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A NOTE ON THE ASYMPTOTIC VARIANCE OF DRIFT

ACCELERATED DIFFUSIONS

B. FRANKE, C.-R. HWANG, A. OULED SAID, AND H.-M. PAI

Abstract. We prove that the asymptotic variance of a drift accelerated diffusion

converges to zero uniformly if and only if there are no H1-elements in the kernel of

the drift generating operator. Our proof is based on spectral analysis in the first

order Sobolev space of mean zero functions.

Introduction

The asymptotic variance is a natural indicator of the efficiency for a Markov Chain

Monte Carlo algorithm. The main objective of this paper is to study the behavior

of the asymptotic variance for equilibrium preserving perturbations of some reversible

diffusion. The analysis is related to the study of antisymmetric perturbations of self-

adjoint infinitesimal generators. In this context Hwang, Normand and Wu (2015)

obtained some expression for the limit of the asymptotic variance when the amplitude

of the drift grows to infinity (see [7]). It was proved by Constantin et al. (2008) in a

similar context that the operator norm of the associated semigroups converge to zero if

and only if the generator of the drift has no H1 eigenfunctions (see [3]). We will prove

an anologue of this result for the case of asymptotic variance. The main objective of the

paper is to characterize the drift vector fields having the property that the asymptotic

variance goes to zero as the drift increases. It will turn out that asymptotic variance

goes to zero uniformly on the unit ball in L2 if and only if there are noH1 eigenfunctions

associated to the zero eigenvalue of the drift generating operator. We will study this

questions for bounded drift vector fields on compact manifolds and for unbounded drift

under some linear growth condition on Rd.

1. Mathematical setting

Let U : Rd → R be a given energy function and π the probability measure on Rd with

density proportional to e−U(x). Let L2(R2, π) be the space of complex valued functions

which are square-integrable with respect to π. This space is a Hilbert space endowed

with the inner product

< f, g >=

∫
Rd

fgdπ.

Date: August 13, 2019.

2010 Mathematics Subject Classification. Primary 60J60; Secondary 60J35, 47D07, 34K08.

Key words and phrases. non-reversible diffusion, fast incompressible drift, asymptotic variance.
1



2 B. FRANKE, C.-R. HWANG, A. OULED SAID, AND H.-M. PAI

We will consider the space of mean zero functions

H =

{
f ∈ L2(Rd, π) :

∫
Rd

fdπ = 0

}
.

If one is interested in sampling from π, then a commonly used process is the time

reversible Langevin diffusion having π as equilibrium state, which is defined through

the following SDE

(1) dXt = −∇U(Xt) dt +
√

2 dBt,

where Bt is a standard Brownian motion. Let b be a weighted divergence free vector

field on Rd; i.e.: div(be−U ) = 0. Perturbing the reversible diffusion (1) by adding a

drift term generated by b results in a SDE of the following form

(2) dXb
t = −∇U(Xb

t ) dt +
√

2 dBt + b(Xb
t )dt.

It was pointed by Hwang, Hwang-Ma and Sheu (1993), (2005) that a perturbation

usually leads to a faster convergence to equilibrium (see [9] and [10]).

We denote by Ckc (Rd) the space of k-times differentiable functions with compact support.

For f ∈ C2c (Rd) the generator of the diffusion defined in (1) has the form

Lf = ∆f −∇U · ∇f.

The operator L is selfadjoint in L2(Rd, π) and we suppose that its spectrum is discrete

with eigenvalues 0 = λ0 > −λ1 > −λ2 > ... with λn →∞ and associated eigenfunctions

ϕk, k ∈ N; i.e.: Lϕk = λkϕk for all k ∈ N. Any function f ∈ L2(Rd, π) can be

represented in the orthonormal basis ϕk; k ∈ N as f =
∑

k∈N αkϕk.

Note that for all m ∈ N the spaces

Hm :=

{
f =

∞∑
i=1

αiϕi ∈ H;
∞∑
i=1

|αi|2λmi <∞

}
are Hilbert spaces with inner products

〈f, g〉m =

∞∑
i=1

αiβiλ
m
i , where f =

∞∑
i=1

αiϕi and g =
∞∑
i=1

βiϕi

and corresponding norms

‖f‖2m =
∞∑
i=1

|αi|2λmi .

Remark 1 : Note that we have the identity

‖f‖21 =

∫
Rd

|∇f |2e−Udx.

