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We investigate the ability of the Laser Interferometer Space Antenna (LISA) to measure the center of
mass acceleration of stellar-origin black hole binaries emitting gravitational waves. Our analysis is based on
the idea that the acceleration of the center of mass induces a time variation in the redshift of the gravitational
wave, which in turn modifies its waveform. We confirm that while the cosmological acceleration is too
small to leave a detectable imprint on the gravitational waveforms observable by LISA, larger peculiar
accelerations may be measurable for sufficiently long lived sources. We focus on stellar-mass black hole
binaries, which will be detectable at low frequencies by LISA and near coalescence by ground based
detectors. These sources may have large peculiar accelerations, for instance, if they form in nuclear star
clusters or in active galactic nucleus (AGN) accretion disks. If that is the case, we find that in an
astrophysical population calibrated to the LIGO-Virgo observed merger rate, LISAwill be able to measure
the peculiar acceleration of a small but significant fraction of the events if the mission lifetime is extended
beyond the nominal duration of 4 years. In this scenario LISA will be able to assess whether black hole
binaries form close to galactic centers, particularly in AGN disks, and will thus help discriminate between
different formation mechanisms. Although for a nominal 4-year LISA mission the peculiar acceleration
effect cannot be measured, a consistent fraction of events may be biased by strong peculiar accelerations
which, if present, may imprint large systematic errors on some waveform parameters. In particular,
estimates of the luminosity distance could be strongly biased and consequently induce large systematic
errors on LISA measurements of the Hubble constant with stellar-mass black hole binaries.

DOI: 10.1103/PhysRevD.101.063002

I. INTRODUCTION

The long awaited detection [1–4] of gravitational waves
(GWs) by the LIGO interferometer, followed by Virgo
[5,6], opened a new era in the history of astronomy. Indeed,
not only did these observations provide direct evidence for
the existence of GWs (whose existence was previously
assessed only indirectly by timing binary pulsar systems

[7]) and for the validity of General Relativity (GR) in the
highly relativistic strong field limit [8], but they also shed
light on the physics of compact objects (black holes—BHs
—and neutron stars—NS) [9,10]. Indeed, the coincident
detection (to within 1.7 s) of the GW signal GW170817 and
the gamma ray burst (GRB) 170817A has substantiated the
long suspected connection between NS mergers and short
GRBs [11]. Moreover, these joint observations have
allowed constraints to be placed on the cornerstones of
our understanding of gravity (Lorentz symmetry and the
equivalence principle) [11], as well as on whole classes of
gravitational theories modifying and/or extending GR (see
e.g., [12–14]). GW observations have also started testing
the very existence of BHs, down almost to the scale of the
event horizon [15,16], where exotic non-GR physics is still
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possible, though tightly constrained [17–19]. Furthermore,
as more and more BH detections accumulate, GW inter-
ferometers will reconstruct the mass function of these
objects with increasing precision. This, together with future
measurements of the eccentricity and spin of these binaries,
will lead to better understanding of their astrophysical
origin (see e.g., [20,21]).
Given this tumultuous succession of discoveries, it is

hardly surprising that the European Space Agency (ESA)
approved in June 2017 the Laser Interferometer Space
Antenna (LISA) mission [22], whose launch is nominally
scheduled for 2034 and which will target the mHz band of
the GW spectrum. This band of frequencies is inaccessible
from the ground, due to the seismic noise affecting the
operations of terrestrial interferometers, and contains an
impressive wealth of astrophysical GW sources. These
include the merger of massive (∼104–107 M⊙) BH binaries
[23,24]; galactic and extragalactic white dwarf binaries
[25–27]; extreme mass ratio inspirals consisting of a stellar-
mass BH and a massive BH [28,29]; and also the stellar-
mass BH binaries that are targeted at higher frequencies by
LIGO/Virgo [30]. Indeed, those binaries may be observable
by LISA in the tens or even hundreds, especially if their
mass is sufficiently large, for several years. These sources
will then leave the LISA band before resurfacing in the
LIGO/Virgo band, where they will merge [30].
While the signal-to-noise ratio (SNR) of these binaries in

the LISA band will be at most of the order of a few tens or
less (with most sources being indeed unresolvable indi-
vidually) [30], these sources will accrue several thousands
of inspiral cycles at the high-frequency end of the LISA
sensitivity curve. This will potentially result in accurate
determinations of the source parameters, such as BHmasses
and spins, eccentricity, sky position, etc., [21,31]. This will
also make these sources excellent probes of putative tiny
deviations away from GR (orders of magnitude weaker than
those detectablewith ground interferometers) [32,33] or even
environmental effects from the interaction of the binary with
the surrounding matter [16,34].
Among these environmental effects, an especially attrac-

tive one is provided by the peculiar acceleration of the
binary’s center of mass (c.m.) with respect to the observer.
The peculiar velocity of the binary causes a shift in the
signal’s frequency, via the well-known Doppler effect. If
the velocity is constant during the GW measurement, the
Doppler frequency shift can be simply reabsorbed into a
change of the (redshifted) chirp mass of the binary and into
a shift of the luminosity distance. However, as shown in
[35], if the velocity varies with time, i.e., if the binary’s
center of mass is accelerating with respect to the observer,
the gravitational waveform changes in a (potentially)
measurable fashion. This effect has a characteristic time
(or frequency) dependence, and its amplitude is propor-
tional to the magnitude of the acceleration component
along the line of sight. The center of mass acceleration

depends crucially on the binary’s origin: formation in dense
nuclear star clusters [36–38] or via accretion disks in active
galactic nuclei (AGNs) [39–43] provides on average larger
accelerations than, for instance, field formation [44].
In this paper, we investigate the conditions under which

the acceleration can be measured by LISA, and its impact
on the estimation of the binary parameters. The binary
acceleration has two components: one of cosmological
origin, due to the expansion of the Universe during the
observation of the binary [45,46]; and the other of
astrophysical origin, i.e., the peculiar acceleration caused
by surrounding matter [35,47]. Our results confirm that the
first component is not detectable with LISA [35], and we
thus focus only on the second one.1 We assume a constant
peculiar acceleration on the timescale of the GW meas-
urement, which is a good assumption for the astrophysical
systems considered in this work. The magnitude and
direction of the acceleration are kept as free parameters.
By adopting the official LISA configuration of [22] and
astrophysical binary BH populations calibrated to the
LIGO/Virgo detection rate, we investigate via a Fisher
matrix approach the precision with which the peculiar
acceleration can be inferred from the data, improving on the
estimates of [35,44]. We consider two values for the LISA
mission duration: 4 years, the nominal duration, and
10 years, a very plausible extension [22]. We assess the
improvement in the estimate of the acceleration due to the
joint detection of the same event by ground based inter-
ferometers. Overall, our results confirm that LISA will be
able to observe at least a few events with high enough
peculiar acceleration, e.g., if the latter are produced in
dense environments such as nuclear star clusters or AGN
disks, and if the mission will last for 10 years. The detection
of such peculiar acceleration by LISA would be extremely
valuable, since it may provide information on the binary’s
formation mechanism, especially if the host galaxy can be
identified electromagnetically with sufficient confidence
(to identify for example the presence of an AGN or a
nuclear star cluster). Note that the sky position of stellar-
mass BH binaries may be identified to within 10 deg2 or
better [31].
In addition, we also investigate the bias that the binary’s

acceleration would generate on the source parameters, if its
effect is not properly accounted for in the GW waveform.
Our analysis, which is based on a Fisher matrix approach
and which is valid in the small-bias limit [48–51], extends
and completes the investigation performed in [35], where
the bias was calculated using simplified Monte Carlo
simulations. We confirm that the bias is typically small
if peculiar accelerations are below ∼10−7 m=s2, but strong
biases (larger than the inferred 1σ errors) may be present for

1Note, however, that a detector with higher sensitivity, like the
proposed DECIGO/BBO, has the potential to measure the effect
of cosmological expansion [45,46].
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binaries with larger peculiar accelerations, particularly
those forming in AGN disks and nuclear star clusters,
even for a 4-year LISA mission. Remarkably, the waveform
parameter most strongly biased is the luminosity distance
of the source. This suggests that strong peculiar acceler-
ations can induce a large systematic error on measurements
of the Hubble constant with stellar-mass black hole binaries
(BHBs) observed by LISA (see e.g., [31,52]).
The plan of the paper is the following. In the next section

we derive the impact of the peculiar acceleration on the
observed waveform associated with stellar-mass BHBs. In
Sec. III we describe the procedure to implement the
acceleration effect in the source catalogues and in the
Fisher matrix code. In Sec. IV we present our results and
we conclude in Sec. V.

II. THE EFFECT OF THE CENTER OF MASS
ACCELERATION ON THE GRAVITATIONAL

WAVEFORM

In this section we show how the acceleration of the
center of mass of a binary system emitting GWs affects the
waveform signal detected by LISA. We follow the deriva-
tion presented in [35]. Note that, with respect to [35], we
concentrate only on the redshift perturbation due to the
homogeneous expansion of the universe and the peculiar
velocity, which provide the dominant effects on the wave-
form. We therefore neglect the cosmological contributions
due to the Bardeen potentials and the integrated Sachs
Wolfe effect. Furthermore, we correct a sign error in the
wave phase, cf. Eq. (28), and add a new contribution in the
wave amplitude, cf. Eq. (33). In the following we provide
the main points leading to the perturbed waveform in
Fourier space, while the full derivation is reported in the
Appendix.
We start by considering the GW signal in the source

frame, which is given by [53,54]

hsrcðtsrcÞ ¼
2GMνy2

dCc2
X
n≥0

Ane−inϕsrc þ c:c:; ð1Þ

2πfsrc ¼
dϕsrc

dtsrc
¼ c3

GM
y3; ð2Þ

where M is the intrinsic total mass of the system, ν ¼
m1m2=M2 is the symmetric mass ratio, dC is the comoving
distance from the source to the detector, n is a harmonic
number, An is the corresponding wave amplitude, ϕsrc is the
orbital phase (at the source), and y ¼ ðGMωsrc=c3Þ1=3 is a
post-Newtonian parameter used to describe the system,
with ωsrc ¼ 2πfsrc where fsrc is the orbital frequency of the
system in the source frame. An observer at cosmological
distances from the source would measure this signal
redshifted by both the background expansion of the
Universe and the presence of matter structures between

the source and the observer, which modify the frequency at
observer as follows:

fobs ¼
fsrc
1þ z

; ð3Þ

where z is the redshift factor, which is a function of time.
The dominant contributions to the redshift are due to the
cosmological expansion of the Universe and to the Doppler
effect (see e.g., [55])

