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ABSTRACT 

 

 

The Arp2/3 complex generates branched actin networks that exert pushing forces onto different 

cellular membranes. WASH complexes activate Arp2/3 complexes at the surface of endosomes and 

thereby fission transport intermediates containing endocytosed receptors, such as 51 integrins. How 

WASH complexes are assembled in the cell is unknown. Here we identify the small coiled coil protein 

HSBP1 as a factor that specifically promotes the assembly of a ternary complex composed of 

CCDC53, WASH and FAM21 by dissociating the CCDC53 homotrimeric precursor. HSBP1 operates 

at the centrosome, which concentrates the building blocks. HSBP1 depletion in human cancer cell 

lines and in Dictyostelium amoebae phenocopies WASH depletion, suggesting a critical role of the 

ternary WASH complex for WASH functions. HSBP1 is required for the development of focal 

adhesions and of cell polarity. These defects impair the migration and invasion of tumor cells. 

Overexpression of HSBP1 in breast tumors is associated with increased levels of WASH complexes 

and with poor prognosis for patients. 

 

 

Key words: Actin cytoskeleton, Arp2/3 complex, multiprotein complex assembly, cell migration and 

invasion, centrosome. 
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INTRODUCTION 

 

Cells use branched actin networks to control their shape, to power cell migration and to drive 

membrane remodeling in intracellular traffic (Rotty et al, 2013). The Arp2/3 complex is the stable 

multiprotein complex that generates branched actin networks. It contains two actin related proteins, 

Arp2 and Arp3, and five other subunits that maintain the two actin related proteins associated. When 

activated by the WCA domain of so-called Nucleation Promoting Factors (NPFs), the Arp2/3 complex 

creates an actin branch (Pollard, 2007): it associates with a pre-existing actin filament and nucleates a 

new filament from its two subunits, Arp2 and Arp3, brought into close contact and thus mimicking a 

filament end (Rouiller et al, 2008). Such a multiprotein complex can be referred to as a molecular 

machine to highlight the coordinated work it performs (Alberts, 1998). No function has been ascribed 

to Arp2 or Arp3 in isolation, outside of the Arp2/3 complex. 

NPFs activates the Arp2/3 complex at different subcellular locations: WAVE at the 

lamellipodium edge, where the branched actin network provides the force for membrane protrusion 

(Rotty et al, 2013), and WASH at the surface of endosomes, where the force generated by the 

branched actin network contributes to the scission of transport intermediates (Derivery et al, 2009b; 

Gomez & Billadeau, 2009). These transport intermediates either follow the retrograde route toward the 

Golgi (Gomez & Billadeau, 2009; Harbour et al, 2010) or recycle internalized receptors to the plasma 

membrane (Temkin et al, 2011; Piotrowski et al, 2013). The 51 integrin is a cargo that takes the 

two WASH dependent routes, since it is recycled to the plasma membrane both from endosomes and 

after a detour through the trans-Golgi network  (Zech et al, 2011; Duleh & Welch, 2012; Nagel et al, 

2017; Shafaq-Zadah et al, 2016; De Franceschi et al, 2015). WAVE and WASH are both stably 

associated with four other proteins, which integrate inputs to control WCA exposure as an output 

(Derivery & Gautreau, 2010b; Rotty et al, 2013). The endosomal recruitment of the WASH complex 

depends on the cargo-recognition complex of the retromer (Jia et al, 2012; Harbour et al, 2012; Helfer 

et al, 2013; Gautreau et al, 2014). Formation of branched actin networks thus involves cascades of 

molecular machines. 
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How cells assemble these molecular machines from neosynthesized subunits is not known in 

most cases. Indeed, molecular machines are not just simple assemblies driven by the spontaneous 

association of subunits. The simple stepwise addition of subunits or subcomplexes yields a WAVE 

complex, where the WCA domain is not properly masked (Innocenti et al, 2004; Derivery et al, 

2009a). The reconstitution of a native WAVE complex from recombinant subunits was a tour-de-

force, which required a decade of work (Chen et al, 2014). In fact, in the cell, proteasomes exert a 

quality control and degrade up to 30 % of neosynthesized proteins (Schubert et al, 2000). When one 

subunit of WAVE, WASH or Arp2/3 complexes is depleted, remaining subunits of the same 

molecular machine are usually degraded by proteasomes (Kunda et al, 2003; Steffen et al, 2006; 

Derivery et al, 2009a; 2009b; Jia et al, 2010). Conversely, when an exogenous, usually tagged, subunit 

is overexpressed, the endogenous subunit is degraded, because its partner subunits have been titrated 

by the more abundant exogenous protein (Derivery et al, 2009a; 2009b). These observations suggest 

that subunits need to assemble with their partner subunits to reach their native state and become stable 

(Derivery & Gautreau, 2010b). In the case of the WAVE complex, one subunit, Brk1, forms a 

homotrimeric precursor, even though only a single Brk1 subunit is present in the native complex 

(Derivery et al, 2008; Linkner et al, 2011). Brk1 turns over more rapidly than the WAVE complex, 

suggesting that the two Brk1 molecules that should remain after dissociation of the trimeric precursor 

are also degraded (Derivery & Gautreau, 2010b; Wu et al, 2012).  

Large molecular machines, like proteasomes, require many factors for their assembly (Sahara et 

al, 2014; Budenholzer et al, 2017). Assembly factors transiently associate with one or several 

subunits, but eventually dissociate before the machine is completed. If they were to remain associated, 

they would be subunits. It is not yet established whether assembly factors are systematically required 

for the formation of smaller molecular machines, like the Arp2/3 or NPF complexes. So far, an 

assembly factor was only identified in the case of the WAVE complex: the Nudel protein, which 

transiently interacts with two subcomplexes, is critical to maintain WAVE complex levels and thus to 

form lamellipodia (Wu et al, 2012). Assembly factors offer a means to control the levels of assembled 

complexes. For example, starvation induces the expression of proteasome assembly factors and hence 
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favors the assembly of new proteasomes to promote the degradation of old proteins, thereby allowing 

biosynthesis of new proteins in amino-acid restricted conditions (Rousseau & Bertolotti, 2016).  

The Arp2/3 and the WAVE complexes are overexpressed in a variety of cancers (Molinie & 

Gautreau, 2017). This overexpression is usually associated with a high grade, lymph node invasion 

and poor prognosis for patients (Semba et al, 2006; Iwaya et al, 2007). Since most subunits of these 

molecular machines are only stable within the whole complex, it means that invasive tumor cells 

managed to assemble more of these machines, but the mechanism involved is not known. The WASH 

complex, which allows focal delivery of metalloproteases and integrin recycling, is critical for tumor 

cell invasion (Zech et al, 2011; Monteiro et al, 2013), but whether its expression is deregulated in 

tumors is not known. Here we identify the first assembly factor of the WASH complex, HSBP1, and 

characterize how it promotes WASH assembly. We found that HSBP1 is overexpressed in breast 

cancer and that its overexpression is associated with increased levels of WASH complex and poor 

survival of patients. 
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RESULTS 

 

 

Identification of HSBP1 as an assembly factor of the WASH complex 

To look for putative assembly factors of the WASH complex, we derived stable 293 cell lines 

expressing tagged subunits of the WASH complex. We noticed a small molecular weight protein in 

the immunoprecipitates of CCDC53, but not of WASH, nor of Strumpellin (Fig 1A). We identified 

this protein as HSBP1 by mass spectrometry. The gene encoding this small protein of 76 amino acids 

(8.5 kDa of predicted mass) was cloned and transiently co-expressed with each subunit of the WASH 

complex in 293T cells. Indeed, out of the 5 subunits of the WASH complex, CCDC53, WASH, 

Strumpellin, SWIP and FAM21, only CCDC53 interacted with HSBP1 (Fig 1B). HSBP1 is thus a 

possible assembly factor, because it binds to a single subunit, and not to the whole WASH complex. 

