 209: 1153 
803–812, 2015. 1154 

92. Head JA, Jiang D, Li M, Zorn LJ, Schaefer EM, Parsons JT, Weed SA. Cortactin 1155 
tyrosine phosphorylation requires Rac1 activity and association with the cortical actin 1156 
cytoskeleton. Mol Biol Cell 14: 3216–3229, 2003. 1157 

93. Helfer E, Harbour ME, Henriot V, Lakisic G, Sousa-Blin C, Volceanov L, Seaman 1158 
MNJ, Gautreau A. Endosomal recruitment of the WASH complex: active sequences 1159 
and mutations impairing interaction with the retromer. Biol Cell 105: 191–207, 2013. 1160 

94. Helgeson LA, Nolen BJ. Mechanism of synergistic activation of Arp2/3 complex by 1161 
cortactin and N-WASP. eLife 2: e00884, 2013. 1162 

95. Hetrick B, Han MS, Helgeson LA, Nolen BJ. Small molecules CK-666 and CK-869 1163 
inhibit actin-related protein 2/3 complex by blocking an activating conformational 1164 
change. Chem Biol 20: 701–712, 2013. 1165 

96. Ho H-YH, Rohatgi R, Lebensohn AM, Le Ma, Li J, Gygi SP, Kirschner MW. Toca-1 1166 
Mediates Cdc42-Dependent Actin Nucleation by Activating the N-WASP-WIP 1167 
Complex. Cell 118: 203–216, 2004. 1168 

97. Ho HY, Rohatgi R, Ma L, Kirschner MW. CR16 forms a complex with N-WASP in 1169 
brain and is a novel member of a conserved proline-rich actin-binding protein family. 1170 
Proc Natl Acad Sci U S A 98: 11306–11311, 2001. 1171 

98. Hofman P, Butori C, Havet K, Hofman V, Selva E, Guevara N, Santini J, Van 1172 
Obberghen-Schilling E. Prognostic significance of cortactin levels in head and neck 1173 
squamous cell carcinoma: comparison with epidermal growth factor receptor status. 1174 
Br J Cancer 98: 956–964, 2008. 1175 

99. Hong NH, Qi A, Weaver AM. PI(3,5)P2 controls endosomal branched actin 1176 
dynamics by regulating cortactin-actin interactions. J Cell Biol 210: 753–769, 2015. 1177 

100. Hou H, Chen W, Zhao L, Zuo Q, Zhang G, Zhang X, Wang H, Gong H, Li X, Wang 1178 
M, Wang Y, Li X. Cortactin is associated with tumour progression and poor 1179 
prognosis in prostate cancer and SIRT2 other than HADC6 may work as facilitator in 1180 
situ. J Clin Pathol 65: 1088–1096, 2012. 1181 

101. Houk AR, Jilkine A, Mejean CO, Boltyanskiy R, Dufresne ER, Angenent SB, 1182 
Altschuler SJ, Wu LF, Weiner OD. Membrane tension maintains cell polarity by 1183 
confining signals to the leading edge during neutrophil migration. Cell 148: 175–188, 1184 
2012. 1185 

102. Huang J, Asawa T, Takato T, Sakai R. Cooperative roles of Fyn and cortactin in cell 1186 
migration of metastatic murine melanoma. J Biol Chem 278: 48367–48376, 2003. 1187 

103. Huang X, Ji J, Xue H, Zhang F, Han X, Cai Y, Zhang J, Ji G. Fascin and cortactin 1188 
expression is correlated with a poor prognosis in hepatocellular carcinoma. Eur J 1189 
Gastroenterol Hepatol 24: 633–639, 2012. 1190 

104. Hui R, Ball JR, Macmillan RD, Kenny FS, Prall OW, Campbell DH, Cornish AL, 1191 



 32

McClelland RA, Daly RJ, Forbes JF, Blamey RW, Musgrove EA, Robertson JF, 1192 
Nicholson RI, Sutherland RL. EMS1 gene expression in primary breast cancer: 1193 
relationship to cyclin D1 and oestrogen receptor expression and patient survival. 1194 
Oncogene 17: 1053–1059, 1998. 1195 

105. Ikeda K, Kundu RK, Ikeda S, Kobara M, Matsubara H, Quertermous T. Glia 1196 
maturation factor-gamma is preferentially expressed in microvascular endothelial and 1197 
inflammatory cells and modulates actin cytoskeleton reorganization. Circ Res 99: 1198 
424–433, 2006. 1199 

106. Ingerman E, Hsiao JY, Mullins RD. Arp2/3 complex ATP hydrolysis promotes 1200 
lamellipodial actin network disassembly but is dispensable for assembly. J Cell Biol 1201 
200: 619–633, 2013. 1202 

107. Innocenti M, Zucconi A, Disanza A, Frittoli E, Areces LB, Steffen A, Stradal TEB, 1203 
Di Fiore PP, Carlier M-F, Scita G. Abi1 is essential for the formation and activation 1204 
of a WAVE2 signalling complex. Nat Cell Biol 6: 319–327, 2004. 1205 

108. Itoh T, Erdmann KS, Roux A, Habermann B, Werner H, De Camilli P. Dynamin and 1206 
the Actin Cytoskeleton Cooperatively Regulate Plasma Membrane Invagination by 1207 
BAR and F-BAR Proteins. Dev Cell 9: 791–804, 2005. 1208 

109. Iwaya K, Norio K, Mukai K. Coexpression of Arp2 and WAVE2 predicts poor 1209 
outcome in invasive breast carcinoma. Mod Pathol 20: 339–343, 2007. 1210 

110. Iwaya K, Oikawa K, Semba S, Tsuchiya B, Mukai Y, Otsubo T, Nagao T, Izumi M, 1211 
Kuroda M, Domoto H, Mukai K. Correlation between liver metastasis of the 1212 
colocalization of actin-related protein 2 and 3 complex and WAVE2 in colorectal 1213 
carcinoma. Cancer Sci 98: 992–999, 2007. 1214 

111. Ji Y, Li B, Zhu Z, Guo X, He W, Fan Z, Zhang W. Overexpression of WAVE3 1215 
promotes tumor invasiveness and confers an unfavorable prognosis in human 1216 
hepatocellular carcinoma. Biomed Pharmacother 69: 409–415, 2015. 1217 

112. Jia D, Gomez TS, Billadeau DD, Rosen MK. Multiple repeat elements within the 1218 
FAM21 tail link the WASH actin regulatory complex to the retromer. Mol Biol Cell 1219 
23: 2352–2361, 2012. 1220 

113. Jia D, Gomez TS, Metlagel Z, Umetani J, Otwinowski Z, Rosen MK, Billadeau DD. 1221 
WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein 1222 
(WASP) family are controlled by analogous structurally related complexes. Proc Natl 1223 
Acad Sci U S A 107: 10442–10447, 2010. 1224 

114. Jin K-M, Lu M, Liu F-F, Gu J, Du X-J, Xing B-C. N-WASP is highly expressed in 1225 
hepatocellular carcinoma and associated with poor prognosis. Surgery 153: 518–525, 1226 
2013. 1227 

115. Joshi AD, Hegde GV, Dickinson JD, Mittal AK, Lynch JC, Eudy JD, Armitage JO, 1228 
Bierman PJ, Bociek RG, Devetten MP, Vose JM, Joshi SS. ATM, CTLA4, MNDA, 1229 
and HEM1 in High versus Low CD38-Expressing B-Cell Chronic Lymphocytic 1230 
Leukemia. Clin Cancer Res 13: 5295–5304, 2007. 1231 



 33

116. Kaksonen M, Peng HB, Rauvala H. Association of cortactin with dynamic actin in 1232 
lamellipodia and on endosomal vesicles. J Cell Sci 113 Pt 24: 4421–4426, 2000. 1233 

117. Kammerer RA, Kostrewa D, Progias P, Honnappa S, Avila D, Lustig A, Winkler FK, 1234 
Pieters J, Steinmetz MO. A conserved trimerization motif controls the topology of 1235 
short coiled coils. Proc Natl Acad Sci U S A 102: 13891–13896, 2005. 1236 

118. Kapus A, Di Ciano C, Sun J, Zhan X, Kim L, Wong TW, Rotstein OD. Cell Volume-1237 
dependent Phosphorylation of Proteins of the Cortical Cytoskeleton and Cell-Cell 1238 
Contact Sites: THE ROLE OF Fyn AND FER KINASES. J Biol Chem 275: 32289–1239 
32298, 2000. 1240 