The fact that this is a norm on H1 follows from the equivalence of ‖f‖1 = 0 and f = 0.

The generator of the modified equation (2 ) for f ∈ C2c (Rd) has the form

Lbf = Lf + b · ∇f.

Note that the operators L and Lb can be generalized to Riemannian manifolds, where

they will define manifold valued diffusions Xt; t > 0 resp. Xb
t ; t > 0.
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Suppose we have for f ∈ H that there is a solution g ∈ H2 to the Poisson equation

Lbg = −f.

Then the following central limit theorem was proved in Kipnis and Varadhan (1986)

and also in Bhattacharya (1982) (see [11] and [1]) :

t−
1
2

(1

t

∫ t

0
f(Xb

s)ds−
∫
Rd

fdπ
)

d−→ N(0, σ2b (f)) as t→ 0,

where the asymptotic variance is given by the following expression :

σ2b (f) = 2〈f, g〉.

One can ask the question, how this asymptotic variance behaves as the drift is accel-

erated to infinity by multiplying the vector field b by a large constant c. It was proved

in Hwang, Normand and Wu (2015) (see [7]) that

lim
|c|→∞

σ2cb(f) = 2‖P0L
−1/2f‖2,

where P0 is the orthogonal projection in H on N0 = ker(L−1/2b · ∇L−1/2). Constantin,

Kiselev, Ryzhik and Zlatos (2008) prove that the operator norm of the semi-groups

T
(c)
t , t > 0 generated on H by the operators Lcb converge to zero if and only if the

operator b · ∇ has no eigenfunctions in H1 (see [3]). As a consequence of this the

spectral gap

ρcb = − sup
{

Re(z); z ∈ σ(Lcb)\{0}
}

goes to infinity as |c| → ∞ whenever b · ∇ has no eigenfunctions in H1. It was proved

by Franke, Hwang, Pai and Sheu in (2010) (see [6]) that

lim
|c|→∞

ρcb = inf
µ∈R

inf

{∫
M
|∇φ|2dπ; ‖φ‖ = 1, φ ∈ H1

µ

}
where

H1
µ =

{
φ ∈ H1 : b · ∇φ w

= iµφ
}
.

In this paper we will prove some analogue to the statement of Constantin et al.

(2008), for the behavior of the asymptotic variance as |c| → ∞. It will turn out that

sup‖f‖61 σ
2
cb(f) goes to zero if and only if the operator b · ∇ has no H1 eigenfunctions

to the eigenvalue zero. This is equivalent to say that there are no H1 functions in the

kernel of the operator b · ∇. This shows that asymptotic variance going to zero is a

more general phenomenon than spectral gap growing to infinity.

Remark 2 : One could think, that since any eigenfunction φ ∈ H1 to the eigenvalue

iµ of b · ∇ yields an element from the zero eigenspace by taking absolute value, the

condition from Constantin et al. (2008) might be equivalent to ours. However, taking

its absolute value might lead to a function which might not be mean zero, and thus is

not anymore in H1.
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2. Main results

2.1. The case of bounded drift vector fields. In this section, let M be a smooth

d-dimensional compact connected Riemannian manifold without boundary and let ∆

be the Laplace Beltrami operator on M. Again let U : M → R be a C2 function defining

a probability density e−U on M . Further we suppose that the differential operator

Lf = ∆f −∇U · ∇f

has discrete spectrum and a spectral gap in H. Let b be a C1 vector field satisfying

div(be−U ) = 0.

We consider the diffusion generated on M by a differential operator of the form

Lcbf = Lf + cb · ∇f for f ∈ C2c (M).

The following theorem gives a representation for the limit of the asymptotic variance

which was published in Duncan et al. (2016) and which is different from the one

given in Hwang et al. (2015) (see [5] and [7]). Its proof is based on a method from

Bhattacharya, Gupta and Walker (1989) (see [2]). We will repeat it here, since it will

serv as a starting point for our investigation. Also note that a similar result was proved

in the master thesis of Ouled Said (2016) (see [12]). The following theorem holds :

Theorem 2.1. For any f ∈ H, σ2cb(f) satisfies

lim
|c|→∞

σ2cb(f) = 2‖PL−1f‖21,

where P is the orthogonal projection in H1 to N0 = ker(b · ∇) ∩H1.