To examine whether HSBP1 directly binds to CCDC53, we produced and purified these two 

recombinant proteins in E. coli (Fig 1C). HSBP1 was previously crystallized and the HSBP1 core is 

formed by a trimeric coiled coil (Liu et al, 2009). HSBP1 was, however, described as a hexamer, 

because the asymmetric unit of the crystal contains two trimeric coiled coils associated end-to-end. In 

this structure, the two trimers differ by the conformation of a bulky residue in their coiled coil, 

phenylalanine 27 (F27; Appendix Fig S1A). The end-to-end association of two HSBP1 trimers is a 

crystal-induced contact, because we found that HSBP1 in solution behaves as a homotrimer, when its 

mass is evaluated by Size Exclusion Chromatography coupled to Multi Angle Light Scattering (SEC-

MALS; Fig 1D). The structure of CCDC53 was not previously characterized. We found by SEC-

MALS that free CCDC53 also behaves as a homotrimer (Fig 1D). The situation is reminiscent of the 

distantly related Brk1 subunit of the WAVE complex (Jia et al, 2010): Free Brk1 exists as a 

homotrimer, even though a single subunit of Brk1 is present in the WAVE complex (Derivery et al, 

2008). When CCDC53 and HSBP1 were mixed, we detected a new peak by SEC-MALS, which 

surprisingly corresponded to a mixed heterotrimer, containing two HSBP1 for a single CCDC53 (Fig 

1D). So not only HSBP1 directly binds to CCDC53, but also this interaction remodels the quaternary 

structure of each component. 
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Trimeric HSBP1 displays a distorted coiled coil. This distortion most likely arises from the 

accommodation of the bulky F27, which creates a steric hindrance (Appendix Fig S1A). Such a bulky 

residue at the d position of a coiled coil heptad is highly unusual in trimeric coiled coils (Woolfson, 

2005). However, F27 is strictly conserved in all HSBP1 homologs (Appendix Fig S1B). To better 

understand the reaction occurring between HSBP1 and CCDC53, we modeled the structure of free 

CCDC53 according to the crystal structure of free Brk1 (Linkner et al, 2011). CCDC53, whose name 

stands for Coiled Coil Domain Containing protein 53, can be modeled as a trimeric coiled coil protein, 

like Brk1 (Fig 2A). Then we used the two previous structural models of HSBP1 and CCDC53 to 

model the mixed HSBP1-CCDC53 heterotrimer. In heptads 4 and 5 of the mixed heterotrimer, we 

noticed that the single strand of CCDC53 brings two optimal electrostatic couples with the two strands 

contributed by HSBP1 (Fig 2B). These salt bridges formed between residues E(e)-K/R(g’) of heptads, 

were identified as the most stabilizing motifs in experimental studies of model trimeric coiled coils 

(Roy & Case, 2009). The residues involved are strongly conserved in the sequence alignments of both 

HSBP1 and CCDC53 (Appendix Fig S1B). These two stabilizing salt bridges probably contribute to 

the spontaneous assembly of the mixed HSBP1-CCDC53 heterotrimer. 

To evaluate the potential role of HSBP1 in the assembly of the WASH complex, we isolated 

MDA-MB-231 clones stably depleted of HSBP1 and analyzed their content in WASH complex 

subunits. Upon HSBP1 knock-down, steady state levels of CCDC53 and WASH, but not those of 

FAM21 and Strumpellin, were significantly decreased (Fig 3A). The effect of HSBP1 depletion was 

the same in HeLa cells upon transient transfection of siRNAs (Appendix Fig S2). The subunits of 

stable multiprotein complexes usually depend on each other for their stability. For the WASH 

complex, the depletion of a 'large' subunit, such as Strumpellin, SWIP or FAM21, induces the 

degradation of all remaining subunits, whereas the depletion of a 'small' subunit, such as WASH or 

CCDC53, induces the degradation of the other small subunit, leaving intact levels of large subunits 

(Jia et al, 2010). Upon HSBP1 depletion, the co-dependent CCDC53 and WASH subunits are thus 

specifically down regulated.  

To characterize WASH subcomplexes, we fractionated cytosolic extracts by 

ultracentrifugation in sucrose gradients and analyzed the distribution of subunits in each fraction by 
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Western blot (Fig 3B). In control MDA-MB-231 cells, we detected 3 distinct pools of WASH complex 

subunits. The low pool P1 was detected at 3.0 S, an intermediate pool P2 was detected at 8.8 S and a 

high pool P3 was detected at 12.5 S, which corresponds to the previously determined sedimentation 

coefficient of the pentameric WASH complex (Derivery et al, 2009b). The P1 pool corresponds to the 

complex of CCDC53 with HSBP1, as determined by immunoprecipitation (Fig 3C). The P2 pool 

corresponds to a ternary complex containing CCDC53, WASH and FAM21. The distribution of 

FAM21 in P2 is much more extended than the ones of WASH and CCDC53, suggesting that only part 

of FAM21 is associated with WASH and CCDC53 in the ternary complex. When HSBP1 is depleted, 

P1 and P2 pools of CCDC53, but surprisingly not the P3 pool, are absent. WASH is also depleted 

from the P2 ternary complex, but not FAM21, in line with its extended distribution. These 

distributions suggest that HSBP1 promotes the conversion of the CCDC53-HSBP1 heterotrimer into 

the CCDC53-WASH-FAM21 ternary complex. 

To confirm the role of HSBP1 in promoting WASH assembly, we derived a stable MDA-MB-

231 cell line that over-expresses tagged WASH. The increased WASH levels were associated with 

increased levels of CCDC53, but not of FAM21 and Strumpellin (Fig EV1A). When tagged WASH 

was overexpressed, the endogenous WASH was down regulated, as observed previously (Derivery et 

al, 2009b), suggesting that the levels of partner subunits control the total amount of WASH. In this 

experiment, WASH was tagged with both FLAG and HaloTag sequences. The HaloTag covalently 

reacts with haloalkane reactive ligands. A chemical compound called HaloPROTAC3 induces the 

specific degradation of HaloTagged proteins through the recruitment of the VHL E3 ubiquitin ligase 

(Buckley et al, 2015). When cells expressing HaloTagged WASH were incubated with 1 M 

HaloPROTAC3 for 24 h, levels of tagged WASH and CCDC53 significantly decreased, while 

endogenous WASH reappeared (Fig EV1A). 

To monitor the assembly of the WASH complex, we washed out the HaloPROTAC3 

compound to resume expression of HaloTagged WASH and to follow its assembly into WASH 

complexes by immunoprecipitation. Using this procedure, we were able to detect the build up of 

WASH and associated subunits over several hours (Fig EV1B). Upon HSBP1 depletion, HaloTagged 

WASH associated with a reduced amount of CCDC53, but with normal amounts of FAM21 and 
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Strumpellin, in line with the disappearance of the ternary complex (P2), but the maintenance of the 

pentameric complex (P3), seen in sucrose gradients. 

 To conceive better the sequence of events in WASH complex assembly, we then built a 

structural model of the pentameric WASH complex, based on the crystal structure of the analogous 

WAVE complex (Chen et al, 2010). In this model, WASH, CCDC53 and FAM21, interact through a 

heterotrimeric coiled coil (Fig 3D). It should be stated that the model of the WASH complex is not as 

robust as the one of CCDC53-HSBP1 heterotrimer, because apart from a predicted coiled coil segment 

in its N-terminus, the structure of FAM21 cannot be accurately predicted. This model suggests, 

however, a molecular scenario where CCDC53 must be dissociated from a precursor homotrimeric 

form to contribute a single subunit to the ternary complex. HSBP1, which dissociates the free 

homotrimer of CCDC53, would deliver this single CCDC53 to WASH and FAM21. 

 

Phenotype associated with HSBP1 depletion in MDA-MB-231 cells 

Because WASH is involved in recycling 51 integrins from intracellular compartments to 

the plasma membrane, we checked the localization of this particular integrin in the stable MDA-MB-

231 clones depleted or not of HSBP1. We found that 51 focal adhesions from HSBP1 depleted cells 

were strongly reduced in numbers and slightly reduced in size (Fig 4A,B). HSBP1 depleted cells 

display decreased levels of 51 integrins at their surface, as measured by FACS, and decreased total 

levels of 1, as measured by densitometry of Western blots (Fig 4C,D). As expected, these defects 

were associated with reduced adhesion to fibronectin, the major ligand of the α5β1 integrin, and to 

collagen type I (Appendix Fig S3). Similar defects were previously documented in WASH depleted 

cells (Zech et al, 2011; Duleh & Welch, 2012). 