119. Kashani-Sabet M, Rangel J, Torabian S, Nosrati M, Simko J, Jablons DM, Moore 1241 
DH, Haqq C, Miller JR, Sagebiel RW. A multi-marker assay to distinguish malignant 1242 
melanomas from benign nevi. Proc Natl Acad Sci U S A 106: 6268–6272, 2009. 1243 

120. Kast DJ, Zajac AL, Holzbaur ELF, Ostap EM, Dominguez R. WHAMM Directs the 1244 
Arp2/3 Complex to the ER for Autophagosome Biogenesis through an Actin Comet 1245 
Tail Mechanism. Curr Biol 25: 1791–1797, 2015. 1246 

121. Kaur S, Fielding AB, Gassner G, Carter NJ, Royle SJ. An unmet actin requirement 1247 
explains the mitotic inhibition of clathrin-mediated endocytosis. eLife 3: 1039–17, 1248 
2014. 1249 

122. Kawamura K, Takano K, Suetsugu S, Kurisu S, Yamazaki D, Miki H, Takenawa T, 1250 
Endo T. N-WASP and WAVE2 Acting Downstream of Phosphatidylinositol 3-1251 
Kinase Are Required for Myogenic Cell Migration Induced by Hepatocyte Growth 1252 
Factor. J Biol Chem 279: 54862–54871, 2004. 1253 

123. Kelley LC, Hayes KE, Ammer AG, Martin KH, Weed SA. Cortactin Phosphorylated 1254 
by ERK1/2 Localizes to Sites of Dynamic Actin Regulation and Is Required for 1255 
Carcinoma Lamellipodia Persistence. PLoS ONE 5: e13847–13, 2010. 1256 

124. Kim AS, Kakalis LT, Abdul-Manan N, Liu GA. Autoinhibition and activation 1257 
mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404: 151–158, 2000. 1258 

125. Kim CH, Chung HJ, Lee HK, Huganir RL. Interaction of the AMPA receptor subunit 1259 
GluR2/3 with PDZ domains regulates hippocampal long-term depression. Proc Natl 1260 
Acad Sci U S A 98: 11725–11730, 2001. 1261 

126. Kim SH, Choi HJ, Lee KW, Hong NH, Sung BH, Choi KY, Kim S-M, Chang S, Eom 1262 
SH, Song WK. Interaction of SPIN90 with syndapin is implicated in clathrin-1263 
mediated endocytic pathway in fibroblasts. Genes Cells 11: 1197–1211, 2006. 1264 

127. King SJ, Asokan SB, Haynes EM, Zimmerman SP, Rotty JD, Alb JG, Tagliatela A, 1265 
Blake DR, Lebedeva IP, Marston D, Johnson HE, Parsons M, Sharpless NE, 1266 
Kuhlman B, Haugh JM, Bear JE. Lamellipodia are crucial for haptotactic sensing and 1267 
response. J Cell Sci 129: 2329–2342, 2016. 1268 

128. King SJ, Worth DC, Scales TME, Monypenny J, Jones GE, Parsons M. β1 integrins 1269 
regulate fibroblast chemotaxis through control of N-WASP stability. EMBO J 30: 1270 
1705–1718, 2011. 1271 



 34

129. Kirkbride KC, Hong NH, French CL, Clark ES, Jerome WG, Weaver AM. 1272 
Regulation of late endosomal/lysosomal maturation and trafficking by cortactin 1273 
affects Golgi morphology. Cytoskeleton (Hoboken) 69: 625–643, 2012. 1274 

130. Knorr RL, Lipowsky R, Dimova R. Autophagosome closure requires membrane 1275 
scission. Autophagy 11: 2134–2137, 2015. 1276 

131. Kollmar M, Lbik D, Enge S. Evolution of the eukaryotic ARP2/3 activators of the 1277 
WASP family: WASP, WAVE, WASH, and WHAMM, and the proposed new family 1278 
members WAWH and WAML. BMC Res Notes 5: 88, 2012. 1279 

132. Krause M, Gautreau A. Steering cell migration: lamellipodium dynamics and the 1280 
regulation of directional persistence. Nat Rev Mol Cell Biol 15: 577–590, 2014. 1281 

133. Kuang X-Y, Jiang X-F, Chen C, Su X-R, Shi Y, Wu J-R, Zhang P, Zhang X-L, Cui 1282 
Y-H, Ping Y-F, Bian X-W. Expressions of glia maturation factor-β by tumor cells and 1283 
endothelia correlate with neovascularization and poor prognosis in human glioma. 1284 
Oncotarget 7: 85750–85763, 2016. 1285 

134. Kueh HY, Charras GT, Mitchison TJ, Brieher WM. Actin disassembly by cofilin, 1286 
coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers. J Cell Biol 1287 
182: 341–353, 2008. 1288 

135. Kulkarni S, Augoff K, Rivera L, McCue B, Khoury T, Groman A, Zhang L, Tian L, 1289 
Sossey-Alaoui K. Increased expression levels of WAVE3 are associated with the 1290 
progression and metastasis of triple negative breast cancer. PLoS ONE 7: e42895, 1291 
2012. 1292 

136. Lai FPL, Szczodrak M, Block J, Faix J, Breitsprecher D, Mannherz HG, Stradal TEB, 1293 
Dunn GA, Small JV, Rottner K. Arp2/3 complex interactions and actin network 1294 
turnover in lamellipodia. EMBO J 27: 982–992, 2008. 1295 

137. Lai FPL, Szczodrak M, Oelkers JM, Ladwein M, Acconcia F, Benesch S, Auinger S, 1296 
Faix J, Small JV, Polo S, Stradal TEB, Rottner K. Cortactin promotes migration and 1297 
platelet-derived growth factor-induced actin reorganization by signaling to Rho-1298 
GTPases. Mol Biol Cell 20: 3209–3223, 2009. 1299 

138. Laurila E, Savinainen K, Kuuselo R, Karhu R, Kallioniemi A. Characterization of the 1300 
7q21-q22 amplicon identifies ARPC1A, a subunit of the Arp2/3 complex, as a 1301 
regulator of cell migration and invasion in pancreatic cancer. Genes Chromosomes 1302 
Cancer 48: 330–339, 2009. 1303 

139. Le Clainche C, Pantaloni D, Carlier M-F. ATP hydrolysis on actin-related protein 2/3 1304 
complex causes debranching of dendritic actin arrays. Proc Natl Acad Sci U S A 100: 1305 
6337–6342, 2003. 1306 

140. LeClaire LL, Baumgartner M, Iwasa JH, Mullins RD, Barber DL. Phosphorylation of 1307 
the Arp2/3 complex is necessary to nucleate actin filaments. J Cell Biol 182: 647–1308 
654, 2008. 1309 

141. LeClaire LL, Rana M, Baumgartner M, Barber DL. The Nck-interacting kinase NIK 1310 
increases Arp2/3 complex activity by phosphorylating the Arp2 subunit. J Cell Biol 1311 



 35

208: 161–170, 2015. 1312 

142. Lee NK, Fok KW, White A, Wilson NH, O'Leary CJ, Cox HL, Michael M, Yap AS, 1313 
Cooper HM. Neogenin recruitment of the WAVE regulatory complex maintains 1314 
adherens junction stability and tension. Nat Commun 7: 11082, 2016. 1315 

143. Li Y, Tondravi M, Liu J, Smith E, Haudenschild CC, Kaczmarek M, Zhan X. 1316 
Cortactin potentiates bone metastasis of breast cancer cells. Cancer Res 61: 6906–1317 
6911, 2001. 1318 

144. Li Y-H, Zhang N, Wang Y-N, Shen Y, Wang Y. Multiple faces of protein interacting 1319 
with C kinase 1 (PICK1): Structure, function, and diseases. Neurochem Int 98: 115–1320 
121, 2016. 1321 

145. Li YL, Ye F, Cheng XD, Hu Y, Zhou CY, Lü WG, Xie X. Identification of glia 1322 
maturation factor beta as an independent prognostic predictor for serous ovarian 1323 
cancer. Eur J Cancer 46: 2104–2118, 2010. 1324 

146. Lieber AD, Schweitzer Y, Kozlov MM, Keren K. Front-to-Rear Membrane Tension 1325 
Gradient in Rapidly Moving Cells. Biophys J 108: 1599–1603, 2015. 1326 

147. Lieber AD, Yehudai-Resheff S, Barnhart EL, Theriot JA, Keren K. Membrane 1327 
tension in rapidly moving cells is determined by cytoskeletal forces. Curr Biol 23: 1328 
1409–1417, 2013. 1329 