Proof. The following operator was introduced by Bhattachary, Gupta and Walker (see

[2]) to study asymptotic diffusion coefficients for homogenized diffusions with large drift

A = L−1b · ∇ : H1 → H1. They observed that when b is C1 and satisfies div(be−U ) = 0

then the operator A is antisymmetric and compact. This can be seen as follows :

〈L−1b · ∇f, g〉1 = −〈b · ∇f, g〉 = 〈f, b · ∇g〉 = −〈f, L−1b · ∇g〉1 for all f, g ∈ H1.

It is clear that A is compact, because we work on a compact manifold which then

implies the compactness of the embedding H2 ⊂ H1. It follows from those observations

that there exist eigenfunctions {ψk}k>1 and corresponding eingenvaues iµk, satisfying

Aψk = iµkψk. Further we have the following properties :

(i) Each µk is real and lim
k→∞

µk = 0.

(ii) The family {ψk}k>1 is a complete orthonormal set in H1 ∩N⊥0 , where N⊥0 denotes

the orthogonal complement in the Hilbert space H1 of the kernel

N0 := {h ∈ H1; Ah = 0}.

(iii) Each h ∈ H1 can be represented as

h = Ph+
∞∑
k=1

αkψk,
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where for k = 1, 2, ..., αk = 〈h, ψk〉1 and where P is the orthogonal projection onto N0

in the Hilbert space H1. Note that

‖h‖21 = ‖Ph‖21 +

∞∑
k=1

|αk|2.

It is known that for all f ∈ H and all c ∈ R there is a solution g ∈ H1 to the Poisson

equation

Lcbg = (L+ cb · ∇)g = −f.
Since by elliptic regularity g ∈ H2, we this can be reorganized as follows

(3) g + cAg = g + cL−1b · ∇g = −L−1f.

We have the representations

g =
∞∑
k=1

βkψk + Pg and L−1f = PL−1f +
∞∑
k=1

αkψk

with αk = 〈L−1f, ψk〉1 = 〈f, ψk〉 for all k ∈ N.
Replacing g and L−1f by their respective series representation in equation (3), we

obtain :

Pg +

∞∑
k=1

(βk + icµkβk)ψk = −PL−1f −
∞∑
k=1

αkψk.

By identification, we obtain

Pg = −PL−1f and βk = − αk
1 + icµk

.

We see that as c → ∞ we have βk → 0 and it follows that L−1cb f → PL−1f in H1 as

c→∞. Now,

lim
|c|→∞

σ2cb(f) = − lim
|c|→∞

2〈L−1cb f, f〉 = −2〈PL−1f, f〉 = 2〈L−1PL−1f, f〉1

= 2〈PL−1f, L−1f〉1 = 2〈PL−1f, PL−1f〉1 = 2‖PL−1f‖21.

This finishes the proof. �

Corollary 2.2. The following two statements are equivalent :

i) lim
|c|→∞

σ2cb(f) = 0 for all f ∈ H;

ii) H1 ∩ ker(b · ∇) = {0}.

Proof. F irst we prove (i) =⇒ (ii). We give a proof by contradiction. Suppose there is

a h ∈ H1 ∩ ker(b · ∇) with h 6= 0. We then have for all f ∈ H

〈PL−1f, h〉1 = 〈L−1f, Ph〉1 = 〈L−1f, h〉1 = −〈f, h〉.

In particular for the choice h = f this yields

0 < ‖h‖2 = 〈h, h〉 = −〈PL−1h, h〉1 6 ‖h‖1‖PL−1h‖1,

which implies ‖PL−1h‖1 > 0, which by Theorem 2.1 would imply lim
c→∞

σ2cb(h) > 0. This

contradicts (i).

Now we turn to the implication (ii) =⇒ (i). If one has H1 ∩ ker(b · ∇) = {0}, then it
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follows that ker(L−1b · ∇) = {0}. This implies PL−1f = 0 for all f ∈ H1. From the

previous theorem then follows that limc→∞ σ
2
cb(f) = 0 for all f ∈ H1. �

Now we will introduce some results that will be useful later.

Remark 3 : In the following we will use Dini’s Theorem ([4] page136) which states

that for a compact metric space K, a continuous function F : K −→ R and a sequence

of continuous functions Fn : K −→ R, n ∈ N, satisfying that Fn converges pointwise to

F on K and Fn > Fn+1 for and all n ∈ N, we have that Fn converges uniformly to F

on K.

Proposition 2.3. For K = {L−1f ; f ∈ H, ‖f‖ 6 1} the family of functions

Gc : K −→ R : h 7−→ 2

∞∑
k=1

1

1 + c2µ2k
|〈h, φk〉1|2

converges as |c| → ∞ uniformly on the compact set K to the zero function.