1þ z ¼ aðtobsÞ
aðtsrcÞ

�
1þ vksrcðtsrcÞ

c
−
vkobsðtobsÞ

c

�
; ð4Þ

where aðtÞ is the scale factor, tsrc and tobs denote the local

time of the source and of the observer, and vksrc ¼ n · vsrc
and vkobs ¼ n · vobs are their respective peculiar velocity
along the line of sight n (here n points from the observer to
the source). As shown in [35] the gravitational redshift and
integrated Sachs Wolfe contributions can be safely
neglected. Moreover given that the phase does not change
from the source to the observer, the time intervals are
related as follows:

dtobs
dtsrc

¼ dtobs
dϕobs

dϕobs

dϕsrc

dϕsrc

dtsrc
¼ fsrc

fobs
¼ 1þ z: ð5Þ

A. Constant redshift

If z is assumed to be a constant, i.e., if both the expansion
of the Universe and the peculiar velocity of the source are
constant during the GW observation,2 then the GW signal
measured by the observer becomes simply

hobsðtobsÞ ¼
2GMzνy2

dLc2
X
n≥0

Ane−inϕobs þ c:c:; ð6Þ

2πfobs ¼
dϕobs

dtobs
¼ c3

GMz
y3; ð7Þ

where Mz ¼ ð1þ zÞM is the redshifted total mass and
dL ¼ ð1þ zÞdC is the luminosity distance. The post-
Newtonian parameter is unaffected because

y3 ¼ GM
c3

ωsrc ¼
GMz

c3
ωobs: ð8Þ

At leading post-Newtonian order, the frequency evolution
equation in the source frame is given by

2Note that the peculiar velocity of the observer may vary
significantly during the time of observation, but this is auto-
matically accounted for in GWanalyses since the intrinsic motion
of the detector is known with great precision.
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dωsrc

dtsrc
¼ 96νc6y11

5G2M2
; ð9Þ

and in the detector frame the same equation can be
expressed as

dωobs

dtobs
¼ 96νc6y11

5G2M2
z
: ð10Þ

We can use this equation with the relation between the
observed frequency ωobs and the post-Newtonian (PN)
parameter y to compute the time-frequency relation

tobs − tc ¼
Z

tobs

tc

dt0obs ¼
Z

y

yc

�
dy0

dt0obs

�
−1
dy0

¼ −
5GMzy−8

256νc3
; ð11Þ

where tc denotes the coalescence time in the observer’s
frame, and we have used that the frequency diverges at tc so
that yðtcÞ → ∞. Similarly, we can compute the observed
orbital phase

ϕobs − ϕc ¼
Z

tobs

tc

ωobsdt0obs ¼
Z

y

yc

c3ðy0Þ3
GMz

�
dy0

dt0obs

�
−1
dy0

¼ −
y−5

32ν
; ð12Þ

where ϕc ¼ ϕðtcÞ denotes the phase at coalescence.
We can then compute the Fourier domain version of this
waveform using the stationary phase approximation (see
e.g., [56–59])

h̃obsðfobsÞ ¼
2GMzν

dLc2
X
n≥1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

njϕ̈obsj

s
Any2neið2πfobstn−nϕobs−π=4Þ;

ð13Þ

2πfobs ¼ n _ϕobsðtnÞ; ð14Þ

where a dot denotes derivative with respect to time and all
functions are evaluated at the stationary time tn for each n.
We can first use Eq. (14) to find

ynðtnÞ ¼
�
2πGMzfobsðtnÞ

nc3

�
1=3

; ð15Þ

and then combine Eq. (13) with Eqs. (10)–(12) to obtain

h̃obsðfobsÞ ¼
G2M2

z

dLc5
X
n≥1

ffiffiffiffiffiffiffiffi
5πν

12n

r
Any

−7=2
n eiΨn ; ð16Þ

Ψn ¼ 2πfobstc − nϕc þ
3ny−5n
256ν

−
π

4
: ð17Þ

For a constant redshift and at Newtonian order, this can be
roughly regarded as the signal that is detected and analyzed
by GW interferometers such as LISA and LIGO/Virgo.

B. Time dependent redshift

Since the expansion of the Universe and the peculiar
velocity of the source are not exactly constant during the
time of observation of the binary, the redshift acquires a
small time-dependence. In this case, the waveform detected
by an observer differs from the one derived above
[35,45,46]. Let us briefly repeat the derivation presented
in [35]. Under the assumption that both the cosmic
expansion and the peculiar velocity are slowly varying
over the observation time, we can linearly expand the
redshift around a fixed chosen time t�obs. As shown in
Appendix A 1 (see also Eq. (36) in [35]), the redshift at tobs
can then be written as

1þ zðtobsÞ ¼ ð1þ z�Þ½1þ 2Yðz�Þðτ�obs − τobsÞ�; ð18Þ

where τobs ¼ tc − tobs is the observed time to coalescence
and Yðz�Þ is a small correction encoding the variation of the
redshift between tobs and t�obs. For binaries that are observed
close to the coalescence time tc, a convenient choice

3 is to
take t�obs ¼ tc. In this case, Eq. (18) reduces to

1þ zðtobsÞ ¼ ð1þ zcÞ½1 − 2Ycτobs�; ð19Þ

where

Yc≡YðtcÞ

¼ 1

2

�
HobsðtcÞ−

HsrcðtcÞ
1þ zc

þ _vksrcðtcÞ
cð1þ zcÞ

−
_vkobsðtcÞ

c

�
: ð20Þ

HereHðtÞ is the Hubble rate and _vksrc and _vkobs are the line of
sight peculiar acceleration of the source and the observer,
respectively. Note that here and in the following we drop
the subscript “obs” and “src” on the coalescence time tc, to
simplify the notation. Quantities at the source are always
evaluated at the coalescence time in the source rest frame
tcsrc, whereas quantities at the observer are evaluated at the
coalescence time in the observer rest frame tcobs. At zeroth
order in Yc we can absorb the effect of the constant redshift
zc by rewriting our expressions in terms of the redshifted
mass Mz ¼ Mð1þ zcÞ, leading again to Eqs. (16)–(17). In
what follows we will perform all computations at linear
order in Ycτobs ≪ 1.

3Both the Hubble expansion and the peculiar acceleration
happen on time scales much larger than the time LISA binaries
will take to coalesce. As a consequence, for the binary systems
analyzed in this work, choosing t�obs ¼ tc is equivalent to
choosing t�obs as the time when LISA starts acquiring data (see
the discussion in Appendix A 1).
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We can now repeat the steps that led to Eqs. (16)–(17) for
a time dependent redshift. At the lowest order Eq. (11)
relates the observed time to coalescence τobs to y. To
compute the correction at first order, we can use the
frequency evolution equation in the source frame, namely
Eq. (9), to get the evolution of the PN parameter y,

dy
dtsrc

¼ 32νc3y9

5GM
; ð21Þ

and then integrate to get the observed time τobs ¼ tc − tobs
as

τobs ¼
Z

tc

tobs

dt0obs ¼
Z

tc

tsrc

dt0srcð1þ zcÞð1 − 2Ycτ
0
obsÞ

¼ 5GMzy−8

256νc3
−
25G2M2

zYcy−16

65536ν2c6
þOððYcτobsÞ2Þ; ð22Þ

where we have inserted Eq. (11) to perform the integral.
The orbital phase is again given by Eq. (12), while the
observed orbital frequency becomes

ωobs ¼
ωsrc

ð1þ zcÞð1 − 2YcτobsÞ

¼ c3y3

GMz
½1þ 2Ycτobs� þOððYcτobsÞ2Þ: ð23Þ

To compute the effect on the phase of the harmonics of the
Fourier domain waveform, we can simply write

Ψn ¼ 2πfobstn − nϕobs −
π

4
; ð24Þ

2πfobs ¼ nωobsðtnÞ ¼ n
dϕobs

dtobs
ðtnÞ: ð25Þ

The time-frequency relation yields

2πfobs ¼
nc3y3

GMz

�
1þ5GMzYcy−8

128νc3

�
þOððYcτobsÞ2Þ; ð26Þ

which inverted gives

y3 ¼ 2πGMzfobs
nc3

�
1 −

5GMzYc

128νc3

�
2πGMzfobs

nc3

�
−8=3

�
þOððYcτobsÞ2Þ: ð27Þ

Then using this relation together with Eqs. (22) and (12),
the phase (24) becomes

Ψn¼2πfobstc−nϕc−
π

4
þ3nf−5=3obs

256ν

�
2πGMz

nc3

�
−5=3

þ25n2Ycf
−13=3
obs

131072πν2

�
2πGMz

nc3

�
−10=3

þOððYcτobsÞ2Þ: ð28Þ

This last equation (with n ¼ 2) is also derived in
Appendix A 2 following a slightly different route. We
can then introduce

yf ¼
�
2πGMzfobs

nc3

�
1=3

; ð29Þ

and we find

Ψn ¼ 2πfobstc − nϕc −
π

4
þ 3n
256ν

y−5f

þ 25nGMzYc

65536ν2c3
y−13f þOððYcτobsÞ2Þ: ð30Þ

We can also compute the relation

y ¼ yf −
5GMzYcy−7f

384νc3
þOððYcτobsÞ2Þ; ð31Þ

from which we can infer an evolution equation for yf

dyf
dtobs

¼ 32νc3y9f
5GMz

�
1 −

65GMzYcy−8f
384νc3

�
þOððYcτobsÞ2Þ:

ð32Þ

A time dependent redshift correction appears also in the
amplitude of the GW signal. The details of this calculation
are presented in Appendix A 3. In terms of the frequency,
the waveform amplitude in the restricted waveform
approximation (i.e., the leading PN order amplitude of
the second harmonic n ¼ 2) is given by

Ã2ðfobsÞ¼
1

dLðzcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ν

24π4=3c3

r
ðGMzÞ5=6f−7=6obs

×

�
1þ5ðGMz=c3Þ−5=3Yc

128νðπfobsÞ8=3
�
5

2
−

1

Hcχc

��
; ð33Þ

where χc ≡ c
R tc
0 dt=aðtÞ denotes the background comov-

ing distance to the source evaluated at coalescence. The
luminosity distance dLðzÞ is affected by perturbations,
namely by gravitational lensing at high redshift and by
peculiar velocities at low redshift (see Eq. (A31) and [60]).
As shown in Appendix A 3, these perturbations also affect
the frequency-dependence of the amplitude. Indeed, the
term in the square bracket of Eq. (33) gets a contribution
from the time variation of the luminosity distance, which is
proportional to the time variation of the peculiar velocity.
Note that the time variation of the gravitational lensing
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contribution is neglected here. This variation is propor-
tional to the time variation of the gravitational potentials,
which is expected to be much smaller than the time
variation of the peculiar velocity.4 Eq. (33) differs from
the result in [35], which does not account for the time
variation of the luminosity distance. For sources at low
redshift, where χc is small, the second term is the dominant
one, whereas at high redshift the first one dominates.
The expressions for the phase (30) and the amplitude

(33) have been derived under the assumption that the scale
factor aðtÞ and the source peculiar velocity vsrcðtÞ do not
vary too much between the window of observation and
the coalescence time. This is a good approximation for the
binaries we will consider in the rest of this work, since the
physical mechanisms producing their peculiar accelerations
act on time scales much longer than the observational
period of LISA, in particular on galactic time-scales.
Furthermore, as we will see in Sec. IV, the binaries for
which the acceleration effect is most relevant are those that
are observed close to coalescence. If other types of peculiar
accelerations are analyzed, for example the perturbation of
the binary’s c.m. due to a third close companion object,
then the time variation of the acceleration must be taken
into account and the analysis performed here will no longer
be applicable (see e.g., [61–66]).