MDA-MB-231 is an invasive mammary carcinoma cell line. A simple and classical assay in 

cancer research is the migration through pores of 'transwell filters'. Coating the transwell filter with a 

thick layer of extracellular matrix force cancer cells to invade the gel to reach the other compartment. 

HSBP1 depleted cells were drastically impaired in their ability to migrate and invade through 

transwell filters (Fig 5A). We next examined how the HSBP1 depleted cells migrate on a 2D 
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fibronectin substrate. When trajectories of individual cells were examined, tracks of HSBP1 depleted 

cells were much shorter than control ones (Fig 5B, Movie EV1). The mean square displacement 

highlights that HSBP1 depleted cells explore a much smaller surface area over time than controls, a 

direct consequence of the reduced speed and decreased directional persistence of HSBP1 depleted 

cells. In 3D collagen gels supplemented with fibronectin, similar defects of HSBP1 depleted cells 

were observed (Appendix Fig S4, Movie EV2).  

To make sure that these phenotypes could be ascribed to the knock-down of HSBP1, we 

derived an HSBP1 depleted line re-expressing WT HSBP1. Indeed, the re-expression of HSBP1 

rescued the levels of WASH and CCDC53, as well as the migration phenotype of HSBP1 depleted 

cells (Fig EV2, Movie EV3). We also analyzed HSBP1 mutants for their ability to rescue the 

phenotype. To prevent the formation of the salt bridges that stabilize the (CCDC53)1/(HSBP1)2 

heterotrimer, we swapped charges in the R44E E49R HSBP1 mutant. To prevent the inherent 

distortion of the HSBP1 coiled coil, we targeted the conserved F residue in the F27L HSBP1 mutant. 

Both mutants were not as efficient as WT in rescuing the HSBP1 phenotype, suggesting that these 

HSBP1 features were important. The HSBP1 phenotype was, however, partially rescued by both 

mutants, a likely consequence of their overexpression. 

HSBP1 depleted cells were poorly polarized, as their lamellipodium usually covers their 

whole periphery (Fig 6A). This defect in cell polarization was captured by their circularity index, 

which remains higher over several hours than one of the control cells (Fig 6B). In sharp contrast, 

control cells break symmetry and elongate perpendicular to the migration direction, resulting in an 

increased aspect ratio, the ratio of the long over the short axis. From time to time, control cells 

transiently lose polarity and change migration direction. The associated fluctuation in the aspect ratio 

is captured by the 'volatility' of this parameter, an index borrowed from the stock market analysis. The 

volatility of the aspect ratio of HSBP1 depleted cells is much lower than the one of control cells, since 

the lack of polarity of the latter yield a relatively constant aspect ratio close to 1 (Fig 6B). These 

results suggest that defective polarity of HSBP1 depleted cells or mutants can account for their 

impaired migration and invasion.  
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The role of HSBP1 is conserved in the Dictyostelium discoideum amoeba 

HSBP1 is a well-conserved protein. We decided to knock-out the orthologous gene in the 

amoeba Dictyostelium discoideum, where we had previously studied the role of the WASH complex 

(Carnell et al, 2011). To this end, we replaced the whole HSBP1 coding sequence by a selectable 

marker (Fig EV3A). Using a specific WASH antibody, we found that WASH is down-regulated in 

HSBP1 KO amoebae (Fig 7A). Re-expression of HSBP1 in the KO background restored WASH 

levels. We then used mass spectrometry to examine the expression of the other subunits of the WASH 

complex. We were able to detect and quantify specific peptides encoded by the orthologous WASH, 

FAM21, Strumpellin and SWIP genes in complex extracts of amoebae (Fig 7B). The smallest subunit, 

CCDC53, which generates few peptides, was unfortunately not detected. HSBP1 KO induced down 

regulation of WASH, but not of FAM21, Strumpellin and SWIP, as in mammalian cells. In the 

amoeba, WASH recruits the Arp2/3 complex at the surface of vesicles of lysosomal origin. As in 

WASH KO, HSBP1 KO displayed a pronounced defect in Arp2/3 recruitment at the surface of 

vesicles (Fig 7C).  

In the presence of fluorescent dextran, which is not digestible, HSBP1 KO amoebae become 

'constipated' and that prevents them from proliferating (Fig EV3B). In fact, HSBP1 KO amoebae 

continue to accumulate dextran well after the 2 h required for the WT amoebae to reach a steady state, 

when exocytosis compensates for endocytosis (Fig EV3C). When fluorescent dextran was washed out, 

the exocytosis defect of HSBP1 KO amoebae became obvious (Fig 7D). This phenotype of HSBP1 

KO amoebae was also rescued by HSBP1 re-expression. Exocytosis involves post-lysosomal vesicles 

in the amoeba and requires WASH mediated retrieval of the V-ATPase from lysosomes (Carnell et al, 

2011). The HSBP1 phenotype is thus the same as the one displayed by WASH KO amoebae. Together 

these experiments indicate that the role of HSBP1 in assembling functional WASH complexes is 

conserved in two distant species, human and Dictyostelium amoeba. 

 

HSBP1 operates at the centrosome 

To examine the localization of HSBP1 in Dictyostelium amoeba, we generated GFP fusion 

proteins at both HSBP1 ends (Fig EV3D). In both cases, HSBP1 localizes to central dot-like 
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structures, which were identified as centrosomes using the -tubulin marker. We then examined 

HSBP1 localization by immunofluorescence of mammalian cells. In MDA-MB-231 cells, HSBP1 

antibodies also brightly stained centrosomes (Fig 8A). This staining is specific because it was lost 

upon HSBP1 depletion (Appendix Fig S5A, B). HSBP1 staining was clearly associated with -tubulin, 

a specific marker of the pericentriolar material, but did not completely overlap with it (Appendix Fig 

S5C). By staining MDA-MB-231 cells expressing Halotagged CCDC53 or WASH with a fluorescent 

HaloTag ligand, we indeed detected CCDC53 and WASH colocalized with HSBP1 and -tubulin at 

the centrosome (Fig EV4A).  

To address whether HSBP1 localization to the centrosome was important for its function in 

promoting WASH complex assembly, we used Centrinone, a Plk4 inhibitor that prevents centrosome 

duplication during the cell cycle (Wong et al, 2015). In centrosome-negative cells, HSBP1 levels were 

maintained, but levels of WASH complex subunits were down regulated (Fig 8B). WASH and 

CCDC53 signals were less intense in centrosome-negative cells, when HSBP1 was diffuse, than in 

control cells where HSBP1 was concentrated in the centrosome (Fig 8C). These experiments suggest 

that HSBP1 concentration at the centrosome is important for its function in assembling WASH 

complexes. 

To confirm the centrosomal localization of HSBP1 in tissues, we stained cryosections of normal 

breast and mammary carcinoma. HSBP1 staining was always partially overlapping with -tubulin, but 

appeared slightly more elongated in the presence of cilia in normal breast (Fig EV4B). Centrosomes 

are at the base of cilia in normal breast, whereas these structures regress during cancer progression 

(Menzl et al, 2014). In conclusion, HSBP1 is associated with centrosomes in all case examined, 

Dictyostelium amoeba, human cells in culture, healthy tissue or tumors. 

 

HSBP1 expression in breast cancer 

Since the WASH complex is critical for tumor cell invasion, we examined the putative 

involvement of HSBP1 in the progression of breast cancer. To this end, the levels of HSBP1 mRNA 

was quantified in the mammary tumors of a large retrospective cohort of 446 patients, whose long-
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term outcome was known. HSBP1 mRNA expression significantly increased with the Scarff-Bloom-

Richardson grade, which is a histological score used to evaluate cancer prognosis (Appendix Table 

S1). HSBP1 was also more expressed in tumors exhibiting overexpression of ERBB2. Most 

importantly, patients that carried tumors with a high level of HSBP1 had poor metastasis-free survival 

(Fig 9A).  