Proof. Note that the set K is compact with respect to the H1 norm since L−1f ∈ H2

and moreover ‖L−1f‖2 6 1 when ‖f‖ 6 1, which says that the set K s bounded in

H2 and thus compact in H1. For h ∈ K there exists some f ∈ H with ‖f‖ 6 1 and

h = L−1f . It follows :

‖h‖21 = ‖L−1f‖21 = −〈f, L−1f〉 6 ‖f‖‖L−1f‖ 6 1

λ1
.

Let us first prove that Gc is continuous with respect to the H1 norm. One has

|Gc(h)−Gc(h0)| = 2

∣∣∣∣∣
∞∑
k=1

1

1 + c2µ2k
(〈h, ϕk〉21 − 〈h0, ϕk〉21)

∣∣∣∣∣
6 2

∞∑
k=1

∣∣∣(〈h, ϕk〉1 − 〈h0, ϕk〉1)(〈h, ϕk〉1 + 〈h0, ϕk〉1)
∣∣∣

6 2

( ∞∑
k=1

|〈h− h0, ϕk〉1|2
)1/2( ∞∑

k=1

|〈h+ h0, ϕk〉1|2
)1/2

= 2‖h− h0‖1‖h+ h0‖1
6 2‖h− h0‖1(‖h‖1 + ‖h0‖1)

6
4

λ1
‖h− h0‖1.

Furthermore, we have for c0 < c1 that

Gc1(h) = 2
∞∑
k=1

1

1 + c21µ
2
k

|〈h, ϕk〉1|2 6 2
∞∑
k=1

1

1 + c20µ
2
k

|〈h, ϕk〉1|2 = Gc0(h).

It is clear that by dominated convergence theorem Gc(h) converges to zero as c→∞.

The statment of the proposition now follows from Dini’s theorem. �

We now come to our main result.
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Theorem 2.4. For B =
{
f ∈ H; ‖f‖ 6 1

}
the next two statements are equivalent :

i) lim
|c|→∞

sup
f∈B

σ2cb(f) = 0;

ii) H1 ∩ ker(b · ∇) = {0}.

Proof. First we prove (i) =⇒ (ii). Suppose that there is a f0 ∈ H1 ∩ ker(b · ∇) with

f0 6= 0. We can suppose without loss of generality that ‖f0‖ = 1. Note that by Corollary

2.2, we have

lim
|c|→∞

sup
f∈B

σ2cb(f) > lim
c→∞

σ2cb(f0) > 0.

Let us now prove that (ii) =⇒ (i). We have for f ∈ H and g = −L−1cb f

σ2cb(f) = −2〈L−1cb f, f〉 = 2〈L−1cb f, L
−1f〉1 = −2〈g, L−1f〉1.

We saw in the proof ot Theorem 2.1 that we have the following representations in H1

g =

∞∑
k=1

βkψk + Pg and L−1f = PL−1f +

∞∑
k=1

αkψk.

It follows that

σ2cb(f) = −2
〈
Pg −

∞∑
k=1

αk
1 + icµk

ψk, PL
−1f +

∞∑
k=1

αkψk
〉
1

= −2〈Pg, PL−1f〉1 + 2

∞∑
k=1

α2
k

1 + icµk

= 2‖PL−1f‖21 + 2

∞∑
k=1

1

1 + c2µ2k
|〈L−1f, ψk〉1|2

= 2‖PL−1f‖21 + 2Gc(L
−1f).

Since we supposed that H1∩ker(b ·∇) = {0} it follows that ‖PL−1f‖1 = 0. Therefore,

by Proposition 2.3, this implies that

lim
|c|→∞

sup
f∈B

σ2cb(f) = lim
|c|→∞

sup
f∈B

Gc(L
−1f) = lim

|c|→∞
sup
h∈K

Gc(h) = 0.

This finishes the proof. �

2.2. The case of unbounded drift on Rd. In this section, we consider the diffusions

(1) and (2) on Rd. Let U : Rd → R be a C2 function such that e−U is a probability

density and b be a C1 vector field satisfying div(be−U ) = 0.