III. ASTROPHYSICAL POPULATIONS
AND LISA PARAMETER ESTIMATION

A. Implementation of the peculiar acceleration effect

Following the definition in [35], we parametrize the
peculiar acceleration of the binary center of mass with a
parameter ϵ such that

_vksrcðtcÞ
cð1þ zcÞ

¼ 2.4 × 10−2
H0

1þ zc
ϵ: ð34Þ

This form is motivated by the particular case of a binary
describing a circular orbit around the galactic center. In this
case, the centripetal acceleration takes indeed the simple
form

_vksrcðtcÞ
cð1þ zcÞ

¼ v2src
r

n · e
cð1þ zcÞ

; ð35Þ

where e is the direction of the acceleration and n the one of
the line of sight, vsrc is the (circular) velocity, and r is the
distance from the galaxy center. The parameter ϵ corre-
sponds to these quantities being normalized as follows:

ϵ ¼
�

vsrc
100 km= sec

�
2 10 kpc

r
n · e: ð36Þ

The argument above motivates the choice of prefactor in
Eq. (34); however, it is clear that ϵ can be used to
parametrize any kind of peculiar acceleration, besides
the centripetal one. Note that, in principle, the acceleration
of the observer also plays a role [cf. Eq. (20)]. However, we
assume that this is already accounted for and subtracted via
the standard GW detection procedure.
The parameter ϵ defined in (34) is convenient to para-

metrize the peculiar acceleration of the binary. We use it in
the construction of the binary population catalogues, as
presented in the following section. On the other hand, the
effect on the gravitational waveform includes also the
component due to the universe expansion (cf. Sec. II).
When we implement the total effect of the center of mass
acceleration on the waveform, we do it in terms of a related
parameter, α, defined in Eq. (39). In Sec. III C, we discuss
the link among ϵ and α.

B. Astrophysical black hole binary populations

We simulate two different black hole binary (BHB)
populations, each assuming a different individual mass
distribution: the LogFlat model assuming a uniform
distribution in log-mass dN=dm ∝ m−1 for each component
of the binary, and the Salpeter model assuming a Salpeter
mass function dN=dm ∝ m−2.35, both with 5 M⊙ <
mi < 100 M⊙. LIGO/Virgo observations provide merger
rate estimates in the local Universe for both of these
models [3], that we assume to be R ¼ 32 Gpc−3 yr−1 for
the LogFlat model, andR ¼ 103 Gpc−3 yr−1 for the Salpeter
model. These median rates were recently revised to be
R ¼ 19 Gpc−3 yr−1 for the LogFlat model, and R ¼
57 Gpc−3 yr−1 for the Salpeter model [67], which would
roughly halve the results presented in this paper. However,
the median rates used here are close to the upper limits of the
confidence intervals presented in [67], and thus can be
considered optimistic results from this point of view.
For each of those models, we simulate the local black

hole binary population as follows. We set a maximum
comoving distance of dmax

C ¼ 2 Gpc, a minimum initial
orbital frequency of fmin ¼ 2 mHz, and a maximum initial
orbital frequency of fmax ¼ 10 Hz (the initial frequency
corresponds to the frequency at which the binary is emitting
when LISA starts observing). Assuming a uniform distri-
bution of the merger times, we can compute the corre-
sponding initial frequency evolution assuming leading
order PN frequency evolution:

dN
df

¼ dt
df

dN
dt

¼ Cf−11=3; ð37Þ

where C is a constant.

4In a matter dominated universe the time variation of the
potentials exactly vanishes. In a ΛCDM universe this is not the
case, but the variation still remains small since the potentials vary
on cosmological time.
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We create six realizations of the binary black hole
population, each for a different distribution of the accel-
eration parameter ϵ. We use a parameter E to denote the
magnitude of the acceleration vector, and we create one
population with ϵ ¼ 0, and one family of ϵ distributions
with E following a Gaussian distribution centered at E ¼
Em with standard deviation Em. We use the following five
values of Em ¼ ½10; 102; 103; 104; 105� to create 5 distri-
butions for E. These values have been chosen by equal
logarithmic separation from 0 (no peculiar acceleration) to
the highest expected accelerations for stellar-mass BHBs
living close to the galactic center (ϵ ¼ 105 corresponds to
an acceleration of ∼10−6 m=s2Þ. We then obtain the
corresponding ϵ as the projection of the acceleration vector
along the line of sight by multiplying E by a uniformly
distributed number in ½−1; 1�. In what followswewill denote
these distributions as acceleration scenarios 1 to 5, with
scenario 0 being the distribution without any peculiar
acceleration, i.e., where ϵ has been set to zero for each event.
We then compute the yearly merger rate inside a sphere

of radius dmax
C centered on the Solar System based on the

LIGO/Virgo estimates. For each realization, we then draw a
Poisson distributed random number NP compatible with
this expected rate. We then randomize the sky location and
comoving distance assuming that binary systems are
uniformly distributed inside the sphere, with an initial
orbital frequency following a distribution proportional to
f−11=3, and individual masses distributed by the LogFlat or
the Salpeter model. We randomize all additional vector
components (spins, orbital orientation) uniformly distrib-
uted on the sphere, the initial orbital phase uniformly
distributed inside ½0; 2π�, and the dimensionless spin
magnitudes uniformly distributed inside [0,1]. For each
binary, we compute the merger time according to the
time-frequency relation Eq. (22). We stop our simulation
when the number of simulated systems with total mass

M < 100 M⊙ merging within one year, i.e., satisfying
τobs < 1 yr at the start of the mission, reaches NP.
For each value of Em and for both astrophysical mass

distributions, we simulate 20 catalogues taking into account
two different observational scenarios, corresponding to the
LISA mission taking data for 4 or 10 years. We thus
produce a grand total of 480 catalogues: 20 × 6 (values of
ϵ) ×2 (mass distribution) ×2 (LISA duration), spanning
3360 years worth of data. As we will see in Sec. IVA, each
catalogue contains a few hundred merging systems detect-
able by LISA, cf. Table I.

C. Waveform generation and parameter estimation

For the present study, we use an inspiral-only Fourier-
domain gravitational waveform including spin-precession,
2.5PN order harmonics, and 3.5PN phasing [68]. We
assume zero eccentricity by considering that BBHs will
have already circularized by the time they are detected by
LISA, as expected for example in the classical field
formation scenario [69] (see Sec. V for a discussion on
eccentricity). Note that all the quantities used in the
following are in the observer frame, and thus we drop
the “obs” subscripts from now on. We include the effects of
the cosmic expansion and the peculiar acceleration by
adding the linear effect in Eq. (32) into the frequency
evolution equation in the following way:

_ω ¼ _ω0

�
1 −

65α

384

�
GMzω

c3

�
−8=3

�
; ð38Þ

where we parametrize the acceleration effect by

α ¼ GMzYc

νc3
; ð39Þ

and _ω0 stands for the standard 3.5PN frequency evolution
equation without acceleration effects. Note that, neglecting
the contribution of the homogeneous expansion of the

TABLE I. Average (over 20 simulations) number of events for which the parameter α is measured with a relative error below 100%,
50%, 30%, and 10%. The upper numbers are for the LogFlat mass function, the lower ones for the Salpeter. “LISA only” denotes
detections by LISA alone, while “LISAþ Earth” are the detections for which the time of coalescence has been measured by ground-
based interferometers, such as LIGO/Virgo (in this case an upper limit of 10 years has been applied on the time to coalescence from the
beginning of the LISA mission). For LISA only, a detection threshold ρthr ¼ 15 is used if tc < 100 yr, and ρthr ¼ 10 otherwise; for
LISAþ Earth, a detection threshold of ρthr ¼ 9.5 is used.

LISA only LISAþ Earth (tc < 10 y)

LISA mission duration Acceleration scenario Total 100% 50% 30% 10% Total 100% 50% 30% 10%

4 years 4 58 0 0 0 0 143.5 0 0 0 0
40.5 0 0 0 0 92.5 0 0 0 0

5 51.5 1 0 0 0 138 3 0 0 0
38 0 0 0 0 92 1 0 0 0

10 years 4 207 1 0 0 0 248 6.5 2 0 0
157 0 0 0 0 159.5 5 1 0 0

5 213. 39.5 20.5 9.5 0 243 103.5 67 38.5 7.5
154.5 27 14 7 0 162 70 44 26.5 5.5
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Universe, which is always subdominant with respect to the
peculiar acceleration for the systems analyzed in this work,
one can relate α to ϵ by

ϵ≃83.3
1þ zc
H0

νc3

GMz
α ðno Universe expansionÞ: ð40Þ

As we will see, the relative errors onMz and νmeasured by
LISA are always much lower than the relative error on α,
meaning that the latter dominates the relative error on ϵ. We
therefore use the following approximation to estimate the
measurement error on ϵ:

Δϵ ≃ 83.3
1þ zc
H0

νc3

GMz
Δα: ð41Þ

This approximation holds especially in the relevant cases
under analysis here, i.e., those for which the peculiar
acceleration effect is sufficiently large to be measured
by LISA.
Irrespective of the effect due to the modification to the

phase evolution equation, the peculiar acceleration induces
an additional effect on the GW amplitude, through a
modification of the luminosity distance. It amounts to,
as derived in Appendix A 3,

dLðzÞ
dLðzcÞ

¼ 1–2

�
2 −

1

Hcχc

�
Ycτobs: ð42Þ

Since every waveform amplitude An is proportional to
1=dL, using Eqs. (22), (31), and (39) we multiply our
waveform by a factor

1þ 5α

128y8f

�
5

2
−

1

Hcχc

�
: ð43Þ

The Fourier transform of the waveform is then computed
using a shifted uniform asymptotic (SUA) transform [68],

h̃ðfÞ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

nϕ̈ðt0;nÞ

s Xkmax

k¼−kmax

ak;kmax
Anðt0;n þ kTnÞ

× ei½2πft0;n−nϕðt0;nÞ−π=4�; ð44Þ

2πf ¼ n _ϕðt0;nÞ; ð45Þ

Tn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nϕ̈ðt0;nÞ
q ; ð46Þ

where a dot denotes differentiation with respect to time, and
the coefficients ak;kmax

are constants satisfying the following
linear system of equations:

Xkmax

k¼1

ak;kmax
þ 1

2
a0;kmax

¼ 1; ð47Þ

Xkmax

k¼1

ak;kmax

k2p

ð2pÞ! ¼
ð−iÞp
2pp!