In order to check the role of HSBP1 in WASH complex assembly in vivo, we examined the 

expression of HSBP1 and of WASH complex subunits from paired samples, which correspond to 

mammary carcinomas and adjacent normal tissue from the same patient. About half of tumors over-

expressed HSBP1 at the protein level compared to normal tissue (Fig 9B). Most importantly, these 

tumors also exhibited increased levels of the WASH complex subunits CCDC53, WASH and 

Strumpellin, but not of FAM21. We verified by immunofluorescence of formalin-fixed paraffin-

embedded sections that mammary carcinoma cells, stained by cytokeratin 7, but not stromal cells, 

overexpress HSBP1 and WASH complex subunits, CCDC53 and WASH (Fig EV5). In sharp contrast, 

the tumors that did not overexpress HSBP1 did not show overexpression of WASH complex subunits. 

These results obtained in patient samples suggest that HSBP1 overexpression is a means, by which in 

mammary carcinoma cells overexpress the WASH complex.  
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DISCUSSION 

We have identified HSBP1 as a specific partner of CCDC53 using proteomics, and showed its 

involvement in WASH complex assembly. HSBP1 is the first assembly factor identified for WASH 

complexes. This small protein of 8.5 kDa is a negative regulator of the  HSF1 transcription factor 

(Satyal et al, 1998). HSBP1 stands for HSF1 Binding Protein-1. HSF1 is the major transcription factor 

that is activated in response to heat shock. HSF1 activation involves its trimerization through a coiled 

coil. HSBP1 terminates HSF1 transcription in the nucleus by dissociating the active HSF1 trimer 

(Satyal et al, 1998). Here we report a cytosolic function of HSBP1. HSBP1 can dissociate the 

precursor trimeric form of CCDC53 to favor WASH complex assembly. The two functions of HSBP1 

thus involves a similar structural mechanism based on trimeric coiled coils. The phenotypes we report 

here upon HSBP1 depletion appear unrelated to the termination of the heat-shock transcriptional 

response. 

 The phenotypes we obtained here upon HSBP1 inactivation are indicative of defective 

WASH functions. In Dictyostelium amoeba, WASH knock-out produced defective Arp2/3 recruitment 

at the surface of lysosomal vesicles and defective exocytosis of non-digestible dextran (Carnell et al, 

2011). In human cells, WASH depletion led to reduced surface levels of 51 integrins and a 

decreased number of focal adhesions (Zech et al, 2011; Duleh & Welch, 2012). WASH depletion also 

reduced invasive abilities of tumor cells (Zech et al, 2011; Monteiro et al, 2013). HSBP1 depleted 

cells also displayed a striking defect in polarity establishment that prevented them from migrating, 

even though they were able to generate membrane protrusions. This last phenotype was not previously 

reported upon WASH depletion, but it is a logical one, since the recycling of 51 integrins has been 

shown to be critical for migration persistence (Caswell et al, 2007; Shafaq-Zadah et al, 2016). 

The analyses of WASH subcomplexes revealed several surprises. In both Dictyostelium 

amoeba and human cells, CCDC53 and WASH, but not Strumpellin, SWIP and FAM21, are 

destabilized upon HSBP1 depletion. This is reminiscent of the fact that in RNAi treated HeLa cells, 

only CCDC53 is destabilized, when WASH is depleted, and only WASH is destabilized, when 

CCDC53 is depleted (Jia et al, 2010). The WASH knock-out in MEF cells, however, decreased the 
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levels of all 5 subunits of the WASH complex, but the remaining FAM21, SWIP and Strumpellin 

subunits were still found to be associated (Gomez et al, 2012). Furthermore, we found that, by 

overexpressing Halotagged WASH or by selectively destabilizing it through HaloPROTAC3 

treatment, only the CCDC53 subunit mirrors the amount of WASH. Our study thus confirms the 

particular behavior of the interacting pair of subunits composed of WASH and CCDC53.  

Surprisingly, however, our sucrose gradient analyses did not reveal a remaining FAM21- 

SWIP-Strumpellin subcomplex in HSBP1 depleted cells. Rather, HSBP1 appeared to specifically 

promote the assembly of a ternary complex of 8.8 S composed of CCDC53, WASH and FAM21, in 

addition to the classical pentameric complex. Structurally, this ternary complex makes sense. We 

modeled that it should be organized around a heterotrimeric coild coil, where each subunit would 

contribute one strand. The reason why FAM21 levels were not significantly affected upon HSBP1 

depletion is probably because only a small fraction of total FAM21 is present in the ternary complex. 

Indeed, multiple pools of FAM21 are likely to exist, since FAM21 displays an unusually extended 

distribution in sucrose gradients. 

The second surprise is that our subcomplex analysis supports the unexpected idea that the 

ternary complex, rather than the pentameric complex, carries most WASH functions. Indeed, in 

HSBP1 depleted cells, which exhibit a typical WASH phenotype, the pentameric complex is still 

present. In retrospect, the idea that the ternary complex might be the significant working molecular 

machine can help interpret another intriguing observation. Recently, Strumpellin knock-out cells were 

reported to exhibit WASH and branched actin at the surface of endosomes, like control cells (Tyrrell 

et al, 2016). These data put in question the role of the pentameric WASH complex. The logical 

assumption that the pentameric complex would derive from the ternary complex by the addition of 

SWIP and Strumpellin is not even clear, given that the pentameric complex is assembled around 

HaloTagged WASH with similar kinetics whether or not HSBP1 is present. 

The localization of HSBP1 at centrosomes and the decreased levels of WASH complex in 

centrosome-negative cells suggests that centrosomes are sites of WASH complex assembly. Nudel, the 

assembly factor identified for the WAVE complex, also accumulates at centrosomes, in line with its 

regulatory activity toward dynein, the microtubule minus-end directed motor (Guo et al, 2006). It 



 16 

might be advantageous to concentrate the proteins to assemble into complexes at such a central and 

discrete location. One should note that many structural proteins of the centrosome are structured 

around large coiled coils (Kuhn et al, 2014). Even though the coiled coils we are studying here are 

composed of just a few heptad repeats and are of precise specificity, the concentration of coiled coils 

in the centrosomal area might play a role in the assembly of multiprotein complexes. The centrosome 

is also a privileged site for proteasomal degradation, which is often associated with multiprotein 

complex assembly (Derivery & Gautreau, 2010b; Wu et al, 2012). Indeed, misfolded proteins 

accumulate at the centrosome through dynein dependent transport in a structure called aggresome, 

when proteasomes are overwhelmed by substrates to degrade (Johnston et al, 1998; Wan et al, 2012). 

But centrosomes are not only sites where the WASH complex is assembled, but also sites where the 

WASH complex activates the Arp2/3 complex (Farina et al, 2016). The centrosomal branched actin 

networks are implicated in anchoring centrosomes to the nucleus (Obino et al, 2016). 

HSBP1 is overexpressed in breast tumors and its overexpression is associated with poor 

prognosis for patients. We documented HSBP1 overexpression in tumors compared to normal tissue in 

about half of patients. Fully consistent with the role of HSBP1 in assembling WASH complexes, this 

overexpression was associated with increased levels of WASH complex subunits. WASH 

overexpression in cancer was not previously reported, even if its role in tumor cell invasion was 

established (Zech et al, 2011; Monteiro et al, 2013). FAM21 was the only WASH complex subunit, 

whose levels were not correlated with the ones of HSBP1 and which was not overexpressed. FAM21 

appears to have moonlighting functions, since it was found to regulate transcription by NF-B in the 

nucleus independently of the WASH complex (Deng et al, 2015). In Dictyostelium amoebae, the 

FAM21 knock-out phenotype is also quite different from the one observed in the WASH knock-out 

amoeba (Park et al, 2013). 

In conclusion, our study identified HSBP1 as the first assembly factor of WASH complexes, 

structurally characterized the step in which it functions and established that HSBP1 mediated 

assembly provides a mechanism for overexpressing WASH complexes in tumors. 
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MATERIALS AND METHODS 

 

Information on patients, biopsies and qRT-PCR analyses can be found in supplementary methods 

 

Plasmids 

All the human Open Reading Frames (ORFs) were flanked by FseI and AscI sites for easy 

shuttling between compatible plasmids. Human HSBP1 was amplified by PCR from cDNA clones 

IMAGE:3010737. The WASH complex subunits CCDC53, Strumpellin, and SWIP were amplified by 

PCR using the respective cDNA clone IMAGE:4272385, IMAGE:30532658 and IMAGE:8143997. 