148. Lin C-K, Su H-Y, Tsai W-C, Sheu L-F, Jin J-S. Association of cortactin, fascin-1 and 1330 
epidermal growth factor receptor (EGFR) expression in ovarian carcinomas: 1331 
correlation with clinicopathological parameters. Dis Markers 25: 17–26, 2008. 1332 

149. Linardopoulou EV, Parghi SS, Friedman C, Osborn GE, Parkhurst SM, Trask BJ. 1333 
Human Subtelomeric WASH Genes Encode a New Subclass of the WASP Family. 1334 
PLoS Genet 3: e237–9, 2007. 1335 

150. Liu J, Zhao Y, Sun Y, He B, Yang C, Svitkina T, Goldman YE, Guo W. Exo70 1336 
stimulates the Arp2/3 complex for lamellipodia formation and directional cell 1337 
migration. Curr Biol 22: 1510–1515, 2012. 1338 

151. Liu X, Zhao B, Wang H, Wang Y, Niu M, Sun M, Zhao Y, Yao R, Qu Z. Aberrant 1339 
expression of Arpin in human breast cancer and its clinical significance. J Cell Mol 1340 
Med 20: 450–458, 2016. 1341 

152. Liu Z, Yang X, Chen C, Liu B, Ren B, Wang L, Zhao K, Yu S, Ming H. Expression 1342 
of the Arp2/3 complex in human gliomas and its role in the migration and invasion of 1343 
glioma cells. Oncol Rep 30: 2127–2136, 2013. 1344 

153. Loisel TP, Boujemaa R, Pantaloni D, Carlier MF. Reconstitution of actin-based 1345 
motility of Listeria and Shigella using pure proteins. Nature 401: 613–616, 1999. 1346 

154. Lomakina ME, Lallemand F, Vacher S, Molinie N, Dang I, Cacheux W, Chipysheva 1347 
TA, Ermilova VD, De Koning L, Dubois T, Bièche I, Alexandrova AY, Gautreau A. 1348 
Arpin downregulation in breast cancer is associated with poor prognosis. Br J Cancer 1349 
114: 545–553, 2016. 1350 



 36

155. Lommel S, Benesch S, Rottner K, Franz T, Wehland J, Kühn R. Actin pedestal 1351 
formation by enteropathogenic Escherichia coli and intracellular motility of Shigella 1352 
flexneri are abolished in N-WASP-defective cells. EMBO Rep 2: 850–857, 2001. 1353 

156. Lorenz M, Yamaguchi H, Wang Y, Singer RH, Condeelis J. Imaging sites of N-wasp 1354 
activity in lamellipodia and invadopodia of carcinoma cells. Curr Biol 14: 697–703, 1355 
2004. 1356 

157. Lu P, Qiao J, He W, Wang J, Jia Y, Sun Y, Tang S, Fu L, Qin Y. Genome-Wide 1357 
Gene Expression Profile Analyses Identify CTTN as a Potential Prognostic Marker in 1358 
Esophageal Cancer. PLoS ONE 9: e88918–7, 2014. 1359 

158. Luan Q, Nolen BJ. Structural basis for regulation of Arp2/3 complex by GMF. Nat 1360 
Struct Mol Biol 20: 1062–1068, 2013. 1361 

159. Luan S-L, Boulanger E, Ye H, Chanudet E, Johnson N, Hamoudi RA, Bacon CM, 1362 
Liu H, Huang Y, Said J, Chu P, Clemen CS, Cesarman E, Chadburn A, Isaacson PG, 1363 
Du M-Q. Primary effusion lymphoma: genomic profiling revealed amplification of 1364 
SELPLG and CORO1C encoding for proteins important for cell migration. J Pathol 1365 
222: 166–179, 2010. 1366 

160. Machesky LM, Atkinson SJ, Ampe C, Vandekerckhove J, Pollard TD. Purification of 1367 
a cortical complex containing two unconventional actins from Acanthamoeba by 1368 
affinity chromatography on profilin-agarose. J Cell Biol 127: 107–115, 1994. 1369 

161. Madasu Y, Yang C, Boczkowska M, Bethoney KA, Zwolak A, Rebowski G, Svitkina 1370 
T, Dominguez R. PICK1 is implicated in organelle motility in an Arp2/3 complex-1371 
independent manner. Mol Biol Cell 26: 1308–1322, 2015. 1372 

162. Magalhaes MAO, Larson DR, Mader CC, Bravo-Cordero JJ, Bravo-Cordero JJ, Gil-1373 
Henn H, Oser M, Chen X, Koleske AJ, Condeelis J. Cortactin phosphorylation 1374 
regulates cell invasion through a pH-dependent pathway. J Cell Biol 195: 903–920, 1375 
2011. 1376 

163. Maritzen T, Zech T, Schmidt MR, Krause E, Machesky LM, Haucke V. Gadkin 1377 
negatively regulates cell spreading and motility via sequestration of the actin-1378 
nucleating ARP2/3 complex. Proc Natl Acad Sci U S A 109: 10382–10387, 2012. 1379 

164. Martin AC, Welch MD, Drubin DG. Arp2/3 ATP hydrolysis-catalysed branch 1380 
dissociation is critical for endocytic force generation. Nat Cell Biol 8: 826–833, 2006. 1381 

165. Martin TA, Pereira G, Watkins G, Mansel RE, Jiang WG. N-WASP is a putative 1382 
tumour suppressor in breast cancer cells, in vitro and in vivo, and is associated with 1383 
clinical outcome in patients with breast cancer. Clin Exp Metastasis 25: 97–108, 1384 
2008. 1385 

166. Martinez-Quiles N, Ho H-YH, Kirschner MW, Ramesh N, Geha RS. Erk/Src 1386 
phosphorylation of cortactin acts as a switch on-switch off mechanism that controls 1387 
its ability to activate N-WASP. Mol Cell Biol 24: 5269–5280, 2004. 1388 

167. Merrifield CJ, Qualmann B, Kessels MM, Almers W. Neural Wiskott Aldrich 1389 
Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of 1390 



 37

clathrin-mediated endocytosis in cultured fibroblasts. Eur J Cell Biol 83: 13–18, 1391 
2004. 1392 

168. Mi N, Chen Y, Wang S, Chen M, Zhao M, Yang G, Ma M, Su Q, Luo S, Shi J, Xu J, 1393 
Guo Q, Gao N, Sun Y, Chen Z, Yu L. CapZ regulates autophagosomal membrane 1394 
shaping by promoting actin assembly inside the isolation membrane. Nat Cell Biol 1395 
17: 1112–1123, 2015. 1396 

169. Michard C, Sperandio D, Baïlo N, Pizarro-Cerdá J, LeClaire L, Chadeau-Argaud E, 1397 
Pombo-Grégoire I, Hervet E, Vianney A, Gilbert C, Faure M, Cossart P, Doublet P. 1398 
The Legionella Kinase LegK2 Targets the ARP2/3 Complex To Inhibit Actin 1399 
Nucleation on Phagosomes and Allow Bacterial Evasion of the Late Endocytic 1400 
Pathway. MBio 6: e00354–15, 2015. 1401 

170. Michelot A, Berro J, Guérin C, Boujemaa-Paterski R, Staiger CJ, Martiel J-L, 1402 
Blanchoin L. Actin-filament stochastic dynamics mediated by ADF/cofilin. Curr Biol 1403 
17: 825–833, 2007. 1404 

171. Miki H, Suetsugu S, Takenawa T. WAVE, a novel WASP-family protein involved in 1405 
actin reorganization induced by Rac. EMBO J 17: 6932–6941, 1998. 1406 

172. Millius A, Watanabe N, Weiner OD. Diffusion, capture and recycling of 1407 
SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging. 1408 
J Cell Sci 125: 1165–1176, 2012. 1409 

173. Misra A, Lim RPZ, Wu Z, Thanabalu T. N-WASP plays a critical role in fibroblast 1410 
adhesion and spreading. Biochem Biophys Res Commun 364: 908–912, 2007. 1411 

174. Miyamoto K, Pasque V, Jullien J, Gurdon JB. Nuclear actin polymerization is 1412 
required for transcriptional reprogramming of Oct4 by oocytes. Genes Dev 25: 946–1413 
958, 2011. 1414 

175. Miyamoto K, Teperek M, Yusa K, Allen GE, Bradshaw CR, Gurdon JB. Nuclear 1415 
Wave1 is required for reprogramming transcription in oocytes and for normal 1416 
development. Science 341: 1002–1005, 2013. 1417 