; p ∈ f1;…; kmaxg; ð48Þ

a−k;kmax
¼ ak;kmax

: ð49Þ

We simulated the LISA response with a low-frequency
approximation, as presented in [70].
In order to evaluate the parameter estimation capabilities

of LISA, we use a Fisher matrix analysis method (see e.g.,
[56–59]). We define the inner product in the space of
signals as

ðajbÞ ¼ 4Re
Z

∞

0

ãðfÞb̃�ðfÞ
SnðfÞ

df; ð50Þ

where a and b are waveform signals in the LISA detector,
the tildes denote their Fourier transforms, the star denotes
complex conjugation, and SnðfÞ is the one-sided power
spectral density of the instrument’s noise. We use the LISA
proposal noise curve [22,29] with a four-year galactic
binary confusion noise:

SnðfÞ ¼
4SaccðfÞ þ Sother

L2

�
1þ

�
2fL
0.41c

�
2
�
þ SconfðfÞ;

ð51Þ

with acceleration noise, noise from other sources, and
confusion noise

SaccðfÞ ¼
9 × 10−30 m2Hz−3

ð2πfÞ4
�
1þ

�
6 × 10−4 Hz

f

�
2

×

�
1þ

�
2.22 × 10−4 Hz

f

�
8
��

; ð52Þ

Sother ¼ 8.899 × 10−23 m2Hz−1; ð53Þ

SconfðfÞ ¼
A
2
e−s1f

α
f−7=3f1 − tanh ½s2ðf − κÞ�g; ð54Þ

with A¼ð3=20Þ3.2665×10−44 Hz4=3, s1 ¼ 3014.3 Hz−α,
α ¼ 1.183, s2 ¼ 2957.7 Hz−1, and κ ¼ 2.0928 × 10−3 Hz.
For a given binary in our catalogues, we construct its

waveform as described above as a function of its param-
eters hðθÞ, where θ is a 16-dimensional vector containing
the 15 parameters describing a spinning compact object
binary on a circular orbit, with the extra acceleration
parameter α. The SNR ρ of this binary can be estimated as
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ρ2 ¼ ðhjhÞ: ð55Þ

The Fisher information matrix for this binary is given by

Γij ¼
�∂h
∂θi

���� ∂h∂θj
�
; ð56Þ

where ∂h=∂θi is the derivative of the waveform with
respect to the parameter θi.
We then construct its inverse, the covariance matrix

Σ ¼ Γ−1. Its diagonal elements provide estimations of the
statistical errors involved in the measurement of the
parameters as

Δθi ¼
ffiffiffiffiffiffi
Σii

p
: ð57Þ

We follow [48] to provide an estimate of the parameter
estimation bias induced by neglecting the acceleration
parameter α. We define the true waveform as

htrðθ15; αÞ ¼ hðθÞ; ð58Þ

where θ15 is the parameter vector excluding the acceler-
ation parameter α, and we define the approximate wave-
form as

hapðθ15Þ ¼ hðθ15; α ¼ 0Þ: ð59Þ

We then compute the 15-dimensional Fisher matrix Γð15Þ
using the approximate waveform hap:

Γð15Þ
ij ¼

�∂hap
∂θi15

���� ∂hap∂θj15

�
; ð60Þ

and its inverse Σ15 ¼ ½Γð15Þ�−1.
We then get an estimate of the bias that we would get in

the estimation of the binary parameters by ignoring the
acceleration effects as

Δthθ
i
15 ¼ Σij

15

�∂hapðθ15Þ
∂θj15

����htrðθ15; αÞ − hapðθ15Þ
�
: ð61Þ

This method is valid in the high SNR limit (see [48] for a
detailed discussion), but provides an efficient way of
estimating the biases caused by a mismodeling of the
intrinsic acceleration. Note that this method is accurate only
if the biases induced by the mismodeling remain suffi-
ciently small [51].

D. LISA mission simulations

For each of our 240 catalogues, we simulate two
realizations of the LISA mission differing in the mission
duration, that we take to be four years and ten years,
respectively. In each of these simulations, we compute the
SNR for each binary. We separate the binaries into three

distinct categories, depending on the time to merger τc,
defined as the interval of time between the beginning
of LISA observation, denoted by tstartobs , and the time
of coalescence5: τc ≡ tc − tstartobs . Following [71], for
τc < 10 yr, we use an SNR threshold ρthr ¼ 15 for a
LISA-only detection, and we assume an archival search
from a ground-based detection with SNR threshold ρthr ¼
9.5 for a multiband detection; for 10 yr < τc < 100 yr, we
assume a LISA-only detection with ρthr ¼ 15. For
τc > 100 yr, we assume a different search strategy is
employed, leading to ρthr ¼ 10: Mangiagli et al. [72] found
that a Newtonian phasing will be sufficient for unbiased
parameter estimation if τc > 100 yr. We use this as
evidence that those systems will be morphologically similar
to galactic white dwarf binaries, for which searches have
been implemented [73,74] and found a SNR threshold of
ρthr ∼ 10. Note that all of these studies neglected accel-
eration effects. However, in a realistic scenario, nonaccel-
erating waveforms would be used for detection and
accelerating waveforms would then be used for parameter
estimation. Therefore, this justifies using these studies to
infer an SNR detection threshold also in the accelerat-
ing case.
For the binaries with SNR above the detection threshold,

we compute the expected statistical errors Δθi on the 16
parameters, as well as the expected measurement bias
Δthθ

i
15 on the 15 binary parameters excluding the accel-

eration effect. For the binaries that merge within 10 years
since LISA starts taking data, we also simulate a coincident
ground-based detection. We do so by removing the entry in
the Fisher matrix corresponding to the time of coalescence
parameter, which we assume to be measured exactly by
ground-based observations, thus reducing the dimension-
ality of the Fisher matrix Γ. We therefore implicitly assume
that binaries with ρ > 9.5 in LISA are certainly detected by
whatever detectors are present on Earth if they merge in a
time span of ten years since the beginning of the LISA
mission.

IV. RESULTS

In this section we present the results of the analysis
described above. We first study for how many events the
acceleration effect is detectable, and then we investigate the
binary parameter space to identify regions where the effect
is most likely observable. Finally we discuss whether the
acceleration effect biases the measured value of the binary
parameters.

A. Number of detections

The main question that we want to address here is the
following: given the astrophysical BHB populations that

5Note that with respect to the notation in Sec. II here and in
what follows we are using τc ¼ τstartobs to simplify the notation.
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we produced following the method described in Sec. III, for
how many events will the acceleration effect be measur-
able? To answer this question we investigate the events for
which the relative uncertainty on α, defined byΔα=αwhere
Δα is obtained through Eq. (57), lies below 100%. Note
that as mentioned after Eq. (40) the estimated relative error
on α can roughly be regarded as the relative error on ϵ,
especially when the peculiar acceleration is high so
that Δα=α < 1.
For the acceleration scenarios 0 to 3 we find no events for

which Δα=α < 1, irrespectively of the details of the
astrophysical population (Salpeter or LogFlat) or of the
LISA mission duration. This implies that the acceleration
effect will not be detectable by LISA for moderate peculiar
accelerations (ϵ≲ 103). This result is in agreement with
previous studies [35,44], and it is here confirmed using
realistic simulations of the astrophysical population of
stellar-origin BHBs, over which we have imposed a
distribution of moderate peculiar accelerations. Another
immediate consequence of this result is the confirmation
that LISAwill not be able to measure directly the expansion
of the Universe. This can be inferred because the effect is
unobservable in scenario 0, where peculiar accelerations
are set to zero and consequently only the cosmological
acceleration is left, cf. Eqs. (39) and (20). This is an
expected result: Ref. [46] demonstrated that only more
advanced space-born GW detectors such as BBO or
DECIGO might be able to directly observe the cosmic
expansion through its effect on the gravitational waveform.
In the remaining two scenarios, namely 4 and 5, where

the acceleration vector has a typical magnitude correspond-
ing to ϵ ¼ 104 and ϵ ¼ 105, respectively, we find that the
acceleration effect might be detected for some events. From
Eq. (34) we see that these two scenarios correspond to
a mean acceleration of, respectively, 10−7 m=s2 and
10−6 m=s2, which can typically happen if the binaries
form in dense astrophysical environments, for example in
nuclear star clusters or AGN disks. In the particular case of
a binary system orbiting circularly around a massive central
BH with mass MBH at distance r, ϵ can be rewritten as

ϵ ¼ 4.3 × 10−9
MBH

M⊙

�
1 kpc
r

�
2

: ð62Þ

In this case, ϵ ¼ 104 would correspond for example to a
binary system orbiting at 66 pc of a BH of mass MBH ¼
1010 M⊙ (whose Schwarzschild radius is rs¼9.4×10−4 pc).
In Table I we report the total number of LISA detections

together with the number of events for which the estimated
error on α is measured with a relative uncertainty below
100%, 50%, 30%, and 10%. Results are shown for both a
4-year and a 10-year LISA mission and for both BH
populations: LogFlat (upper numbers in each line) and
Salpeter (lower numbers in each line). We report detections
by LISA only and for multiband events detected first by

LISA and then by ground-based detectors such as LIGO
and Virgo. For the latter class of detections, we select
events with a time to coalescence (measured from the start
of the LISA mission) below 10 years. The detection by
ground-based interferometers is accounted for by fixing the
value of the coalescence time tc to its true value, and it is
practically implemented by eliminating the row and column
corresponding to the parameter tc in the Fisher matrix.
From Table I it is clear that even for scenarios 4 and 5

the acceleration effect will not be measurable if we assume
that the LISA mission will last 4 years. Only very rare
events will have a peculiar acceleration strong enough to be
barely detectable, implying that no definitive conclusions
on the astrophysical processes of BHB formations will be
extracted. The same conclusions can be drawn for the
scenario 4 with a 10-year LISA mission, where the effect
can be measured for few events only if a coincident
detection with ground-based interferometers is made.
Scenario 4 yields thus results similar to scenarios 0 to 3
where the number of events for which the acceleration
effect is measurable is too low to extract any useful
information on the BHB population.
The situation is different for scenario 5 if a 10-year LISA

mission is considered. According to Table I LISA will be
able to measure (with Δα=α < 1) the acceleration effect in
about 17% of the total detected events, and for more than
about 4% of them (roughly ∼10 events) the peculiar
acceleration will be determined with a relative precision
better than 30%. These results drastically improve for
multiband coincident detections: more than 40% of these
events will present measurable peculiar accelerations, with
about 16% and 3% of them presenting precisions better
than 30% and 10%, respectively. Moreover, these percent-
ages are independent of the BH population considered,
since they roughly hold for both the Salpeter and LogFlat
mass functions. Table I shows, however, that different
choices for the BHB population model do influence the
total number of events for which the acceleration is detect-
able, since the LogFlat mass function provides systemati-
cally higher event numbers, due to LISA being more
sensitive to higher mass systems [30]. Note that the total
number of detections quoted here is higher than estimated in
some other works (e.g., [71]). This is due to our choice of a
higher mass limit of 100 M⊙ instead of 50 M⊙.
These results show that a BHB population with high

enough peculiar accelerations will imprint a distinguishable
signature on the events detected by LISA only if the
mission will reach its maximum possible duration. Such
a population would be well representative of a character-
istic BH formation channel where binaries are created in
AGN disks close to the galactic center [44]. The results
reported here thus support the science case for a LISA
mission duration longer than the nominal 4-year period
currently planned [22]. If LISA observes GWs somewhat
continuously for almost 10 years, then we will have the
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chance to gather useful information on possible formation
channels of BHBs as well as their distance from the center
of the hosting galaxy (for BHBs orbiting a galaxy the
peculiar acceleration is expected to be roughly proportional
to the inverse of the distance from the galactic center,
assuming simple circular motion).