WASH was previously cloned similarly (Derivery et al, 2009b; Helfer et al, 2013). HSBP1 mutations 

F27L and R44E E49R were introduced by gene synthesis (Eurofins genomics). All PCR amplified 

genes and synthesized genes were verified by sequencing. ORFs were subcloned into the following 

custom-made plasmids: 

- a modified pET28b for the expression in E. coli. This plasmid tags the proteins with a His tag 

and a TEV cleavage site (MGSSHHHHHHSSGENLYFQGRP); 

- pcDNAm FRT PC GFP Blue (Derivery et al, 2009b) and pcDNAm FRT PC mCherry Blue 

(Helfer et al, 2013) for expression of GFP or mCherry tagged proteins at their N-terminus and 

the easy isolation of Flp-In cell lines (Derivery et al, 2009a); 

- MXS EF1Flag HaloTag Blue SV40pA PGK PuroR bGHpA for the expression of proteins 

tagged at their N-terminus with FLAG and HaloTag; 

- MXS EF1Flag Blue SV40pA PGK Blasti bGHpA for the expression of proteins tagged at 

their N-terminus with FLAG, used in rescue experiments. 

The shRNA-expressing pGIPZ plasmids, non-targeting control (RHS4346), shHSBP1 #1 

(V3LHS_368660, TTATCTTGCATCTGCTGCA, ORF), shHSBP1 #2 (V3LHS_409720, 

TGAATAGCACAACTGACCA, 3'UTR, used for rescue experiments) were obtained from 

Dharmacon.  

 

Protein purification and SEC-MALS 

His tagged CCDC53 and HSBP1 were purified from E. coli BL21 Rosetta pLacI-Rare (Merck, 

Novagen), grown in 2xTY containing 25 µg/mL of kanamycin and 34 µg/mL of chloramphenicol. 

Cultures were induced overnight at 37°C with 1 mM IPTG, and growth was continued for 4 hours at 

18°C. Tagged CCDC53 and HSBP1 were retained on a Talon affinity resin (Clontech) equilibrated in 

buffer A (10 mM HEPES pH 7.5, 500 mM NaCl, 3 mM 2-mercaptoethanol, 0.1 mM PMSF, 0.1 mM 

benzamidine), eluted with buffer A containing 125 mM imidazole and further purified by gel filtration 

on a Superdex 200 column (10/300; GE Healthcare) equilibrated in buffer B (10 mM HEPES pH 7.5, 
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200 mM NaCl, 3 mM 2-mercaptoethanol, 0.1 mM PMSF, 0.1 mM benzamidine). Pure fractions were 

pooled and concentrated to 10 mg/mL. To purify the HSBP1-CCDC53 complex, an extract from His 

tagged CCDC53 expressing E. coli cells was mixed with an extract from E. coli expressing untagged 

HSBP1 and purified as described above, except that the mixed heterotrimer was eluted with only 10 

mM imidazole. Superdex 200 increase column (10/300; GE Healthcare) coupled to multi-angle static 

light scattering (SEC-MALS, Wyatt). Light scattering and refractive index measurements were 

performed with a MiniDAWN TREOS device (Wyatt technology) and a RID-20A (Shimadzu), 

respectively. Molecular mass and hydrodynamic radius calculations were performed with the ASTRA 

6.1 software (Wyatt Technology) using a dn/dc value of 0.183 mL.g−1. 

 

Antibodies, immunoprecipitations and Western blots 

Polyclonal antibodies targeting CCDC53 and FAM21 were obtained by immunizing rabbits 

with full length CCDC53 and the FAM21 (1196-1341) fragment and affinity purified on a column 

coupled to the immunogen. Polyclonal antibodies directed against human and Dictyostelium WASH 

were previously described (Derivery et al, 2009b; Carnell et al, 2011). 

Strumpellin polyclonal antibodies (C-14) were from Santa Cruz Biotechnology. HSBP1 pAb 

(Prestige HPA028940 used for IF and IHC), HSBP1 mAb (clone 2C3 used for WB), anti-FLAG mAb 

(Clone M2) and Anti-γ-Tubulin mAb (Clone GTU-88) antibodies were from Sigma-Aldrich. Integrin 

α5 mAb (Clone VC5), integrin β1 mAb (Clone 18/CD29 used for WB), p150Glued (clone 1) were from 

BD Biosciences. Integrin β1 mAb (Clone 12G10 used for IF and FACS) was from Abcam. 

Cytokeratin 7 mAb (clone N-20) was from Santa Cruz Biotechnology. Tubulin monoclonal antibody 

(clone E7) was obtained from Developmental Studies Hybridoma Bank. The Protein-C monoclonal 

antibody recognizing the PC tag (clone HPC4) was from Roche.  

Immunoprecipitations were performed using resin directly coupled to HPC4 Protein-C 

monoclonal antibody (Roche), FLAG M2 beads (Sigma) or GFP-trap beads (Chromotek). Beads were 

incubated in the lysates prepared in RIPA buffer (10 mM HEPES, 50 mM NaCl, 1% NP-40, 0.5% 

DOC, 0.1% SDS, pH 7.7) and washed with the same buffer. HSBP1 was identified by nano LC-

MS/MS as previously described (Schlüter et al, 2014). For WB analysis of total β1 integrin levels, 

cells were lysed with (50 mM Tris, 150 mM NaCl, 1.5% Octylglucoside, 1% NP-40, 1 mM EDTA, pH 

7.4). SDS-PAGE was performed using 4-12 % Bis-Tris Nupage gels (Thermo Fischer scientific) and 

proteins were transferred onto nitrocellulose membranes (Protran BA85; 0.45µm; Sigma) using liquid 

transfer (Criterion blotter, BioRad) with sodium carbonate transfer buffer (6.25mM NaHCO3, 4.3 mM 

Na2CO3, 20% Ethanol, pH 9.5). To reveal the small protein HSBP1, we optimized the Western blot 

protocol: It involved 30 min of in gel renaturation in (20% glycerol, 50 mM Tris-HCl, pH7.4); after 

the transfer, proteins were cross-linked to the membrane using a 30 min incubation in PBS containing 

0.4 % paraformaldehyde. Blots were developed with alkaline phosphatase coupled antibodies 
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(Promega) and NBT-BCIP as substrates (Promega) or Horseradish peroxidase (HRP) coupled 

antibodies (Sigma) and SuperSignal West Pico chemiluminescent substrate (Thermo Fisher 

Scientific). Signals were then quantified by densitometry of product deposition on membranes or by 

photon counting (ChemiDoc imaging system, Bio-Rad).  

 

Mammalian cells and transfections 

MDA-MB-231 parental cells (ATCC HTB-26) and MDA-MB-231 shRNA clones were grown 

Leibovitz’s L-15 medium. It was later found that MDA-MB-231 cells grew much faster in MEM 

medium and cells expressing HaloTag tagged CCDC53 or WASH were grown and selected in MEM 

medium. 293T, HeLa and Flip-In 293T cells (Thermo Fisher Scientific) were grown in DMEM. All 

media were supplemented with 10% FBS. Media and serum were from Thermo Fisher Scientific. 

Cells were incubated in 5% CO2 except cells in cultured in Leibovitz’s L-15 medium, which were 

grown with no CO2. All cells and stable clones were regularly tested for mycoplasma infection using a 

sensitive PCR assay and found to be negative. The vast majority of MDA-MB-231 cells were 

centrosome-negative after 20 days of Centrinone treatment (LCR-263, 125 nM).  The medium was 

changed every 3 days and DMSO was used as a control. 