176. Mizutani K, Miki H, He H, Maruta H, Takenawa T. Essential role of neural Wiskott-1418 
Aldrich syndrome protein in podosome formation and degradation of extracellular 1419 
matrix in src-transformed fibroblasts. Cancer Res 62: 669–674, 2002. 1420 

177. Molli PR, Li D-Q, Bagheri-Yarmand R, Pakala SB, Katayama H, Sen S, Iyer J, 1421 
Chernoff J, Tsai M-Y, Nair SS, Kumar R. Arpc1b, a centrosomal protein, is both an 1422 
activator and substrate of Aurora A. J Cell Biol 190: 101–114, 2010. 1423 

178. Monteiro P, Rossé C, Castro-Castro A, Irondelle M, Lagoutte E, Paul-Gilloteaux P, 1424 
Desnos C, Formstecher E, Darchen F, Perrais D, Gautreau A, Hertzog M, Chavrier P. 1425 
Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at 1426 
invadopodia. J Cell Biol 203: 1063–1079, 2013. 1427 

179. Murk K, Blanco Suarez EM, Cockbill LMR, Banks P, Hanley JG. The antagonistic 1428 
modulation of Arp2/3 activity by N-WASP, WAVE2 and PICK1 defines dynamic 1429 
changes in astrocyte morphology. J Cell Sci 126: 3873–3883, 2013. 1430 



 38

180. Nakamura Y, Wood CL, Patton AP, Jaafari N, Henley JM, Mellor JR, Hanley JG. 1431 
PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic 1432 
plasticity. EMBO J 30: 719–730, 2011. 1433 

181. Nakao S, Platek A, Hirano S, Takeichi M. Contact-dependent promotion of cell 1434 
migration by the OL-protocadherin–Nap1 interaction. J Cell Biol 182: 395–410, 1435 
2008. 1436 

182. Nalbant P, Hodgson L, Kraynov V, Toutchkine A, Hahn KM. Activation of 1437 
endogenous Cdc42 visualized in living cells. Science 305: 1615–1619, 2004. 1438 

183. Ni Q-F, Yu J-W, Qian F, Sun N-Z, Xiao J-J, Zhu J-W. Cortactin promotes colon 1439 
cancer progression by regulating ERK pathway. Int J Oncol 47: 1034–1042, 2015. 1440 

184. Noh SJ, Baek HA, Park HS, Jang KY, Moon WS, Kang MJ, Lee DG, Kim MH, Lee 1441 
JH, Chung MJ. Expression of SIRT1 and cortactin is associated with progression of 1442 
non-small cell lung cancer. Pathol Res Pract 209: 365–370, 2013. 1443 

185. Oh H, Kim H, Chung K-H, Hong NH, Shin B, Park WJ, Jun Y, Rhee S, Song WK. 1444 
SPIN90 Knockdown Attenuates the Formation and Movement of Endosomal 1445 
Vesicles in the Early Stages of Epidermal Growth Factor Receptor Endocytosis. PLoS 1446 
ONE 8: e82610, 2013. 1447 

186. Oikawa T, Yamaguchi H, Itoh T, Kato M, Ijuin T, Yamazaki D, Suetsugu S, 1448 
Takenawa T. PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of 1449 
lamellipodia. Nat Cell Biol 6: 420–426, 2004. 1450 

187. Okreglak V, Drubin DG. Cofilin recruitment and function during actin-mediated 1451 
endocytosis dictated by actin nucleotide state. J Cell Biol 178: 1251–1264, 2007. 1452 

188. Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M, Chen X, DesMarais 1453 
V, van Rheenen J, Koleske AJ, Condeelis J. Cortactin regulates cofilin and N-WASp 1454 
activities to control the stages of invadopodium assembly and maturation. J Cell Biol 1455 
186: 571–587, 2009. 1456 

189. Otsubo T, Iwaya K, Mukai Y, Mizokami Y, Serizawa H, Matsuoka T, Mukai K. 1457 
Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Mod 1458 
Pathol 17: 461–467, 2004. 1459 

190. Park L, Thomason PA, Zech T, King JS, Veltman DM, Carnell M, Ura S, Machesky 1460 
LM, Insall RH. Cyclical action of the WASH complex: FAM21 and capping protein 1461 
drive WASH recycling, not initial recruitment. Dev Cell 24: 169–181, 2013. 1462 

191. Pichot CS, Arvanitis C, Hartig SM, Jensen SA, Bechill J, Marzouk S, Yu J, Frost JA, 1463 
Corey SJ. Cdc42-interacting protein 4 promotes breast cancer cell invasion and 1464 
formation of invadopodia through activation of N-WASp. Cancer Res 70: 8347–1465 
8356, 2010. 1466 

192. Poincloux R, Lizarraga F, Chavrier P. Matrix invasion by tumour cells: a focus on 1467 
MT1-MMP trafficking to invadopodia. J Cell Sci 122: 3015–3024, 2009. 1468 

193. Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. 1469 



 39

Annu Rev Biophys Biomol Struct 36: 451–477, 2007. 1470 

194. Porkka KP, Tammela TLJ, Vessella RL, Visakorpi T. RAD21 and KIAA0196 at 1471 
8q24 are amplified and overexpressed in prostate cancer. Genes Chromosomes 1472 
Cancer 39: 1–10, 2004. 1473 

195. Poukkula M, Hakala M, Pentinmikko N, Sweeney MO, Jansen S, Mattila J, 1474 
Hietakangas V, Goode BL, Lappalainen P. GMF promotes leading-edge dynamics 1475 
and collective cell migration in vivo. Curr Biol 24: 2533–2540, 2014. 1476 

196. Poukkula M, Kremneva E, Serlachius M, Lappalainen P. Actin-depolymerizing factor 1477 
homology domain: a conserved fold performing diverse roles in cytoskeletal 1478 
dynamics. Cytoskeleton (Hoboken) 68: 471–490, 2011. 1479 

197. Puthenveedu MA, Lauffer B, Temkin P, Vistein R, Carlton P, Thorn K, Taunton J, 1480 
Weiner OD, Parton RG, Zastrow von M. Sequence-dependent sorting of recycling 1481 
proteins by actin-stabilized endosomal microdomains. Cell 143: 761–773, 2010. 1482 

198. Raucher D, Sheetz MP. Cell spreading and lamellipodial extension rate is regulated 1483 
by membrane tension. J Cell Biol 148: 127–136, 2000. 1484 

199. Rauhala HE, Teppo S, Niemelä S, Kallioniemi A. Silencing of the ARP2/3 complex 1485 
disturbs pancreatic cancer cell migration. Anticancer Res 33: 45–52, 2013. 1486 

200. Robinson RC, Turbedsky K, Kaiser DA, Marchand JB, Higgs HN, Choe S, Pollard 1487 
TD. Crystal structure of Arp2/3 complex. Science 294: 1679–1684, 2001. 1488 

201. Rocca DL, Amici M, Antoniou A, Blanco Suarez E, Halemani N, Murk K, 1489 
McGarvey J, Jaafari N, Mellor JR, Collingridge GL, Hanley JG. The small GTPase 1490 
Arf1 modulates Arp2/3-mediated actin polymerization via PICK1 to regulate synaptic 1491 
plasticity. Neuron 79: 293–307, 2013. 1492 

202. Rocca DL, Martin S, Jenkins EL, Hanley JG. Inhibition of Arp2/3-mediated actin 1493 
polymerization by PICK1 regulates neuronal morphology and AMPA receptor 1494 
endocytosis. Nat Cell Biol 10: 259–271, 2008. 1495 

203. Rodal AA, Sokolova O, Robins DB, Daugherty KM, Hippenmeyer S, Riezman H, 1496 
Grigorieff N, Goode BL. Conformational changes in the Arp2/3 complex leading to 1497 
actin nucleation. Nat Struct Mol Biol 12: 26–31, 2005. 1498 

204. Rodnick-Smith M, Luan Q, Liu S-L, Nolen BJ. Role and structural mechanism of 1499 
WASP-triggered conformational changes in branched actin filament nucleation by 1500 
Arp2/3 complex. Proc Natl Acad Sci U S A 113: E3834–43, 2016. 1501 

205. Rodrigo JP, García LA, Ramos S, Lazo PS, Suárez C. EMS1 gene amplification 1502 
correlates with poor prognosis in squamous cell carcinomas of the head and neck. 1503 
Clin Cancer Res 6: 3177–3182, 2000. 1504 