B. Effect across the parameter space

The magnitude of the acceleration effect on the gravi-
tational waveform depends on the BHB parameters: there
are regions in the binary parameter space where the
acceleration effect is stronger, and thus more likely to be

detected. For example, from Eq. (38) one can roughly infer
that, for the same value of α, the product Mzω should be
maximized (cf. Fig. 1). The question we want to address in
this section is the following: for which values of the BHB
parameters can we expect to measure the acceleration
effect? In order to answer this question we focus on the
only scenario where a sufficiently large number of detec-
tions is expected, which, according to Sec. IVA, corre-
sponds to scenario 5 with a LISA mission of 10 years.
However, irrespective of the LISA mission duration or the
BH formation scenario, this analysis allows us to select, in a
set of measured events, those for which it would be more
plausible to detect the center of mass acceleration.

c=10y

c=4y

Salpeter
10 years
LISA only

0.005 0.010 0.015 0.020
0

20

40

60

80

100

120

140

fmin [Hz]

z
[M

]

1 50 100

0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
de

te
ct

in
g

pe
cu

lia
r

ac
ce

le
ra

tio
n

c=10y

c=4y

Salpeter
10 years

LISA + Earth

0.005 0.010 0.015 0.020
0

20

40

60

80

100

120

140

fmin [Hz]

z
[M

]

1 50 100

0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
de

te
ct

in
g

pe
cu

lia
r

ac
ce

le
ra

tio
n

c=10y

c=4y

LogFlat
10 years
LISA only

0.005 0.010 0.015 0.020
0

20

40

60

80

100

120

140

fmin [Hz]

z
[M

]

1 50 100

0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
de

te
ct

in
g

pe
cu

lia
r

ac
ce

le
ra

tio
n

c=10y

c=4y

LogFlat
10 years

LISA + Earth

0.005 0.010 0.015 0.020
0

20

40

60

80

100

120

140

fmin [Hz]

z
[M

]

1 50 100

0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
de

te
ct

in
g

pe
cu

lia
r

ac
ce

le
ra

tio
n

FIG. 1. Probability of detecting the acceleration effect (i.e., the ratio among the number of events with Δα=α < 1 and the total number
of detected events) in the ðfmin;MzÞ-parameter space, where fmin is the initial frequency andMz the redshifted chirp mass of the BHBs.
The size of each bubble corresponds to the total number of events in the respective 2D bin of 1 mHz times 5 M⊙ for which the peculiar
acceleration effects are detected. We have chosen 10 years of LISA mission duration and selected the acceleration scenario 5. Binaries at
the left of the solid-red curve merge in more than 10 years (from the start of LISA observations) and are therefore excluded in the joint
LISA + Earth-based detections.
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We focus our analysis on two parameters in particular:
Mz ¼ Mzν

3=5 (the redshifted chirp mass), and fmin (the
GW frequency at the initial time of LISA observations). All
other physically interesting parameters follow distributions
roughly correlated with the SNR: the acceleration effect is
better measured at lower distances, for symmetric mass
ratios close to ν ¼ 1=4 and for higher values of α. In Fig. 1
we show the probability of measuring the acceleration
effect in the ðfmin;MzÞ-parameter space, where for each
2D bin of 1 mHz times 5 M⊙ this probability is defined as
the ratio between the number of events for which the
relative 1σ error on α is below 100% and the total number
of detections in that bin. In order to provide additional
information on how confident the statistics of each 2D bin
are, bins are represented as spherical bubbles whose sizes
are proportional to the number of events for which the
peculiar acceleration is detected. Clearly, bins with a higher
number of events are statistically more reliable. We report
results for both mass functions (Salpeter and LogFlat) and
with both LISA-only detections and multiband detections
involving ground-based observations. In each panel we also
plot the lines to the right of which binaries will merge in
less than 10 or 4 years after LISA starts taking data.
It is evident from Fig. 1 that the acceleration effect is

measurable preferably for binaries with τc ≲ 10 years.
Note that multiband events are limited by the condition
τc < 10 years, so no events appear below the solid red line
in the right panels of Fig. 1. We therefore find that optimal
detection is obtained for times to coalescence close to the
mission duration. This confirms what was obtained by
previous studies (cf. Fig. 3 of [44]), which, however, did
not consider simulations of realistic astrophysical BHB
populations. This result can be understood by two balanc-
ing effects: on the one hand, the parameters of the binaries
can be better measured when we are observing close to
coalescence (very far from coalescence the waveform
evolves indeed very slowly inducing strong degeneracies
between the parameters of our waveform model). On the
other hand, the dephasing generated by the binaries’
acceleration accumulates over the time of observation,
and therefore the longer we observe, the better α can be
determined. The optimal situation to detect the acceleration
effect is to observe almost up to coalescence.
We also plot on Fig. 1 the curve τc ¼ 4 years (dashed-

red), corresponding to binaries which coalesce 4 years after
the beginning of observation. This curve roughly marks the
upper edge of the parameter space region for which the
acceleration becomes measurable for a consistent number
of events with a LISA mission lasting 10 years. This
explains why, with a 4-year mission, the acceleration effect
is not detectable for many events: we need to observe a
binary for more than 4 years before coalescence in order to
reach a non-negligible detection probability. This plot also
suggests that increasing the duration of the mission slightly
above 4 years would already allow us to detect the
acceleration effect with a 20–30 percent probability.

The results we obtain here, shown in Fig. 1, are coherent
with what was found in [44], despite the differences
between the two analyses: in [44] there was no simulated
binary population, and the mass ratio and the redshift were
fixed; furthermore both the waveforms and the LISA
mission characteristics were different. The upper limit
around redshifted chirp masses of 120 M⊙ and the lower
limit aroundMz ≃ 10–20 M⊙ are both defined by the lack
of BHBs with higher and lower masses, respectively, in our
population of events detected by LISA (the maximum chirp
mass for our population is 87 M⊙ in the source frame and
∼130 M⊙ in the detector frame). It appears from our
analysis that the peculiar acceleration is comparatively
easier to measure for low mass binaries, in particular for
LISA alone. We also observe that accounting for multiband
observations substantially improves the detection proba-
bility. Note however that, due to the low number of events
detected by LISA in a single mission lifetime in the region
Mz ≃ 20–40 M⊙, fmin ≳ 12 mHz, more statistics (i.e.,
more simulated populations of BHBs) would be required
in order to better characterize this region. Nevertheless, our
results indicate that, when the real data is available, it will
be worthwhile to check for the presence of peculiar
acceleration in events having binary parameters close to
the above mentioned region, as they are more likely to be
affected by the acceleration effect.

C. Biases

We finally investigate the bias induced by the acceler-
ation effect in case it is neglected in the parameter
estimation analysis. The questions we want to address
here are the following: how many events will be biased by
the acceleration effect if its contribution to the GW wave-
form is ignored? Which waveform parameters will be
biased the most and for which values? To address these
questions we estimate the bias on each waveform parameter
of each event using the bias estimator discussed in Sec. III,
namely Eq. (61). We analyze the results derived with LISA
in this section and we do not consider coincident detections
with Earth-based interferometers. We are in fact interested
in understanding how LISA parameter estimation might be
biased by the peculiar acceleration effect and how this
might affect the expected coincident detection with ground-
based instruments (e.g., with regards to the expected time
of coalescence or sky position).
In Table II we report the percentage of biased events for

the scenarios with nonzero peculiar acceleration. We
average over the 20 realizations we have constructed,
considering LISA mission durations of 4 and 10 years,
the acceleration scenarios 1 to 5, and both BH mass
functions: LogFlat (upper numbers) and Salpeter (lower
numbers in each line). For each waveform parameter an
event is considered biased if the corresponding bias is
greater than the statistical 1σ error derived from the Fisher
analysis without the acceleration effect, i.e., if the bias
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Δthθ
i
15 is larger than the error bar Δθi15 (see Sec. III C). The

percentage of biased events at the bottom of Table II is
defined as the number of events for which at least one
parameter is biased over the total number of events.
From Table II we first notice that for each parameter the

fraction of biased events is roughly the same for both BH
populations (the Salpeter mass function systematically
provides slightly lower percentages). This implies that
the bias results of our analysis are roughly independent
of the details of the underlying BHB astrophysical pop-
ulation. We recall though that the number of detections for

the LogFlat mass function is higher than the Salpeter case
(cf. Table I), meaning that in the latter case wewould expect
a lower absolute number of biased events.
From the last row of Table II it is furthermore clear that

few if any events will be biased in acceleration scenario 1,
irrespectively of the BH mass function (Salpeter or
LogFlat) and of the LISA mission duration. The situation
changes for acceleration scenarios with higher peculiar
accelerations. For the acceleration scenario 2, we find that
∼14% of events will be biased if the LISA mission
lasts 10 years, and a negligible amount if it lasts 4 years.

TABLE II. Percentage probability of being biased for each waveform parameter. This probability is defined as the
fraction of events for which the bias on a given parameter is larger than the statistical 1σ error on that parameter, with
respect to the total number of events. Upper numbers correspond to the LogFlat mass function and lower numbers to
the Salpeter one. M1 and M2 represent the individual masses, θN and ϕN the spherical angles of the line-of-sight
vector, dL the luminosity distance, θL and ϕL the spherical angles of the orbital angular momentum, tc the
coalescence time, ϕc the coalescence orbital phase, θ1 and ϕ1 the spherical angles of the initial spin of the body of
massM1, χ1 its dimensionless magnitude, and θ2, ϕ2, and χ2 the corresponding parameters for the spin of the body
of mass M2. All vector angles are defined in an inertial frame tied to the ecliptic. The last line corresponds to the
percentage of systems for which at least one of the parameters is biased.

4-year LISA 10-year LISA

Acceleration scenario Acceleration scenario

Waveform parameter 1 2 3 4 5 1 2 3 4 5

M1 0. 0.1 4.1 11.6 25.7 0.6 2.9 12.3 30.4 41.2
0. 0. 4.1 9.6 21 0.5 2.3 12.8 30.3 38.7

M2 0. 0.1 2.9 10.1 24.6 0.2 2. 10.5 30.3 41.3
0. 0. 2.7 8.7 19.4 0.2 1.4 11. 30. 39.1

cosðθNÞ 0. 0. 0. 1.1 10 0. 0. 1. 11.6 23.7
0. 0. 0. 1.2 10.7 0. 0. 1.1 11.7 23.4

ϕN 0. 0. 0. 0.3 10 0. 0. 0.4 11.7 29.8
0. 0. 0. 0.4 10.4 0. 0. 0.2 10.4 30.

dL 0. 0. 0.2 5.5 54.7 0. 0. 4.7 46.5 91.4
0. 0. 0.1 4.4 48.4 0. 0. 4.5 43.5 90.3

cosðθLÞ 0. 0. 0.3 6.4 34.8 0. 0.3 6.2 34.4 63.2
0. 0. 0.5 4.4 32.9 0. 0.3 5.7 32. 61.5

ϕL 0. 0. 1. 7.7 38.4 0.1 0.8 8.4 36. 65
0. 0. 1.1 6.3 33.9 0.1 0.9 7.4 35.4 64.6

tc 0. 1.4 11.1 20.4 32.1 0.1 3.1 16.5 31. 37
0. 0.9 12.2 21.1 29.2 0.2 2.5 16.1 31.1 37