For transient HSBP1 knockdown, HeLa or MDA-MB-231 cells were transfected with non-

targeting siRNA (siZerosense; Sigma) or HSBP1 targeting siRNA (siHSBP1# 1 - 

SASI_Hs01_00232421, GAGAAUUGAUGAUAUGAGU, siHSBP1# 2 - SASI_Hs01_00232417, 

CAAGAUACCUGCCACGCAA, siCtrl – siZerosence, UAGCAAUGACGAAUGCGUA; Sigma) 

using lipofectamine RNAiMax (Thermo Fisher Scientific), and examined after 2 days. 293T cells were 

transiently transfected using calcium phosphate precipitation. Stable transfectants of Flip-In 293T cells 

were obtained by homologous recombination at the FRT site as previously described (Derivery & 

Gautreau, 2010a). To isolate stable clones depleted of HSBP1 or expressing Halotagged proteins, 

MDA-MB-231 cells were transfected with appropriate plasmids using Lipofectamine 2000 (Thermo 

Fisher Scientific) and selected with 2 μg.mL−1 Puromycin (Invivogen). For rescue experiments, MDA 

clones expressing the shRNA #2, targeting HSBP1 3’UTR, were transfected with plasmids expressing 

WT or mutant HSBP1 and selected with 2 µg.mL-1 Puromycin and 12 µg.mL-1 Blasticidin 

(Invivogen). Clones were isolated with cloning rings and expanded.  

 

Sucrose gradient 

The whole procedure is described in detail in (Gautreau et al, 2004). Briefly, cytosolic extracts 

were prepared by lysing cells by nitrogen cavitation (Parr instruments, 500 Psi for 20 minutes), 

followed by low speed centrifugation (16,000 x g, 10 min) and ultracentrifugation (150,000 x g, 60 

min). Sample were normalized according to protein concentration determined by the BCA assay 

(Thermo Fisher scientific).  200 µl of extract was loaded on top of the 11 ml 5-20 % sucrose gradient 
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and ultracentrifuged for 17 h in the swinging bucket rotor SW41 Ti (Beckman) at 40,000 rpm. 0.5 mL 

fractions were collected and either concentrated by using trichloroacetic acid precipitation with insulin 

as a carrier for direct WB analysis or pooled for immunoprecipitation with 10µl of Protein A/G beads 

(Thermo Fisher Scientific) and 1µg of CCDC53 antibody or control IgG. NP-40 was added to a final 

concentration of 0.05 % to avoid bead sticking. Beads were washed 4 times with XB buffer 

supplemented with 0.05% NP-40 and analyzed by WB. 

 

Mammalian cell assays 

Cell adhesion assays are performed with cells detached with 2mM EDTA in PBS and plated in 

96 well plates previously coated with 10 µg.mL-1 of collagen-I (BD Bioscience), fibronectin (Sigma), 

or heat-denatured BSA (Sigma) as a negative control for background subtraction. Cells were allowed 

to adhere for 45 min at 37˚C, non-adherent cells were washed using PBS, and adherent cells were 

estimated using the MTS reagent (Promega). 

2D cell migration was performed on glass bottomed µ-Slide (Ibidi) coated with 10 µg.mL-1 

fibronectin. 3D cell migration, cells were sandwiched between two collagen gels (2 mg.mL-1 collagen-

I, 10 µg.mL-1 fibronectin, 25 mM Hepes, 10% FBS, in DMEM) polymerised in glass bottomed µ-Slide 

at 37°C for 1 h.  

Transwell assays were performed using Transwell inserts (FluoroBlok, Corning) either coated 

with 10 µg.cm-2 fibronectin (migration) or with a collagen gel containing fibronectin as described 

above. Cells were incubated in serum free medium and attracted to the other side of the filters by 10 % 

serum. Cells were stained with calcein AM (Thermo fischer Scientific) and cells were imaged without 

fixation. 

 

Immunofluorescence and FACS 

Cells were fixed with 2% paraformaldehyde and permeabilized with 0.25 % Triton X-100 for 

integrin staining. Cells were fixed with cold (-20°C) methanol-acetone (1:1) for HSBP1 (pAb) and -

tubulin staining. To label Halotagged CCDC53 or WASH, cells were incubated for 15 min in growth 

media containing the TMR ligand (5 µM, Promega). Cells were then rinsed twice with PBS and 

incubated in fresh media for 30 min to decrease background staining. Cells are then washed with PBS, 

then fixed with 2% paraformaldehyde and permeabilized with cold (-20°C) methanol-acetone (1:1). 

For immunofluorescence on tissue section displayed in Fig EV4, biopsies were frozen in 

liquid nitrogen and serially sectioned. Sections were fixed with methanol-acetone. For 

immunofluorescence on tissue section displayed in Fig EV5, 7 μm-thick sections were prepared from 

FFPE tumor samples, deparaffinized, rehydrated, processed for heat-induced epitope retrieval in PT 
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Link (Dako) with EDTA buffer (pH 8.0), and blocked with 3% BSA in PBS. For FACS analysis, cells 

were fixed with 2% paraformaldehyde and analyzed on a Guava easyCyte system (Millipore). 

 

Microscopy and image analysis  

Widefield imaging was performed on an Axio Observer microscope (Zeiss) equipped with a 

Plan-Apochromat 100x/1.40 or 63×/1.40 oil immersion objective, an EC Plan-Neofluar 40×/1.30 oil 

immersion objective and a Plan-Apochromat 20×/0.80 air objective, a Hamamatsu camera C10600 

Orca-R2 and a Pecon Zeiss incubator XL multi S1 RED LS (Heating Unit XL S, Temp module, 

CO2 module, Heating Insert PS and CO2 cover). Live cell analysis was performed as described (Dang 

et al, 2013). Confocal images were acquired on a commercial confocal laser scanning microscope 

(TCS SP8, Leica) equipped with an inverted frame (Leica), a high NA oil immersion objective 

(HC PL APO 63x/1.40, Leica) and a white light laser (WLL, Leica).  Image analysis was performed 

with ImageJ and FIJI. Analyses of focal adhesions, cell shape, including volatility of the aspect ratio, 

and cell trajectories were previously described (Horzum et al, 2014; Lomakin et al, 2015; Zhang et al, 

2016; Gorelik & Gautreau, 2014). 

 

Computational modeling 

Modeling of the CCDC53 homotrimer and of the HSBP1-CCDC53 heterotrimer was performed 

using the RosettaCM protocol to build and relax the trimeric structures (Song et al, 2013). The 

CCDC53 sequence was aligned on the sequence and structure of the homotrimeric Brk1 paralog (PDB 

code 3PP5) (Linkner et al, 2011) following the alignment generated by the HHpred profile-profile 

comparison method (Söding, 2005; Alva et al, 2016). The probability of a correct match between 

CCDC53 and HSBP1 Hidden Markov Model (HMM) profiles was 99.9%. In the heterotrimer, the 

register of the single CCDC53 strand with respect to the two HSBP1 strands was provided by the 

HMM profile of CCDC53, which matches the one of HSBP1 with a probability of 93%. 

The WASH complex has been modeled based on the structure of the WAVE complex (Chen et 

al, 2010). Sequence alignments for every subunit were obtained using Hhpred (Söding, 2005) and 

structural models, restricted to the reliable parts of the alignments, were generated with RosettaCM 

(Song et al, 2013). Only for the FAM21 subunit, a significant alignment could not be obtained with 

any of the WAVE complex subunits. The domain of FAM21 spanning residues 58-128 having the 

highest probability to fold as a coiled coil was used to model FAM21 as a heterotrimeric coiled coil in 

the WASH complex context.   

 

Dictyostelium discoideum 

The HSBP1 gene was disrupted in Ax2 strain by homologous recombination (Fig EV3A). 

Blasticidin resistant colonies were picked and tested to lack the entire HSBP1 coding region by PCR 
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(Fig EV3A). The HSBP1 coding region was amplified from cDNA by PCR and cloned into 

Dictyostelium expression vectors to generate pPT606 (GFP-HSBP1), pPT607 (HSBP1-GFP), pPT608 

(untagged HSBP1). 

Amoebae were incubated in HL5 medium in the presence of 0.5mg/ml Tetramethylrhodamine 

isothiocyanate (TRITC) dextran (average MW 40kDa; Sigma) overnight in sterile flasks shaking at 

100 rpm. Total fluorescence levels were acquired as previously described (Carnell et al, 2011). Cells 

expressing GFP-ARPC4 were incubated in SIH medium overnight with 2% dextran to enlarge vesicles 

for ease of imaging in glass bottom dishes (Mattek). Images were captured on a Zeiss 880 LSM 

inverted confocal microscope with Airyscan detector, using a 63x 1.4NA objective and deconvolved 

using the Zen software (Zeiss).  