206. Rolland Y, Marighetti P, Malinverno C, Confalonieri S, Luise C, Ducano N, 1505 
Palamidessi A, Bisi S, Kajiho H, Troglio F, Shcherbakova OG, Dunn AR, Oldani A, 1506 
Lanzetti L, Di Fiore PP, Disanza A, Scita G. The CDC42-Interacting Protein 4 1507 
Controls Epithelial Cell Cohesion and Tumor Dissemination. Dev Cell 30: 553–568, 1508 



 40

2014. 1509 

207. Rothschild BL, Shim AH, Ammer AG, Kelley LC, Irby KB, Head JA, Chen L, 1510 
Varella-Garcia M, Sacks PG, Frederick B, Raben D, Weed SA. Cortactin 1511 
overexpression regulates actin-related protein 2/3 complex activity, motility, and 1512 
invasion in carcinomas with chromosome 11q13 amplification. Cancer Res 66: 8017–1513 
8025, 2006. 1514 

208. Rouiller I, Xu X-P, Amann KJ, Egile C, Nickell S, Nicastro D, Li R, Pollard TD, 1515 
Volkmann N, Hanein D. The structural basis of actin filament branching by the 1516 
Arp2/3 complex. J Cell Biol 180: 887–895, 2008. 1517 

209. Russo AJ, Mathiowetz AJ, Hong S, Welch MD, Campellone KG. Rab1 recruits 1518 
WHAMM during membrane remodeling but limits actin nucleation. Mol Biol Cell 27: 1519 
967–978, 2016. 1520 

210. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall 1521 
CJ. Rac activation and inactivation control plasticity of tumor cell movement. Cell 1522 
135: 510–523, 2008. 1523 

211. Schachtner H, Weimershaus M, Stache V, Plewa N, Legler DF, Höpken UE, 1524 
Maritzen T. Loss of Gadkin Affects Dendritic Cell Migration In Vitro. PLoS ONE 10: 1525 
e0143883, 2015. 1526 

212. Schlüter K, Waschbüsch D, Anft M, Hügging D, Kind S, Hänisch J, Lakisic G, 1527 
Gautreau A, Barnekow A, Stradal TEB. JMY is involved in anterograde vesicle 1528 
trafficking from the trans-Golgi network. Eur J Cell Biol 93: 194–204, 2014. 1529 

213. Schmidt MR, Maritzen T, Kukhtina V, Higman VA, Doglio L, Barak NN, Strauss H, 1530 
Oschkinat H, Dotti CG, Haucke V. Regulation of endosomal membrane traffic by a 1531 
Gadkin/AP-1/kinesin KIF5 complex. Proc Natl Acad Sci U S A 106: 15344–15349, 1532 
2009. 1533 

214. Schuuring E. The involvement of the chromosome 11q13 region in human 1534 
malignancies: cyclin D1 and EMS1 are two new candidate oncogenes--a review. 1535 
Gene 159: 83–96, 1995. 1536 

215. Seaman MNJ, Gautreau A, Billadeau DD. Retromer-mediated endosomal protein 1537 
sorting: all WASHed up! Trends Cell Biol 23: 522–528, 2013. 1538 

216. Semba S, Iwaya K, Matsubayashi J, Serizawa H, Kataba H, Hirano T, Kato H, 1539 
Matsuoka T, Mukai K. Coexpression of actin-related protein 2 and Wiskott-Aldrich 1540 
syndrome family verproline-homologous protein 2 in adenocarcinoma of the lung. 1541 
Clin Cancer Res 12: 2449–2454, 2006. 1542 

217. Serrels B, Serrels A, Brunton VG, Holt M, McLean GW, Gray CH, Jones GE, Frame 1543 
MC. Focal adhesion kinase controls actin assembly via a FERM-mediated interaction 1544 
with the Arp2/3 complex. Nat Cell Biol 9: 1046–1056, 2007. 1545 

218. Sheen-Chen S-M, Huang C-Y, Liu Y-Y, Huang C-C, Tang R-P. Cortactin in breast 1546 
cancer: analysis with tissue microarray. Anticancer Res 31: 293–297, 2011. 1547 



 41

219. Shen Q-T, Hsiue PP, Sindelar CV, Welch MD, Campellone KG, Wang H-W. 1548 
Structural insights into WHAMM-mediated cytoskeletal coordination during 1549 
membrane remodeling. J Cell Biol 199: 111–124, 2012. 1550 

220. Shikama N, Lee CW, France S, Delavaine L, Lyon J, Krstic-Demonacos M, La 1551 
Thangue NB. A novel cofactor for p300 that regulates the p53 response. Mol Cell 4: 1552 
365–376, 1999. 1553 

221. Silva JM, Ezhkova E, Silva J, Heart S, Castillo M, Campos Y, Castro V, Bonilla F, 1554 
Cordon-Cardo C, Muthuswamy SK, Powers S, Fuchs E, Hannon GJ. Cyfip1 is a 1555 
putative invasion suppressor in epithelial cancers. Cell 137: 1047–1061, 2009. 1556 

222. Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, 1557 
Weaver AM. Cortactin promotes exosome secretion by controlling branched actin 1558 
dynamics. J Cell Biol 214: 197–213, 2016. 1559 

223. Siton O, Ideses Y, Albeck S, Unger T, Bershadsky AD, Gov NS, Bernheim-1560 
Groswasser A. Cortactin releases the brakes in actin- based motility by enhancing 1561 
WASP-VCA detachment from Arp2/3 branches. Curr Biol 21: 2092–2097, 2011. 1562 

224. Smith BA, Padrick SB, Doolittle LK, Daugherty-Clarke K, Corrêa IR, Xu M-Q, 1563 
Goode BL, Goode BL, Rosen MK, Gelles J, Gelles J. Three-color single molecule 1564 
imaging shows WASP detachment from Arp2/3 complex triggers actin filament 1565 
branch formation. eLife 2: e01008, 2013. 1566 

225. Snapper SB, Takeshima F, Antón I, Liu CH, Thomas SM, Nguyen D, Dudley D, 1567 
Fraser H, Purich D, Lopez-Ilasaca M, Klein C, Davidson L, Bronson R, Mulligan RC, 1568 
Southwick F, Geha R, Goldberg MB, Rosen FS, Hartwig JH, Alt FW. N-WASP 1569 
deficiency reveals distinct pathways for cell surface projections and microbial actin-1570 
based motility. Nat Cell Biol 3: 897–904, 2001. 1571 

226. Sokolova OS, Chemeris A, Guo S, Alioto SL, Gandhi M, Padrick S, Pechnikova E, 1572 
David V, Gautreau A, Goode BL. Structural Basis of Arp2/3 Complex Inhibition by 1573 
GMF, Coronin, and Arpin. J Mol Biol 429: 237–248, 2017. 1574 

227. Sossey-Alaoui K, Li X, Ranalli TA, Cowell JK. WAVE3-mediated cell migration and 1575 
lamellipodia formation are regulated downstream of phosphatidylinositol 3-kinase. J 1576 
Biol Chem 280: 21748–21755, 2005. 1577 

228. Spence HJ, Timpson P, Tang HR, Insall RH, Machesky LM. Scar/WAVE3 1578 
contributes to motility and plasticity of lamellipodial dynamics but not invasion in 1579 
three dimensions. Biochem J 448: 35–42, 2012. 1580 

229. Steffen A, Faix J, Resch GP, Linkner J, Wehland J, Small JV, Rottner K, Stradal 1581 
TEB. Filopodia formation in the absence of functional WAVE- and Arp2/3-1582 
complexes. Mol Biol Cell 17: 2581–2591, 2006. 1583 

230. Steffen A, Rottner K, Ehinger J, Innocenti M, Scita G, Wehland J, Stradal TEB. Sra-1 1584 
and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO J 23: 1585 
749–759, 2004. 1586 

231. Stovold CF, Millard TH, Machesky LM. Inclusion of Scar/WAVE3 in a similar 1587 



 42

complex to Scar/WAVE1 and 2. BMC Cell Biol 6: 11, 2005. 1588 

232. Stradal T, Courtney KD, Rottner K, Hahne P, Small JV, Pendergast AM. The Abl 1589 
interactor proteins localize to sites of actin polymerization at the tips of lamellipodia 1590 
and filopodia. Curr Biol 11: 891–895, 2001. 1591 

233. Suetsugu S, Gautreau A. Synergistic BAR-NPF interactions in actin-driven 1592 
membrane remodeling. Trends Cell Biol 22: 141–150, 2012. 1593 