ϕc 0. 1.2 9.2 20.2 33.1 0.1 2.4 14.7 30.4 39.9
0. 0.9 10.6 20.9 30.4 0.1 2.1 14.9 31.3 38.2

cosðθ1Þ 0.1 0.6 1. 5.9 17.5 1.2 3.3 9.8 23.7 35.9
0. 0.3 1.2 3.6 14.3 1.1 3.4 8.8 22.5 35.7

ϕ1 0. 0. 0.4 3.2 17.3 0.1 0.5 5.2 21.5 36.3
0. 0. 0.1 2.3 12.8 0. 0.6 3.8 19.9 34.1

χ1 0. 0. 0.1 0.9 15.6 0. 0.1 1.8 17.6 36.8
0. 0. 0. 0.7 13.9 0. 0.1 1.6 17.5 37.3

cosðθ2Þ 0. 1. 2.5 6.8 18.8 1.6 5.9 13.3 26. 36.2
0. 0.6 2.2 4.4 17.3 1.5 5.1 11.7 23.7 36

ϕ2 0. 0.1 1.1 4. 17.2 0.4 1.5 7.1 21.6 33.9
0. 0.2 1. 3.1 15.3 0.3 1.7 6.3 21.3 33.5

χ2 0. 0. 0. 1.3 12.8 0. 0.1 2. 18. 34.4
0. 0. 0.1 1.5 13.1 0. 0.1 1.9 17.2 34.7

any 0.1 3.4 16.8 38.2 76.9 3.9 14.5 42.6 77.8 96.9
0. 2. 17.8 35.7 76.2 3.6 13.7 41. 76.7 96.2
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For acceleration scenario 3 we find that ∼40% of the events
are biased if the LISA mission lasts 10 years, and about
16% if it lasts 4 years. For acceleration scenarios 4 and 5,
most events will be biased if the mission lasts 10 years, up
to ∼96% for scenario 5.
From Table I we learned that a non-negligible fraction of

events of scenario 5 with a 10-year LISA presents meas-
urable peculiar acceleration. Therefore, finding many
biased events in this case is expected. The acceleration
effect will be measurable for some of the biased events,
meaning that, for these, the bias on the waveform param-
eters may be corrected using the right, accelerated wave-
form. Somehow more surprising is the large number of
biased events obtained in scenarios with smaller acceler-
ation. According to Table I, only very few events have
measurable peculiar acceleration in these cases, while here
we find that a significant fraction of events (reaching ∼75%
for acceleration scenario 5 and a 4-year mission, and
scenario 4 and a 10-year mission), at least one of the
waveform parameters is biased. One possible explanation is
that the parameter α is degenerate with the other param-
eters. In this case, α is not large enough to break this
degeneracy and allow for a detection of the effect.
However, when α is not included in the modeling of the
signal, the effect is reabsorbed into a shift in the other
parameters, particularly the ones that are degenerated with
α. As a consequence, in this scenario the acceleration effect
is not detectable, but the bias induced on the other
parameters can be important.
It is particularly important to remark that the parameter

estimation of BHBs formed in AGN disks (acceleration
scenario 5) might be biased by the peculiar acceleration
effect even for the LISA nominal mission duration of
4 years. Note that in this case, adding α to the modeling of
the signal would remove the bias on the other parameters.
This is the case even for the events for which α is not
measurable, at the expense of increasing the other param-
eters’ errors.
We can now look at which waveform parameters are

more biased on average. From Table II it appears that the
parameter which is biased in the highest percentage of
cases is the luminosity distance dL. We point out that this

result is particularly important for LISA applications of
stellar-mass BHBs as standard sirens [31,52], since a
possible systematic error on dL will negatively affect the
accuracy with which cosmological parameters can be
measured. In fact since at low redshift

dLðzcÞ ≃
c
H0

zc; ð63Þ

a bias of 1σ on dL directly translates into a bias of 1σ on the
Hubble parameter H0. In Table III, we show the percentage
of events for which the bias on the luminosity distance is
larger than the 1, 2, and 3σ error on dL, respectively. We see
that more than ∼30% of events will present a bias bigger
than 3σ in the acceleration scenario 5 for 4 years of LISA
observations. Similarly, in the acceleration scenario 4 for
10 years of LISA observations we find that this number is
∼25%. This implies that in these scenarios any measure-
ment of H0 can be strongly affected by the acceleration
effect, introducing a systematic error in low-redshift cos-
mological measurement with LISA. The situation is even
worse in the acceleration scenario 5 for 10 years of LISA
measurement, where up to ∼80% of events will present a
bias in dL higher than its 3σ error. The solution to avoid this
bias is then to introduce the acceleration effect in the
modeling of the waveform. Even if the acceleration
parameter α is not large enough to be detected, by adding
its effect to the waveform we ensure that the other
parameters, including the luminosity distance, are not
biased. This of course comes at the cost of widening the
error bars, especially if α is degenerated with other
parameters. Fortunately the sky localization of the source,
represented by the angles θN and ϕN , seems not to be
substantially biased, except in the most extreme case (10-
year mission with acceleration scenario 5), where we
expect to detect the acceleration effect for a large number
of events (cf. Table I). This is good news not only for
standard sirens,6 but also for multiband and multimessenger

TABLE III. Percentage of events for which the bias on the luminosity distance dL is bigger than its corresponding
1σ, 2σ, and 3σ uncertainties. Upper numbers are for LogFlat and lower numbers are for Salpeter mass function.

4-year LISA 10-year LISA

Acceleration scenario Acceleration scenario

Bias on dL 1 2 3 4 5 1 2 3 4 5

>1σ 0. 0. 0.2 5.5 54.7 0 0 4.6 46.1 90.8
0. 0. 0.1 4.4 48.4 0 0 4.2 44.9 90

>2σ 0. 0. 0. 2.7 41.6 0 0 2.1 34.9 86.3
0. 0. 0. 2.3 36.1 0 0 2.2 33.3 85.4

>3σ 0. 0. 0. 1.5 31.6 0 0 1.2 27.4 81.6
0. 0. 0. 1.5 27.4 0 0 1.3 26.2 80.8

6A good sky localization is required to apply the so-called
“statistical” method for standard sirens, where the sky position of
GW sources is cross-correlated with galaxy catalogues [75–77].
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detections (although counterparts are not really expected
for BHB).
Similarly to what happens for the luminosity distance,

the direction of the orbital angular momentum of the binary,
represented by the angles θL and ϕL, is also biased for a
large fraction of events in the highest acceleration scenar-
ios. On the other hand, the bias on the time of coalescence
tc and the phase at coalescence ϕc appears at substantially
lower values of the peculiar acceleration. Small fractions of
events are biased even for acceleration scenarios 2 and 3.
These two parameters seem therefore to be particularly
sensitive to the acceleration effect, a result to which [35]
already hinted.7 A possible interpretation of this fact is that
tc and ϕc are more degenerate with α than the other binary
parameters.
We can now turn our attention to the parameter space,

and investigate for which values of the binary’s parameter a
high fraction of detected events is biased. We again focus
only on the parametersMz (redshifted chirp mass) and fmin
(initial frequency), to better compare with the analysis of
Sec. IV B. In Fig. 2, we plot the probability of being biased,
defined in each 2D bin as the ratio between the total number
of biased events (those with bias larger than the 1σ error, as
done for Table II) and the total events in the bin, in the
(Mz–fmin)-parameter space. Again, in order to provide
additional information on how confident the statistics of
each 2D bin is, bins are represented as spherical bubbles

whose sizes are proportional to the number of biased
events. Thus, bins with a higher number of events are
statistically more reliable. We only show the result for
acceleration scenario 5, a 4-year LISA, and both Salpeter
and LogFlat mass functions: this represents the most
interesting case for a LISA mission of nominal duration.
Indeed, the same figure in the case of a 10-year LISA
mission is less informative, as the results are biased across
almost all the parameter space (cf. the numbers in Table II).
Figure 2 shows that events with the time to coalescence

close to and lower than the mission duration have higher
probability of being biased. In agreement with the results of
Sec. IV B, for these events we expect relevant systematic
effects induced by the peculiar acceleration. Moreover, as
already hinted by Table II, many events for which the
acceleration effect is not measurable turn out to be biased:
e.g., events with τc larger than the mission lifetime, as
shown in Fig. 2. Of particular interest for multiband
detections are low mass events, as well as events with τc
shorter than the mission duration (events lying above the
red curve in Fig. 2), as they merge at higher frequencies and
in a relatively short time. These events appear to have a
higher probability of being biased.

D. Intermediate mass black holes

We have also checked the detectability of the peculiar
acceleration for intermediate mass BHBs (IMBHBs). By
generalizing the procedure described above, we have
constructed a population of IMBHBs with single BH
masses up to 500 M⊙. Since the rates of IMBHBs are
presently unknown and poorly constrained, we have not
used the normalization of such a population for our
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FIG. 2. Probability of being biased by the acceleration effect in the ðfmin;MzÞ-parameter space, where fmin is the initial frequency and
Mz the redshifted chirp mass of the BHBs. The size of each bubble corresponds to the total number of biased events in the respective 2D
bin of 1 mHz times 5 M⊙. We have chosen 4 years of LISA mission duration, and selected the acceleration scenario 5. Binaries at the left
of the dashed-red curve merge in more than 4 years.

7Note, however, that the analysis of [35] concentrated on very
low-mass binaries, and on the probability of recovering tc in less
than one minute. Since low-mass binaries are extremely far from
coalescence, big absolute errors on tc are not at all surprising.
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analysis, and we have abstained from making any pre-
diction regarding the number of detections that LISA could
attain. The main finding of this analysis is that, in analogy
with stellar-origin BHBs, IMBHBs whose time to coales-
cence at the beginning of observations matches the mission
duration present a higher probability of yielding a meas-
urable peculiar acceleration effect. Although the merger
rate of an intermediate mass population of BHBs is
completely unknown, it is interesting to note that they
might actually be efficiently created in AGN disks
[39,78,79], namely, our scenario 5. The astrophysical
models leading to IMBHBs in AGN disks may thus be
efficiently tested by LISA, which will certainly detect these
systems and measure their peculiar acceleration if the
mission lifetime will be extended over its nominal 4-year
duration.