We consider the diffusion generated on Rd by a differential operator of the form

Lcbf = Lf + cb · ∇f for f ∈ C2c (Rd),

where Lf = ∆f −∇U · ∇f and where ∆ is the Laplace operator on Rd.
We make the same assumptions as in [7], which are :

(A1) For all ε > 0, there is a cε > 0 such that

|b · ∇U |+ |D2U | 6 ε|∇U |2 + cε,

where D2U denotes the Hessian matrix of U .

(A2) There is a constant k > 0 such that |b| 6 k(|∇U |+ 1).
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(A3) As |x| → ∞ one has |∇U(x)| → ∞.
Now we will intoduce some results that will be useful later.

Lemma 2.5. The set A =
{
f ∈ C1(Rd) ∩H1 : ∇f ∈ Cc(Rd)

}
is dense in H1.

Proof. For f ∈ H1 and ε > 0 there is g ∈ C∞(Rd) ∩H1 such that ‖f − g‖1 6 ε.
Let us introduce a new function gr := gφr, where we used the truncation function

φr(x) :=


1 if 0 6 |x| < r;
1
2(1 + sin

(
π|x|+ π(12 − r)

)
if r 6 |x| < r + 1;

0 if |x| > r + 1.

Note that the function

hr := gr −
∫
Rd

gre
−Udx

is in the set A for any choice of r > 0. Further, we have the inequality∫
Rd

|∇hr −∇f |2e−Udx 6
∫
Br(0)

|∇g −∇f |2e−Udx+ 4

∫
Br+1(0)\Br(0)

|∇g|2e−Udx

+2π

∫
Br+1(0)\Br(0)

|g|2e−Udx+ 2

∫
Br+1(0)\Br(0)

|∇f |2e−Udx

+

∫
Bc

r+1(0)
|∇f |2e−Udx.

Since‖f‖1, ‖g‖ and ‖g‖1 are all finite it follows that the right side of the above inequality

is bouded by 2ε for r sufficienly large. �

It follows from the previous lemma and the assumptions on b that the domain of

definition dom(B) of the operator B = iA = iL−1b · ∇ is dense in H1. The following

proposition and its proof is a variation of some result from [7].

Proposition 2.6. The operator B is essentially self-adjoint as an operator on H1.

Proof. Since B is symmetric with respect to the scalar product on H1, we need to check

that the range range(B ± i) of B ± i is dense in H1 (see corollary to Theorem VIII.3

in [8]). For any g ∈ H2 we have that L(−ig) provides a well-defined element of H.

Further, since Lb is onto H there exists a h ∈ H2 such that Lbh = L(−ig). Now, it

follows that

L−1b · ∇h = L−1(Lb − L)h = L−1Lbh− h = L−1L(−ig)− h = −ig − h.

We conclude that

(B + i)h = i(L−1b · ∇h+ h) = i(−ig − h+ h) = g.

This prove that range(B + i) = H2 ⊂ H1. This shows that the range of B + i is dense

in H1. Similarly, we can show that range(B − i) = H2 ⊂ H1, by considering h ∈ H2

such that Lbh = L(ig) and since −L−1b · ∇ = L−1(L−b − L). �

Let us give a result concerning the limiting behavior of the asymptotic variance as

the magnitude of the perturbation goes to infinity.
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Theorem 2.7. Assume (A1),(A2),(A3). For any f ∈ H1 we have

lim
|c|→∞

σ2cb(f) = 2‖PL−1f‖21,

where P is the orthogonal projection in H1 to N0 = ker(b · ∇) ∩H1.

Proof. Under the conditions (A1),(A2),(A3) we know that for all f ∈ H there is a

solution g ∈ H1 to the Poisson equation Lcbg = −f (see [7]). Let µL−1f be the spectral

measure of the function L−1f associated with the essentially self adjoint operator B on

H1 (see [8] page 224). The measure µL−1f is supported on the spectrum σ(B) of the

operator B. On the space H the operators L and Lcb are invertible and we have the

equality

L−1cb = (I − cL−1b · ∇)−1L−1.

Since we have

σ2cb(f) = −2〈L−1cb f, f〉 = 2〈L−1cb f, L
−1f〉1 = 2〈(I − cL−1b · ∇)−1L−1f, L−1f〉1

= 2〈(I + icB)−1L−1f, L−1f〉1 = 2

∫
σ(B)

1

1 + icy
µL−1f (dy).

Since we have that the asymptotic variance is real valued it follows that

σ2cb(f) = 2

∫
σ(B)

1

1 + c2y2
µL−1f (dy)

= 2µL−1f (0) + 2

∫
σ(B)\{0}

1

1 + c2y2
µL−1f (dy)

= 2‖PL−1f‖21 + 2

∫
σ(B)\{0}

1

1 + c2y2
µL−1f (dy).