234. Suetsugu S, Miki H, Takenawa T. Identification of two human WAVE/SCAR 1594 
homologues as general actin regulatory molecules which associate with the Arp2/3 1595 
complex. Biochem Biophys Res Commun 260: 296–302, 1999. 1596 

235. Suetsugu S, Takenawa T. Translocation of N-WASP by Nuclear Localization and 1597 
Export Signals into the Nucleus Modulates Expression of HSP90. J Biol Chem 278: 1598 
42515–42523, 2003. 1599 

236. Suetsugu S, Yamazaki D, Kurisu S, Takenawa T. Differential roles of WAVE1 and 1600 
WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev 1601 
Cell 5: 595–609, 2003. 1602 

237. Sugahara K, Michikawa Y, Ishikawa K, Shoji Y, Iwakawa M, Shibahara T, Imai T. 1603 
Combination effects of distinct cores in 11q13 amplification region on cervical lymph 1604 
node metastasis of oral squamous cell carcinoma. Int J Oncol 39: 761–769, 2011. 1605 

238. Sun Y, Shang Y, Ren G, Zhou L, Feng B, Li K, Deng L, Liang J, Lu Y, Wang X. 1606 
Coronin3 regulates gastric cancer invasion and metastasis by interacting with Arp2. 1607 
Cancer Biol Ther 15: 1163–1173, 2014. 1608 

239. Sung BH, Zhu X, Kaverina I, Weaver AM. Cortactin controls cell motility and 1609 
lamellipodial dynamics by regulating ECM secretion. Curr Biol 21: 1460–1469, 1610 
2011. 1611 

240. Suraneni P, Rubinstein B, Unruh JR, Durnin M, Hanein D, Li R. The Arp2/3 complex 1612 
is required for lamellipodia extension and directional fibroblast cell migration. J Cell 1613 
Biol 197: 239–251, 2012. 1614 

241. Svitkina TM, Borisy GG. Arp2/3 Complex and Actin Depolymerizing Factor/Cofilin 1615 
in Dendritic Organization and Treadmilling of Actin Filament Array in Lamellipodia. 1616 
J Cell Biol 145: 1009–1026, 1999. 1617 

242. Tang H, Li A, Bi J, Veltman DM, Zech T, Spence HJ, Yu X, Timpson P, Insall RH, 1618 
Frame MC, Machesky LM. Loss of Scar/WAVE complex promotes N-WASP- and 1619 
FAK-dependent invasion. Curr Biol 23: 107–117, 2013. 1620 

243. Taylor MA, Davuluri G, Parvani JG, Schiemann BJ, Wendt MK, Plow EF, 1621 
Schiemann WP, Sossey-Alaoui K. Upregulated WAVE3 expression is essential for 1622 
TGF-β-mediated EMT and metastasis of triple-negative breast cancer cells. Breast 1623 
Cancer Res Treat 142: 341–353, 2013. 1624 

244. Taylor MD, Sadhukhan S, Kottangada P, Ramgopal A, Sarkar K, D'Silva S, 1625 
Selvakumar A, Candotti F, Vyas YM. Nuclear role of WASp in the pathogenesis of 1626 



 43

dysregulated TH1 immunity in human Wiskott-Aldrich syndrome. Sci Transl Med 2: 1627 
37ra44, 2010. 1628 

245. Taylor MJ, Lampe M, Merrifield CJ. A Feedback Loop between Dynamin and Actin 1629 
Recruitment during Clathrin-Mediated Endocytosis. PLoS Biol 10: e1001302–17, 1630 
2012. 1631 

246. Taylor MJ, Perrais D, Merrifield CJ. A High Precision Survey of the Molecular 1632 
Dynamics of Mammalian Clathrin-Mediated Endocytosis. PLoS Biol 9: e1000604–1633 
23, 2011. 1634 

247. Teng Y, Bahassan A, Dong D, Hanold LE, Ren X, Kennedy EJ, Cowell JK. 1635 
Targeting the WASF3-CYFIP1 Complex Using Stapled Peptides Suppresses Cancer 1636 
Cell Invasion. Cancer Res 76: 965–973, 2016. 1637 

248. Teng Y, Pi W, Wang Y, Cowell JK. WASF3 provides the conduit to facilitate 1638 
invasion and metastasis in breast cancer cells through HER2/HER3 signaling. 1639 
Oncogene 35: 4633–4640, 2016. 1640 

249. Teng Y, Qin H, Bahassan A, Bendzunas NG, Kennedy EJ, Cowell JK. The WASF3-1641 
NCKAP1-CYFIP1 Complex Is Essential for Breast Cancer Metastasis. Cancer Res 1642 
76: 5133–5142, 2016. 1643 

250. Terashima A, Pelkey KA, Rah J-C, Suh YH, Roche KW, Collingridge GL, McBain 1644 
CJ, Isaac JTR. An essential role for PICK1 in NMDA receptor-dependent 1645 
bidirectional synaptic plasticity. Neuron 57: 872–882, 2008. 1646 

251. Thal DR, Xavier C-P, Rosentreter A, Linder S, Friedrichs B, Waha A, Pietsch T, 1647 
Stumpf M, Noegel AA, Clemen CS. Expression of coronin-3 (coronin-1C) in diffuse 1648 
gliomas is related to malignancy. J Pathol 214: 415–424, 2008. 1649 

252. Timpson P, Wilson AS, Lehrbach GM, Sutherland RL, Musgrove EA, Daly RJ. 1650 
Aberrant expression of cortactin in head and neck squamous cell carcinoma cells is 1651 
associated with enhanced cell proliferation and resistance to the epidermal growth 1652 
factor receptor inhibitor gefitinib. Cancer Res 67: 9304–9314, 2007. 1653 

253. Tsujita K, Suetsugu S, Sasaki N, Furutani M, Oikawa T, Takenawa T. Coordination 1654 
between the actin cytoskeleton and membrane deformation by a novel membrane 1655 
tubulation domain of PCH proteins is involved in endocytosis. J Cell Biol 172: 269–1656 
279, 2006. 1657 

254. Veltman DM, Insall RH. WASP family proteins: their evolution and its physiological 1658 
implications. Mol Biol Cell 21: 2880–2893, 2010. 1659 

255. Verma S, Han SP, Michael M, Gomez GA, Yang Z, Teasdale RD, Ratheesh A, 1660 
Kovacs EM, Ali RG, Yap AS. A WAVE2-Arp2/3 actin nucleator apparatus supports 1661 
junctional tension at the epithelial zonula adherens. Mol Biol Cell 23: 4601–4610, 1662 
2012. 1663 

256. Verma S, Shewan AM, Scott JA, Helwani FM, Elzen den NR, Miki H, Takenawa T, 1664 
Yap AS. Arp2/3 activity is necessary for efficient formation of E-cadherin adhesive 1665 
contacts. J Biol Chem 279: 34062–34070, 2004. 1666 



 44

257. Volkmann N, Amann KJ, Stoilova-McPhie S, Egile C, Winter DC, Hazelwood L, 1667 
Heuser JE, Li R, Pollard TD, Hanein D. Structure of Arp2/3 complex in its activated 1668 
state and in actin filament branch junctions. Science 293: 2456–2459, 2001. 1669 

258. Wagner AR, Luan Q, Liu S-L, Nolen BJ. Dip1 defines a class of Arp2/3 complex 1670 
activators that function without preformed actin filaments. Curr Biol 23: 1990–1998, 1671 
2013. 1672 

259. Wang C, Tran-Thanh D, Moreno JC, Cawthorn TR, Jacks LM, Wang D-Y, 1673 
McCready DR, Done SJ. Expression of Abl interactor 1 and its prognostic 1674 
significance in breast cancer: a tissue-array-based investigation. Breast Cancer Res 1675 
Treat 129: 373–386, 2010. 1676 

260. Wang L, Zhao K, Ren B, Zhu M, Zhang C, Zhao P, Zhou H, Chen L, Yu S, Yang X. 1677 
Expression of cortactin in human gliomas and its effect on migration and invasion of 1678 
glioma cells. Oncol Rep 34: 1815–1824, 2015. 1679 

261. Wang W, Wyckoff JB, Frohlich VC, Oleynikov Y, Hüttelmaier S, Zavadil J, Cermak 1680 
L, Bottinger EP, Singer RH, White JG, Segall JE, Condeelis JS. Single cell behavior 1681 
in metastatic primary mammary tumors correlated with gene expression patterns 1682 
revealed by molecular profiling. Cancer Res 62: 6278–6288, 2002. 1683 