V. DISCUSSION AND CONCLUSION

The present work has been dedicated to assessing the
potential of LISA to detect the peculiar acceleration of
stellar-origin BHBs. Based on the idea that the peculiar
acceleration of a binary alters its gravitational waveform
[35], we investigated how well it can be measured, using
simulated BHB populations.
Our results confirm that the BHBs which are more likely

to present a measurable peculiar acceleration are those that
will merge close to the end of the mission [44]. The reason
for this is twofold: on the one hand, the dephasing due to
the peculiar acceleration accumulates with the time of
observation; on the other hand, the uncertainty on the other
waveform parameters decreases when observed close to
coalescence, as many degeneracies in the phase are broken
by the fast frequency evolution of the waveform.
The systems for which a peculiar acceleration can be

measured are usually those with high SNR (recall that
SNR ∝ f2=3). The Fisher matrix approach employed here is
expected to provide a sufficiently good approximation for
the true posteriors of high SNR binaries. Therefore, the
BBHs for which the peculiar acceleration is measurable
should be well described by our analysis. Moreover, a full
Bayesian estimation for similar systems detectable by
LISA, namely inspiraling binaries moving around a third
body, has already been performed in the literature [63],
showing that the Fisher matrix approach provides a
reasonable approximation.
We find that with the nominal LISA mission lifetime

(4 years), no significant measurement is possible, irrespec-
tive of the magnitude of the peculiar acceleration consid-
ered (within plausible scenarios). On the other hand, we
show that a LISA mission lasting 10 years will be able to
detect the peculiar acceleration of a relevant fraction of
binaries, if these form in dense astrophysical environments,
for example in nuclear star clusters or AGN disks, where
peculiar accelerations might reach values of ∼10−6 m=s2

[corresponding to ϵ ∼ 105; cf. Eq. (34)]. Our results also

suggest that increasing the mission duration to little over
4 years might already be enough to discriminate between
different BHB formation channels, shedding new light on
the processes at work when BHBs are created.
The peculiar acceleration effect investigated here will

moreover be complementary to other effects expected from
stellar BHBs in close orbit around a massive BH, in
particular large eccentricities up to merger due to
Eccentric Kozai-Lidov evolution [80]. In fact, LISA could
detect eccentric stellar-mass BBHs if they interact with
other close-by massive bodies [21,81], as could be the case
for example if they undergo dynamical interactions in
dense stellar clusters [36,82] or experience strong inter-
actions with an AGN accretion disk [39–41]. On the other
hand, stellar-mass BBHs are not expected to present large
eccentricities if they form via isolated binaries [69]. The
possible detection of large eccentricities has been in fact
proposed as a way to distinguish BHB formation channels
[20,83]. A LISA joint detection of systems with observable
peculiar accelerations and large eccentricities would con-
stitute a strong evidence for BHBs forming in AGN disks or
globular clusters. Note that as long as the peculiar accel-
eration is assumed to be constant over the duration of the
LISA mission and sufficiently weak to not influence the
BHB internal dynamics, the results presented here are
expected to hold even in the presence of non-negligible
eccentricity, as the motion of the center of mass of the BHB
system can be decoupled from the intrinsic evolution.
Low mass binaries with a relatively short time to

coalescence (we put a cutoff of 10 years from the start
of LISA observation) can also be detected by Earth-based
GW detectors at merger. We therefore also investigated
how the acceleration effect may be measured in the case of
joint LISA/Earth-based detection. We find that the number
of events for which the effect becomes observable
increases, reaching about 40% of all detected events in
the highest acceleration case. As expected, the average
uncertainty on the peculiar acceleration also improves for
these joint observations, suggesting that the measurement
of peculiar accelerations may constitute an interesting
science case for multiband searches between LISA and
Earth-based interferometers such as LIGO and Virgo.
For our analyses we assumed a LISA noise sensitivity

curve as given in [22]. The high frequency part of this curve
is based on a single link optical measurement system
(OMS) noise of 10 pm=

ffiffiffiffiffiffi
Hz

p
. Note that in the LISA

Science Requirements Document [84] a margin has been
inserted on this noise contribution, increasing it up to
15 pm=

ffiffiffiffiffiffi
Hz

p
. Since our results are based on LISA observa-

tions at the high end frequencies of its sensitivity curve, the
possible loss of sensitivity induced by this margin would
affect them. As a rough estimate we are expecting the
sensitivity to worsen by a factor of 1.5, and thus SNRs
and measurement errors to degrade by the same factor. This
would entail the loss of about 30% (50%) of the stellar-mass
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BHBs detections, and about 55% (22%) of the events with
acceleration measurements with error less than 100%,
for LISA-only (coincident) detections. Nevertheless, the
number of events with acceleration measured to better than
10% in coincident LISA-ground based detections remains
unchanged (such events are characterized by high SNR, thus
the loss in sensitivity is less severe on their measurement).
We also studied whether the waveform parameters would

be biased if the acceleration effect is ignored in the data
analysis procedure. We computed a simple estimate of the
bias on each waveform parameter, and studied how many
events would experience a non-negligible bias. Our results
clearly show that binaries possessing rather large peculiar
accelerations (scenarios 3 to 5) will be biased even for a
LISA mission duration of 4 years. We also found that
binaries with a time to coalescence similar to the LISA
mission lifetime will have a higher probability of being
biased. The bias therefore follows the same parameter
dependence of the measurement of the acceleration effect,
but many events for which the peculiar acceleration would
not be measurable are instead biased. This suggests caution
when performing data analysis in the parameter space of
stellar-mass BHB systems coalescing close to the LISA
lifetime, since for these systems, ignoring the peculiar
acceleration could lead to wrong estimates of the BHB
physical parameters.
Furthermore, we have found that the parameter most

often biased is the luminosity distance of the system, which
is a fundamental quantity for cosmological applications of
GW observations, in particular standard siren analyses. If
the peculiar acceleration is not correctly taken into account,
large systematics could affect the estimates of the cosmo-
logical parameters, e.g., H0, derived from LISA stellar-
origin BHBs. The time to coalescence can also be biased:
this occurs for a smaller fraction of events than the
luminosity distance, but for lower values of the peculiar
acceleration, suggesting caution also when estimating the
statistical error on this parameter without inserting the
acceleration in the waveform. If present, such a bias might
affect multimessenger and multiband searches which rely
on an accurate estimation of the merger time of BHBs.
Finally, it is also interesting to note that the peculiar

acceleration effect induces a perturbation on the phase of
the gravitational waveform which has the same −4PN
dependence in frequency of the effect given by a possible
running of the gravitational constant [85]. In particular, if
we compare the effect on the waveform phase given by _G
(namely the time variation of the gravitational constant G)
as computed in [85], with the acceleration parameter α
given in Eq. (39), we find

_G ¼ −
2αν

Mz
¼ −2GYc: ð64Þ

This result implies that studies of the running of the
gravitational constant with GWs, and in particular with

stellar-mass BHBs, might be strongly affected by the
possible presence of large peculiar accelerations. The
investigation of these issues is left for future works.
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APPENDIX A: DERIVATION OF THE
ACCELERATION EFFECT IN THE
GRAVITATIONAL WAVEFORM

In this Appendix we show in detail how the gravitational
waveform produced by a binary inspiral is perturbed by the
acceleration of the c.m. of the binary system. We reproduce
the results of [35] but correct a sign mistake in the wave
phase and add a contribution in the wave amplitude.

1. Derivation of the redshift perturbation

We first derive the time dependence of the redshift for a
GW source, expanding over suitable small quantities.
We start from the general definition of the redshift as
measured by a cosmological observer in an Friedmann-
Robertson-Walker (FRW) universe (see e.g., [55])

1þ z ¼ aðtobsÞ
aðtsrcÞ

�
1þ vksrcðtsrcÞ

c
−
vkobsðtobsÞ

c

�
; ðA1Þ

where vksrc ¼ n · vsrc and vkobs ¼ n · vobs are the peculiar
velocities of the source and the observer (i.e., the velocity
that the objects have with respect to the Hubble flow),
respectively, along the line of sight (identified with the unit
vector n), aðtÞ is the scale factor, and we explicitly write all
dependences on the source local time tsrc and the observer
local time tobs. Here we ignore the contributions from
gravitational redshift and integrated Sachs Wolfe since, as

shown in [35], they are subdominant.We consider vksrc=c≪1

and vkobs=c ≪ 1 as the nonrelativistic astrophysical peculiar
velocities of the source and the observer. Following [35]
we want to expand the time dependent quantities in the r.h.s.

PECULIAR ACCELERATION OF STELLAR-ORIGIN BLACK … PHYS. REV. D 101, 063002 (2020)

063002-17



of Eq. (A1), which are assumed to be slowly varying in time,
around a fixed chosen time in the source rest frame t�src and its
corresponding time in the observer rest frame t�obs. In other
words tobs ¼ t�obs þ ðtobs − t�obsÞ ¼ t�obs þ δtobs, where the
time interval δtobs is such that the functions in Eq. (A1) vary
slowly during this interval. Similarly, we can expand tsrc

around t�src, using δtsrc ¼ tsrc − t�src as a small time interval. In
what follows, we will expand the time-dependent functions
linearly in δtobs and δtsrc, andkeep only the terms at first order

in vksrc=c and vkobs=c.
Given the assumptions above, Eq. (A1) can be

expanded as

1þ z ≃
�
aðt�obsÞ þ _aðt�obsÞðtobs − t�obsÞ
aðt�srcÞ þ _aðt�srcÞðtsrc − t�srcÞ

��
1þ vksrcðt�srcÞ

c
þ _vksrcðt�srcÞ

c
ðtsrc − t�srcÞ −

vkobsðt�obsÞ
c

−
_vkobsðt�obsÞ

c
ðtobs − t�obsÞ

�

≃
aðt�obsÞ
aðt�srcÞ

½1þHðt�obsÞðtobs − t�obsÞ −Hðt�srcÞðtsrc − t�srcÞ�
�
1þ vksrcðt�srcÞ

c
−
vkobsðt�obsÞ

c

�

×

�
1þ _vksrcðt�srcÞ

c
ðtsrc − t�srcÞ −

_vkobsðt�obsÞ
c

ðtobs − t�obsÞ
�
: ðA2Þ

At zeroth order in the time evolution this expression
reads

1þ z≃
aðt�obsÞ
aðt�srcÞ

�
1þvksrcðt�srcÞ

c
−
vkobsðt�obsÞ

c

�
≡1þ z�; ðA3Þ

where we define z� ¼ zðt�obs; t�srcÞ as the redshift at the time
t�. Note that z� contains both the background expansion
and the Doppler contribution. We can use this relation at the
lowest order to express ðtsrc − t�srcÞ in terms of ðtobs − t�obsÞ:

tsrc − t�src ≃
tobs − t�obs
1þ z�

: ðA4Þ

Inserting this into Eq. (A2) we find

1þ z ¼ ð1þ z�Þ½1þ 2Yðz�Þðtobs − t�obsÞ�; ðA5Þ

where we have defined

Yðz�Þ≡1

2

�
Hðt�obsÞ−

Hðt�srcÞ
1þz�

þ _vksrcðt�srcÞ
cð1þz�Þ

−
_vkobsðt�obsÞ

c

�
: ðA6Þ

We want to rewrite tobs − t�obs in terms of the time to
coalescence τobs ¼ tc − tobs, where tc is the time at coa-
lescence. By noticing that

tobs − t�obs ¼ tobs − tc þ tc − t�obs ¼ −τobs þ τ�obs; ðA7Þ

we obtain

1þ z ¼ ð1þ z�Þ½1 − 2Yðz�Þðτobs − τ�obsÞ�: ðA8Þ

For binaries that are observed close to the coalescence time
tc, a convenient choice is to take t�obs ¼ tc which yields
τ�obs ¼ 0 and consequently Eq. (19).