For mass spectrometry measurements of WASH complex subunits, amoebae were boiled in 1% 

SDS. Lysates were reduced using dithiothreitol and subsequently alkylated with iodoacetamide. 

Trichloroacetic acid precipitated pellets were washed with water, resuspended in 8M urea buffer, 

diluted 1 to 10, and digested with trypsin. Digested peptides solutions were labeled on a Sep-Pak 

reverse phase C18 cartridge with light and medium dimethyl. Desalted peptides were then mixed, and 

separated by a 2.1 mm RP-HPLC column. Fractions were dried down and injected into an Orbitrap 

Velos mass spectrometer and acquired for 90 minutes each. 

 

Statistics 

Statistical analysis and plotting of the results were carried out with GraphPad software (Prism 

v6.01). Data are expressed as mean ± sem with respect to the number of independent experiments 

unless mentioned otherwise. ANOVA followed by post hoc Dunnett’s multiple-comparison tests is 

performed to analyze significant differences between more than 2 groups. To analyze the difference 

between two groups, a paired Student’s t-test was performed. Differences were considered significant 

at confidence levels greater than 95% (two-tailed). Four levels of statistical significance are 

distinguished: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. 
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Main Figure legends 

 

Figure 1. HSBP1 is a specific partner of the CCDC53 subunit of the WASH complex.  

(A) Identification of HSBP1. 293 stable cell lines expressing PC-mCherry tagged subunits of the 

WASH complex were subjected to PC immunoprecipitations. Immunoprecipitates were resolved by 

SDS-PAGE and stained with colloidal coomassie. * indicates the precipitated bait. ° indicates the 

position of a faint protein partner, which appears to co-immunoprecipitate with CCDC53, but not with 

the other WASH subunits. This protein was identified as HSBP1 by mass spectrometry. M: molecular 

weight markers in kDa.  

(B) 293T cells were transiently transfected with plasmids expressing FLAG-HSBP1 and PC-GFP 

tagged subunits of the WASH complex as indicated. GFP precipitation of WASH complex subunits 

confirms the specific co-immunoprecipitation of HSBP1 with the CCDC53 subunit.  

(C) His tagged full-length CCDC53 and HSBP1 were purified from E. coli. Purity was assessed by 

coomassie staining.  

(D) SEC–MALS analysis of CCDC53, HSBP1 or of a complex of the two proteins. CCDC53 and 

HSBP1 proteins are both trimeric. When mixed, His tagged CCDC53 and untagged HSBP1 

spontaneously form a heterotrimer that contains a single molecule of the CCDC53 subunit of the 

WASH complex. 

 

 

Figure 2. Structural model of the CCDC53-HSBP1 heterotrimer.  

(A) Ribbon representation of trimeric coiled coil assemblies formed by HSBP1, CCDC53 or the mixed 

heterotrimer. The HSBP1 homotrimer comes from its X-ray structure (PDB code 3CI9). The CCDC53 

homotrimer is modeled based on the X-ray structure of Brk1, the distantly related subunit in the 

WAVE complex. The CCDC53-HSBP1 heterotrimer with 1:2 stoichiometry is modeled based on the 

two previous structures. 

(B) Focus on the coiled coil heptads of the CCDC53-HSBP1 heterotrimer. Residues buried in the 

trimer core of each heptad (labeled from h1 to h5) and residues that form salt bridges are shown as 

sticks. The E-K/R salt bridges that were shown in model systems to stabilize trimeric coiled coils are 

highlighted by a green asterisk in heptads 4 and 5. 

 

 

Figure 3.  HSBP1 promotes the assembly of a ternary complex containing CCDC53, WASH and 

FAM21.  

(A) MDA-MB-231 clones stably transfected with plasmids expressing control or HSBP1 targeting 

shRNAs were obtained.  HSBP1 depleted cells (shHSBP1) display significant down regulation of the 
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CCDC53 and WASH subunits compared to control cells (shCtrl). Mean ± s.e.m. of densitometric 

signals; 3 independent experiments; ANOVA, *P<0.05, **P<0.01.  

(B) Cytosolic extracts from control or HSBP1 depleted cells were fractionated by ultracentifugation in 

sucrose gradients and fractions were analyzed by Western blot with the indicated antibodies. Three 

color coded pools containing CCDC53 were detected in control cells, whereas only the higher 

molecular weight pool was detected in HSBP1 depleted cells.  

(C) CCDC53 immunoprecipitations of the three pools from control cells were analyzed by Western 

blot using the indicated antibodies. IgG refers to the control immunoprecipitation performed with non 

immune IgG. 

 (D) Structural model of WASH complex assembly. HSBP1 promotes WASH complex assembly by 

dissociating the CCDC53 homotrimeric precursor and delivering a single CCDC53 molecule to the 

ternary complex composed of CCDC53, WASH and FAM21. Based on the analogous structure of the 

WAVE complex, a new heterotrimeric coiled coil within WASH complexes, where CCDC53, WASH 

and FAM21 contribute one strand each is proposed. 

 

 

Figure 4. Integrin mediated adhesions are decreased in HSBP1 depleted MDA-MB-231 cells.  

(A) HSBP1 depleted or control clones were immunostained for α5 or β1 integrins (green) and DNA 

(blue). HSBP1 depleted clones display a less developed array of focal adhesions. Scale bar: 10 µm.  

(B) HSBP1 depleted clones display a decreased number of focal adhesions per cell and of decreased 

size (at least 10 cells per condition, 2 independent experiments).  

(C) FACS analysis reveals reduced levels of α5β1 integrins at the surface of HSBP1-depleted clones 

(2 independent experiments).  

(D) Total levels β1 integrins are decreased in HSBP1 depleted cells. 3 independent measurements by 

densitometry.  

Data information: Mean ± s.e.m.; 2-way ANOVA for B and C, ANOVA for D, *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001.  

 

 

Figure 5. Impaired migration and invasion in HSBP1 depleted MDA-MB-231 cells.  

 (A) Cell translocation through pores of transwell filters covered either with fibronectin (migration) or 

with a thick collagen gel supplemented with fibronectin (invasion). 4 independent experiments; data 

are mean ± s.e.m., ANOVA, ****P<0.0001. Scale bar: 50 µm.  

 (B) 2D single cell trajectories, mean square displacement (MSD), cell speed and directional 

persistence are displayed. HSBP1 depleted clones are significantly different from the control. At least 

10 cells were quantified per condition, 3 independent experiments, data are mean ± s.e.m., ANOVA 

for cell speed, 2-way ANOVA for MSD and directional presistence, ****P<0.0001. 
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Figure 6. Decreased polarity of HSBP1 depleted MDA-MB-231 cells.  

(A) Videomicroscopy of cells plated on a fibronectin-coated glass slide reveals that HSBP1 depleted 

cells are able to form a lamellipodium, but the lamellipodium they form poorly polarizes. Scale bar: 

10 μm.  

(B) At all time points, HSBP1 depleted cells remain more circular than control cells, as illustrated by 

the circularity index or the aspect ratio, i.e. the ratio of the cell long axis over the short one. The aspect 

ratio of each control cell is highly irregular, as a consequence of transient loss of polarity, when the 

cell stops migrating. Hence the 'volatility' of the aspect ratio is significantly lower in HSBP1 depleted 

cells, which remain unpolarized. 3 independent experiments were performed with similar qualitative 

results. Results from the different experiments were pooled to reach at least 20 cells per conditions. 

Data are mean ± s.e.m.; ANOVA, ***P<0.001, ****P<0.0001. 

 

 

Figure 7. The role of HSBP1 in assembling functional WASH complexes is conserved in 

Dictyostelium discoideum.  

(A) WASH is down regulated in the HSBP1 knock-out (KO) amoeba. This effect is rescued by 

HSBP1 re-expression in the KO background. The WASH KO amoeba demonstrates the specificity of 

the WASH antibody.  