262. Wang W, Wyckoff JB, Goswami S, Wang Y, Sidani M, Segall JE, Condeelis JS. 1684 
Coordinated Regulation of Pathways for Enhanced Cell Motility and Chemotaxis Is 1685 
Conserved in Rat and Mouse Mammary Tumors. Cancer Res 67: 3505–3511, 2007. 1686 

263. Wang W-S, Zhong H-J, Xiao D-W, Huang X, Liao L-D, Xie Z-F, Xu X-E, Shen Z-Y, 1687 
Xu L-Y, Li E-M. The expression of CFL1 and N-WASP in esophageal squamous cell 1688 
carcinoma and its correlation with clinicopathological features. Dis Esophagus 23: 1689 
512–521, 2010. 1690 

264. Wang X, Cao W, Mo M, Wang W, Wu H, Wang J. VEGF and cortactin expression 1691 
are independent predictors of tumor recurrence following curative resection of gastric 1692 
cancer. J Surg Oncol 102: 325–330, 2010. 1693 

265. Weaver AM, Heuser JE, Karginov AV, Lee W-L, Parsons JT, Cooper JA. Interaction 1694 
of cortactin and N-WASp with Arp2/3 complex. Curr Biol 12: 1270–1278, 2002. 1695 

266. Weaver AM, Karginov AV, Kinley AW, Weed SA, Li Y, Parsons JT, Cooper JA. 1696 
Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. 1697 
Curr Biol 11: 370–374, 2001. 1698 

267. Weed SA, Karginov AV, Schafer DA, Weaver AM, Kinley AW, Cooper JA, Parsons 1699 
JT. Cortactin localization to sites of actin assembly in lamellipodia requires 1700 
interactions with F-actin and the Arp2/3 complex. J Cell Biol 151: 29–40, 2000. 1701 

268. Weinberg J, Drubin DG. Clathrin-mediated endocytosis in budding yeast. Trends Cell 1702 
Biol 22: 1–13, 2012. 1703 

269. Weisswange I, Newsome TP, Schleich S, Way M. The rate of N-WASP exchange 1704 
limits the extent of ARP2/3-complex-dependent actin-based motility. Nature 457: 1705 
87–91, 2009. 1706 



 45

270. Welch MD, Iwamatsu A, Mitchison TJ. Actin polymerization is induced by Arp 2/3 1707 
protein complex at the surface of Listeria monocytogenes. Nature 385: 265–269, 1708 
1997. 1709 

271. Welch MD, Way M. Arp2/3-Mediated Actin-Based Motility: A Tail of Pathogen 1710 
Abuse. Cell Host Microbe 14: 242–255, 2013. 1711 

272. Williams HC, San Martin A, Adamo CM, Seidel-Rogol B, Pounkova L, Datla SR, 1712 
Lassègue B, Bear JE, Griendling K. Role of coronin 1B in PDGF-induced migration 1713 
of vascular smooth muscle cells. Circ Res 111: 56–65, 2012. 1714 

273. Wu C, Asokan SB, Berginski ME, Haynes EM, Sharpless NE, Griffith JD, Gomez 1715 
SM, Bear JE. Arp2/3 is critical for lamellipodia and response to extracellular matrix 1716 
cues but is dispensable for chemotaxis. Cell 148: 973–987, 2012. 1717 

274. Wu H, Parsons JT. Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous 1718 
actin-binding protein enriched in the cell cortex. J Cell Biol 120: 1417–1426, 1993. 1719 

275. Wu H, Reynolds AB, Kanner SB, Vines RR, Parsons JT. Identification and 1720 
characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol 1721 
11: 5113–5124, 1991. 1722 

276. Wu L, Peng C-W, Hou J-X, Zhang Y-H, Chen C, Chen L-D, Li Y. Coronin-1C is a 1723 
novel biomarker for hepatocellular carcinoma invasive progression identified by 1724 
proteomics analysis and clinical validation. J Exp Clin Cancer Res 29: 17, 2010. 1725 

277. Wu M, Huang B, Graham M, Raimondi A, Heuser JE, Zhuang X, Pietro De Camilli. 1726 
Coupling between clathrin-dependent endocytic budding and F-BAR-dependent 1727 
tubulation in a cell-free system. Nat Cell Biol 12: 902–908, 2010. 1728 

278. Wu X, Suetsugu S, Cooper LA, Takenawa T, Guan JL. Focal Adhesion Kinase 1729 
Regulation of N-WASP Subcellular Localization and Function. J Biol Chem 279: 1730 
9565–9576, 2004. 1731 

279. Wu X, Yoo Y, Okuhama NN, Tucker PW, Liu G, Guan J-L. Regulation of RNA-1732 
polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners. 1733 
Nat Cell Biol 8: 756–763, 2006. 1734 

280. Xavier C-P, Rastetter RH, Blömacher M, Stumpf M, Himmel M, Morgan RO, 1735 
Fernandez M-P, Wang C, Osman A, Miyata Y, Gjerset RA, Eichinger L, Hofmann A, 1736 
Linder S, Noegel AA, Clemen CS. Phosphorylation of CRN2 by CK2 regulates F-1737 
actin and Arp2/3 interaction and inhibits cell migration. Sci rep 2: 241, 2012. 1738 

281. Xia P, Wang S, Du Y, Zhao Z, Shi L, Sun L, Huang G, Ye B, Li C, Dai Z, Hou N, 1739 
Cheng X, Sun Q, Li L, Yang X, Fan Z. WASH inhibits autophagy through 1740 
suppression of Beclin 1 ubiquitination. EMBO J 32: 2685–2696, 2013. 1741 

282. Xia P, Wang S, Huang G, Du Y, Zhu P, Li M, Fan Z. RNF2 is recruited by WASH to 1742 
ubiquitinate AMBRA1 leading to downregulation of autophagy. Cell Res 24: 943–1743 
958, 2014. 1744 

283. Xiong X, Chorzalska A, Dubielecka PM, White JR, Vedvyas Y, Hedvat CV, 1745 



 46

Haimovitz-Friedman A, Koutcher JA, Reimand J, Bader GD, Sawicki JA, Kotula L. 1746 
Disruption of Abi1/Hssh3bp1 expression induces prostatic intraepithelial neoplasia in 1747 
the conditional Abi1/Hssh3bp1 KO mice. Oncogenesis 1: e26, 2012. 1748 

284. Xu X-Z, Garcia MV, Li T-Y, Khor L-Y, Gajapathy RS, Spittle C, Weed S, Lessin 1749 
SR, Wu H. Cytoskeleton alterations in melanoma: aberrant expression of cortactin, an 1750 
actin-binding adapter protein, correlates with melanocytic tumor progression. Mod 1751 
Pathol 23: 187–196, 2009. 1752 

285. Yamada S-I, Yanamoto S, Kawasaki G, Mizuno A, Nemoto TK. Overexpression of 1753 
Cortactin Increases Invasion Potential in Oral Squamous Cell Carcinoma. Pathol 1754 
Oncol Res 16: 523–531, 2010. 1755 

286. Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell 1756 
migration and invasion. Biochim Biophys Acta 1773: 642–652, 2007. 1757 

287. Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M, Segall J, 1758 
Eddy R, Miki H, Takenawa T, Condeelis J. Molecular mechanisms of invadopodium 1759 
formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 1760 
168: 441–452, 2005. 1761 

288. Yamazaki D, Oikawa T, Takenawa T, Takenawa T. Rac-WAVE-mediated actin 1762 
reorganization is required for organization and maintenance of cell-cell adhesion. J 1763 
Cell Sci 120: 86–100, 2007. 1764 

289. Yamazaki D, Suetsugu S, Miki H, Kataoka Y, Nishikawa S-I, Fujiwara T, Yoshida N, 1765 
Takenawa T. WAVE2 is required for directed cell migration and cardiovascular 1766 
development. Nature 424: 452–456, 2003. 1767 

290. Yan C, Martinez-Quiles N, Eden S, Shibata T, Takeshima F, Shinkura R, Fujiwara Y, 1768 
Bronson R, Snapper SB, Kirschner MW, Geha R, Rosen FS, Alt FW. WAVE2 1769 
deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based 1770 
motility. EMBO J 22: 3602–3612, 2003. 1771 

291. Yang LY, Tao YM, Ou DP, Wang W, Chang ZG, Wu F. Increased Expression of 1772 
Wiskott-Aldrich Syndrome Protein Family Verprolin-Homologous Protein 2 1773 
Correlated with Poor Prognosis of Hepatocellular Carcinoma. Clin Cancer Res 12: 1774 
5673–5679, 2006. 1775 