The last equality follows since P is the H1 projection on ker(b ·∇)∩H1 = ker(B), which

is the eigenspace to the zero eigenvalue of B. By dominated convergence theorem, the

integral vanishes in the limit as |c| → ∞ and it follows that

lim
|c|→∞

σ2cb(f) = 2‖PL−1f‖21.

This proves the theorem. �

Now let us show that the asymptotic variance goes to zero uniformly on the unit ball

in H1 as the drift increases. Note that the assertion of Corollary 2.2 remains valid also

in the current setting of unbounded drift.

Proposition 2.8. Suppose H1 ∩ ker(b · ∇) = {0} and let K = {L−1f ; f ∈ H, ‖f‖ 6 1}.
The family of functions

Fc : K −→ R : h 7−→ 2

∫
σ(B)\{0}

1

1 + c2y2
µh(dy)

converges as c→∞ uniformly on the compact set K to the zero function.

Proof. It follows from the condition on the kernel of b · ∇ that ker(B) = {0} in H1.

Therfore, the spectral measure µL−1f has no atom in zero. It follows that

Fc(h) =

∫
σ(B)\{0}

1

1 + c2y2
µh(dy) =

∫
σ(B)

1

1 + c2y2
µh(dy) = 〈(I + c2B2)−1h, h〉1.
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We first prove that Fc is continuous with respect to the H1 norm. Note that we already

saw in the proof of Theorem 2.1 that for all h ∈ K we have ‖h‖21 6 1
λ1
. Since the operator

(I + c2B2)−1 is symmetric in H1, one then has for all h, h0 ∈ K

|Fc(h)− Fc(h0)|

= 2
∣∣∣〈(I + c2B2)−1h, h〉1 − 〈(I + c2B2)−1h0, h0〉1

∣∣∣
= 2

∣∣∣〈(I + c2B2)−1h, h− h0〉1 + 〈(I + c2B2)−1(h− h0), h0〉1
∣∣∣

= 2
∣∣∣〈(I + c2B2)−1h, h− h0〉1 + 〈h− h0, (I + c2B2)−1h0〉1

∣∣∣
6 2

(
‖(I + c2B2)−1h‖1 + ‖(I + c2B2)−1h0‖1

)
‖h− h0‖1

= 2

(√∫
σ(B)

1

(1 + c2y2)2
µh(dy) +

√∫
σ(B)

1

(1 + c2y2)2
µh0(dy)

)
‖h− h0‖1

6 2

(√∫
σ(B)

µh(dy) +

√∫
σ(B)

µh0(dy)

)
‖h− h0‖1

6 2(‖h‖1 + ‖h0‖1)‖h− h0‖1

6
4

λ1
‖h− h0‖1.

This proves the continuity. Moreover, the monotonicity holds, since for c0 < c1 we have

Fc1(h) = 2

∫
σ(B)

1

1 + c21y
2
µh(dy) 6 2

∫
σ(B)

1

1 + c20y
2
µh(dy) = Fc0(h).

On the other hand, by dominated convergence theorem Fc(h) converges to zero as

|c| → ∞. By Dini’s theorem the result follows. �

We now come to our main result in this section.

Theorem 2.9. Assume (A1),(A2),(A3). For B =
{
f ∈ H; ‖f‖ 6 1

}
, the following

two statements are equivalent :

i) lim
|c|→∞

sup
f∈B

σ2cb(f) = 0.

ii) H1 ∩ ker(b · ∇) = {0}.

Proof. The implication (i) =⇒ (ii) follows from the same arguments as in Theorem 2.1.

To finish the proof, let us prove that (ii) =⇒ (i). We have by Theorem 2.7 for f ∈ H
that

σ2cb(f) = 2‖PL−1f‖21 + 2

∫
σ(B)\{0}

1

1 + c2y2
µL−1f (dy) = 2‖PL−1f‖21 + 2Fc(L

−1f).

From (ii) follows that ‖PL−1f‖1 = 0. Therefore, by Proposition 2.8, this implies that

lim
|c|→∞

sup
f∈B

σ2cb(f) = lim
|c|→∞

sup
f∈B

Fc(L
−1f) = lim

|c|→∞
sup
h∈K

Fc(h) = 0.

This proves the remaining implication. �
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Sfax University, (2016).
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