(B) The indicated subunits were detected in wild-type (WT) and HSBP1 KO amoebae and their levels 

compared using mass spectrometry after differential labeling of tryptic peptides. WASH is specifically 

down regulated, when compared to the other subunits of the WASH complex, FAM21, Strumpellin 

and SWIP.  

(C) The recruitment of the Arp2/3 complex at surface of intracellular vesicles, as observed by 

confocal microscopy of GFP-ARPC4, is severely impaired in HSBP1 KO amoebae, as in WASH KO 

amoebae. At least 80 vesicles were quantified per condition. White arrows indicate the vesicles that 

are zoomed. 3 independent experiments, data are mean ± s.e.m., ANOVA, ****P<0.0001. Scale bar: 

10 µm. 

(D) Exocytosis of fluorescent dextran is impaired in HSBP1 KO amoebae, as in WASH KO amoebae, 

and is rescued by HSBP1 re-expression in the KO background. The time course of fluorescence decay 

indicates a profound exocytosis defect, not a mere delay. Pictures were acquired by fluorescence and 

DIC microscopy after 5 h of fluorescence dextran wash-out.  4 independent experiments, data are 

mean ± s.e.m., 2-way ANOVA, ****P<0.0001. Scale bar: 10 µm. 
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Figure 8. HSBP1 operates at the centrosome.  

 (A) MDA-MB-231 cells were stained with HSBP1 and γ-tubulin antibodies and DAPI to stain nuclei. 

HSBP1 is associated with the pericentriolar material stained by γ-tubulin. Scale bar: 10 µm. 

 (B) MDA-MB-231 cell were treated with Centrinone, or DMSO as a control, for 20 days to generate a 

large population of centrosome negative cells. Centrinone treated cells display normal levels of 

HSBP1, but decreased levels of WASH complex subunits. Mean ± s.e.m. of densitometric signals; 3 

independent experiments; paired t-test, **P<0.01, ***P<0.001.  

 (C) Centrinone or DMSO treated cells were mixed and stained for WASH, CCDC53 or HSBP1 and 

for γ-tubulin to identify centrosomes (white arrows). Centrosome positive cells displayed a more 

intense staining for WASH and CCDC53 than centrosome negative cells. Scale bar: 10 µm. 

 

 

Figure 9. HSBP1 over-expression in breast carcinomas is associated with increased levels of 

WASH complex and poor prognosis.  

(A) HSBP1 expression in 446 breast tumors was measured by qRT-PCR and compared to its 

expression in normal tissue. High HSBP1 expression is associated with poor prognosis. Metastasis-

Free Survival (MFS) in the retrospective cohort is plotted using the Kaplan-Meier representation 

(optimal cut-off of 1.07-fold the normal expression, 287 patients in the High group, 159 patients in the 

Low group, P=0.020 using the log-rank test).  

(B) Extracts were prepared from 13 paired samples corresponding to breast tumors (T) and adjacent 

normal tissue (N) from the same patients. Extracts were normalized for total protein levels, analyzed 

by Western blot using the indicated antibodies and the signal quantified by densitometry. In tumors 

exhibiting HSBP1 overexpression, the WASH complex subunits CCDC53, WASH and Strumpellin, 

but not FAM21, were also significantly overexpressed (paired t-test; **P<0.01, ***P<0.001). 

p150Glued is a loading control. 
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Expanded View Figure legends 

 

Figure EV1. HSBP1 is required for CCDC53 assembly into the WASH complex.  

(A) The stable MDA-MB-231 cell line expressing FLAG-HaloTag-WASH (FHT-WASH) was 

analyzed by Western blot. Overexpression of tagged WASH induces up-regulation of CCDC53, 

whereas FAM21 and Strumpellin levels are not affected. Tagged WASH replaces the endogenous 

WASH in the WASH complex. Stable MDA-MB-231 cells expressing FHT-WASH were treated for 

24 h with HaloPROTAC3, a small molecule that degrades HaloTag tagged proteins (Buckley et al, 

2015). FHT-WASH degradation induced CCDC53 down regulation and reappearance of endogenous 

WASH. FAM21 and Strumpellin levels were not affected.  

(B) HaloPROTAC3 wash-out for the indicated time allows to monitor subunit build-up around FHT-

WASH by FLAG immunoprecipitations. Upon HSBP1 depletion, the association of WASH with 

CCDC53 is delayed. 

 

 

Figure EV2. HSBP1 phenotypes are completely rescued by wild-type HSBP1, but only partially 

by HSBP1 mutants.  

(B) shHSBP1 expressing MDA-MB-231 clone #2 was stably retransfected with plasmids expressing 

WT HSBP1, F27L or R44E E49R HSBP1 or the empty plasmid as a control. Note that exogenous 

HSBP1 is overexpressed compared to endogenous HSBP1. WT HSBP1 restores WASH and CCDC53 

levels. 

(B) 2D trajectories in single cell migration assays. 

(C) Quantification of mean square displacement (MSD), cell speed and directional persistence. WT 

HSBP1, but not mutant HSBP1 restores normal migration parameters. The R44E E49R appears as a 

stronger loss of function mutant than the F27L. At least 50 cells were quantified per condition, 3 

independent experiments, data are mean ± s.e.m., ANOVA for cell speed, 2-way ANOVA for MSD 

and directional persistence, ***P<0.001, ****P<0.0001. 

 

 

Figure EV3. Isolation HSBP1 KO amoebae and characterization of HSBP1 in the amoeba.  

(A) The whole ORF of HSBP1 was replaced by the gene encoding Blasticidin resistance (BSR) upon 

homologous recombination. Approximately 1.2 kb of genomic DNA to the 5’ and 3’ sides of the 

HSBP1 gene were amplified by PCR and ligated on either side of a blasticidin-resistance cassette in a 

Dictyostelium cloning vector to create a knockout vector. The knockout cassette was cut out using 

appropriate restriction enzymes and linear DNA was transformed into Dictyostelium cells by 

electroporation. Diagnostic PCR of recombination on genomic DNA of two isolated blasticidin 

resistant clones.  



 34 

(B) Growth of HSBP1 KO is impaired in a medium containing 20% dextran. After 5 days, some 

HSBP1 KO amoebae accumulate multiple dense vesicles and are enlarged. This phenotype, which was 

previously described for WASH KO amoebae, is never observed in the parental strain. DIC 

microscopy, scale bar: 10 µm.  

(C) Incorporation of fluorescent dextran reaches a steady state, where exocytosis compensates 

endocytosis, after 2 h in WT amoebae, but a plateau is not yet reached after 5 h in HSBP1 or WASH 

KO amoebae.  

(D) Localization of HSBP1-GFP and GFP-HSBP1 in Dictyostelium amoeba. In both cases, HSBP1 

localizes to central dot-like structures, which correspond to centrosomes, as indicated by -tubulin-

mRFP colocalization. Scale bar: 10 µm. 

 

 

Figure EV4. HSBP1, WASH and CCDC53 localize at centrosomes.  

(A) MDA-MB-231 cells expressing HaloTag WASH or CCDC53 were stained with the fluorescent 

TMR ligand, HSBP1 and γ-tubulin antibodies and DAPI to stain nuclei. WASH and CCDC53 

colocalize with HSBP1 at the centrosome. 

(B) HSBP1 is also associated with centrosomes in tissue sections from human breast. The HSBP1 

staining is more elongated in shape in normal tissue than in mammary carcinomas. Seven biopsies of 

breast tumors displaying both carcinoma and adjacent normal tissue were tested and they all gave 

similar staining. Scale bars: 10 µm. 

 

 

Figure EV5. Mammary carcinoma cells co-express HSBP1, CCDC53 and WASH.  

A, B Tissue sections of a mammary carcinoma overexpressing HSBP1 (from patient #4 in Fig 9) is co-

stained with DAPI, cytokeratin 7 (CK7), a marker of carcinoma cells, HSBP1 and with CCDC53 (A) 

or with WASH (B). The centrosomal staining of HSBP1 is not visible in these immunofluorescences 

performed from formalin fixed paraffin embedded tumors. The centrosomal staining requires 

cryosections and methanol/acetone fixation. Scale bar: 20 µm.  
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