292. Yarar D, To W, Abo A, Welch MD. The Wiskott-Aldrich syndrome protein directs 1776 
actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr 1777 
Biol 9: 555–558, 1999. 1778 

293. Ydenberg CA, Padrick SB, Sweeney MO, Gandhi M, Sokolova O, Goode BL. GMF 1779 
severs actin-Arp2/3 complex branch junctions by a cofilin-like mechanism. Curr Biol 1780 
23: 1037–1045, 2013. 1781 

294. Yokotsuka M, Iwaya K, Saito T, Pandiella A, Tsuboi R, Kohno N, Matsubara O, 1782 
Mukai K. Overexpression of HER2 signaling to WAVE2–Arp2/3 complex activates 1783 
MMP-independent migration in breast cancer. Breast Cancer Res Treat 126: 311–1784 
318, 2010. 1785 



 47

295. Yoo Y, Wu X, Guan J-L. A novel role of the actin-nucleating Arp2/3 complex in the 1786 
regulation of RNA polymerase II-dependent transcription. J Biol Chem 282: 7616–1787 
7623, 2007. 1788 

296. Zech T, Calaminus SDJ, Caswell P, Spence HJ, Carnell M, Insall RH, Insall RH, 1789 
Norman J, Machesky LM, Machesky LM. The Arp2/3 activator WASH regulates 1790 
α5β1-integrin-mediated invasive migration. J Cell Sci 124: 3753–3759, 2011. 1791 

297. Zhang B, Cao W, Zhang F, Zhang L, Niu R, Niu Y, Fu L, Hao X, Cao X. Protein 1792 
interacting with C alpha kinase 1 (PICK1) is involved in promoting tumor growth and 1793 
correlates with poor prognosis of human breast cancer. Cancer Sci 101: 1536–1542, 1794 
2010. 1795 

298. Zhang J, Tang L, Chen Y, Duan Z, Xiao L, Li W, Liu X, Shen L. Upregulation of 1796 
Abelson interactor protein 1 predicts tumor progression and poor outcome in 1797 
epithelial ovarian cancer. Hum Pathol 46: 1331–1340, 2015. 1798 

299. Zhang J, Tang L, Shen L, Zhou S, Duan Z, Xiao L, Cao Y, Mu X, Zha L, Wang H. 1799 
High level of WAVE1 expression is associated with tumor aggressiveness and 1800 
unfavorable prognosis of epithelial ovarian cancer. Gynecol Oncol 127: 223–230, 1801 
2012. 1802 

300. Zhang X, Moore SW, Iskratsch T, Sheetz MP. N-WASP-directed actin 1803 
polymerization activates Cas phosphorylation and lamellipodium spreading. J Cell 1804 
Sci 127: 1394–1405, 2014. 1805 

301. Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J, Olashaw N, 1806 
Parsons JT, Yang X-J, Dent SR, Yao T-P, Lane WS, Seto E. HDAC6 Modulates Cell 1807 
Motility by Altering the Acetylation Level of Cortactin. Mol Cell 27: 197–213, 2007. 1808 

302. Zhang Y, Guan X-Y, Dong B, Zhao M, Wu J-H, Tian X-Y, Hao C-Y. Expression of 1809 
MMP-9 and WAVE3 in colorectal cancer and its relationship to clinicopathological 1810 
features. J Cancer Res Clin Oncol 138: 2035–2044, 2012. 1811 

303. Zheng H-C, Zheng Y-S, Li X-H, Takahashi H, Hara T, Masuda S, Yang X-H, Guan 1812 
Y-F, Takano Y. Arp2/3 overexpression contributed to pathogenesis, growth and 1813 
invasion of gastric carcinoma. Anticancer Res 28: 2225–2232, 2008. 1814 

304. Zuchero JB, Belin B, Mullins RD. Actin binding to WH2 domains regulates nuclear 1815 
import of the multifunctional actin regulator JMY. Mol Biol Cell 23: 853–863, 2012. 1816 

305. Zuchero JB, Coutts AS, Quinlan ME, Thangue NBL, Mullins RD. p53-cofactor JMY 1817 
is a multifunctional actin nucleation factor. Nat Cell Biol 11: 451–459, 2009. 1818 

306. Zuo P, Ma Y, Huang Y, Ye F, Wang P, Wang X, Zhou C, Lu W, Kong B, Xie X. 1819 
High GMFG expression correlates with poor prognosis and promotes cell migration 1820 
and invasion in epithelial ovarian cancer. Gynecol Oncol 132: 745–751, 2014. 1821 

307. Zuo X, Zhang J, Zhang Y, Hsu S-C, Zhou D, Guo W. Exo70 interacts with the 1822 
Arp2/3 complex and regulates cell migration. Nat Cell Biol 8: 1383–1388, 2006. 1823 

 1824 



Cortac n

GMF
Coronin

Branch stabilizer
N-WASP

WAVE

WHAMM

Arpin
PICK1

Gadkin

WASH

Ac vator (NPF)

Inhibitor Branch destabilizer

Arp2/3 complex

CK-666 , CK-869

Figure 1

Arp2

ArpC5ArpC2
ArpC1

ArpC4

ArpC3

Arp3



SHD B AW C

Sra1

Brk1 Abi1
Nap1

P
WAVE Arpin

A Lamellipodia

WIP
AWH1 B CRIB AI W CWP

N-WASP PICK1
PDZ BAR A Clathrin coated pits

Endosomes
Gadkin

CC A
WASH

WAHD1 P AW C

SWIP

CCDC53Fam21

Strumpellin

Arp2/3 ac vator (NPF) Arp2/3 inhibitor Localiza on

AW CWWMD PHelical Domain
WHAMM ER / Golgi?

Figure 2



Rac GDP WAVE Arp2/3 ArpinArp2/3 Arp2/3

Time

Rac GTP

Figure 3



Transforma on

N-WASP

WAVE

WASH

WHAMM

PICK1

Arpin

Gadkin

Normal cell

N-WASP

WAVE

WASH

WHAMM

N-WASP

WASH

Invadopodium

Arpin

PICK1

Gadkin

Cancer cell

Figure 4



GMF ADF-H

Coronin β-Propeller CC

Branch regulators

Cortac n R SH3PR R R R R RA

Figure 5



Figure 6

Arp2/3 + GMF

+ Coronin + CoroninArpC1B/ArpC5LArp2/3

Time Time

Time TimeTime

+ Cortac n

Time





Table II: Deregulation of the Arp2/3 branch regulators in association with cancer stage and patient prognosis.

Protein name Gene name DNA mRNA Protein Cancer Overall deregulation Association with stage Survival prognosis Ref.
amplification Head and Neck ↗ lymph nodes, recurrence ↘ Rodrigo et al., 2000
amplification ✔ Head and Neck ↗ lymph nodes nd Rothschild et al., 2006

✔ Head and Neck ↗ high grade ↘ Hofman et al., 2008
✔ Larynx ↗ ↘ Gibcuset al., 2008

✔ ✔ Larynx ↗ high grade nd Ambrosio et al., 2011
✔ Esophagus ↗ high grade, metastases ↘ Lu et al., 2014
✔ Oral ↗ high grade nd Yamada et al., 2010

amplification ✔ Breast ↗ - Hui et al., 1998
amplification ✔ Breast ↗ - Dedes et al., 2010

✔ Breast ↗ - Sheen-Chen et al., 2011
✔ Colon ↗ high grade ↘ Cai et al., 2010

✔ ✔ Colon ↗ high grade ↘ Ni et al., 2015
✔ Stomach ↗ high grade, lymph nodes ↘ Wang et al., 2010
✔ Liver ↗ high grade, metastases ↘ Huang et al., 2012

✔ ✔ Brain ↗ high grade nd Wang et al., 2015
✔ Lung ↗ high grade nd Noh et al., 2013
✔ Ovary ↗ high grade nd Linet al., 2008

✔ ✔ Melanome ↗ high grade nd Xu et al., 2009
✔ Prostate ↗ high grade ↘ Hou et al., 2012
✔ Gliomas ↗ high grade nd Thal et al., 2008
✔ Liver ↗ high grade nd Wu et al., 2010

✔ Lymphoma ↗ nd Luan et al., 2010
✔ Stomach ↗ high grade ↘ Sun et al., 2014
✔ Glioma ↗ high grade, neovascularization ↘ Kuang et al., 2016
✔ Ovary ↗ high grade ↘ Li et al., 2010

GMF GMFG ✔ Ovary ↗ ↘ Zuo et al., 2014

nd: not determined
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