Note that another possibility would be to choose t�obs as
the time when LISA starts taking data t�obs ¼ tst. For the
binary systems analyzed in this work, τst ¼ tc − tst is at
most of the order of thousands of years, so that
τstYðzstÞ ≪ 1. At first order we can therefore rewrite
Eq. (A8) as

1þ z ¼ ð1þ zstÞ½1þ 2Ystτst�½1 − 2Ystτobs�: ðA9Þ

Since τstYst is constant and much smaller than one, we can
reabsorb it into zst, i.e., define an effective redshift

1þ z̃st ≡ ð1þ zstÞ½1þ 2Ystτst�; ðA10Þ

and we obtain

1þ z ¼ ð1þ z̃stÞ½1 − 2Ystτobs�: ðA11Þ

Comparing this with Eq. (19) we see that the expressions
are equivalent at lowest order in Yτobs. Indeed the constant
redshift zc and z̃st are not observable, since they are
degenerated with the mass, and therefore the difference
between them does not matter. Furthermore the difference
between Yc and Yst is of second order in the expansion,
since it is due to the evolution of Y between the time when
we start observing and the coalescence time. Therefore, for
the binaries we are interested in, one can equivalently set
t�obs ¼ tst or t�obs ¼ tc.

2. Derivation of the perturbed phase

Now that we know how the redshift changes over the
time of observation of the binary, we want to understand
how this affects the gravitational waveform as measured by
the observer. We start by deriving first the effect in the

NICOLA TAMANINI et al. PHYS. REV. D 101, 063002 (2020)

063002-18



phase and then we will consider how the amplitude
becomes perturbed.
The GW frequency evolution equation at the source is

given by [53,54]

dfsrcðtsrcÞ
dtsrc

¼ 96

5
π8=3

�
GM
c3

�
5=3

fsrcðtsrcÞ11=3; ðA12Þ

where fsrc is the GW frequency emitted by the source and
M is the chirp mass. At the observer both frequencies and
time intervals are redshifted

fsrc ¼ ½1þ zðtobsÞ�fobs and dtsrc ¼
dtobs

1þ zðtobsÞ
; ðA13Þ

where zðtobsÞ is given by Eq. (A8). Substituting these
expressions into Eq. (A12) and defining the new function

gðtobsÞ ¼ ½1þ zðtobsÞ�fobs; ðA14Þ

one finds

dgðtobsÞ
dtobs

¼ 96

5
π8=3

�
GM
c3

�
5=3 gðtobsÞ11=3

1þ zðtobsÞ
: ðA15Þ

Integrating this expression between tobs and tc (time of
coalescence) and using that the frequency diverges at tc, so
that gðtcÞ → ∞, one obtains

gðtobsÞ−8=3 ¼
256

5
π8=3

�
GM
c3

�
5=3 1

1þ z�
× ½τobs þ ððtobs − t�obsÞ2 − ðtc − t�obsÞ2ÞY��:

ðA16Þ

Note that this equation is valid only if the scale factor and
the source peculiar velocity do not vary too much between
tobs and tc. Choosing as before t�obs ¼ tc, we obtain [we use
here the notations of Eq. (19)]

gðtobsÞ−8=3 ¼
256

5
π8=3

�
GM
c3

�
5=3 τobs

1þ zc
½1þ Ycτobs�:

ðA17Þ

Here and in what follows we keep only terms at first order
in Ycτobs ≪ 1. Rewriting everything in terms of fobs yields

fobsðτobsÞ ¼
�

5

256τobs

�
3=8 1

π

�
GMz

c3

�
−5=8

×

�
1þ 13

8
Ycτobs

�
; ðA18Þ

where now Mz ¼ ð1þ zcÞM is the redshifted chirp mass
at the time of coalescence. The GW phase at the observer

Φobs ¼ 2ϕobs, where ϕobs is the orbital phase, is then given
by

ΦobsðtobsÞ ¼ Φc þ 2π

Z
tobs

tc

dt0obsfobsðt0obsÞ

¼ Φc − 2

�
τobsc3

5GMz

�
5=8

�
1þ 5

8
Ycτobs

�
; ðA19Þ

where Φc is the value of the phase at coalescence.
In the Fourier space the phase is given by (see e.g.,

Eq. (4.367) in [54])

ΨðfobsÞ¼ 2πfobs½tc− τobsðfobsÞ�−ΦobsðfobsÞ−
π

4
; ðA20Þ

where τobs and Φobs must be considered as functions of
fobs, which in turn can be found from Eqs. (A18)
and (A19). Inverting Eq. (A18) one finds

τobsðfobsÞ ¼
5

256
π−8=3

�
GMz

c3

�
−5=3

f−8=3obs

×

�
1þ 65

768
π−8=3

�
GMz

c3

�
−5=3

Ycf
−8=3
obs

�
;

ðA21Þ

which inserted into Eq. (A19) yields

ΦobsðfobsÞ ¼ Φc −
1

16

�
πGMz

c3

�
−5=3

f−5=3obs

×

�
1þ 25

384
π−8=3

�
GMz

c3

�
−5=3

Ycf−8=3
�
:

ðA22Þ

Substituting these two results into Eq. (A20) finally
yields

ΨðfobsÞ¼ 2πfobstc−
π

4
−Φcþ

3

128

�
πGMz

c3

�
−5=3

f−5=3obs

þ 25

32768

�
GMz

c3

�
−10=3

π−13=3Ycf
−13=3
obs : ðA23Þ

This equation coincides with Eq. (28) reported in the main
body of the paper (for n ¼ 2). To compare with Eq. (44) of
[35], we need to account for the fact that the redshifted chirp
mass there (denoted byMc) is evaluated at the observer time
tobs∶ McðtobsÞ≡Mzobs ¼ ð1þ zðτobsÞÞM. This introdu-
ces an additional time variation into the phase. Rewriting
Mzobs ¼ ð1 þ zcÞð1 − 2YcτobsÞM ¼ ð1 − 2YcτobsÞMzc ,
Eq. (44) of [35] reduces to Eq. (A23).
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3. Derivation of the perturbed amplitude

The amplitude is defined as the part of the waveform
which does not depend on geometrical factors and is thus
common to both GW polarizations. It is given by (see e.g.,
Eq. (4.29) of [54])

AcðfsrcÞ ¼
4

dCðtsrcÞc4
ðGMÞ5=3ðπfsrcÞ2=3; ðA24Þ

where dC denotes the comoving distance to the binary.
Using Eq. (3), the amplitude can be written as a function of
fobs

AcðfobsÞ ¼
4

dLðtsrcÞc4
ðGMð1þ zÞÞ5=3ðπfobsÞ2=3; ðA25Þ

where dL ¼ ð1þ zÞdC is the luminosity distance of the
binary.
Under the stationary phase approximation the common

amplitude in the Fourier space reads (see e.g., Eq. (4.366)
of [54])

ÃðfobsÞ ¼
1

2
AcðfobsÞ

�
2π

Φ̈ðτobsðfobsÞÞ
�

1=2
; ðA26Þ

where

Φ̈ðτobsÞ ¼
d2

dτ2obs
ΦðτsrcÞ ¼

d2

dt2obs
ΦðtsrcÞ; ðA27Þ

since dτobs ¼ −dtobs. Using Eq. (A19) one finds

Φ̈ðτobsÞ ¼
3

32
53=8

�
GMz

c3

�
−5=8

τ−11=8obs

�
1 −

65

24
Ycτobs

�
;

ðA28Þ

and at first order in Ycτobs we thus obtain

�
2π

Φ̈ðτobsÞ
�

1=2
¼ 8

ffiffiffi
π

pffiffiffi
3

p 5−3=16
�
GMz

c3

�
5=16

τ11=16obs

×

�
1þ 65

48
Ycτobs

�
: ðA29Þ

Using Eq. (A21) we can rewrite this in terms of the
frequency as

�
2π

Φ̈ðτobsðfobsÞÞ
�

1=2
¼ 1

4

ffiffiffi
5

6

r
π−4=3

�
GMz

c3

�
−5=6

f−11=6obs

�
1þ 65

768

�
GMz

c3

�
−5=3

π−8=3Ycf
−8=3
obs

�
: ðA30Þ

To this, we need to add the contribution from the
luminosity distance in Eq. (A25). As shown in [60], the
luminosity distance is affected by matter perturbations. At
high redshift the dominant contribution is the one from
gravitational lensing, whereas at low redshift it is due to the
source peculiar velocity

dLðzÞ ¼ ð1þ zðtsrcÞÞχðtsrcÞ

×
�
1þ

�
1 −

1

χðtsrcÞHðtsrcÞ
�
vksrcðtsrcÞ

−
Z

χðtsrcÞ

0

dχ
ðχðtsrcÞ − χÞ
2χχðtsrcÞ

ΔΩðϕþ ψÞ
�
; ðA31Þ

where χðtsrcÞ ¼ c
R tsrc
0 dt=a denotes the background

comoving distance to the source, ΔΩ is the transverse
Laplacian and ϕ and ψ are the two metric potentials. As
before, we expand quantities at tsrc around the time at
coalescence tc. We neglect in the following the contribu-
tions coming from the background evolution, since they are
strongly subdominant with respect to the source peculiar
acceleration. We neglect also the contribution due to the

evolution of gravitational lensing. This contribution would
indeed be proportional to the time variation of the metric
potentials, _ψ and _ϕ. In a matter dominated universe, the
potentials are constant in time, and these terms are exactly
zero. The presence of a cosmological constant does induce a
timevariation of the potentials, but this timevariation ismuch
smaller than the time variation of the peculiar velocity and
can therefore be safely neglected. We obtain then

dLðzÞ ¼ ð1þ zcÞð1 − 2YcτobsÞχc
×
�
1þ

�
1 −

1

Hcχc

�
½vksðtcÞ þ _vksðtcÞðts − tcÞ�

−
Z

χðtsrcÞ

0

dχ
ðχðtsrcÞ − χÞ
2χχðtsrcÞ

ΔΩðϕþ ψÞ
	

¼ dLðzcÞ
�
1 − 2

�
2 −

1

Hcχc

�
Ycτobs

	
; ðA32Þ

where in the last linewe have neglected terms that are second
order in the perturbations. Including this expression into
(A25) we obtain
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AcðfobsÞ ¼
4

dLðzcÞc4
ðGMzÞ5=3ðπfobsÞ2=3

�
1þ 2

�
1

3
−

1

Hcχc

�
Ycτobs

�
; ðA33Þ

where Mz ¼ ð1þ zcÞM. Using Eq. (A21) and expanding in Ycτobs we obtain

AcðfobsÞ ¼
4

dLðzcÞc4
ðGMzÞ5=3ðπfobsÞ2=3

�
1þ 5

384

�
GMz

c3

�
5=3

�
1 −

3

Hcχc

�
YcðπfobsÞ−8=3

�
: ðA34Þ

Finally substituting Eqs. (A30) and (A34) into Eq. (A26), one finds

ÃðfobsÞ ¼
1

dLðzcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

24π4=3c3

r
ðGMzÞ5=6f−7=6obs

�
1þ 5ðGMz=c3Þ−5=3Yc

128ðπfobsÞ8=3
�
5

2
−

1

Hcχc

��
; ðA35Þ

which agrees with Eq. (33) reported in the main body of the paper (recall that Mz ¼ ν3=5Mz). Note that the acceleration
correction in the amplitude computed here differs from the one reported in [35] which didn’t account for the velocity
contribution in the luminosity distance.
In all the analyses of this paper we took into account this amplitude perturbation by computingHcχc assuming a standard

ΛCDM cosmology.
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